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(V ESTIMATION FROM BINOMIAL DATA WITH CLASSIFIERS OF

o KNOW1N AND UNKNOWN IMPERFECTIONS

' ~Norman L. Johnson and Samuel Kotz
University of North Carolina University of Maryland
Chapel Hill, North Carolina College Park, Maryland

ABSTRACT: Observations from inspection by a 'test' method and a standard

method are combined to provide estimators of population proportion, and

of probabilities of misclassification for the test method. Results of

Hochberg and Tenenbein [3] and of Albers and Veldman [1] are extended to

the case where the standard method is not perfect, but its misclassification

probabilities have known values'. Both moment and maximum likelihood

estimators are considered and some asymptotic properties of the resulting

estimators are compared. D T IC
ELECTE
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o inspection errors; maximum likelihood; method of moments; Ell algorithm;
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1. INTRODUC-ION

Suppose we have a large population, containing an unknown proportion,

P, of individuals possessing a certain characteristic, which we will

call 'nonconformance'. In a random sample, of size n, from this population,

the distribution of the number, X, say, of nonconforming individuals

will be binomial with parameters n,P so that

Pr[X=x] = (n ) pX(l-p)n-x (x = 0 , 1 ,...,n).

We will represent this, symbolically, as

X - Bin(n,P) , where -denotes "is distributed as".

If the individuals in the sample of size n- are examined by an

imperfect measuring device, which detects actual nonconformance with

probability p, and (incorrectly) 'detects' nonconformance, when the

individual is really not nonconforming, with probability p', then the

distribution of 2, the number of individuals declared to be nonconforming,

as a result of this inspection, will be binomial with parameters n,

Pp+ (l-P)p' . It is clear that the only parameter that can be estimated

from observations on values of Z in independent samples is Pp+ (l-P)p'

Various methods have been suggested for obtaining data from which

estimates of P, p and p' can be derived (e.g. Albers and Veldman [1],

JohnSon and Kotz [5]). Tenenbein [6] suggested additional inspection

of part of the sample by a perfect measuring device (for which p=l and

p'=O) and utilizing the resultant data. This method has been extended by

Hochberg and Tenenbein [3] to allow for inspection of a further sample,

of size ns, say, by the perfect measuring device (S).

*.............q~-~ .;i* * * * * . , * . . . . ,. * . . . . ... . . . 5
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* In this paper, we study problems arising in this latter situation if

the 'established' measuring device S is not perfect, but has known values

pS, pS for p,p' respectively. For convenience, we will denote the (unknown)

values of p,p' for the measuring device under test (T) by pT,pj respectively.

We will also assume (when necessary) that p >>pl and pT>> I

Problems of this kind arise when it is desired to calibrate the new

device (T), by estimating PT and p+. The unknown proportion (P) of NC units

plays the role of a nuisance parameter in such problems.

2. ANALYSIS I (Moment Estimation)

As a consequence of the inspections we have the following sets of

observations:

(i) nS using S alone, with ZS judged nonconforming (NC),

(ii) nT using T alone, with ZT judged NC,

(iii) n using both S and T, with results shown below:

T # NC # not NC

# NC 10

# not NC --

01 "00

(# denotes 'number of'.) Evidently, Z11 + Z10 + Z01 + Zo n.

Under the assumption of random sampling from a population of effectively

infinite size, we have that:
fZll 0

S, ZT and Z = are mutually independent; (1.1)

"01 "00

Zs- Bin(ns,e s) with es=psP+ p(l-P) ; (1.2)
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ZT -Bin(nT,eT) with eT=PTP + pi(1-P) , (1.3)

Also, assuming that the S and T classifications are independent, given the

true status of the individual,

r 3]s-
Z -Multinomial n; [ I e ST+0 (1.4)

with 0 = psPTP + p~pj(l-P), where - denotes "is distributed as".

Recall that pS and p have known values, and P is the (unknown)

proportion of NC individuals in the population.

Also P = (es-PM)/(ps-P ) (2.1)

PT= (o -p~eT)/(eS-P) (2.2)

P= (Pss"€)l(ps- S) (2.3)

Now, (n S + n)6S = Zs + ZI0 + Z11 - Bin(ns+n, es ) (3.1)

(nT + n)6 T = ZT + Z01 + Zll - Bin(nT+n, T) (3.2)

n = l 11 Bin(n,o) (3.3)

so that is eT and (as defined in (3.1)-(3.3)) are unbiased estimators

of eS, eT and ¢ respectively.

Hence P = (pS-p 1(es-p ) (4.1)

is an unbiased estimator of P. Although the estimators

PT (6s-Ps)-I(¢-Ps eT) (4.2)

and f- (ps-es)(pseT-0) (4.3)

are not unbiased estimators of PT and p+ respectively, the biases should not

be large if sample sizes are adequate (see the example later in this section).

VV
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The variance-covariance matrix of the random variables in (3.1)-(3.2) is

(ns+n)es (l-es) n( -eSeT) no(l-es)

Var((nS+n)iS,(nT+n) T,n ) = n(-e - (n+n)eT(-eT) n(l-eT)

n¢ (I- Os )  n¢ (l-e T)  n (i -e)

Hence (cf. (4.1))

vat(P) = (ns+n)- 1 (pp) 2e(1-e ) ( 5.1)

and, using the method of statistical differentials (see, e.g. Johnson and

Kotz [4, Chapter 1, Section 7.51) we obtain, after some algebraic manip-

ulation; the approximate formula

var(pT)pT2P-2(pSp,)-2 n-i1 (i-0)-2(nT+n)" 1p -T + (nT+n)-lp 2 8TleT)IpT-2
5 Sn~.n ST T T JT

-2(ns+n) l( 1 (l-es)-n(nT+n) -p(-SeT)}PT -I + (ns+n) 1es(l-es)] (5.2)

An approximate expression for var(pi) is obtained from (5.2) by

replacing PT by pj and P by (l-P), and interchanging pS and p'

An approximate formula for the bias of rF is

vat( S _ cov(OS , 6-P eT) (

E[PT] -PT PT " S (6)(es_p )2 (es-p11)( _pI eT

which, after some reduction, gives a proportional bias (i.e. 100(bias)/pT%)

100{nTpl(l-S) + n(l-pj)0S } (4-eT)

(ns+n) (nT+n) (eS-ps) 2 (0-peT)

From (2.1)-(2..3)

es-Ps; = (Ps-P)P; -P' eT = PTfes)P

.-sIa . *- -- . .. , a. . .. . .. .. . .. ... .... , ... .... ... .. ..



and also 0-6Se.T = p(1-p)(pS-p;)(pi-pj) so

the approximate proportional bias (7) is

100{nTps(l-Ss) + n(I-Ps)} - 7 (7)'

(ns+n) (nT+n) P2 (Ps-P ) 2 PT  
/

which is positive and (since p{ < pT) less than

100 G(1-P) (8)

(n,+n) P2 (pS-p 0

where

G p,(1-6S) + n (1-p,)e S  (9)+ SnT+n S

which lies between p'(l-es) and (l-pS,8

Example 1. Using as 'typical' values of the probabilities pS, pS and P the values

0.9, 0.1 and 0.1 respectively we find that

G = (nT+n) (0.0821T + 0.162n)

(so that G lies between 0.082 and 0.162) and the approximate proportional bias

OfPT is between 0 and 1406.25 G(ns+n)-1% . Note that the upper limit is

less than 227.8 (ns+n)-1%, so if ns+n> 100 the approximate proportional bias

is less than 2.28%. The next section contains a numerical assessment of

formula (5.2), without specifying values of PTand p.'
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3. SONE Nv RIC(L APPROXImNATIONS

Utilizing the reasonable assumption that PS>> p and neglecting

tems in p and p32 in the numerator of (5.2) we find

2 -2 ,- 2 I 0(1-6) 2@(1"e5) + eS(1-s) (10)var( pT Pn(pP-p 2 (nS+n)PT + s+ }
Taking pS = 0.9, p = 0.1 so that eS = 0. 8P+.1 and = 0.9 pTP + 0 1 pj(l-P)

we obtain from (10)
2a- T {0 9PTP + 0.1p+(lP)}{_0.9PTP. 0.1Pi(1.PY

var(PT) 0.64P np

L nPT

(0.8P+0.1)(0.9-0.8P) - {l.p' +- 0.2P+(1-P)}(0.9-0.8P)PT1j

n S+ n

Now taking P = 0.1, we find

"PT2 "09(PT+P){1-o0"09(PT+PT)} 0.1476 P_

var ( T) 2 -P](1

0.0064 n p T ns+n PT]

14.375 (pT+p){l 0 .09 (p 23.06 P +_

n Tns+n p T

l (because 0.09(PT+P,)< 1) the right handSince 0.09 (pT+p)l) -0.09 (pT+pi)} < -4$

side of (12) is less than

(0.0256n) < 39.1 n

In the next section we will compare the asymptotic variances and covariances

of 9S,'T and P with those for maxim= likelihood estimators es' T and P of es,

T and P respectively.

9,T
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4. ANALYSIS II (Maximum Likelihood Estimators)

The likelihood function of ZS, ZT and Z is

n ] nT n S nSZS -ZT nTZTZSJ~~ ~ ~ 8 l 0 l016 S Z(I-eS)  0 T (1-6 T )

SZ 11 (eso) Z 10 (eT) Z 01 (1-eS eT) ZOO0

Equating derivatives of the log-likelihood to zero gives the following

equations for e S'8 T and :

7 7Z -S n-s + 10 -00 0 (13.1)
6 S 1-8 S e0-4 I-0S-0T

ZT nT-ZT Z01  Zoo (13.2)

eT 10 T ^To 1eseT+$

11 1U+ 00 0 (13.3)

subject to 0< <S,T < 1 and > + -1.

The information matrix is

; sn(1- T) n n(l- T)

ese(1-e S) s (1-S-e T+0) 1-0 S-eT+ (eS- ,)(1-O SeT+t)

-. n. nT + n(1-es) n(1-e S )

1-O-OT¢ T(1-OT )  (OT-@) (1-eS-eT+O) (T-0) (1-eS-eT+)

n(1-6T) n(1- 5S) n{ SeT(l-s-T) +2eSET 2

S-)(1-es-r+) (eT-0)[1-Os-T+0)S - -- +¢
T T-0)1-6 Se 1+
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The determinant is

iv-l! = n nsn T y" + n(ns+nTn)
~ @ (es. fOT@ (- -T+O) seT(1-e S ) 1- T)

with y = (1eTle -eT+€) O(O-eSeT)

And from the asymptotic variance-covariance matrix V we obtain

varl s) -' .. . + 1 1 n 1 +  1+
-- 11 n TCI-BT )  0 8S- 8T-¢ 1-Os-eT+0 OT-0 1-Os-yoT4 8S-

-1 -1

" eS(I-e s ) (yns + 6N y + ) ()

where N =ns+nT+n (= total number of observations) and

_ nN esT(1-eS)(1-eT)

The MLE of P is

=(pS-p )- l -p') (16)

The asymptotic efficiency of P (see (4.1)) relative to P is the same as that

of eS relative to S' Pwhich is

100 (ns+n) (. ns- 1 + 'N- 1 r + I :  %j(-

Taking pS=PT=0.9 P p =p+=0.1=P, as in Example 1, and nS=nT-n ( N)

we find Y =0.0184680 and 6=-0.0653573, so (17) becomes

100(ns+n) (0.2203 nS 1+0.7797 N- 1 )

--=2(0.2203+0.2599) = 96.04%.

d'CThe asymptotic variance of the MLE $ is

var($) -[ ~1 (-b) - 6, 2N'I{nses5 I(1-eS) +nT6T'I(I-eT) } +b(es-,) (T-( l- -e .+

-e.-S S+ nTT Tl ye

'. ___.-., f.."J- I,-:.-. -. _.' '- .-. .... - .-.. ....- . - . -, .- - . - - . .. . .. , . . - .- ,, .,
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On the other hand, recalling that var(j) =n- l we find for the

numerical values of the parameters used above, that the asymptotic efficiency

of the moment estimator ; is

100 0.0653573x 0.09{0.91 - (2/3) x 0.09x (0.18)1 x 0.82} + 0.09X 0.09 x 0.73

0.09 x 0.91(0.0653573 + 0.0184680)

100 X 0.0037449 + 0.0005322 62.30%
0.0068653

The markedly lower asymptotic efficiency of $ is associated with the fact

that it does not utilize the information on values of eS and eT which is

available from the other (ns+nT) observations. Some support for this statement

comes from the asymptotic efficiency of $ if the values of eS and eT are known.

This is

100 x (19)
y(l-¢)

With the numerical values of eS' eT and ¢ which we have been using above this

would give an asymptotic efficiency of only 35.18%.

5. CALCUATION OF MAXIM LIKELIHOOD ESTIMATES

It is not possible to obtain explicit solutions of (13.1)-(13.3) for

aS,eT and , so a numerical solution must be sought.

An EM'algorithm (see, e.g. Dempster et al. [2]) can be constructed in

the following way. Introduce (unobserved) random variables Zij(S) (Zij(T))

(ij =0,1) representing the numbers of ij decision combinations which

would have been obtained if the nS (nT) individuals tested by S(T) had also

been tested by T(S). (Clearly

Zlo(S) + 711(S) Z and :01(T) + Zll(T) T

0o
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If values of these variables had been observed the maximum likelihood

estimators would have been

For eS: (ZS + ZI0(T) + Zll(T) + Z10 
+ ZII)N 1

For eT: (Z01(S) + Z11(s) + ZT + Z01 + ZII)N

For : (7I(S) + Z11(T) 
+ Z11)N-•

Since
-1l

E[Z10(T) KT ] = (nT-ZT)(S- )(l-e T) - l (T) L.T]  ZT -

E[701(S) IZS ]  -1 E[ZII(S)IZS] = ZiS I

the EM algorithm leads to iteration from s M(v ) ) (v) to

eS +l = N 1  Z + (nT-ZT) (e S~v  -¢ v ] T¢ °  + + 7

N L +  I ) 9T(VT ZIlJ (20.1)

(v+l) - fV (riS-ZS) (eT(v) - M(v)) ZS(v)1

T l  N N -I  + + 0 + Z (20.2)

, 'j l) =N-1 2T --_S +7(o - '
(_, T eS- , 7 (20.3)

T 59

Example 2. Table 1 sets out results of applying the EM algorithm to three

illustrative sets of values of the n's and Z's. In each case nS= nT =n= 50;

ZT= 1 0; Z0 0 40; Z01 = 3. The remaining values were

Set -S "10 z11

*I)5 1 6

(I) 1 6

(111) 8 3
i%

I

a.. , ,- •
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Table 1: EM algorithm solutions of equations (13.1)-(13.3)

Set M1 I) II

V e( ) T) (v) es() T (S() T

0 (moment 0.1200 0.1900 0.1200 0.1500 0.1900 0.1200 0.1500 0.1700 0.0800
estimates)

1 0.1221 0.1839 0.1154 0.1520 0.1924 0.1248 0.1539 0.1714 0.0865

2 0.1240 0.1816 0.1131 0.1522 0.1928 0.1270 0.1553 0.1714 0.0903

3 0.1251 0.1805 0.1119 0.1522 0.1929 0.1284 0.1560 0.1712 0.0928

4 0.1256 0.1800 0.1111 0.1522 0.1930 0.1294 0.1565 0.1711 0.0945

5 0.1259 0.1798 0.1106 0.1522 0.1930 0.1300 0.1568 0.1710 0.0957

6 0.1260 0.1797 0.1103 0.1522 0.1930 -0.1305 0.1570 0.1709 0.0965

FINAL 0.1261 0.1796 0.1098 0.1523 0.1931 0.1315 0.1574 0.1707 0.0984

The initial values e S0, T(0) and (0) were the moment estimates. The

table shows the results of the first six iterations and the final values, to four

decimal places. (Speed of convergence can be improved, of course by using

modified values of e (v), aT(), and t(v) for the (v+l)-th iteration, taking

account of trends in values.)

The maximm likelihood estimates of P, PT and PT are obtained by replacing

5' e T and 0 in (2.1)-(2.3) by their maxim likelihood estimates. We obtain

the following formulas (provided the values lie between 0 and 1).

Set p T

M (0.1261-pd)/(pS-P') (0.i098-0.1796p )/(0.1261-p ) (0• 796Ps-0• 098)/(Ps - 1 2'

(11) (0. 1523 -p ) /(ps-p') (0. 1515-0.1931p ) /(0.1523-p ) (0.• 931Ps-0.1515) /(Ps-0 -1D--

•(111) (0. 1574-p ' /(ps-p ) (0.0984-0. 1707p )/(0.1574-p ) (0.1707p -0.0984) /(Ps-O 157
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In order to satisfy the conditions 0<P, PT' p{_1 we need

PS s > .T > .These conditions, for sets (I)-(III), are

(I) Ps > 0.611; pc<0.126

(II) ps> 0.681; p < 0.152

(III) PS > 0 ."$ 7 6 ; p < 0. 157 .

[If the conditions are not met, then appropriate boundary values

(0 if formula gives a negative value, 1 if it gives a value greater than 1)

can be used.]

6. CONCLUDING RIAAK

The estimates of pT,p+ and P depend on the values assumed for pS and p .

If these values are incorrect, biases will be introduced. The way in which

the values used for PS and pS affect the estimates can easily be appreciated

from equations (2.1) -(2.3). 'For example, increase in either pS or p will

tend to lead to negative bias in estimates of P (remembering that e S < PS )

In this paper we have been concerned with estimation of PT' P+ (and also

P), supposing pS' pl known. This has been effected via estimation of the

parameters es, eT and @ . The same analysis can be used in other circumstances.

For example, if P (proportion of nonconforming items) and pS are known, then

PT' pT ancT p1 can be estimated using the relationships

-I
pt = (eS - psP) (l-P)

W-P)- (es-psP) GT

PT = (PS -6S) P

PS eS'
PT -PS -- S
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Of course, if P is known, as well as pS and p , then eS is known and

there is no need to take any observations with S alone - that is we can

take nS = 0.
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