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of probabilities of misclassification for the test method. Results of
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Hochberg and Tenenbein [3] and of Albers and Veldman [1] are extended to
the case where the standard method is not perfect, but its misclassification
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‘ 1. INTRODUCTION
Suppose we have a large population, containing an unknown proportion,
P, of individuals possessing a certain characteristic, which we will

call 'nonconformance'. In a random sample, of-size n, from this population,

the distribution of the number, X, say, of nonconforming individuals

wiii be binomial with parameters n,P so that

Prix=x] = () P*1-P"™  (x=0,1,...,n).
We will represent this, symbolically, as
X ~ Bin(n,P) , where —denotes ''is distributed as'.

If the individuals in the sample of size m are examined by an
imperfect measuring device, which detects actual nonconformance with
probability p, and (incorrectly) 'detects' nonconformance, when the
individual is really not nonconforming, with probability p', then the
distribution of Z, the number of individuals declared to be nonconforming,
as a result of this inspection, will be binomial with parameters n,

Pp+ (1-P)p' . It is clear that the only paraméter that can be estimated
from observations on values of I in in_dependent samples is Pp + (1-P)p’'.

Various methods have been suggested for obtaining data from which
estimates of P, p and p' can be derived (e.g. Albers and Veldman [1],
Johnson and Kotz [3]). Tenenbein [6] suggested additional inspection
of part of the sample by a perfect measuring device (for which p=1 and
p'=0) and utilizing the resultant data. This method has been extended by
Hochberg and Tenenbein [3] to allow for inspection of a further sample,

of size g, Say, by the perfect measuring device (S).
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In this paper, we study problems arising in this latter situation if
the 'established’ measuring device S is not perfect, but has known values
Pg» pé for p,p' respectively. For convenience, we will denote the (unknown)
values of p,p' for the measuring device under test (T) by PrsPp respectively.
We will also assume (when necessary) that pS>>p§ and pT>>p,IL.

Problems of this kind arise when it is desired to calibrate the new
device (T), by estimating Pr and p,i.. The unknown proportion (P} of NC units

plays the role of a nuisance parameter in such problems.

2. ANALYSIS I (Moment Estimation)

As a consequence of the inspections we have the following sets of
observations:
(1) ng using S alone, with ZS judged nonconforming (NC),
(11) oy using T alone, with ZT judged NC,

(1i1) n using both S and T, with results shown below:

T

S # NC # not NC
# NC 11 10
# not NC :01 200
# 1] 1 : ~ - -
(# denotes 'number of'.) Evidently, i11* 290" 201+200 n.

Under the assumption of random sampling from a population of effectively

infinite size, we have that:
z Z

“11 10
ZS, Z‘T and ; = ; are mutually independent; (1.1)
“01  “00

ZSA Bin(ns, es) with es=pSP+ pé(l-P) H (1.2)




ZT.r~Bin(nT,eT) with 6T=pTP + p%(l-P) s (1.3)

Also, assuming that the S and T classifications are independent, given the

true status of the individual,

~

|( ¢ es'¢
Z ~Multinomial | n; [ . a - }
l BT ¢ 1 es 6T+¢ }

with ¢ = pSpTP + pép.'r(l-P) , where —~ denotes ''is distributed as'.
Recall that Pg and pé have known values, and P is the (unknown)

proportion of NC individuals in the population.
Also P = (bg- pé)/(ps - pg)
Pr = (¢~ pgp)/(8g - Pg)

p'i' = (pses - ‘b)/(ps' es)

Now, (ng + n)éS 10 * %1~ Bin(ng+n, o

11 s)
(np + n)6p = 2p ¥ Zg) * Zyy ~ Bin(agp+n, 6)
né = Z;; ~ Bin(n,9)
so that 55 5.1. and 5 (as defined in (3.1)-(3.3)) are unbiased estimators
of 6g, eT and ¢ respectively.
D = T - S
_Hence_ P = (pg-Pg) "(85-Pg)
is an unbiased estimator of P. Although the estimators
b= (B.-p) L(6-pl B (4.
Pr = (65-pg) “(¢-pg O1)
BY = (pe-8.) L (Pebr-d a.
and Pr = (pg-85) "(pgBr-6) (
are not unbiased estimators of Pr and p.i. respectively, the biases should not

be large if sample sizes are adequate (see the example later in this section).
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The variance-covariance matrix of the random variables in (3.1)-(3.2) is

’ (ng+n)8g(1-65)  n(¢-8467) ny(1-6g) W
Var ((ng+n)6g, (np*n)61,n6) = | n(6-6467) - (npm)ep(l-6y)  ns(l1-67)
| 10(1-8g) no(1-67) no(1-6)
Hence (cf. (4.1))
var(p) = (ngm) " (pg-pl) "0 (1-6) (5.1)

and, using the method of statistical differentials (see, e.g. Johnson and
Kotz [4, Chapter 1, Section 7.5]) we obtain, after some algebraic manip-
ulation; the approximate formula
= yen 2p” - - - -1 -2
var () 2py P 2 (pg-DY) 2[{:1 o(1-0)-2(npem) Tpgo(1-6) + (aprm) pgler(i-ep) oy
2(netn) o (1-8)-n(ntn) Ipa(8-6:6-)1p. L + (ngtn) Yoc(1-60) | (5.2)
(ng*n) “{¢(1-6g)-n(np*n) "pg(-8567)ipy ng s{1-8g :

An approximate expression for var(ﬁ%) is obtained from (5.2) by
replacing Pr by p+ and P by (1-P), and interchanging Pg and pé:

An approximate formula for the bias of ﬁ;'is
~ ~- ' -
ccv(es, ) Pg eT) \

( var(és)
pT 1 2 - ' 1 (6
(es'ps) (es'pS) (¢'ps eT) }

«ffe

E [IBT] - pT

which, after some reduction, gives a proportional bias (i.e. 100(bias)/pT%)

100{np&(1-65) + n(1-pL)g}(6-6581) %
0

)

(ng#m) (npem) (8-pg) “(0-pYO)
From (2.1)-(2.3)

! = n! . ! = !
8575 = (PgPg)P s ¢-Pg Bp = Prlegpg)P

S ATepte \‘_‘.‘_ e e 'P" T ~.{_‘.)'.(\“.“'. :s \. SITITITN _.*'. A e e T e \.‘_;.f-.‘.\(\ TR
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and also  ¢-8.87 = P(1-P) (Pg"PY) (PrPP) , so
the approximate proportional bias (7) is

100{ngp¢ (1-8g) + n(1-pd)eg} (1-P) (p-py) 7
Y

(ns+n)(nT+n)P2(ps-p§)2pT

which is positive and (since p% < pT) less than

100 G(1-P)
2 ' 2
(ns*n)P (ps'ps)
where
O
G = %m%um+%mu%%,
which lies between péfl es) and (1- pé\eS

Example 1. Using as 'typical' valués of the probabilities Pg» pé and P the values

0.9, 0.1 and 0.1 respectively we find that

= (n*n) "1(0.0820 + 0.162n)

(so that G lies between 0.082 and 0.162) and the approximate proportional bias

of Py is between 0 and 1406.25 G(ng'n) s . Note that the

upper limit is

(7"

(8)

(9)

less than 227.8 (ns+n)-1%, so if nS-+n:>100 the approximate proportional bias

is less than 2.28%. The next section contains a numerical

formula (5.2), without specifying values of Pp and pr -

assessment of
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3. SOME NUMERICAL APPROXIMATIONS

Utilizing the reasonable assumption that Pg>> pé , and neglecting

2 in the numerator of (5.2) we find

0(1-¢)  20(1-8g)  Bg(1-8g) }
- +
np% (ns+n) Pr ngtn

tems in p'S and p'S

(10)

- - - -2
var(pp) 3 p% P 2(ps~pé\ {

Taking pg = 0.9, pg = 0.1 so that 6 = 0.8P+0.1and ¢ = 0.9 pP+0.1 py(1-P) ,

we obtain from (10)

Z

p2  [10.9pP + 0.1p1(1-P)}{1-0.9p1P - 0.1p}(1 P}
; L .

(0.8P+0.1) (0.9-0.8P) - {1.8p.P + 0.2pL(1-P)} (0.9-0.81>)p:r1

+

ng +n
Now taking P = 0.1, we find
2
. . D 0.09 (Pr*p1) {1-0. 09 (pr*pr) } Pr
varGpy) & —1 'rpg TPT’ 0.1476 , Pr an

0.0064 npr ng*n 'p.r

. - P

+
n Ngtn PT

Since 0.09(pT+p,i.){1—0.09(pT+p.i.)} < % (because 0.09(pT+p.i.) < 1) the right hand

side of (12)‘ is less than
(0.0256n) 1 < 39.1 a1,
In the next section we will compare the asymptotic variances and covariances
of 55,5.1. and P with those for maximum likelihood estimators éS’ éT and P of 8g,

e.r and P respectively.

R . S R R ...“
> " W AT ACR (;-'_\h‘_ R
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, . 4. ANALYSIS II (Maximum Likelihood Estimators)
5 The likelihood function of Zg, Z; and Z is
g ’ n
i S| | T ng-Zg -2 i
; 2| | 20| 120732000201 sZnn|  OS (1 8s) o' (1-8p)
E S T 11°°10°°01°°00
Z Z Z z
11, ,\"10,, _,y 01, . _ 00
; (85-0) M0 (0p-0) O (1-8g-81+0)
' Equating derivatives of the log-likelihood to zero gives the folliowing
equations for es, eT and ¢ :
: Z. ngoZo I z
: A—s - —.SA S + Alot\ - A 09 ~ = 0 (13.1)
; 8s 18 Bg¢ 1856y _
yA yA JA JA
T n'rA T,20L .00 (13.2)
: 6 1-8p  6p-¢  1-Bg-6.+0
M z z Z yA
}1 1UA AOIA + A00~ _ =0 (13.3)
? §S-¢ 8070 1-Bg-6+0
; subject to 0<¢<GS,8T<1 and ¢>es+eT-l.
The information matrix is
y n n(l-s -
s ., (1-8) ’ __n_ o __nG-ep 1]
: l'es'e'r+¢ eT(l'eT) (eT'¢) (1'es°e'r+¢) (eT'¢) (l'es'eT"'d)) '
A 7
_ n(1-6;) . n(1-6g) n{eseT(l-es-eT)+zeSeT¢-q,2} :
(8g6) (1-85-6+0) (61-6) (1-85-81+0)  (6g-0) (Br-0) (1-8g-8.4¢)

(19

...............
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The determinant is

-1, _ n Ighr Y
| = + n(ns+n,r+n)

|V

-~

with y = GSGT(I-BO-6T+¢) - ¢(¢-856T) .

And from the asymptotic variance-covariance matrix V we obtain

)
var(8g) = = ) i, .1 1 enl Ll 1 1,1 }
v \“T(I-GT) ¢ 6590 Bp-¢ 1-8g-6,+¢ 80 1-8g-68.+¢ || ¢ 85-0 j

. S( - S) (Yns + )/lY + 6) (15)

where N = Ng*n+n (= total number of observations) and

nN
Pt

The MLE of P is

§ =

881 (1-8) (1-67)

P = (pgpl) M (BgpY). (16)

The asymptotic efficiency of P (see (4.1)) relative to P is the same as that

of éS relative to éS’ which is

IOO(HS"'H) (v ns-l + ‘?N-l\,/(\:’*%)% 1=

1 = = = = 3 ey - 1
Taking ps=p.1.~0.9 , pé~p.i. 0.1=P, as in Example 1, and Ng=n =N (= -_,;N)
we find y=0.0184680 and &=0.0653573, so (17) becomes

-1

g +0.7797 N

100(nS+n) (0.2203 n
= 2(0.2203+0.2599) = 96.04% .

The asymptotic variance of the MLE & is

-1 -1 -1 ,
56(1-0) - 562N (ng8g ' (1-8g) + 782" (1-87) ) + 8(8g-0) (Bp-2) (1-3 -2_4e)

var(s) = =
6 +\,r

...............
......

.....
--------
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On the other hand, recalling that var(¢) = n'l¢(1-¢), we find for the
numerical values of the parameters used above, that the asymptotic efficiency

of the moment estimator ¢ is

100 x 0:0653573x 0.09{0.91 - (2/3)x0.09 (0.18) 1% 0.82} + 0.09x 0.09%x 0.73
0.09 x 0.91(0.0653573 + 0.0184680)

0.0037449 + 0.0005322
0.0068653

= 100 x = 62.30%

The markedly lower asymptotic efficiency of ¢ is associated with the fact
that it does not utilize the information on values of b and eT which is
available from the other (ns+nT) observations. Some support for this statement

comes from the asymptotic efficiency of ¢ if the values of 8g and GT are known.

This is

(86a-9) (6q-¢) (1-8¢-0p*d)
100 x —= T S T (19)
y(1-4)

With the numerical values of eé, eT and ¢ which we have been using above this

would give an asymptotic efficiency of only 35.18%.

5. CALCULATION OF MAXIMUM LIKELIHOOD ESTIMATES

It is not possible to obtain explicit solutions of (13.1)-(13.3) for

85597 and ¢, so a mnumerical solution must be sought.

An EM algorithm (see, e.g. Dempster et al. [2]) can be constructed in
i i 2. Z..
the following way. Introduce (unobserved) random variables i5(S) ( 1J(T))
(i,j=0,1) representing the numbers of i,j decision combinations which
would have been obtained if the ns(nT) individuals tested by S(T) had also

been tested by T(S). (Clearly

US| LR RRRAR, ARKARASA IR

Z +Z =Z. and : + 2 = Iln.

10(S) 11(S) S 01(T) 11(T) T

e

A .

b P IR .'o' L S S N R A CRCNR SRR N R DR R e e e T e T AR A e T e T sttt et
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If values of these variables had been observed the maximm likelihood

estimators would have been

e a1
For 81 (L5 * Zygery * Zq1(m) * %10 * ZaIN

) -1,
For 8p: (Zpy(gy * Z91¢s) * %7 * %01 * ZypN

For ¢: + le)N'1 .

Cris) * 2
Since
ElZyo¢y 127 = (np-2p) (85-9) (1-8p) s ElZyy(myloq] = 2p¢8p 75
E[ZOI(S) lzs] = (HS'ZS)(GT‘QJ)(I‘SS)-I; E[le(s) Izs] = st)es >

the EM algorithm leads to iteration from es(\’, 6T(‘)) , ¢>(\)) to

ta (WV)_V)y - (V)
(1) _ 17 (np-2p) (8" -07) Lo . L
6 =N Zo + + + I+ 2 (20.1)
S S ™) ™ 10 7 “11
L 1 - eT‘V 8y v J
~ (-2 )(6 ) _ ¢(\))) 7 ¢(\)) -
C(v+l) _ -1l Wgmeg) B S -, - .
&) =N TACH * 5 (V) et ?t “111 (20.2)
L S S -
- 7
() o1l T L5 1 (D) . -
;b = N \ - * - o] + 4 i ("O“))

Exa_:_@le 2. Table 1 sets out results of applying the EM algorithm to three

illustrative sets of values of the n’s and Z's. In each case nS=n.r=n= 50;

ZT= 10; ZOO =40; 201 = 3. The remaining values were
Set :S 210 :11
(D ) 1 6
(1D 8 1 6
(I1ID) 8 3 4

--------------- e Tt tle TN
-----

N K

.
el
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Table 1: EM algorithm solutions of equations (13.1)-(13.3)

Set (1) (11) (111)

v) (v) v) v) V) (v) (v) v) ()
8 v 67 v ¢ 8 8 - b 8g v 8 ®

AV

0 (moment 0.1200 0.1900 0.1200 0.1500 0.1900 0.1200 0.1500 0.1700 0.0800
estimates)

1 0.1221 0.1839 0.1154 0.1520 0.1924 0.1248 0.1539 0.1714 0.0865
2 0.1240 0.1816 0.1131 0.1522 0.1928 0.1270 0.1553 0.1714 0.0905
3 0.1251 0.1805 0.1119 0.1522 0.1929 0.1284 0.1560 0.1712 0.0928
4 0.1256 0.1800 0.1111 0.1522 0.1930 0.1294 0.1565 0.1711 0.0945
5 0.1259 0.1798 0.1106 0.1522 0.1930 0.1300 0.1568 0.1710 0.0957
6 0.1260 0.1797 0.1103 0.1522 0.1930 -0.1305 0.1570 0.1709 0.0965
FINAL 0.1261 0.1796 0.1098 0.1523 0.1931 0.1315 0.1574 0.1707 0.0984

The initial values 95(0), GT(O) and ¢(0) were the moment estimates. The
table shows the results of the first six iterations and the final values, to four
decimal places. (Speed of convergence can be improved, of course by using
modified values of ¢, a:(%), and s(%) for the (w+1)-th iteration, taking
account of trends in values.)

The maximum likelihood estimates ot P, Pr and pT' are obtained by replacing
es, Ot and ¢ in (2.1)-(2.3) by their maximum likelihood estimates. We obtain
the following formulas (provided the values lie between 0 and 1).

Set P pT p’i-
(1) (0.1261-pg)/ (pg-Pg) (0.1098-0.1796pg)/ (0.1261-pg) (0.1796pg-0.1098)/ (pg-0.12¢:
(I1)  (0.1523-pg)/(pg-Pg)  (0.1315-0.1931pg)/(0.1523-pg) (0.1931pg-0.1315)/(pg-0.152:

(II1) (0.1574-p&)/(pg-p) (0.0984-0.1707p¢)/(0.1574-pg)  (0.1707py-0.0984)/ (pg-0.157

................
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In order to satisfy the conditions 0< 13, ﬁT’ f).i. <1 we need
ps_>_max(§s,$/§.r) 3_min(§s,$/§.r) >p¢ . These conditions, for sets (I)-(III), are
(D) Pg > 0.611; pg<0.126
(ID pg > 0.681; pé<0.152
(I1I1) pg > 0.576; Pg < 0.157.
[If the conditions are not met, then appropriate boundary values

(0 if fornula gives a negative value, 1 if it gives a value greater than 1)

can be used. ]

6. CONCLUDING REMARKS

The estimates of pT,p.i. and P depend on the values assumed for Pg and Pg-
If these values are incorrect, biases will be introduced. The way in which
the values used for Pg and pé affect the estimates can easily be appreciated
from equations (2.1) -(2.3). "For example, increase in either pg or pé will
tend to lead to negative bias in estimates of P (remembering that es< ps) .

In this paper we have been concerned with estimation of Pr» p.'r (and also
P), supposing pg, pg known. This has been effected via estimation of the
parameters eS, eT and $ . The same analysis can be used in other circumstances.
For example, if P (proportion of nonconforming items) and pg are known, then

Prs p.i. and pg can be estimated using the relationships

Pl = (8- pgP) (1-P) !

_ ¢(1'P) = (eS'pSP)GT
Pr = (ps - SSjP

Ps~ “s
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Of course, if P is known, as well as Pg and pé, then es is known and
there is no need to take any observations with S alone - that is we can
take ns=0.

Acknowledgement

Dr. Samuel Kotz's work was supported by the U.S. Office of Naval Research
under Contract N00014-84-K-0301.

REFERENCES

[1] Albers, W. and Veldman, H.J. ''Adaptive Estimation of Binomial

Probabilities under Misclassification,' Statisti. Neerland.,

38, 233-247. (1984).
[2] Dempster, A.P., Laird, N.M. and Rubin, D.B. 'Maximum Likelihood

from Incomplete Data via the EM Algorithm,” J.R. Statist. Soc.,

Ser. B, 39, 1-22. (1977)
[3] Hochberg, Y. and Tenenbein, A. ''On Triple Sampling Schemes for
Estimating from Binomial Data with Misclassification Errors,"

Commmn. Statist. - Theor. Math., 12, 1523-1533. (1983)

[4] Johnson, N.L. and Kotz, S. Distributions in Statistics: Discrete

Distributions, Wiley, New York. (1969)

[S] Johnson, N.L. and Kotz, S. ''Some Tests for Detection of Faulty

Inspection,' Statist. Hefte, 29, 19-29. (1985)

[6] Tenenbein, A. "A Double Sampling Scheme for Estimating from Binomial

Data with Misclassification," J. Amer. Statist. Assoc., 65,

1350-1362. (1970)




UNGLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE /4 f)\,‘é} / 74 K?d

REPORT DOCUMENTATION PAGE
Ta. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIrIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY_OF REPORT
Approved for public release;
, | 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Listritution Unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
h | wvz/uss/1986/6
3,
3
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
\ Univ. of Maryland (If applicable) Office of Naval Research
o
~ [ '6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
. Tep't. of lManagement and Statistics
X g ersiﬁ f Mary 2
Hoiiege Xrﬁ. Mﬁ . '}69 2
- [ 8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ot ORGANIZATION (If applicable)
& U.S. Office of Naval Res¢arch NO0OO14-84-~K-0301
-. [ 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
) Stat. and Probability Program PROGRAM PROJECT TASK WORK UNIT
Office of Naval Research ELEMENT NO. [NO. NO. ACCESSION NO
¢ Arlington, Va. 22217
. |11 TITLE (Include Security Classification)
! Estimation from Binomial Data with Classifiers of Known and Unknown
R Inperfections
© |12 PERSONAL AUTHOR(S) ]
Norman L. Johnson an¢ Samuel Kotz .
-~ | 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE ?LF REPORT éYear, Month, Day) [iS. Piie COUNT
» UNCLASSIFINL rrom 9 /1/85 10 9 8 July 198
| 16. SUPPLEMENTARY NOTATION
T
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Rinomial distribution; inspection errors;
> maximum likelinood; method of moments; El
", 21oarithm
19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Observations from inspection by a "test" metnoc and a stancarad
3 metnod are combine¢ to provide estimators of population proportijon , and
- of protabilities of misclassification for the test method. Kesults are
- ovtained in tne casewhere tne standard method is not perfect, but its
. misclassification probabilities have known values. Both moment arnd
- maximum likelihood estiiators are considered and asymptotic properties
P cf tae resulting estinators are compared.
Cd
o
/
¢
<
. | 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
. UNCLASSIFIED/UNLIMITED ] same as reT CJ OTIC USERS UNCLASSIFIED
. §22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELERHONE (inclyde Area Code)|22c OFFICE SYMBOL
; | _Samuel Kotz (301) 454-610%
'y DD FORM 1473, 83 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete T o T
| ll:"(l Lady S(;IPVLX'JII
-7
-t.- P e T S S L N C L N R T TP A T e L C e e A e
LS A L S R A A AR A S SR S LR e R R T T R SR M Wy I S Sy S




0 P P B 803301 L 0t 00, 0 e My e s P'o Sy Bh 97 0%y sin b1, Fia AV Y, eb ab, sk, AT

7
L)
AL

W



