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1.0 INTRODUCTION
U

This document is a final report on studies of high current beam

propagation in low density gases. The study has extended over several years

and has resulted in two informal interim topical reports -- resummarized

herein. Three topics have been addressed: Ohmic Hall currents, non-local

non-Ohmic conductivity modelling, and non-linear electromagnetic algorithms.

The Hall and non-local conductivity studies are important primarily for high

beam currents in low density gases; the non-linear electromagnetic field

solvers are important for studying beams in low density channels.

Our initial studies of Hall current effects were motivated by the

observation that the ExB drift of plasma electrons would tend to expand the

radial distribution of plasma current and reduce the normal axial current.

The initial supposition was that these stabilizing effects would be most

important for high currents and low channel densities, since the Hall currents

scale directly with the Larmor frequency, L' and inversely with the collision

frequency, m. Countervailing effects, however, include:

o The high level of current neutralization characteristic of high-
current beams,

o Saturation of Hall-current effects by their associated potential
buildup, and

o Transition in the high-current regime to Spitzer conduction in the
beam core, enhancing on-axis conductivity relative to neutral-
collision-dominated conductivity in the wings of the beam's
profile.

Further complexities in the actual situation include the interplay
between Er- and E -fields in the progress of avalanche breakdown at the head

r z
of the beam, the effects of air chemistry processes (especially recombina-

tion), and the role of radiative cooling in determining the onset of Spitzer

conduction. Progress in modelling these effects included the development of a

dependable electromagnetic algorithm; the algorithm included forward-time

Wdifferencing and an iterdtive approach to find fielcs in the highly nonlinear

situation created by the presence of tensor conductivity effects.
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Studies of the effects of Hall currents in a local, Ohmic approxi-

mation are reported In Section 2. No consequences significant to beam propa-

gation or stability are seen for gas pressures greater than 76 torr. At lower

pressures, however, the usual local, Ohmic air conductivity models employed in

the study are inappropriate. Significant effects which must be considered

include:

0 Time-dependent (delayed) and nonlocal ionization production, in
contrast to the usual local, instantaneous production models,

0 o Contributions to the total current from the delta-ray components
of the beam-driven ionization cascade,

o Non-Ohmic conductivity effects,

o Transport of electrons from their local volume of creation, and

o Non-Maxwellian energy distribution of the conduction electrons,
notably in the "runaway" regime; low effective collision
frequency, in comparison to L could especially enhance the
contributions of a high energy conduction group.

A conductivity model incorporating the above-noted effects has

been developed and is reported in Section 3. The model treats three electron-

energy groups: a relativistic (delta) Sroup, and high- and low-energy con-

duction groups. The beam, as well as each group, populate lower-energy groups

via ionization energy loss; E-field acceleration can move low-energy electrons

upward to the intermediate group. Fluid models represent the cynamics of the

two lower-energy groups, and a detailed air-chemistry reaction scheme also

modifies the population of the low-energy group. The air chemistry was cali-

brated against the detailed HICHEM code in an applicable regime.

Calculations with the phenomenological model sketched above showed

considerably enhanced and broadened effective current profiles at times

wbetween I and 10 nsec for high-current beams. All of the features of improve-

m.ent appeared to make significant contribution to the results obtained.

In the rost recent portions of our work, reported in Section 4,

scvcral cicctrcra :n(*tic fielc alcorithms for bearr- , ropaation work were

.c~c 1cpec an2 cor~arcc. The air of the work was tc find solution rthccs

; rc:-r"at t tc ttrc r.c>r. .r c I C I (a1 :( f ' r C, i c a Ea
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those relevant to hose stability) Into the nonlinear regime -- i.e., to be

applicable for displacements comparable to beam radii. Several fast and

accurate algorithms were found. All were based on a modal expansion of the

transverse spatial dependence of the fields, and all used an iterative pro-

cedure to simplify the solution for the mode amplitudes. (The modes are all

coupled through the non-axisymmetry of the conductivity, and require, in

principle, simultaneous solution for all modes.) Formulations involving

explicit consideration of fields as well as potentials in Lee's approximation

(an important simplification of the frozen-field approximation) and a frozen-

field formulation were used. The simplified approaches were found to agree
W

well with one another, and with the few-point data available from other

nonlinear field-solver algorithms. Moderate differences -- especially in

electric fields -- were seen in the frozen-field formulation results for a

standard test case. Substantial improvements in speed for the algorithms

developed over direct-solution methods for the fully-coupled-mode equations

appear to have been realized.

%P.
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2.0 HALL CURRENT EFFECTS IN A LOCAL CONDUCTIVITY MODEL

2.1 Introduction

This section summarizes our studies of the effects of Ohmic Hall

currents on the propagation of high current beams in low density gases. Non-

Ohmic, non-local Hall effects are discussed in Section 3. Beams of very high

current have attracted increased attention recently due to potential stability

and application advantages (Refs. 1, 2).

The Hall currents derive from the x drift of the plasma elec-

trons. Thus, due to the pinching azimuthal magnetic field B., plasma elec-

trons driven by the inductive longitudinal electronic field will drift toward

larger radii, and those driven by the Coulombic radial electric field will

tend to cancel the axial plasma current. Initial estimates of the resulting

redistribution of plasma currents relative to beam currents suggested poten-

tially significant consequences to beam stability and propagation. The

purpose of the study herein reported was to substantiate the initial estimates

and to explore some of the consequences.

Hall currents enter Maxwells equations through terms proportional

to the Larmor frequency -L divided by the collision frequency m

L

Thus, Hall effects vary directly with net current and inversely with gas den-

sity. One anticipates Hall effects to become important at very high currents

and low densities. In the Ohmic approximation, however, these two require-

ments tend to be mutually exclusive; high current beams in low density gases

tend to be strongly current neutralized and develop very small net current -

remains small.

In the body of the pulse, Hall effects achieve a quasi-stationary

state and all quantities important to beamr dynamics become nearly independent

of , no matter how large t may become. Thus, Hall-dependent consequences

require that current neutralization be substantially less than complete in the

very early portions of the pulse.

* ,U.• . •.
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For a realistic range of high current beam parameters - assuming

Benett beam profiles and loca conductivity models - Hall current effects
remain small. Near complete current neutralization obtains near the pulse

head and -,remains small. Only by artifically constraining the conductivity

profile evolution have we demonstrated important Hall current sensitivities.

Results are thus very sensitive to non-local conductivity effects, described

in Section 3.

In Section 2.2 the general development of Hall currents is pre-

sented, including monopole and dipole decomposition, and Section 2.3 describes
W some numerically stable algorithms for monopole Hall currents effects.

Results are in Section 2.4 and our conclusions to date are in the concluding

section.

. .°



2.2 Theory

In this section we derive the relevant electromagnetic field equations

as employed in this study, and discuss some important properties of tensor con-

ductivity. We begin with Maxwell equations in free space (Gaussian units):

I,: 1 E + 4-- "-c -t - Ampere's Law (2.1)c bt c,'

- - • Faraday's Law (2.2)

where the net-current J consists of both the primary beam-current b and the

plasma-current J

3 + jp (2.3)"."

b p

For the purposes of discussion, a simple model of the Hall current

W effects may be obtained as follows. We assume that the plasma electrons obey

the Lorentz equation of motion with a phenomenological momentum transfer

frequency m

dv e m v (2.4)
me dt =  c e m

i t',e local a vro.iation, tre inertial ter. may be ignored, dv/dt 0. With

this approximation, we obtain the generalized ohmic relation for the plasma-

current density:

en = - E n v 3 (2.5a)

with e, M

M e- (2.5b)
m

e n

m c- (2.5c)
e



o is the usual scalar conductivity and 1 1 is the electron gyrofrequency. It is

the cross-product on the right side of Eq. (2.5a) that produces the Hall current.

Later in this section we discuss a more rigorous treatment where the "momentum

transfer frequency" in Eq. (2.4) is itself a function of the plasma electron

distribution.

Solving for p in Eq. (2.5a), we find
p

p + " m Vm V (

In cylindrical coordinates (r,4,z), Eq. (2.6) becomes

pr (1 v_ z V V

J /V E - E + - E + 0- 0 (2.7b)
p ( + V r V Vm V

2 2 E -- E + -4 E + - (2.7c)
pz (1 + IlC /V) Z Vvm r V V (2.7c

W This form for J may now be substituted back into Maxwell equations (2.1 and 2.2)

to provide a closed set of equations for generating , from b"

To make the problem computationally tractable, we decompose Maxwell

equations into monopole-dipole subsets. We assume the following form for E, .

and ~

Er Er + E er r

E E +Ele

(2.8)
0E E + E eEz z Ez

B Br + B' e etc.r r r

-7-
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* where we have made the dependence on € explicit. Furthermore, we introduce the K

retarded variable x = c t - z which we define to measure the distance back from

the pulse head (in the laboratory frame of reference) for a beam moving along the

z-axis with v ' , c. Finally, we make the frozen field assumption; all dependent

* variables are functions only of the independent variables (xr), achieved by the A

following transformation on the partial derivatives in Eqs. (2.1) and (2.2):

' t - (2.9)
Tt c ax Z -3z t z'

The monopole equations reduce to three equations relating E~r B0 , and

Ez and a second set of three equations relating B, E, and B. We may ignore*Wz 0 E 0  0 r z
the second set for = 0 (B = 0). We are left with the set of

equations for the axi-symmetric beam:

aEo ,-
12 o E0  4Tj0 0

S-r r B =3 + +-( + ) (2.10a)

E0
-B x + 4T(0 + j (2.lOb)3x 3X c br pr

0  E0  B-

j X jr x

For the dipole fields, we have

B' E' 4
1 _ i ( ' +' ) (2.11a)
r or r =x c Jbz pz

3B'r  B' DE'*- r - __3_ + L_(~ + ) (2 llb)

3x 3r ax c p+ p21b

B' 4B' DE'
+ _I = + (3 + ) (2.llc)

r -x .3x c br pr.

- -. .
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1_ r E' + Er 
2z

- -- -(2.1id)
r ar r x

Er + - (2.11le)

x ar ax

E' E' aB'

_ + r 
(2. 11f)

r x x ( f

Note that the ,- - 0 condition is treated as an initial condition which is pre-

served by both the monopole and dipole equations.

From Eq. (2.7) we find

p 00/ 2  E [ o 0 E- E (2.12a)
p (I+ @/V m ) I m

.-

q~ m z

JO 0 (2.12b)
p1

W 00 0 [E O+ 4.Eo E + a E 0 (2.12c)
(1+ Iv ) (1zr + Z rm m

000

S I 0 20G2 Q (2.12d)
(+ vm ) l~/m)

The dipole plasma current-density J' also follows from Eq. (2.7). After lineariz-P
ing with respect to the dipole variables, we find

J' ° E' + o,' Er - Ez' -' Ez (2.13a)

or 
r _z_

= 0 + o El + + -- 0 jE- (2.13b)
PI " m Im V m m 1b

J1 0
0  0 , 

0

E' l ' + ' + 0 + E (2.13c)
pz z z r r

* -9-
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wi' -o 2 0 (2.13d)
ii 1 002) (1 + ~2~ 22

+ = o Q00V 0 0 0 V 0
Sm m m m v

i0o i 0 2 02

m + ~ 202 2 2(.1e

(1 + 1:0 /vm ) v°  (1 + /V ) 0 ( 0mJ e
m m m m~

where

e e (B'9 B', B') (2. 13f)meC r ' z

This completes the specification of the tensor plasma currents in terms of the

electromagnetic field variables.

In the presence of the Hall current terms, the radial plasma current
0 0j (2.12a) flows until Er % c°E°/ o in contrast to scalar calculations where n

pr r '.,

the condition for J ' 0 is E . 0. Thus E actually reverses in sign from its
pr r r

original value set up by the Coulomb field of the beam particles. When Er reaches

this "quasi-equilibrium" value, the expression for the axial plasma current J 0
SpzI

as given by Eq. (2.12c) becomes

o 0 0 E 0 (2.14)pz z

which is exactly the same as the scalar result without Hall currents. Similarly,

for the Ohmic heating term J pE , we find
p

p z

for Jo 0, which is the usual scalar relation. Thus, the non-zero equilibrium
pr

value of Er in the tensor case exactly compensates for the fact that 0°< 0 in

*Eq. (2.12). Er o 0 effectively describes a polarization of the plasma.
r



We might conclude from this cancellation of terms that the Hall current

effects on an axi-symmetric beam are negligible when the radial plasma currents

are small. This would apply to the body of a beam pulse where charge neutraliza-

tion is complete and the beam envelope has settled down to some quasi-static

equilibrium profile. However, if the Hall effects are sufficient to alter the

evolution of the conductivity channel and EM-fields near the beam head, where the
0condition J ' 0 is not satisfied, we might still expect to see a residue of thepr

tensor conductivity effect further back in the beam where Jp , 0. In other words,
pr

both c and E would be noticeably different in both Eq. (2.14) and (2.15) in the4P z
body of the pulse due to Hall current effects in the pulse head. It has been the

purpose of the present study to explore the non-equilibrium evolution of tensor

conductivity near the beam head.

The tensor conductivity contribution to the plasma current in Eq. (2.12)

relies on the parameter 2/vm" Initial estimates of tensor effects were based on

the observation that 2/Vm varies roughly as p-1 where p is the ambient gas density

due to the basic density dependence of v M. However, the gyrofrequency Q depends

linearly on the net current which in turn depends indirectly (but strongly) on the

channel density and channel profile. Hence, there is no simple or unique relation-

ship between 2/Vm and density
Um

For a high intensity beam in a low density medium, a further c.c plica-

tion results from the fact that the dominant contribution to the momentum transfer

frequency vm shifts from electron-neutral collisions to Coulomb collisions. Two

important changes occur at this point: (1) The conductivity becomes independent

of electron density (in fact decreases if niultiply-charqed ions contribute a sub-

stantial fraction of the electrons); and (2) a scales as T/' instead of roughly
e

T - /2. The transition to the Coulomb regime on-axis sharpens the conductivitye
profile, allows more plasma current to flow near the axis, and tends to decrease

the net current flowing in this region. This sensitivity to electron temperature

points up the importance to radiative cooling effects -- only roughly modeled here.

-11-
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We conclude this section be noting that the exact cancellation of the

tensor effects in Eq. (2.12) for J 0 is a model dependent result. Its
pr

validity requires that

to( + 01 (2.16)

for all values of B. A more general theory in which the random motion of the

electrons is taken into account does not satisfy this requirement. For example,

if electron-electron scattering is neglected (Ref. 3),

m Ne el , x3exe (-x) dx
mY(V())V +

where

x mv2/kT

and v(v) is the electron collision frequency with neutrals or ions. Only if v is

independent of velocity v, or for other very special cases, can the relation (Eq.

2.16) be satisfied exactly.

-12-
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2.3 Monopole Tensor Electromaqnetic Alqorithm

2.3.1 Introduction

GP The basic monopole equations in the frozen approximation (Eq. 2.10) can

be written in the form

5Ez -t +  4 Jz c (r B) 4 T J (2.18a)

W t z r r B

E "raB+ 4 ,J T (2.18b)
At r t "

40 z _4 7 
'cz (2,18c)r c r

where the superscript "o" has been dropped through this entire section. [Note

that in the frozen approximation, the step IAx along the pulse length is equiva-
lent to a timestep ,t as the beam passes a given fixed spatial point.] The

plasma current densities J and J take the form
z r

Jz =  Ez + Er

JE ;E.r 11 r z

If z 1 0 (no Hall current) the equations are much less strongly coupled together,

and are linear except for the indirect dependence of u on t through the ohmic

heating. However, if Hall effects are included a more explicit non-linearity

enters because c is roughly proportional to B.

Several different numerical treatments of these equations have been

investigated in this work. The algorithm currently in use is described below,

followed by discussions of some other methods which were tried and the reasons

they were found to be unsatisfactory.

W
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A major difficulty with standard electromagnetic algorithms in the

charged particle beam context is that the conductivity becomes so large that

it is impractical to adhere to the timestep constraint 47 c1lAt< 1 which arises

in the usual difference treatment of these equations. Although forward center-

ing can eliminate the numerical constraint,it can also prejudice the solution. 6-

This is an uncertainty which has yet to be completely resolved satisfactorily.

In at least one case, however, our forward-centered methods have been checked

by choosing the time step to satisfy At <<-; no significant difference was

observed.

2.3.2 The Present Algorithm

Equation (2.18a)is written in the time-integrated form

= Ic  ]i(l-exp(4rni At)) ] 2.) 1
Ez  EZO exp(-47c, At) + Li-r (rB) -4TJ- -4(1-Erl 4 L (2. 19)

where Ezo is the value of Ez at the beginning of the timestep At, but all other

quantities are evaluated at the end of the timestep. Although the centering is

not perfect when 47 a At < 1, the forward centering is found to contribute

significantly to stability and is simpler. When 4Tr 1, >> /Dt, as is usually the

case in the spatial region occupied by the beam, the centering used above gives

* the correctly-centered result

4 7 (c E + a E) + 4 JB 1 (2.20) 1:
c z r c r Tr

In this equation all quantities are evaluated at the forward time. It is exactly

the same result as is obtained by neglecting displacement current in Eq. (2.18a),

and requiring that the resulting equation hold at t + At.

fe Equation (2.18b) is written as

rr + 47 EE B + 4 E (2.21)

it r It z
U

-Na-
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from which
0 Er(I + 4Tiat = (- + 4Tc E Lt + E (2.22

or 
!I

,' ,c Ez) E
Er + + ro (2.23)
r 1 + 4-- :t 1 + 4TT .-l

In this equationEro is the value at time t, and all other quantities are to be

evaluated at t + At. In practice, B/ t is evaluated as (B(t+At) - B(t))/At, a

possible weakness to the method because of the centering. Note that the exponential

method as used for the E equation could have been used here also.

Equation (2.23) is then substituted into Eq.(2.18c), written in the form

Ez _4 ; 
?

E_ Ez (.24)
r c 1! r Z

and interpreted as being at time t + Lt. The result is

,c+ 7it t( + E Ez )+ Ero - cE (2.25)

When this equation is simplified a very important cancellation occurs in the

coefficient of o E , which takes it from being of order unity to order (1+4 c.Lt) - 1

a small number when 47o, Lt>> 1. An analogous cancellation occurs if the exponential

form is used. The resulting equation is

)E _ 4-ff C 4,T c Ez
c4T I +:zt + Er 1 + z (2.26)

+' 4-T oil "~ "" " 1- ' .+
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The final form used for differencing is

E 4 t Z (B - Er) (2.27)
r c 1 + 4-, t Oil ro)

where again the subscript "o" indicates terms evaluated at time t. All other

terms are evaluated at t + ,t.

The two Equations (2.19) and (2.27) must be solved simultaneously.

Since neither is linear because of the strong and direct dependence of a on B,

an iterative procedure is used. The a Ez/o, term in Eq. (2.27) is written as

o Ez  a B

all alI

and C /oi is adjusted during the course of the iteration process. Thus the co-

efficient of B in Eq. (2.27) becomes

( eE z)
( mc,

in the simple theory of the Hall effect. This quantity is 1 except when Ez > 0

at the end of the pulse. In Eq. (2.19) the term in o Er is updated during the

course of the iteration process, but is regarded as given for each iteration. Also

the weaker dependence of I on B (for most sit-itions encountered) is ignored

within each iteration step.

With these approximations, Eqs. (2.19) and (2.27) can be combined into

a single equation for B

-Ict (rB) I -

5r r r C c(l + 4o aEt

(B-Er) -

c T1 + 4- +  r B ' d . r- - Ezo

-161
U1

- - - - - - - - ~- - . - ffi ~ W1



in wh'ch X exp(-4ro At)

and , (1 - A)/( At).

[Note that the Er term in Eq. (2.19)could be rewritten as a Er B, in

analogy to the treatment of the E term in Eq. (2.27). However, the explicit

B-dependence introduced in that way would spoil the diagonal-dominant nature of

the final equation for B. Also, Er itself has a strong B dependence which would

be ignored by the procedure in any case.] With o Er, Ic , and c regarded as

fixed, this equation is solved for B as a tridiagonal difference system. The

values of o Er ,  /c , and a, are then updated and the iteration procedure is

continued until the values of the fields stabilize. Although there is no

guarantee that this iteration procedure will converge, it has been found

to converge well in the cases studied.

This algorithm has been installed and used in the HICHEM air chemistry

code (Ref. 4) and in the HIGAP monopole-envelope code (Ref. 5). It appears to

be numerically stable whether or not c1 /o is large. If a1 is set = 0, this

algorithm (and minor variations of it) yields results essentially identical

(within reasonable limits for numerical studies) to the previous scalar algorithms

used in HIGAP and HICHEM. The latter two algorithms are different from each

other and from the one described above in some aspects of the time centering.

The agreement of numerical results for the scalar case does not guarantee the

tensor results. Some aspect of the centering or differencing method could tend

to suppress or enhance the potential non-linear evolution of the tensor solutions

away from the scalar solutions.

2.3.3 Alternative Numerical Approaches

In the treatment discussed in Section 2.3.2 above it was necessary to

split up the i and II parts of the plasma current, treating the J part as a
source term on the right hand side of the equation. An alternative treatment

which avoids the problem is to define

SI
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then multiply Eq. (2.18b) by i and add to (2.18a). The result is
4- 7z  + i1Er

,-_ 1  (rB) - 4 J +B i (2.29)

Now,/ c*- with the definition

2* - - iC >11

Then the exponential treatment, or full forward centering as indicated below, -

can be used to perform the time integration:

At a +_ __ _

t1 + 41o*Lt (rB) - 47 JB + i + o+ (2.30)= I 1 4,4i*ct t

This result is a more parallel treatment of E and Er, treating only the magnetic

field and the beai:i current J as source terms. The exponential treatment has the

aovantage of elimnating the initial value ,o faster, but has the added complica-

tion of (sin (4-- .'t) appearing, which can lead to sign changes in various terms

where 47 t is not srmall . Note tnat in Eq. ,'.-- ,B/ t acts directly as a

source of Ez , and (rB) acts directly as a source of Er, unlike the situation

in the formulation described in Section 2.3.2 above.

The attractiveness of this approach degrades when the next step is

examined. Since Eq. (2.18) cannot be written in terms of I and : only, it is

necessary to split (2.30) into its real d imaginary parts. In principle both

Er and Ez separately from (2.30) can be inserted in Eq. (2.24), vieldinq a sincle

equation for B. However, because of the ]B/-7t term in the expression for E and

the spatial derivative in tne expression for E r the resultin] equation does not



involve B in a diagonally-dominant form, and thus is much less convenient to solve

accurately. In addition it is much more complicated than Eq. (2.28) because of)-1
the splitting of (I + 47o*1t) into real and imaginary parts.

A variation of this approach was actually tried prior to beginning the

present study. This consisted of using Er from Eq. (2.30) to eliminate Er from

Eq. (2.24), which was written in the form

+ 4 - Ez = aE r  (2.31)* r c z c r~

This equation was solved simultaneously with the Ez equation from (2.30) for Ez

and B. Several minor variations of this were tried. In one case Eq. (2.31) was

centered as

E -Ezk+1 zk 2 T E- 1  E (2.32)
r c k + . z k+1I c r Erk+ ,

Since all field variables were to be defined on the same spatial grid, the k+ '.

centering of the Er expression from Eq. (2.30) is not inconvenient because of

the appearance of the spatial derivative of B. However, the Ez equation from

(2.30) is awkward to center with Ez and B on the same grid. The most direct way

would involve B at three successive grid points. This was avoided by writing

the left hand side of (2.30) as

E E2 zk + zk+1

and using the natural centering on the right hand side. It was found that this

method of solution was highly unstable and totally unreliable.

6I
Another variation tried involved writing (2.31) as

E z k ~ l I + 4 7 .. T: ( +r) - E = 2.33I
Ezk+1 (I c r) Ezk 'rh.2 ))
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(in which r.h.s. is a function of B only), when c. > 0, and the analogous thing

with centering in the other direction when c < 0. The Ez equation from (2.30)

was treated as described above. This system of two equations gave reasonable-

looking solutions most of the time, provided that c was large, although it some-

times went unstable even in that situation. For cases where c Ic <« I it
frequently exhibited unstable behavior. Thus it was impossible to do a study on

the transition from small to large using this one algorithm.

Apart from the occasionally unstable behavior, this algorithm has a
more serious problem associated with the spatial centering of Eq. (2.33). That

spatial centering is seriously biased if
4.c: Xr >> 1.i'

c

It was not always possible to avoid this situation with a reasonable number of
smoothly-distributed spatial grid points extending to large radius. This problem

could have been avoided by a more complicated treatment of the right hand side.
The basis for such a treatment can be seen by writing the solution to Eq. (2.31)

in the form: rk+.

=( 4 : - + 4exp dr-, r ( . 3

Ek+l Ez exp z) ex c exp( c (2.33)

k
;n ,hich r-deperndence of has been ignored for simplicity of exposition. Even

the simple assumption that Er!: varies "_ linearly with r over Lr would allow

a formulation in which the obvious bias of Eq. (2.33) is avoided. However, the

cost involved is that the magnetic field at as many as four points rather than

two would appear in the analogue of Eq. (2.33) because of the unnatural centering

required in Eq. (2.30) for Er '

rL
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There is another more fundamental objection to any simple implementation

of Eq. (2.33). For sake of discussion assume that it is further developed by

assuming c Er/c. is linear over Lr. Then it is clear that when

c r

it will enforce the relationship

S Ez)k+l r(E)k+ 1

on the fields. Thus it is equivalent to forcing Jr 0, but is independent of

the time-evolution of the solution and is therefore not physical. The resolution

of this paradox is that c E / , must be allowed to have exponential behavior in r.*1 r
Only then can a physically-consistent treatment be developed along these lines.

The bad behavior of the scheme using the correctly centered Eq. (2.32)

can be identified by recalling the cancellation that occurred in going from Eq.

(2.25) to (2.26). If the fields from Eq. (2.30) were both inserted in the right

hand side of Eq. (2.24) and the cancellation done analytically, the remaining

equation could then be centered as in Eq. (2.32). Although this procedure has

not been tried, it is likely that much of the bad behavior of the system based

on Eq. (2.32) would be eliminated.

As in the method discussed in Section 2.3.2, there remains the problem

of the non-linearity introduced by the strong dependence of a on B. All of the

methods discussed in the present section 2.3.3 involve a in many more places

and in more complicated ways than in Eq. (2.28). No attempt has been made to

iterate them because of the general success of the method discussed in Section 2.3.z.

6I
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2.4 Computational Results

2.4.1 Introduction

Two different SAI codes, HICHEM and HIGAP, were used to perform the

calculations described below. Both incorporated the same basic electromagnetic

algorithm which was described in Section 2.3.2. The tensor cases were iterated

until the magnetic field changed by less than 1% between consecutive iterations.

The simple model of the Hall current described in Section 2.2 was used for all the

case studies. One comparison case was repeated using the full theory as described

in Ref. 1.

The HICHEM code (Ref. 4) is a radially-resolved air chemistry code

specifically designed to follow the air chemistry processes generated by an electron

beam. It follows the non-equilibrium time evolution of up to 60 chemical species,

and can account for radiative energy losses when these are important to the overall

energetics. The conductivity calculation is also described in Ref. 1; it incor-

porates a very detailed model for electron collisions with neutral air species,

ions, and other electrons, and computes the off-diagonal (Hall) component of the

conductivity tensor in a consistent way. The electromagnetic field equations were

solved on a grid of 290 radial points extending to 500 Bennett radii. The geometric

grid spacing provided 18 points inside 1 Bennett radius, and 58 points inside 5

Bennett radii. Except as noted below, all the HICHEM calculations used the same

31 chemical species and 283 reactions. The cases which were followed out to 50 ns

used 37 species and 337 reactions in order to account for substantial radiative

cooling of the longer pulses.

The HIGAP code (Ref. 5) is a monopole propagation code designed to study

monopole envelope evolution and nose erosion for axi-symmetric beams. The con-

ductivity calculation in this code is provided by the BMCOND (Ref. 6) package of

subroutines. This package uses a highly simplified model of the chemistry which

has been calibrated against the more complicated HICHEM code. Several important

-22-
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changes in these calculations were required to handle the high degree of ionization

produced by high-current beams in low density air. The electromagnetic field

equations were solved on a radial grid of 250 points extending to 20 cm from the

beam axis.

Since the HIGAP code (in its non-propagating mode) is much less costly

to run than the HICHEM code, it was used to investigate some more unusual or

extreme cases for sensitivity to Hall effects.

For all calculations except Case 6, as noted below, the beam profile was

assumed to be Bennett. The time-dependence of the beam current was given by

I B tanh(it) tanh( - t) (2.34)

The expanded nose of the beam was described by a time-varying Bennett radius

specified by

a =ao 1 + (I tanh TR) (2.35)

0R

in which a is the final radius as t - a. The initial radius and the position
0

and steepness of the pinch-down are controlled by the parameters b, Tc, and TR.

2.4.2 Case Studies

VNumerical results are discussed below for the cases described in Table 2-1

The beam current in each case was 100 kA. These cases were selected to provide a

wide range of beam parameters and channel properties.

W
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The basic model for the hot channel cases had a central temperature of

60001K with the density chosen to give pressure equilibrium at 1 atmosphere. Three

channel widths -- flat out to 1, 2, or 3 Bennett radii of the pinched beam (as in

Eq. 2.35)-- were investigated. For cases 3 - 6, a cold uniform medium with density

(and pressure) = 0.1 normal was used.

Nose parameters were chosen to simulate a variety of situations. For

Cases la and 2c the parameters are interpreted as providing a tailored emittance

which decreases significantly along the beam. Case 3b represents a beam with a

moderately expanded nose, in contrast to Case 3a which is a cylindrical slug of

charge. The parameters of Case 4 represent a very mature nose after considerable

erosion of the beam-head has occurred.

Case 5 was chosen to investigate the effect of an initial distribution-

of electron density provided by an annular laser beam. This was expected to change

the conductivity development in the wings and, hence, the distribution of plasma

current.

Case 6 had a hollow beam current distribution, which resulted in

significantly different conductivity and plasma current distribution from the

conventional Cases 1 - 4. The beam current density on-axis was about .075 of

the maximum, which occurred at about 0.5 Bennett radii.

In addition to the fully self-consistent calculations from the HICHEM and

HIGAP codes (Cases 1 -6), two artifically constrained situations were studied in

order to assess the sensitivity of the calculations to the conductivity profile.

Conductivity profiles with (a) the square root of the beam profile and (b) the

Bennett profile of the beam were imposed. The axial conductivity was taken to be

proportional to the beam current, and there was no feedback to the conductivity

from the rest of the calculation.

All the cases listed in Table 2-1 were calculated using both the scalar

and tensor versions of the electromagnetic algorithmi. Detailed discussions of

the individual cases are given in Section 2.4.4 helov, Dreceded v a 2:eneral di'-

cussion of results in Section ?.2.

-2H-



2.4.3 Discussion of Results

For a self-pinched beam the JM force (Hall term) exerts an outward

force on the backwards-flowing Jz plasma current. If this effect reduces the

40 plasma current density near the beam axis, the net current density and local

magnetic field increase. This in turn leads to an increased Jx4 force on the

remaining plasma current. If this non-linear response is effective in expelling

a significant amount of the J plasma current from the vicinity of the beam, the

beam is more strongly pinched and its propagation characteristics are improved.

The calculations show that with or without Hall currents, the electro-

magnetic fields rapidly evolve toward the situation Jr , 0. The magnetic force

term which pushes the Jz plasma current outward is then balanced by the radial

electric field. Only a small residual J remains, generated by longer time-scale

evolution of the magnetic field (due to conductivity profile evolution, for

example, or continued evolution of the beam current or its radial distribution).

W

In none of the self-consistent cases investigated was there a large

scale redistribution of the plasma current. Although ratios o/c, -L 0.25 were

achieved late in Case la, for example, J (r) was essentially unchanged from the
z

w scalar case. This result is consistent with the simple theory discussed in

Section 2.2, because the condition J '- 0 was reached long before I reached a

large value.

The constrained model with conductivity profile specified to be the

square root of the Bennett beam profile was the only case to show significant

differences between the scalar and tensor cases. The magnetic field at 1 Bennett

radius increased steadily and essentially linearly with time from before 0.01 ns

to beyond 10 ns. The scalar and tensor calculations even in this case did not

differ significantly until about 1 ns. In contrast, the constrained model with

a Bennett conductivity profile had a net current which was a factor 4 lower

at 0.01 ns, and rose at a much slower rate initially. By 10 ns the ratio

-26-
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.c reached 0.25, but the difference between scalar and tensor calculations

was negligible, in accordance with the simple theory. For all the self-consistent

cases, the early (before 1 ns) behavior of c/cu was qualitatively similar to that

of the Bennett profile constrained case; it increased relatively slowly in time,

or even remained roughly constant.

It is tempting to conclude from the comparison of the two constrained

cases that the conductivity profile determines whether or not Hall current effects

can develop. For self-consistent calculations, several proccx ses operate to

determine the conductivity profile evolution. Initially, in a cold gas the ioniza-

tion is produced by the beam and has a beam profile -- Bennett in all but Case 6

of the present study. As the Coulomb Er field grows rapidly, it breaks down the

air off-axis, causing a temporary (usually) off-axis peak in a. Later the Ez
field rises on-axis and dominates the air breakdown. The peak E field may occur

zas early as 0.05 ns if a broad nose is not present on the pulse. Usually the E

field brings the peak of the conductivity profile back to the axis and gives it a

shape roughly Bennett or even slightly narrower. As the conductivity grows

rapidly near the axis the Er field begins to short out and its peak moves outward

beyond the main body of the beam. Conductivity in the far wings rises as the air

is broken down by Er. If the electron production on-axis is not too great, Nr e
begins to saturate due to dissociative recombination on molecular ions. In this

situation a profile comparable to the square root of the Bennett can develop (but

generally at t 1 ns). On the other hand, if the gas on-axis is ionized too

quickly for recombination to keep up (or molecular ions are destroyed by the high
temperatures) the Spitzer conductivity regime may be reached. As noted in Section

2.2 above, this generally sharpens the conductivity profile near the axis, although

broad wings will persist. This entire sequence can be modified by providing a

broad initial hot channel (as in Cases 1 and 2), an expanded nose, a long taper of

the beam radius due to a variable emittance, or by a non-Bennett beam profile

(Case 6) or a laser-prepared channel (Case 5). A very wide variety of profiles

was provided by the self-consistent cases investigated, but in no instance did

the qualitative behavior of the constrained broad-profile Case 7a e!-,erge. The

4P



feedback between the fields, net current, and conductivity is evidently more

important than any of the modifications of conductivity profiles achieved by

choice of channel parameters, beam parameters, nose parameters, etc., in the

numerical calculations. For high current beams in low-density air the con-

ductivity evolves rapidly enough, and the induced Ez is strong enough to allow

very nearly complete current neutralization to be achieved early in the pulse,

in the spatial region occupied by the beam itself rather than through large

return currents in the wings.
SI

As noted above, the constrained Case 7a did not develop large differences

between the tensor and scalar calculations until after 't 1 ns, but both were

qualitatively different in magnetic field behavior (as measured by a /o ) from

Case 7b and the self-consistent cases. This suggests that it may be possible

to identify, from scalar calculations only, situations in which significant

tensor effects may arise.
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2.4.4 Details of Case Studies

Case 1: 2 mm beam into a low density hot channel

0 Several different channel widths were investigated, as well as the

effect of a variable emittance along the beam. Case la achieved the largest

ratio of c lo . The radial profiles of o and o, are shown in Figure 2.1 at

several times late in the pulse, where o has grown to significant values

0.25 a, at 2 Bennett radii from the axis. In spite of the large o /c,, the

difference in pinch function, net current, E filed, etc. between tensor andz "
scalar calculations is negligible. Only the Er field is substantially different

rrfrom its value in the scalar case, and is closely given by the condition Jrr'0

The net current integrated to radius r (including displacement current)

is shown in Figure 2.2 as a function of radius and time. The specific volume

relative to sea level air is also shown. It is clear that the plasma current

0 density exceeds the beam current density in the region between about 2

Bennett radii and the channel wall at 4 Bennett radii. Even as late as 50 ns

into the pulse, the net current inside 4 Bennett radii is only 2 kA, although

inside 1 Bennett radius the net current is about 16 kA at that time. In the

* region r < a, the beam current is u 84% neutralized by plasma current.

For Case lb with channel walls moved inward by 2 Bennett radii, tensor

effects are weaker still because the plasma current flow is even more strongly
confined to the same spatial region as the beam current. Although an expanded

nose and emittance tailoring could have improved the situation, it is unlikely

they would have resulted in significant differences between the tensor and scalar

calculations before J - 0.r
6
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0

Case 2: 5 mm beam into three different hot channels

The conductivity is shown for this lower beam current density in
Figure 2.3. The channel profile is the same as in Case la, Figure 2.1. In

Case 2c the lower current density results in less strong plasma currents near

the axis, but the magnetic field in the current distribution is weaker in

general than in Case la. The ratio o /o, barely exceeds .10 even late in the

pulse. Again, this is long after the radial plasma current has approached zero,

so there is essentially no difference between the tensor and scalar computational

results except for the Er field. As expected, the narrow channels (Cases 2a and

2b) were less favorable to the development of a strong magnetic field because of

the confinement of the plasma current to the region near the beam.

Vl

Case 3: 2 mm beam into uniform density = 0.1 of sea level value

In some ways this case is like the extreme of a very wide channel, but

with a very important qualitative difference. Since the Case 1-like channels are

all chosen to be in pressure equilibrium, they have a significant initial

conductivity - sec -1 in their low density (high initial temperature)

regions. In Case 3, however, there is no initial conductivity channel because

the temperature is taken to be uniform at 2880.

Conductivity results are shown in Figure 2.4. Because the beam itself

is confined to a narrow region, it (and the accompanying ohmic heating) generates

its own conductivity channel which is initially relatively confined within a
few Bennet radii. Again, the plasma currents overlap the beam current sub-

stantially at early times, preventing it from establishing a strong magnetic

* field early in the pulse. Integrated plasma current profiles are shown as a

function of radius at several times during the pulse in Fiqure 2.5.
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In Case 3b an expanded nose was added to the pulse of Case 3a. This
*resulted in somewhat earlier development of conductivity in the region outside

the beam, but was still insufficient to prevent a high-density plasma current

from cancelling much of the beam current.

Case 3a was repeated using the full tensor calculation of c rather than

the simple model. In general this gave slightly larger values of o,, but still

too small at early times to have any influence on the electric or magnetic

fields before J - 0. Out to 1) ns the non-cancellation of tensor effects in
r

the more complex theory of the Hall current led to only small deviations from the

earlier calculation.

Case 4: 5 mm into 0.1 normal density cold air; mature nose

This case models a very mature nose such as might exist after a consider-

able amount of erosion has occurred. The full 100 kA is flowing in the expanded

region before the pinch-point. This initial broad beam generated before the rapid

pinch-down an electron density of , 5 x 1013 and conductivity . 5 x 1010 sec -

much broader than the final beam radius of 5 mm. It was a further attempt to get

the plasma return current to flow outside the beam. Some redistribution was

achieved, as in Case 3b. However, the degree of current neutralization in the

core of the pinched beam was not reduced sufficiently for Hall effects to be

irportant in the pinct-down region. To soie extent the generation of initial

conductivity in the wings is also counterproductive to the generation of Hall

effects early in the pulse. This same conductivity which allows the plasma

current to move outside also shorts out the Coulomb Er field, allowing the Jr - 0

condition to be achieved more quickly. As noted before, this works against strong

Hall effects.

40
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Case 5: 5 mm beam in 0.1 normal density cold air

An initial electron density profile given by

N 
1012

e: r  3- 3 + 1a 0

was used to simulate an annular ionized but cold channel provided by a laser.

The peak Ne is at 3 Bennett radii from the beam axis, and drops off quickly

inside 2 BR and outside 4 BR. This initial seeding with electrons provides a

conductivity in the range 108-109 sec - , and changes the breakdown characteristics

of the channel. However, it did not result in plasma current redistribution

sufficient to promote significant Hall effects early in the pulse.

The electron density profile at 0.05 ns is shown in Figure 2.6 for

Case 5 (the laser channel) and Case 6 (the hollow beam), along with a comparison

profile for the same type of case with no channel or hollowing. For Case 5 the

peak electron density on-axis was already three orders of magnitude greater than

that in the initial laser channel and the Er field had already reversed in sign

out to u 2 Bennett radii. The peak electron density and conductivity occurred

at % 0.3 Bennett radii, the result of earlier breakdown by the radial Coulomb

field. Essentially no net current flowed in the region between 0.5 and 1.2

Bennett radii.

6 Case 6: 5 mm beam into 0.1 normal density cold air; hollow beam profile

The radial profile of beam current was calculated from

=IB ( + ) 1 (2.36)

71 I + LT)2 (1 + rT

instead of the usual Bennett formula. Parameters used were a = 0.5, b = 0.25,

0.32. With this choice, the beam current had a hollowed profile, with the

* -37-
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axial current density less than 1/10 the peak value which occurred near 0.5

Bennett radii. This profile function was chosen only as a crude representation

of what a physical hollow beam profile might be like.

The distribution of plasma current was found to remain very similar to
the distribution of beam current up to about 1 ns, with a high degree of current

neutralization. By 1 ns the beam current density had reached its peak value, but

the plasma current density on-axis continued to grow to about 50% higher than the

beam current density; the magnetic field was reversed inside ' 0.25 Bennett radii.

The conductivity profile remained peaked off-axis through the 10 ns of the cal-

culation. The net current integrated out to large radius was a few percent higher

than that for Case 5 at 10 ns, but a factor of about 2 lower than for Case 4.

As in those cases, there was no significant difference between the tensor and

scalar calculations.

Case 7: 2 mm into uniform low density channel; artifically-imposed
conductivity profile

The purpose of this calculation was to assess the sensitivity of the

electromagnetic fields to an artifically-imposed conductivity profile. This was

done by decoupling the conductivity calculation completely from the fields. The

beam current was calculated as described by Eq. (2.34) above, and the conductivity

on-axis was simply chosen to be proportional to the beam current, with a peak

value of 1014 sec - at I = 100 kA. (a) :o has a radial profile which is the

square root of the Bennett beam profile and kb) :o has a radial profile the same

as the beam current. The ratio - , and : itself, were computed according to

the simple Hall theory described above. The collision frequency Vm was chosen

to represent a uniform low density region with . 0.036 of normal air density.

Tensor and scalar results for the two different profiles are shown in

Figure 2.7. The axial electric field and axial plasma current density are shown.

For the Bennett profile case, the beam current is very highly neutralized; the

tensor and scalar results are virtually identical out to 20 ns. On the other hand,

for the flatter conductivity prolile, a significant reduction in E2 and plasma

current occurred in the tensor case beyond I ns.
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2.5 ConclusionsS!

From the local conductivity studies described in this section, several

conclusions emerge.

(1) In order for Hall effect to radially redistribute the pisams

currents it is necessary that a /vL/ m) become significant

very early in the pulse before the radial Coulomb field reverses

and Jr vanishes, typically within the first few tenths of a

nanosecond. If this condition can be achieved, on-axis plasma

current decreases, net current increases, a increases, and the

effect feeds on itself.

(2) At low gas density, vm decreases, but so does the net current-

decreasing rt. Faster avalanche breakdown or ambient ioniza-

tion result in Jr tending to zero earlier in the pulse, allow-

ing less time for Hall effect to act.

(3) The strong non-linearity of the field equations - including

Hall terms - requires great care for their stable solut-on.

(4) To date, we have numerically studied a range of "realistic"

cases, with conductivity evaluated self-consistently with the

fields but always assuming local conductivity generation. In

c all these cases, the race is lost; current neutralization occurs

so fast that a never becomes significant until well into the

body of the pulse when Hall effects essentially cancel.

Critical to all these results is the conductivity and plasma response to the

beam during the first few tenths of nanoseconds - a time-scale for which our

local, instantaneous conductivity modelling is not appropriate, especially at

low densities. More adequate non-local conductivity models are described in

O the next section.
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3.0 NON-LOCAL CONDUCTIVITY EFFECTS

3.1 Introduction

This section summarizes results from an Initial, simple non-local,

non-Ohmic air chemistry model - including Hall effects and their impact on

beam stability.

In Section 3.2 the results of modelling high current beams in low-

density air are discussed. At low-densities, the standard simplifying assump-

tions usually employed in conductivity modelling no longer apply: scalar con-

ductivity, Ohm's law; local-instantaneous energy deposition; Maxwellian dis-

tributed plasma electrons; no delta rays; and no inertial effects. These

assumptions are no made in the present model. It is concluded that Hall cur-

rents do play a significant role at low enough densities and that the redis-

tribution of plasma current can result In a significant but sudden increase in

the magnetic pinch below a "critical" air density. The conductivity model

described here is a simpified version of the LOCOND model described elsewhere

(Ref. 7) and has been developed as an intermediate step toward a truly simple

model for inclusion in beam stability codes.
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3.2 High Current Beams in Low Density Air

3.2.1 Introduction

We report here the results of applying a phenomenological low-

density chemistry code to high current beams. A brief account of the model has

been given previously (Refs. 8 and 9). However, substantial modifications were

necessary for application to high current beams. The model is not considered

complete, and there.are no independent calculations in the same parameter regime

to which it can be compared; thus,the quantitative results are tentative.

Conclusions based on the calculations are:

1) Below a certain model-dependent density .01 normal, the
electric field drives a bulk runaway which changes the dis-
tribution of plasma currents. The net result is a sudden
significant increase in the pinch force as the density is
decreased below the critical value.

2) If Hall currents are turned off, the enhanced pinch may be
reduced by as much as a factor of two at one Bennett radius.

3) Significant amounts of plasma current are driven by the
gradient in electron pressure.

4) Significant amounts of plasma current are carried by the
high-energy non-Maxwellian part of the electron distribution.

This section is divided into three main topics: (1) a discussion

of the physics requirements for low-density calculations, (, an outline of

the present status of the model, and (3) a discussion of the computational

results for high current beams.
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3.2.2 Beam-Driven Chemistry in the Low-Density Regime

Simple order-of-magnitude argments show that at background densities

sufficiently lower than normal atmospheric density, several key assumptions

built into standard beam chemistry codes are not justified. Among these in-

aplicable assumptions are:

1) The beam-initiated cascade results in local, instantaneous

production of electrons and ions.

2) Currents associated with the cascade itself can be neglected.

3) Plasma currents can be calculated from Ohm's law.

4) The electron and ion densities are always almost equal, so
transport effects can be ignored in the chemistry calculations.

5) The electron distribution remains close to Maxwellian, so
that the high energy parts of the distribution are no more
important than usual in determining currents, ionization
rates, etc.

In addition, many beam chemistry codes use electromagnetic algorithms

which ignore Hall current effects. This assumption can break down in two ways

at low density: (a) the momentum transfer frequency goes down with the density,

so that it may not exceed the Larmor frequency by a wide margin as in full.-

density air, and (b) the highly-overpopulated high energy tail of the electron

distribution at low density may have a momentum transfer frequency considerably

lower than that of the bulk of electrons, and thus make a larger contribution
to the current.

In Section 2, we have investigated the effects of Hall currents in

full and reduced density air, but did not address problem (b) above. In addi-

tion, we have made assumptions 1 - 5 in our chemistry codes. We have recently

developed a multi-energy-group model which abandons assumptions 1 - 5 and

addresses the non-Maxwellian aspects of Hall current calculations (Ref. 7).

Recent calculations by Yu (Ref. 12) have confirmed the importance of Hall

current effects for ATA-like beans when the electron energy distribution is

treated in detail. The present work verifies their irportance for hiqh current

beams.
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3.2.3 Non-Local, Non-Ohmic Conductivity Model

The ultimate goal of the development program is to produce a relatively

simple BMCOND-like model which can be incorporated into propagation codes. This

requirement eliminates the possibility of doing a "first principles" calculation.

The approach taken is to develop a phenomenological model which represents the

most important physical processes in a simple way, and to adjust the "free"

parameters associated with various simplifying assumptions to obtain agreement

with more fundamentally-based calculations.wm
The model described below considers the electron distribution broken

into three energy ranges. The lowest energy group represents basically the usual

bulk of approximately-Maxwellian electrons. The next higher energy group
or

represents those that in the presence of an electric field are in the runaway

regime and thus behave very differently from the bulk of the electrons. The

third group represents the relativistic particles produced directly by the beam.

The organization of the model is summarized in Fig. 3.1, in which the

sources and sinks of particles for each group are shown schematically. The

three energy ranges will be referred to by the names low-group, high-group,

and i-group,in order of increasing energy. The beam particles themselves

constitute a fourth group which is treated in the usual way (e.g., no energy
straggling).

The beam particles collisionally produce secondaries directly in each

of the three groups, according to a Moller distribution (modified at low energy).

The maximum 5-ray energy is one-half the beam energy, since the higher energy

particle emerging from a primary interaction remains associated with the beam.

Collisions by beam particles are the only source of electrons in the U-group.

A more detailed discussion of the i-ray model is given below in Section 3. .3.1.
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The high-energy group extends downward from I MeV to a variable-energy boundary

which at present goes no higher than 10 KeV. It is fed mainly by primary beam

collisions and by the collisional degradation of the S-group through its I MeV

lower boundary. Under some conditions, electrons are also transferred up from

the low group.
98

Both the high and low energy electron groups are represented by fluid

equations for particle density, momentum and energy. The equations of motion

provide the means for abandoning the ohmic representation of plasma current

U flow. The fluid equations are solved on an Eulerian grid which is the same

grid used for the electromagnetic field calculation. It is assumed that every-

thing is a function of the "retarded" time variable J z t - z/c only, so that

the only independent variables are r, the radial position, and , the distance

back from the pulse head in seconds. The electromagnetic fields are obtained

using the algorithm described in Section 2.

In principle it is necessary to solve the fluid equations and 5-group

equations simultaneously with the electromagnetic field equations. Since the

Maxwell equations themselves are explicitly non-linear when the Hall current

terms are included and the fluid equations are also non-linear, an iterative

procedure is required. In order to maintain maximum modularity under these

circumstances, the procedure adopted involved solving first a linearized set

of fluid equations, followed by the field equations, and then iterating to

convergence.

In addition, the algorithm has been designed to allow differential

comparisons between the three-group model and a model with the high energy

and 2-groups eliminated and with the standard local-instantaneous approximations

made. However, this latter "one-group model" still differs from standard

chemistry codes in that it solves an equation of motion for the one group

rather than using Ohm's law. It is also possible to turn off the pressure

terms in the equations of motion and the Hall current effects.
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3.2.3.1 Delta-Ray Group

In the present discussion, 5-rays will refer to the part of the beam-

initiated cascade which has energy greater than I MeV. These particles are

represented by a model essentially identical to that developed by Johnston
(Refs. 7, 11). As applied here, the model has two main deficiencies: (1) it

does not provide detailed information on the radial distribution and (2) it

does not include the detailed effects of electric or magnetic fields on the

- particles. With the assumption that everything depends on t - z/c,

the model gives an integral expression for the total 6-ray current as a function

of distance - back from the beam head. (Particle energy distribution information

is available but not used at present.)

It is assumed that most of the particles produced as secondaries by
the 5-rays have very low energy. This is consistent with the continuous slowing

down approximation which forms the basis of the model. In the present model,

as the '-rays lose energy, they produce low energy electrons at a rate of one
particle per 33.73 eV of energy lost; these particles immediately enter the low-

energy plasma electron group of the three-group model. The 5-rays themselves

degrade in energy due to collisions. They reach the cutoff of 1 MeV at a rate
given by the Johnston model, and at this point they are added to the high energy

electron group.

The radial profile as a function of distance back from the beam head

is estimated in a crude way, based on two pieces of information: (2) the L's

are produced with the beam profile and (2) they evolve from that profile to

form a halo with radial dimension estimated by Johnston (Ref. 11) to be 4 4

Bennett radii about a Bennett-profile beam (for particles above 1 MeV). It

is assumed that at a given :, the profile towards which the ''s evolve is a

weighted average of the beam profile and a specified halo profile. The relative

weights are deter:ined from the rate of local production as compared to the

total instantaneous nu!,Lher dencit',, and the rate of evolution towards trw ialo
;)roffile. ,,is a-,u IrIon is used in t!,oe follo.,in"2  int r:,olation for;wula for

ra fl sfi" f r, in ter. f f
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f(r, +AC) : (f(r,C) + ACF)/(I + vdAZ).

The function F is given by

Sv), i

where S is the local rate of 3-ray production by the beam, N is the total number

of 3-rays present, and h is the beam profile, from which the 5-rays are produced.

The profile g is the assumed halo profile, and o is a characteristic rate at

which the 5's evolve towards the profile g. The rate vd is set equal to S/N + v.

With this choice, f(r, +AC) is normalized to unity if h, g, and f(r,C) are.

The rate v is taken to be an average radial velocity of the 5's divided by the

assumed halo characteristic radius.

3.2.3.2 The High-Energy Group

The schematic forms of the fluid equations for the high-group are:

+ V.(Nv) + vlN = S (3.1)

B+S5 + SL

+1vv) + vJJK+ + e + v'

- + v + I VP + V KB + K + K (E - B) (3.2)5tm 2 B L m c

lNm2  v2 + 2 ) + -p
*-P .v Nmv + -P)+ 7.P) Nv2 +m 2 p

vl( Nmv + P) = L + NeE-v (3.3)

The terms SB, KB, etc. are the sources due to the beam, the 5-group, and upward

transfer from the low-group, respectively. It is assumed that all collisional

ionizations by high-group electrons produce a low energy secondary which goes

directly into the low group. The energy equation (3.3) has been written with

the total energy split into a drift part and a thermal part, represented by a

pressure F. Tne terre L includes energy deposited by the beani, energy brought in

by tran ,ftr cf ;rirticles from the low-group and S-group, and energy losses due

to iornzjt r . ,r, loss due to loss of particles from the high group is
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represented by the v term on the left side of the equation. It has been assumed

0 that the particles lost take with them the average energy of the high group. The

momentum loss rate ,, includes the effect of particle losses, momentum loss due2
to ionizing collisions, and momentum loss due to elastic collisions.

The fluid equations are solved as a finite difference systemon the Eulerian

electromagnetic field grid,. The outer boundary condition allows an outflow of

particles. No explicit assumption is made concerning the distribution function

of the high group electrons except at 0+, when it is dominated by the Moller

0 distribution from primary beam particle interactions. The average total energy

and z-momentum are then used to give an initial "temperature" T, defined by P : NT,

where P is the pressure from Eq. (3.3). At all subsequent times, the temperature,

particle density, and drift velocity are obtained from the fluid equations.

For simplicity, ionization and momentum transfer rates are evaluated

at the mean particle energy. An analytic formula given by Briggs and Yu (Ref. 12)

is used for the ionization cross section. The momentum transfer frequency Vm is

given by the approximate formula

mn -(1.08 x 10 . Ng .)/(178.89 +

+ (1.46 x 10-6 N+ log A,)/T 3/2  (3.4)

wriere , is tne total electron energy in eV. The first term represents the

effect of collisions with neutral particles and the second represents Coulomb

collisions. The "equivalent" temperature is defined as Tequi v = T + 1/3 mv2 ,

log .. is the usual Coulomb logarithm, Ng is the total density of neutral atoms

and molecules, and N+ is the total density of positive ions.

The boundary between the high and low energy groups is set by finding

tne solution of the equation

e E z m v (3 5)
Sm
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corresponding to the high energy side of the peak in vm. The average velocity

v is related to the total energy rappearing in Eq. (2.4) by = m .

However, the boundary energy is not allowed to exceed 10 KeV even when the

total electric field E is very small.

OP Another special case occurs when the field is so strong that there is

no physical solution to (3.5); this corresponds to a bulk runaway, in which the

field is capable of accelerating the electrons through the peak of the momentum

transfer cross section. In this case, the choice of the lower boundary of the

high group is somewhat arbitrary. The lower limit to be used for the boundary

during a strong runaway condition can be specified as input data. Usually it

is taken to be a few volts, so that essentially all the electrons produced

directly by the beam go into the low end of the high energy group. The transfer

of electrons from the low to the high group is discussed below.

3.2.3.3 The Low-Energy Group

The equations for the low energy group are similar in form to those

given above for the high group with the exception that they contain loss terms

due to recombination and to transfers to the high energy group, and input terms

due to transfers from the high group and to collisional ionization by high

group electrons. The main difference in the treatment of the low group is in
2

tne chemistry detail. At present, the dbundance of N2, 02, N, N( D), 0, and a

composite representative of the triplet states of N2 are followed explicitly by

differential equations. The system of equations used is essentially the same

as in the chemistry code BMCOND (Ref. 13). This degree of complexity was found

necessary to obtain reasonable agreement with the comprehensive code HICHEM at

low air densities for hi h current calculations.

-51-
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Ionization rates are given by tables identical to those in the HICHEM

code up to 500 volts "equivalent" temperature (Tequiv Te + 1/3 m v2 ). The

collisional excitation rates from the BMCOND model are used. Ionization and

excitation rates due to the beam are computed as in the HICHEM code, but with

appropriate adjustment for the differences between time-delayed deposition model

used here and the instantaneous deposition model in HICHEM and BMCOND.

It is very important to distinguish between the positive ion density

and the electron density, since electron transport effects can be very large;

thus a separate differential equation for the total rate of positive ion produc-

tion is integrated. In addition it was found necessary to calculate a vibrational

temperature because of significant sensitivity of computational results to the

dissociative recombination rate; the HICHEM treatment was adopted for this

* calculation. The momentum transfer frequency used in BMCOND is used for low

energies, with a smooth transition to the analytic formula (Eq. 3.4) used for

the high group. The Coulomb term of Eq. (3.4) is used throughout.

OR Reassignment of electrons from the low group to the high group is a

relatively arbitrary procedure. The goal is to remove electrons from a presumed

high-energy non-Maxwellian tail of the low group and put them into the high

group, which hopefully represents better their contribution to currents, ioniza-

tion rates, etc. than does the assumed Maxwellian bulk of the low group electrons.

However, there is no simple model of the super-thermal tail as generated by

strong electric fields which vary rapidly in both time and space. Several

different ad hoc procedures have been tried, but none is especially defensible

in detail.

Qualitatively, what happens in a weak field (or high ambient density

gas) is not very sensitive to the details of the transfer rate. Under strong

4 runaway conditions, the entire low group is accelerated to high drift energy

and heated to temperatures - kilovolts on a very short timescale. During this

tirme, the distinction between the two groups is not very meaningful, and again

the behavior of the bulk plasi-a is not too sensitive to the details of the transfer
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rate. However, after the fields which precipitate a strong runaway die out,

the distribution of electrons between the two groups can be important; this

does depend strongly on the transfer rate. Similarly, if conditions for a

strong runaway are just barely achieved for only a short time, there may be

some sensitivity to the transfer rate. These problems are continually being

studied, both in the context of the model described here and through comparison

with other, more comprehensive models being developed.

The transfer rate presently used is calculated as follows. A velocity

isdefined by v0 = + v r + .5 Vt, where the + sign is taken if the radial drift

velocity is parallel to Er, and a negative sign is taken if it is opposed. The

thermal velocity term Vt is added to account for the fact that, at high enough

temperature, a substantial number of electrons may be able to run away even

if the bulk drift is not large (or even parallel to the Er field). The transferr.

rate of electrons is then given by

v -V
S L min(.5, .INh/Ne) min(l., exp( 0Vt c))/,,, (3.6)t!

in which vc is the velocity corresponding to the energy boundary between the

groups, Nh is the local density of high-group electrons, Ne is the local density

of low-group electrons, and Lr is the proposed timestep. The purpose of the first

minimum function is to assure that the high-group density is not changed by more

tnan 10 during the step. In actual computations, the transfer rate is usually

very low, or else as high as permitted by the first factor of (3.6), even for

exceedingly small timesteps.

The momentum transferred with the particle is taken to be parallel

to its total drift velocity, with magnitude given by the larger of the velocities

v and vc. The energy transferred is the average energy per particle of the

low group, plus an additional amount arranged to come (by suitable terms in

the equations of motion) entirely from the drift energy of the low group, to

iiiake up the tot~l drift energy of the electron injected into the high group.
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The net result is to decrease the drift energy of the low group but leave its

temperature unchanged. The effect of the energy and momentum transfers on the K
high group depends on its energy and momentum at the time of the transfer.

Other procedures for transferring electrons to the high group are being evaluated.

3.2.4 Calibration in the High Current Regime

At present there are no comprehensive, first-principle calculations

to provide detailed guidance in the development of the three-group model for

high current calculations. Yu (Ref. 10) has presented Boltzmann-code calcula-

tions for ATA-like parameters, but even these calculations incorporate assump-

tions which are not always justified in the context of high power beam plasmas.

The purpose of the calibration runs discussed below is to check that the

relatively simple model described in Section 3.2.3 agrees reasonably well with-

detailed chemistry codes in regimes where the assumptions of those codes (see

Section 3.2.2) are not thought to be seriously in error. Results of calibration

at 10 kA have been presented elsewhere (Ref. 8). A similar comparison with the

HICHEM (Ref. 4) code at 100 kA and gas density 0.1 normal is given below. The

rise time is 5 ns and the Bennett radius is 0.5 cm.

The comparison of electron densities on-axis and at one Bennett radius

is shown in Figure 3.2. The agreement is very satisfactory. The effect on the

electron density due to the tirie delay for the tnree-group model is not large

after 2 or 3 ns. The electron density on axis is mainly determined by the

close balance between collisional ionization and dissociative recombination

after a few ns. The recombination rate itself decreases significantly as the

molecules (and molecular ions) are depleted, and as the vibrational temperature

increases. After about 6 ns, the continued increase in N is determined mainlye
by the decrease in the recombination rate, with a large part attributable to

the vibrational temperature dependence.

S...
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Figure 3.2. Electron Density Comparison at ./.o 0.1.
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A similar comparison of electron temperatures and total currents is

shown in Figure 3.3. The temperature agreement is quite good from I ns on.

At 0.1 ns, HICHEM gives Te 18 volts, compared to the 12 or 13 volts given

by the simple models. At such early times the ohmic approximation used in

HICHEM is not very good, so the ohmic heating rate is likely to be incorrect;

thjs it is not clear which values are closer to the truth.

As in the 10 kA comparison (Ref. 3), the agreement between HICHEM

and the simple models is not as good for the net current and effective current.

This difference is mainly due to the difficulty in matching the momentum

transfer frequency calculated in HICHEM by a very simple formula. However,

the agreement in currents is still acceptable, particularly since the most

interesting sensitivities described below develop before 1 nsec.

Because the results of the HICHEM code are suspect below P/P 0.1,

especially for < few ns, it cannot be used for calibration comparisons at

lower densities. However, many of the results presented below are differential

comparisons or sensitivity studies, and thus can provide useful information in

spite of uncertainties in the quantitative results.

3.2.5 Computational Results

3.2.5.1 Introduction

The beam parameters for the calculations described below are:

Current = 100 kA

Rise time = 5 ns

Bennett radius = 0.5 cm

Energy = 10 MeV

-
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Figure 3.3. Axial Temperature and Current Comparison at Q)/ = 0.1.
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The discussion below is divided into two main sections. The sen-

sitivities to gas density, Hall currents, and pressure terms are described

briefly in Section 3.2.5.2, and the remaining sections discuss the calculationa

in more detail.

The main conclusions have been stated earlier (Section 3.2.1). In

brief, it has been found that the pinch force is strongly dependent on the gas

density below some threshold value, and significantly dependent on the presence

of Hall currents and pressure terms. The plasma current and electron density

radial distributions change dramatically over a very small range of density

ratio near p/.o = .01, resulting in an increase of pinch force by a factor

of 3 or more for a density change of only 20%.

3.2.5.2 Sensitivity Results

Density Sensitivity of Pinch Force

The dependence of Ieff(r) on p/po is shown in Figure 3.4 for the

three-group model, and in Figure 3.5 for the one-group model. The sharp onset

of current enhancement begins in the range P1o n .0085 - .01 for the three-

group model, and between .005 - .008 for the one-group model. In both cases,

the current enhancement is a factor n. 3.5 or greater, compared with a base

level at 0/O1. These larqe effects set in when the plasma electrons can

be sustained in a state of bulk runaway for several tenths of a nanosecond,

CThe sharp density threshold results from the sensitivity of the charge

neutralization process to gas density. Several effects contribute. The beam

production of positive ions is directly proportional to the density; the

electrons produced by the beam provide "see '" for the avalanche process of
plasma electron collisions The peak e-folding rate of the avalanche is also

proportional to the density. These two processes clearly delay the charge

neutralization as the gas density is decreased and allow higher radial electric

fields to develop (assuming the rise time is not I ns). in order for

4-5 5,-



.008.

b5- - -- - - -- - - _ _ _ _

4A

(k.,)

0 0 ------ 1 2 3 - ---- 5
R (cm)

Figure 3.4. 1 Dependence on /:at 1 ns (3-Group Model).
eff o

-59-



e-V 7

.008

-60



7V

neutralization to occur, plasma electrons produced by various processes must

W move out of the spatial region occupied by the beam, leaving the positive ions

to cancel the charge of the bear particles. Higher fields help move the "

electrons out quickl, but tna: ,rocess dilutes very considerably the avalanche

ionization and thus lor..?o: t rsduction of the needed positive ions close to
the bear apis. In tr tr re:vle, avalanche is relatively unimportant, and

tne accu::iulationr + t-_ positive ions determines the neutral-

ization time and the peao fields.

The difference in density threshold between the two models is caused

by (1) the time-delay in ionization in the three-group model which reduces the

effective bean, ionization rate by more than a factor of two; and (2) the effects

of the non-Maxwellian high-energy group on the ionization rate and on the

move:;ent of plasma electrons away frorm the beam. It is difficult to assess

these separately because beam production of the high-energy and i-ray groups

(which degrade relatively slowly at low densities) is the cause of the time

delay. Since qualitatively-similar results occur whether or not the high-

energy group is included, it seems that the time-delay is probably most directly

responsible.

Sensitivity to Hall Currents and Electron PressureWi

Thu radial pressure gradient in the equations of motion for the high

and low energy electrons can drive currents both radially and in the z-direction

due to the magnetic part of the Lorentz force (Hall effect). This works in

conjunction with the electrically driven currents. The result of deleting

either the pressure terms or all Hall effects (by zeroing the magnetic force

on the plasma electrons) is shown in Figure 3.6. Clearly, the Hall currents

have the largest effect, but the pressure terms are not negligible either.

Note that these comparisons show the cumulative effect of removing the terms

for the entire calculation, and not simply the contributions to the current

at the time shown. A similar calculation was done with only the high group
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pressure turned off. The effect at =1 ns was considerably smaller than shown

* in the figure. Low-group pressure contributes dominantly during the bulk

runaway because the electrons reach temperatures in excess of a kilovolt and

their number density is large. However, it will be shown in later discussion

that the high-group pressure-driven Hall current is important.

3.2.5.3 Comparison of 1-Group and 3-Group Calculations at Ipo .008

The purpose of the following discussion is to provide a more detailed

* description of the phenomena which lead to the enhanced pinch force. At

P/Po = .008, the 3-group model shows a very strong effect, whereas the 1-group

model shows very little because its density threshold is somewhat lower.

Effects on Plasma Current Distribution

The net current (including displacement) integrated out to radius r

is given by I net  .005 r B(r), where I is in kA, B is in gauss, and r is in cm.
The effective current, which measures the pinch force, is the beam-profile-

weighted average of .01 r (B(r) - E (r)). The value of the effective current
r

integral taken to radius r, and the net current, are shown in Figures 3.7(a) - (h)

at various distances from the pulse head. Large differences are apparent by

• 1 ns and persist to 10 ns.

At 0.1 ns, the net currents for the two calculations are similar,

but the effective current is substantially weaker for the 3-group case because

the radial electric field is higher (due to slower charge neutralization).

At 1 ns the effective current in the 3-group model is ' 28% of the

beam current at that time, whereas in the 1-group model it is only - 7.5%.

The net current profiles imply a very much broader plasma current distribution

for the 3-group model, although net currents inside 5 cm radius (10 Bennett

radii) are .5 to I kA in both cases even at 10 ns into the pulse where the

beam current is almost 100 kA
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A comparison of the plasma current (J z) radial profiles at 1 ns is

shown in Figure 3.8. The breakdown of the 3-group profile into contributions

from the high and low-energy electron groups is discussed below.

Electron and Ion Density Profiles

Major qualitative differences in the evolution of the electron density

are apparent in Figures 3.9(a) - (d). The 1-group calculation shown in

Figure 3.9(a) has the usual peak slightly off axis due to the E -initiated
r

* avalanche and is not unusual. The 3-group calculation for the low group

(Figure 3.9(b)) is much more interesting. It shows a large peak well off

axis and much higher density at large radius. The high-group density

(Figure 3.9(c)) has features which invite interpretation as propagating sound

waves. The ridge which appears earliest in time is associated with the rise

of the Er field and the second begins on the axis near the peak of Ez. There

is a hint of the first ridge in the low-group density also.

The total positive ion density is shown in Figure 3.9(d). Since

the immobile ions show the same gross features as the low-group electron

density, it is clear that the large off-axis peak must be interpreted in terms

of the history of the ionization rates. However, the weak ridge in the low-

group electron density does not appear in the ion density, and thus may be a

flow feature. The number of particles in the high group is not large enough

for the ridges of Figure 3.9(c) to show up in the ion density (Figure 3.9(d)).

It seems likely that they are similar in nature to the ridge in the low-group

electron density. Further support for the flow explanation is provided by
Figures 3 .10(a) and (b). These show the low-group and total ion-densities

for the 1-group calculation at p/po = .005, in which there is a large current

enhancement compared to P/p = .008 (see Figure 3.7). Here the ridge

structures in the electron density are more prominent, but still have no strong

counterpart in the ion density.
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The difference in positive ion density radial profiles at 1 ns is

6shown clearly in Figure 3.11(a). At this time the ion density is much greater

than the beam particle density, so these profiles are very close to the electron

density in the charge-neutralized state. The effect on the z-component of

plasma current was shown earlier (Figure 3.8). Figure 3.11(b) shows how the

0 relatively small difference in ion densities on axis due to time delay before

0,1 ns, becomes very large for a few tenths of ns before coming together again.

For ease of detailed comparison, electron density radial profiles

0 for the 1-group model and for the low and high-energy components of the 3-

group model are shown in Figures 3.12(a) - (c). The large temporary off-axis

hump in the low-group electrons is very clear at 0.6 ns in Figure 3.12(b).

The very much broader density profiles produced by the 3-group model are also

(0 very obvious, and persist out to 10 ns from the pulse head.

A summary of electron and ion number density comparisons on axis is

given in Table 3-1 below. The first two entries of the third column show the

* magnitude of the time-delay effect, while subsequent entries show the large

differences seen in Figure 3.11(b). The first two columns give an indication

of the importance of electron transport. At 0.3 ns for the 3-group model, only

47% of the plasma electrons ever produced on axis remain there.

TABLE 3-1

ELECTRON TRANSPORT EFFECTS

Time (N e/Ni) (N e/N) Ni(3-Group)

(ns) 1-Group 3-Group Ni(1-Group)

.03 .98 .97 .69

.06 .87 .86 .68

.1 .77 .67 .37

.3 .99 .47 .014

.6 .99 .76 .027

1 .99 .99 1.27

3 .82

10 .93
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Electric Field Effects
0

Both the Ez spike and the final decay of Er occur significantly earlier

in time for the 1-group model (Figures 3.13(a) - (d)), and the peak field strengths

are lower. The large negative oscillation in Er at 1 Bennett radius is especially

* prominent in the 3-group calculation, but appears to damp out satisfactorily.

The negative spike in Er in caused by an overshoot of the outward-moving electrons

as charge neutralization is finally achieved near the axis. The significant

overshoot is consistent with the fact that the electron plasma frequency is much

* greater than the collision frequency at % 0.3 ns. The large off-axis hump in

ion density at 0.6 ns (Figure 3.12(b)) seems to be associated with the decelera-

tion of the low-group electrons by the reversed Er, and by their final cooling

through the peak of the ionization cross section. The final cooling occurs

considerably earlier off-axis, as shown in Figure 3.14(a). The temperature

behavior of the 1-group model is also shown for completeness in Figure 3.14(b).

3.2.5.4 Hall Current Effects

Introduction

Hall currents may be comparable to ordinary currents when the Larmor

frequency eB/mc is comparable to or greater than the momentum transfer frequency.

Inis criterion is a strong function of both ambient density and electron energy.

The 3-group model allows the possibility of accounting for the energy dependence

in a strongly non-Maxwellian plasma. The momentum transfer frequency at 1 eV

in N2 is about the same as that at 200 eV, and decreases with energy beyond 50

or 60 eV. Thus, if a substantial fraction of the electrons have energy in excess

of 200 eV, their low momentum transfer frequency may result in a significant Hall

current, out of proportion to their fractional number density.
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Detailed Discussion-

It is clear from Figure 3.6 discussed in Section 3.2.3 above that Hall

currents are important to the pinch force. In the calculation at p/ o .008,

even the low-energy electron group achieves high velocity for a short time,

and contributes substantial Hall current. However, this is generally masked

by the Ez-driven return current. In the far wings, however, and at early

times near the axis, the radial outflow driven by Er is turned forward by the

magnetic field and the net plasma current density is forward. The amount of

current involved, however, is insignificant in magnitude compared to the beam

current.

When the high-energy electron group from the 3-group model is examined

separately, it shows quite large effects. The z-component of plasma current

for the high group is shown at various times in Figure 3 .15(a). Beyond about

1.5 Bennett radii it is always directed forward with the beam. Nearer the axis,

the strong Ez field keeps the current going backwards, although by 10 ns there

is relatively little backward-moving current in the high group. A small part

of this forward-going current is due to the fact that high-group electrons

produced directly by the beam are injected with forward velocity. However,

most of it is due to the Hall force acting on the radial out-flow.

The effect of Hall current in the high energy electron group is shown

in Figure 3.15(b). At I ns, the forward-going current near 1 Bennett radius
2 2amount to almost 2 kA/cm , compared to the ', 5 kA/cm of low group plasma

current going backwards at the same radial position. The result is a very

significant reduction of the total return current.

It is important to note that at late times - 0.5 ns, the radial flow

which is turned forward by the magnetic field is driven not primarily by Er,

but by the radial pressure gradient of the high-group particles. Yu (Ref. 10)

first recognized this as a possible iv;,ortant cop-onent of the total current.
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From the equation of motion it is clear that a density gradient is equivalent

to a radial electric field of magnitude

Er - T I n N volts/cm.r or

For T - 10 KeV as suggested by Yu (and used for the high group in these cal-

culations), and a density gradient with scale 1 1 cm, this corresponds to

Er % 10 KeV/cm. Assuming that the system as a whole approaches a steady state

solution ofMaxwell's equations, Jr must - 0. In the presence of the Hall-

force terms, the radial Er adjusts itself to shut off the net current driven

by v B , Er, and the pressure gradient. In the present context it seems that

zero net radial current could perhaps be achieved by a balance between an in-

ward flow of very low energy electrons and an outward flow of a much smaller
number of fast electrons. Because of the differences in v for the two streams,m 1

the corresponding Hall currents would not cancel exactly in this case. Under

some conditions such counterflows may be limited by instabilities.

W
3.2.5.5 Delta Ray Effects at Low Density

Although the steady state 5-ray current is independent of air density,

the time required for the current to reach its maximum value depends strongly

on the density. There is also a significant dependence on the beam energy if

only relativistic particles (1 1 MeV) are included, as shown in Figure 3.16.

The pulse length used in this calculation was 100 ns. (A very steep drop in

6-current at 1 atmosphere on a timescale of 10 ns beginning just before the

pulse ends is not shown.) It is clear that at densities as low as .01 atmosphere

the 6-current represents a very small increment to the beam current over the

first 10 ns considered in the calculations presented above. Before 0.1 ns,

the ,-current is comparable to the plasma current in the z-direction, but

both are very much smaller than the beam current. It seems unlikely that the

relativistic part of the beam secondary cascade can be important at early

times for air densities as low as .01 atomsphere However, for propagation

in a density channel, the interaction with the high-density walls may be very

iii;portant.
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3.2.5.6 Comparison with Ohm's Law

Both the 1- and 3-group models use equations of motion to describe

the electron flows. In general, the difference between the currents calculated

this way, and by using an Ohm's law relationship involving only electron density

and momentum transfer frequency, is large at early times. The duration of the

deviation from Ohm's law increases as the gas density decreases, Figures 3.17(a)

and (b) show the actually-computed plasma current compared with what would have

been obtained from an ohmic calculation using the instantaneous values of Ne

and vm. The results are shown for the 1-group calculation at p/po = .008, but

comparable effects are present for the 3-group case. At 0.1 ns the ohmic current

shows an extremely strong Hall effect due to the large radial field; the current

given by the equation of motion is very much smaller, and the Hall effect does

not show on the linear scale. At 1 ns, the two methods of calculating the

current give virtually identical profiles, as shown in Figure 3.17(b).

3.2.5.7 Concluding Remarks
W

The calculations discussed above show the magnitude of the effects to

be expected when low-density phenomena are taken into account. All the commonly

used assumptions listed in Section 3.2.2 above have significant impact on the

results at p/po = .01. (The current carried by relativistic beam secondaries
is important at low densities only if the pulse is long enough fhr the full

build-up to occur.)
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4.0 NONLINEAR FIELD ALGORITHM DEVELOPMENT

4.1 Outline of the MAHD Approach

The MAHD (for "Moderate Amplitude Hose Displacement") e.m. field

* algorithms were developed for application to a phenomenological model of elec-

tron beam hose dynamics in the nonlinear regime. The value of a phenomeno-

logical hose dynamics model in the linear (small hose displacement) regime has

been well demonstrated by codes such as PHLAP (Ref. 1); the extension to the

* nonlinear regime is critical for studying non-linear saturation and propaga-

tion in non-uniform ambient density and conductivity channels. PHLAP and

other similar models approximate some of the physical details incorporated in

elaborate particle simulations, but are fast-running and economical. With

careful calibration against comprehensive simulation codes (Ref. 7), phenome-

nological models make parametric studies over extended ranges of beam

characteristics more feasible.

The MAHD electromagnetic (e.m.) field algorithms are required to

be fast in execution and sufficiently accurate for the applications of

interest. All field solution methods presently in use (DYNASTY, Ref. 14,

DYNADISC, Ref. 15, and IPROP, Ref. 7) employ a modal expansion of the beam's

* fields about some axis of symmetry; MAHD is not an exception. Because an

accurate representation of the fields for a beam that is strongly displaced

(say, by more than a Bennett radius) from the nominal propagation axis

requires an extremely large number of modes, validity for moderate displace-

ments only is claimed for the MAHD algorithms. This limitation is shared, in

practical terms, by other schemes using the modal expansion approach as well.

The present study considered two distinct physical approximations

in the formulation of the field equations . A first approximation considered

was the so-called "frozen approximation". A further approximation, developed

by Lee (Ref. 16), neglects the effects of the Ez- and H -terms that appear in
Z z

the field equations. One has the further option of considering equations

written in terms of potentials or of dealing directly with the electronmagnetic

fielcs. In this study, we compare three algorithms as follows:
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o Potential equations in Lee's approximation,

o Field equations In the frozen approximation, and

o Field equations in Lee's approximation.

The basic solution technique employed in the MAHD algorithms is as

follows: In all formulations of the field (and potential) equations for the

*modal components, coupling between modes occurs in the field equations because

of the angular dependence of C. For example, the m-th mode of the conduction

current, {CE)m , is just the coefficient of cos(mO) in the expansion of the

product of the two series for 0 and for E. Besides contributions from the

* mode of interest, 00Em, other terms okEl appear, where Ik ± 11 = m. This

coupling requires, in principle, that the equations for the amplitudes for all

modes be solved simultaneously. We have here instead employed a scheme close

to that used by Godfrey in IPROP (Ref. 7). In this scheme the modally-

resolved set of field equations are solved in mode by mode subsets. Contribu-

tions to the current from cross terms other than o E are regarded as approxi-o m
mately known and fixed for the m-th mode calculation. Cross-term contribu-

tions are refined in an iterative procedure involving repeated sweeps through

solutions for sequential mode values. The iterative scheme avoids the labor

in the alternate approach of solving the very large set of equations generated

by solving simultaneously for the field amplitudes in all modes. We have

found that only a few passes are required (two to three, at most) for good

accuracy; fast computer execution, and a nearly linear increase in execution

tine with the number of modes carried, result.

The remainder of this section will provide details of the three

algorithms studied and of the iterative solution scheme that they all used. A

standard test problem, formulated by F. Chambers of LLNL and G. Joyce of NRL,

was used for comparison of the three algorithms among themselves and with

other solution codes; results of those comparisons will also be given.

0i
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4.2 Formulation of the MAHD Algorithms

The MAHD algorithms are formulated with the frozen approximation

and the modal expansion as a common basis. Given fields in the laboratory

cylindrical coordinates (r', ', z', t'), we make the usual Galilean trans-

formation to beam coordinates

r=r

(4.1)
Z= Z )

-- Z 

,

where the coordinate measures "beam time", or time elapsed since the head of

the beam (at 0 0) passes an observer at some value of z'. The frozen

approximation follows immediately from a transformation of the field equations

to beam coordinates and the assumption that, in beam coordinates, fields vary

slowly with z; that is:

< __ (4.2)
Z

Specific sets of field equations will be shown later in the section.

The modal expansion is simply a Fourier-series representation of

the dependence of the various field quantities on the transverse coordinate e.
We have assumed, to simplify initial development work, that the (x,z)-plane is

a symmetry plane for the fields, corresponding physically to hose displace-

ments in the x-direction only, and that the 9- and r-components of the beam

current can be ignored. With these assumptions, the primary beam current

Sz(re,r) is given, for example, by:

N
* JZ(r, ,M) z J ,(r,:) cos.. (4.3)

l -- 0
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The beam-induced conductivity 0, the e.m. potentials A and t, and the e.m.

field quantities Ero E z , and H. are also even (symmetric) functions of e, and

are given by analogous cosine-series expansions. The remaining field quan-

tities Hr, Hz , and E 0 are odd (antisymmetric) functions of 8, and are given by

a sine-series expansion; for example:

N

H (r,e, Hzm(r,E) sinmo

m = 1 .'

All three algorithms use essentially identical methods to resolve

the (rO) sources into modes -- as generally required by the algorithms -- and

to form the modal amplitudes associated with the products of two modal expan-

sions (as required by the iterative scheme). We briefly summarize those

methods next.

The present algorithms all use straightforward Fourier series

• expansion formulae. It was felt that, for small numbers of modes, the speed

advantage of FFT techniques was probably not significant. The modal resolu-

tion procedure does in fact typically use only about 5% of the total time

spent by the solution algorithms as presently programmed (see Sec. 4.4).

0 By our convention, an even function r(7) is expanded as

N (4.5)

+ a cOS MC
M=1

where

_ Tr

1 (e)d (4.6)
0 d

O



and

_ 2 f7() cosmede m >1 (4.7)

(The integrals in the above equations are evaluated using

Simpson's (3-point) rule in a direct numerical integration. If hi is the

highest mode number to be used, 2N+1 points in the interval [O,w] are

*typically used in the integration.)

All of the MAHD algorithms require re-expanding the products of

two modal series into modes. Assume that a(e) and b(e) are even functions

representable by a finite cosine series (maximum mode number N), and that c(0)

and d(e) are odd functions given by sine series of the same length N. We

ignore modes of higher order than N in the product.

Even-Even Products. The product a(O)b(e) is also even, and the

cosine series coefficients are as follows:

m-=-O:

M 1:1S- N

m-1 N-m

ab + a b + ab (ab +a b (4.8b)) m  a m m o 2 = m-+ 2am+ m+b (
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The first summation on the right is dropped if m < 1, and the second is

dropped if m = N.

Odd-Odd Products. The product c(e)d(e) is even, and the cosine

series coefficients of cd are as follows:

m.

= cdI m-I (4.9a)

r-1 N-r

- 11~d_ + Z ~ jdm~j+ qC+1dj) (4.9b)
)M 2r M~d

As before, the first summation on the right is dropped if m _ 1, and the

second is dropped if m N.

Even-Odd Products. The product a(e)c(e) is odd, and the sine-

S series coefficients for m > 1 are as follows:

I M-i N-m

ac a C + aCm_ 1 (ac -aC) (4.10)
Jm or 0 ~ a +1 2 _ + M1C- =1 =

Summations are dropped for m = 1 and m = N as in the previous cases.

As indicated earlier, we employ iteration schemes in which (for

example) conduction current in a particular mode, {oE m , is separated into the

principal contribution from the mode of interest, c E and other contribu-o m

tions. We thus define the function P (a,b,n) as representing the summedcc

A



terms in the m-th mode of the product of the two cosine series for the even

functions a(6) and b(e), except for the term aobm:

P (a,b,m) = {ab)m - a b (4.11)
cc or0n

Inspection of Eq. (4.8) above shows that P cc(a,b,m) as defined may contain the

high-order term c2mbm , but contains no other low-order terms involving b m . We

also define the analogous function P cs(a,c,m) to separate aoc m and other con-

tributions to the m-th mode of the product of the cosine series a(e) and the

sine series c(6). Note that in this case, a(e)c(e) is an odd function of e,

and is expanded in a sine series; there is no m=O component in the product

expansion:

P cs(a,c,m) = {ac} - aocm (m > 1) (4.12)

Finally, simply define Pss (cdm) as the m-th mode amplitude in

the (cosine) series expansion of the product of the odd functions c(e) and

d(l ).

P s (C, d,m) = {cdlm  (4.13)

Explicit expressions for Pcc' Pcs' and Pss follow immediately from

Eqs. (4.8) - (4.10).

4.2.1 Reduced-Potential Algorithm MAHD1

The first algorithm we will consider is based on Lee's simplifi-

cation (Ref. 16) of the frozen approximation for the e.m. potential equations.

The assumptions leading to the final set of equations are equivalent to neg-

lecting beam-time derivatives of E and H in the e.m. field equations. It isz z
unnecessary to find the transverse component of the vector potential, A1 . It

* is convenient to define the remaining two potential components of interest as

A and :, where is the usual scalar potential, and

... . .,-.,-. . ..--. . .- , -... ... ...... - .... -. , ... _



A:A - ' (4.14)

where Az is the axial component of the usual vector potential.

In RMKS units, Lee's equations for A and 4 are

2 ( (4.15)*v(A + ) = Zoo - Zo J

2 A + Z oV 2 (4.16)V (V± oG) "(Vj ) +  j
i1

(A and € in the above equations are expressed in units of volts; the beam-time

coordinate C is expressed in meters. Z is the free-space impedance of
0

376.7 ohms, and the units of the conductivity, a, are mho/m.) The e.m. fields

are found from the potentials via the following relations:

E~ 1
(4.17)

E, V H, U xV AlEI .l ZJ

(The units of E and H in the RMKS form above and to be used hereafter are

volts/meter; the more usual RMKS H-field differs from our usage by a factor of

Zo.) As noted earlier, A and H are not calculated in this formulation.)
I z

Equations (4.15) and (4.16) are recast into finite-difference form

by resolving them into m-th modes (0 < m < N). Potential quantities are

defined on a set of radial grid points r (1 5 J 5 N ) and at the beam-time
j R

points (i 1, 2, .... ). The differencing is centered at (i+1/2,J), i.e.,

on the radial gridpoints, but midway between i and Ci+," An arbitrary radial

grid structure (in terms of spacing) is assumed, and 3-point Lagrange dif-

ferentiation formulae are used generally to evaluate first- and second-radial

derivatives at r..
* 3 U

*- -

..........................................



Equation (4.15) is readily differenced. The lefthand term is

represented as follows: for the m-th mode,

( 2 r +lE (Am + M) (4.18)M D S r 2r r2

Radial derivatives centered at r in the above equation are simply expressed

in terms of potentials at the points rj_ 1, rj, and rj+ 1 .

The first term on the r.h.s. of Eq. (4.15) is separated (as

suggested at the beginning of 4.2) into two portions:

Z a A = Zo + ZoJ, P(Z A m) (4.19)
0 0 0K cc0 r

The quantity Z0a0(3A/a) is represented as a simple difference, centered at

(i+1/2,J). The function P (a,b,m) represents the summed terms in the m-th
cc

mode of the product of the cosine series for the functions A and b, 9 texe for

the term a b P contains no other low-order b mode terms, and is con-
o m cc m

sidered a known quantity in the solution of the m-th mode difference equations

derived here. Specific expressions for P and other related product expan-cc

sions are found from Eqs. (4.8) - (4.13).

Collecting the n-th mode fields on the left, Eq. (4.15) finally

yields

A

d2 (A + ) - Z = , (Zoc, Z (4.20)M M  M o0 0 cc 0 0 Z I'

where

1P
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d + ( rm  (4.21)
m 2 r r rar rr

The finite-difference representation of Eq. (4.16) is obtained in

an analogous manner to Eq. (4.15). The lefthand term of Eq. (4.16) is written

(see Eq. (4.18))

K2 A 12 M r (4.22)
21 + r r2

with finite-difference repesentations of the derivatives centered as explained

above.

The first term on the r.h.s. of Eq. (4.16) is a vector product:

0 0ar ar r - r 36

The radial derivative product Is a product of cosine series, and is handled as

before:

Z r -L Z + -O 2_ (4.24)

S3r r-+ 0cc 0 9o ar' ar

The e-derivatives in Eq. (4.23) generate a Fourier sine series for each factor

in their product; for examplefir
N

= m7 sin . (4.25)

r=
SI
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Because the sine series does not include a monopole term, bm does not contri-

bute in low order to the m-th mode of the sine-series product.

The rightmost term in Eq. (4.16) Is handled as the previous

cosine-series products:

S: 7 2 Z~co dm 2m (Z V2,M) (4.26)

Collecting the m-th mode fields on the left, Eq. (4.16) finally yields

d2  A 2 0 om Z0 0 d mlm zo r _ rPz mz M)+
=Pcc(Zo

o, - m) + P a 1~ ,m) (4.27)
cc 0 r S ss r e ' r e M

+ P (Z o, V2 , m)
cc 0

The finite-difference forms of Eqs. (4.20) and (4.27) are applied

to each of the interior gridpoints rj (2 <j j < NR_.). Two inner and two outer

boundary conditions must be imposed to complete the set of equations for the

NR unknown values of A and ;. We adopt the standard boundary conditions,

aA (0) o (0)
at r = 0: 0 01, 0;3r ' r

(4.28)
Am(0) 0 0, m(o) = 0, for m>,;

at r Rax: A(Rma) = 0; +m(R ax) = 0, for all m
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The band matrix representing the set of 2 NR equations for the A's

and Cs has a bi-tridiagonal structure; the equations can be solved readily

via any of several schemes, including straightforward Gaussian elimination.

The computational cycle for a particular field tlmestep is

illustrated in Fig. 4.1, which outlines the major aspects of the iterative

approach. Equations (4.20) and (4.27) (with the boundary conditions of

Eq. (4.28)) are solved for potential amplitudes at successive m-values. At a

given point in a pass through the m-values, the arrays from which the P and

P terms are calculated involve recently-updated mode amplitudes for n-values

less than the mode of current interest, and "last-pass" amplitudes for modes

equal to and higher than the current mode. Updated amplitudes are entered for

use in the P and P computations as they are generated. Only a few itera-

tions (two to three passes at most, for the test case considered) appear to be

required for accurate results. (A discussion of comparisons will be given in

Sec. 4.4).

4.2.2 Frozen-field Algorithm MAHD2

The next algorithm to be considered is a calculation that treats

e.m. fields directly (rather than through potential functions) and with no

simplifications beyond the frozen approximation. Inserting the transforma-

tlons (4.1) and the frozen approximation (4.2) into Maxwell's equations

immediately yields the basic field equations treated in MAHD2 and (with

further approxinations) MAHD3:

u (. ) z -

Uz ( Ez  + ) - . :

"z (4.29)
u-(. ~~ Zod  + -z.-

S Z ,C I

( -4
U' -/I



Figure 4.1. Iterative computation cycle.

BEGIN ITERATION:
(Initialize approximate
potentials in arrays
used in P and P
products)sS cc

BEGIN SWEEP THROUGH
MODES; m=O

CALCULATE POTENTIALS
FOR PRESENT m-VALUE

V~~~~~ mr+1 I______
UPDATE APPROXIMATE
POTENTIALS IN P AND
P ARRAYS

(NO)--<FINISHED MODE SWEEP>

Continue I  (YES)
Iteration

(NO) -- INISHED ITERATIVE CYCLES>
IS

PROCEED WITH NEXT
TIMESWEEP
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The RMwKS Maxwell equations are readily decomposed Into modal

do equations; maintaining the symmetry assumptions outlined at the beginning of

the Section (ey angular symmetry for a, Je z E r and He 6 angular

symmetry for H Hr # and E ).we find:

I -(rE, )+ ME zmI (4.30a)
Sr ~r m r rm

rm Z - (4.30b)

mr
r zm

~ r (H H = + Z j~ + (4.0d

r rm az

ac + Zr - jE-- (4.30e)

C+ + rHz~ + z E(4.30f)

r o r C R i

IL



Note that the mode amplitude {oE 0)m in Eq. (4.30.) Is for an odd-symmetry

mode; the adjacent equations are for even-symmetry modes.

Because we have not included any components of the beam current

but Jz, the monopole-case (mO) fields collapse to the TM set Ez o ErD and He,

Solutions for this axisymmetric case are quite standard, and will not be

* considered in detail here. We will concentrate on the (m _.)-modes in the

following discussion.

Equations (4.30a-e) are differenced in a straightforward fashion.

First, note that Eqs. (4.30c) and (4.30f) are local equations in the sense

that they do not involve spatial derivatives. Finite-difference representa-

tions of the "c" and "f" equations are thus centered at (i+1/2,j) and written

for each of the NR radial gridpoints. For one boundary condition treatment,

(IFspecial forms of "c" and "f" are required at r1=O, and will be discussed in

connection with boundary conditions on the fields, below.

Equation (4.30c), differenced with the indicated centering, leads

to a relation for Ezr (i+1,j) in terms of EOm(I+I j ) and Hrm(i+lj):

Em (i + l,j) = Cj E m(i + 1,j) + Hrm(i + j (4.31)

where

2r.

j MA (4.32)

C2j= zni,J) + CliE.(i,J)+ Hrm(iJ

Equation (4.30f) is formally integrated in time to obtain a

relation for Hz(i+lj) in terms of E (i+1,J) and H (i+1,j):
rm rm

OP
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1-a ~m mHzr ) (4.33)

Er(i + j :Erm(iJ) + + H - Z P (a j ,3
r mT-_ a'r r Z 0 cc r

yielding

H z(i + 1 ,j) = F E rm(i + l,j) - F2 H eM(i + 1,j) + F3  (4.34)

where

cj exp(-Z 0o0 A)

1- Ox..j ZoaA -

0

2r.
F (4.35)

1j r .

2r.

F F (H (ij) + P (Zo< E ,m)) -alF E (ij) H (i,J)
3j 2j cc 0"' r ,j l r z

The remaining equations, which involve radial derivatives, are

cast into finite-difference forms centered at (i+1/2,J+1/2). (Again, special

forms of Eqs. (4.30a, b, d, and e) are written at (1+1/2,3/2), the first

radial differencing cell, in connection with field boundary conditions; they

will be discussed later.) Equations (4.30a) and (4.30b) are differenced in

analogy with Eq. (4.30c) (see Eq. (4.31) above), while Eqs. (4.30d) and

(4.30e) are formally integrated in analogy to Eq. (4.30f). The differenced

form of Eq. (4.30a) (dropping the subscript "m" and the index "i+1 ") is thus:

AlE (j 1) - A2 E (j) ± A3 (Er(3 + 1) + Er(J) + H_(j - 1) + H (j) (4.36)

rhs.
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where

A l

A2  r1  i

9 (4.37)
A3  r.+

rhs A H (i,j+1) + H (i,j' A A1 E (i,j+1) + A E(i,j)

A (Er(i j) + Er (0J+1))

Equation (4.30b) is differenced analogously to (4.30a), resulting in an
V equation of the form:

1)j + Er(j) -Hj + )-H()+ B1(Ez(i + 1) -E (0))

rrZ (4.38)

=rhsB

* The differenced form of Eq. (4.30d) is obtained by a formal

integration

E C + 1, + cL) Eij +-)

+ [1: 21rH - H- ZJ p (z J, E M
Z c r r 0 ZF2 Cs 0

L



where the quantities enclosed in square brackets are evaluated in ordinary

difference forms centered by (1+1/2pj+1/2). Expansion of this equation leads

to

E 2 (j+1) + E 2 (j) - (+'-'A H t(+1) + -;jljAH()
z P *311\ ~ ( ) 2 H (4.40)

+ -+~)A (Hr (j + Hr (j)) rhsD

* where

rhsD *c(j+ )(E (i,j+1) + E (ij)) + E(j+ --)A H.-(i~j+l)Dz z
- (j+lj)A 2H (i,j) - (j+ 2)A 3(H r(i~j+l) + H r(i j) (4.41)

- 2Bj+ )ZAj~ + P (Z co,E ,M))0 z cc o z

4P A precisely analogous procedure is applied to Eq. (4.30c), beginning with a

formal integration:

E(i + 1, + 1 E = j + 1

OP (4.42)

- (-r + z+ P (I - , E n
Z z3r CS 0

0 0

We finally obtain from (4.42) and equation of a form analogous to (4.38),

involving HrD, E, and H

Equations (4.31) and (4.34) are used to eliminate E and H from
z z

(4.36) - (4.39), generating in principle an incomplete set of 4(N -1)
R

equations in the 4N R unknown fields E rm(i+1,j), E Om(i+1,j). H rm(i+1,J), and

H, (i+1,J). Two outer boundary conditions and two inner boundary conditions

are required to complete the set of equations and make it soluble.



Simple conducting-boundary conditions are always imposed at the

outer wall at rNR = Rmax , namely

E(Rmax) = 0 .' max(4.43)

Hr(Pa) = 0
r max

At the inner boundary, several sets of boundary conditions have

been tried. A satisfactory set appears to be

E Er = 0

H +Hr 0 (4.44)

H. = 0-

H 0Z-

with the latter two equations replacing "c" and "f". As an alternative pro-

cedure, a more complicated procedure can be followed at the inner boundary,

rI = 0. Because of the I/r-factors in Eqs. (4.30c) and (4.30f), it is

necessary to look more closely at the behavior of the fields as r approaches
m mzero. We find that, near r = 0, E z r, H Z r ; and the transverse fieldszm 1_ zrn

E rm, Em Hrm, and Hm all vary as r . Within the first radial grid cell,

we thus assume
C

Ez (r' ) = rme(r' ) (4.45)

r rm-(E r e (r,)

, rm (r, )

and so on, for the remaining field quantities. We find that, at r 0 0, the

field equations (4 30c) and (4.30f) are replaced by equivalent relations

between the els and h's:

-* U



_ r (4.46)

g e r  ; h .- z( 4 7

+ Z c e r  - + mh - Z r  (4,47)
00 z r

and that the remaining field equations yield the two independent boundary

conditions

e.. + e = 0..
r (4.48)

h + h =0r

The remaining equations (4.30a, b, d, and e) are written for the interval

r < r K r2 in terms of the els and h's, but are otherwise expressed in

finite-difference form with the handling and centering described above for the

"usual" situation of the differencing cells between r2 and Rmax* We thus
obtain a set of 4NR equations for the 4(N -1) fields at rr = r2 , r , ... r

oRanseo4 R 2 s'3' NR
and er e , hr, and h defined at r1. The axial fields Ez , H , e , and h are

und by back-substitution in Eqs. (4.31), (4.34), and their analogues,

0 obtained from Eq. (4.46) and (4.47), once the solution for the transverse

fields is complete.

The MAHD2 calculational cycle is carried out exactly as the MAHDI

scheme discussed in connection with Fig. A.1. Arrays used to determine the

conduction current appearing in the various modes are assumed known (except,

of course, for the oE m contribution separated from the remainder) and updated

as the sequential solutions for mode amplitudes proceed. The solution to the

monopole-mode (m=O) equations simplifies to the usual axisymmetric field equa-

tion solution, and is carried out in a separate algorithm. The monopole solu-

tion is integrated into the iteration procedure, however; the contributions to

the monopole conduction currents {E r)o and {:Ez} ° are Evaluated from the yet-

to-be corrected higher-order mode fielcs, and solutions for m > 1 follow the
monopole solution in the iterative cycle, as they co in the MAHPD1 calculation.

• .S . . . . . : . . : . : , :., z. . .: - • . , : : " : - " . "' " ' " - " _ " ' • " " "



4.2.3 Simplified Field Algorithm MAHD3

In order to extend the range of comparisons possible, a variation

of MAHD2 was also constructed. The physical assumptions that led to the

further simplifications of the frozen approximation used in the Lee potential

formulation algorithm, MAHD, amount, in field language, to neglect of the p

terms H / - and DE /2 that appear in Eqs. (4.30a) and (4.30d) above.
z

The finite difference equations solved In the MAHD3 algorithm were

derived by modifying the Eqs. (4.30a) and (4.30d) as noted dbove. In pro-

gramming terms, the modifications are quite small. The differenced form of

Eq. (4.30a) shown in Eq. (4.36) is replaced by:

AIE (j + 1) + A2E (j) + A3(Er(J + 1) + Er (J)) rhs'A

Since H no longer occurs in the above equation, it is used directly in the
z

equation set to be solved.
SI

Equation (4.30d) is no longer formally integrated, and Eq. (4.39)

is replaced by:

Boundary conditions and the handling of the (r=O)-versions of Eq. (4.30c) and

(4.30f) (shown in Eqs. (4.46) and (4.47), respectively) are identical to

1iAHC2.

4P

L



4.3 Auxiliary Models and Methods

The algorithms discussed in Sec. 4.2 above are intended to inter-

face in a reasonably tidy way with other portions of a complete hose dynamics

model. The principal inputs to the field algorithm are thus quite simply the

two-dimensional field source arrays of primary beam current density and con-

ductivity that reflect the spatial (r,e) variation of those quantities at the

currently interesting a-step. Such field source arrays may be defined in any

way that suits the physics of the desired model (e.g., analytic formulae,

particle simulation results, or phenomenological models). The field sources

are then passed on to the field-advancement scheme, which operates indepen-

dently of the details of their origin. At present only simple analytic pre-

scriptions for J and a have been used to exercise the algorithms. Details of
z

those prescriptions for a standard test problem will be considered in the

following section.

4.4 Test Calculations and Comparisons

O The algorithms described above were programmed in detail for

actual machine execution. Since intercomparison of the algorithms (Y11 A YJ.

their accuracy, speed, the effects of further simplification of the frozen

approximation, and differences between field- and potential- formulations of

W the e.m. equations) was of most interest, a simple prescribed model of beam

current and conductivity was used in exercising the MAHD algorithms.

4.4.1 NRL Standard Nonlinear Test Problem

The beam model used In the test calculations was a prescription

developed by F. Chambers of LLNL and G. Joyce of NRL as a standard test

problem for nonlinear field algorithms. The beam current density distribution

is assumed to have a Bennett profile characterized by aC -independent Bennett

radius parameter, rB, The total primary beam current I is given by the

analytic form

pib() 1 bk tanh -c- (4.51)
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characterized by the peak-current parameter Ibpk and risetime parameter

0 = cr . The beam displacement is modeled as a Gaussian "kink" of width "r r .

and centered at ; the peak displacement is X 0

-x X0  exp (14.52)

'-

The conductivity is characterized by an initial ambient background conduc-

tivity abkgP and a rate of increase directly proportional to the local primary

beam current density:

do (zr 0 4 .53 ) '

da - c 3(r,e,')

Specific parameters for the Standard Test Case (STC) are summarized in

Table 4-1. U!

4.4.2 Results of Calculations

The Standard Test Case (STC) problem was run for each of the three

algorithms described above. Identical radial gridding schemes (60 gridpoints

on an expanding mesh to Rwall = 10 cm) and timestep intervals (AC =2x101 sec)

were used. Five radial modes (m O, 1, 2, 3, 4) were used, and three itera-

tions per timestep (probably one more than necessary, see below) carried out.

In calculations run to = 1 nsec, typical elapsed CDC-7600 cpu times were

between about 4 and 6 seconds, for all of the algorithms. The MAHD1 algorithm

was also reprogrammed to take some advantage of the vectorization capabilities

of the Cray-1. Calculations to ( 2 nsec with MAHDI on a Cray-1 used a total

of 3.2 sec, with about 1 sec used in the output routine. Of the time not con-

sumed in output operations, most of the time was used in solving the 120-row

band matrix (240-row for MAHD2 and MAHD3) representing the differenced equa-

tions for the unknown potentials/fields. The algorithms appear quite fast in

W
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TABLE 4-1

SUIMMARY OF STANDARD TEST CASE PARAMETERS

I b-pk 10,000 amperes
I insec

( r ~30 cm)

Beam Current Density

rB 1 cm

Beam Displacement

X 1 1cm
0

1 insec
0

30 cm)
0

* - .25 nsec

75cm)w

Con8c --t

40bk = 1.113 x 10-2 mho/m (10 8sec- 1)
a = 350 mho/amp
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comparison with the time (over two minutes) required for the same problem,

using the full-mode-set-inversion approach.

Elapsed time for the MAHD algorithms should scale with the product

of separate linear dependence with time and space grid size, number of modes,

and number of iterations. In the STC problem, differences between 1 and 2

iterations led typically to differences of about .5% in the calculational

results at C= 1 nsec; differences between 2 and 3 iterations were less than

.05%.

Detailed comparison of the results of the three calculations

showed nearly identical field profiles for MAHD1 and MAHD3. Individual field

values compared to better than 2% everywhere, with comparison to better than

.5% for most fields and locations. This agreement is encouraging from a

programming standpoint, since the MAHD1 and MAHD3 algorithms, although con-

taining the same (or equivalent) physical assumptions, are quite different in

analytic and programming details. Comparisons with a few data points avail-

able from DYNASTY results for the STC, as quoted in Ref. 15 , are also en-

couraging. The results concern field/potential profiles along the beam-

displacement (X-)axis at C= 1 nsec, the time of maximum beam displacement in

the STC (see Table 4-1). Values at r = 0 and maximum/minimum values along the

outgoing radius at 0 = 0 are tabulated for comparison In Table 4-2. Dif-

ferences, which are not large, may probably be attributed to differences in

tine- and space-gridding and details of the source (current and conductivity)

algorithms in DYNASTY and the MAHD codes. More detailed comparisons with the

DYNASTY-like field solver in the DYNADISC code are anticipated.

Detailed MAHD2/MAHD3 comparisons are shown in Figs. 4.2 through

4.6. The figures show STC results at E = .5 nsec and F = 1 nsec for Er- and

H6-fields. Monopole and dipole modes are plotted separately, together with

the "cumulative" values representing actual radial profiles along the direc-

tion of beam displacement, 0 = 0.

Radial E-fields are compared in Fig. 4.2 at C = 0.5 nsec. The

* monopole fields are essentially identical from MAHD2 and MAHD3, but dif-

ferences in the dipole modes are fairly large and significant inside the beam.

A similar comparison at I = 1nsec is shown in Figs. 4.3 and 4.4. Sizeable

* -106-



TABLE 4-2

COMPARISONS WITH STC*

MAHDl MAHD3 MAHD2

* ik(A.c;Lee) jfiH;Je)~ jjFjjHffull

E (0) -6.23 (5) v/ni -6.57 (5) -6.58 (5) -6.07 (5)

E (max) -2.73 (6) -2.60 (6) -2.60 (6) -3.00 (6)

Er (min) -5.67 (5) -4.69 (5) -4.75 (5) -8.01 (5)

Er (max) +2.91 (6) +3.05 (6) +2.97 (6) +3.31 (6)

1(0) 6.04 (6) a/rn2  6.05 (6)

J (max) 2.39 (7) 2.26 (7)B

o(0) 1365 r 1 1359

Z0 o(max) 1471 1460

*Freeman & Wagner, SAND84-1785 (RMKS units)

c
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Figure 4 .3, Comparison of monopole and dipole amplitudes.
E Er amplitudes vs, radius at =1 nsec,
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Figure 4.4. Comparison of cumulative fields (-0) at =1nsec.

e (Monopole and dipole components were compared in
Fig. 4.3.)
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Figure 4.5. STO H. -profile at =.5 nsec. Monopole components
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C fields have little effect on the cumulative profiles.
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Figure 4.6. Contributions to H, at nsec. The frozen-field
and Lee approximatfons give essentially identical
results here; separate and cumulative contributions
to radial profiles are shown for the frozen-field
algorithm.
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differences appear there, both in the monopole and dipole modes, and therefore

again In tt-e cumulative fields (plotted separately for clarity in Fig. 4.4) as

well. Outside of the beam (here, beyond about 2 cm), the fields again are

similar.

Comparisons for the magnetic fields are typically closer.

Figure 4.5 shows H -profiles for the STC at = .5 nsec. The relatively small

differences in the dipole-mode fields do not significantly affect the cumula-

tive fields. At C = 1 nsec, there is essentially no difference between the

MAHD2 and MAHD3 results; only the results for MAHD2 are shown in Fig. 4.6,

which shows the relative amplitude for all five modes carried, as well as the

summed profile.

Since the magnetic fields dominate the particle dynamics of the

beam, the E-field differences shown in the calculational results may not be

critical. On the other hand, breakdown effects in the beam (not modelled in

the STC) may differ. Further, the higher-mode differences are more important

for dynamics effects than the (m=O)-fields, so that further comparison cal-

culations would be of interest.

4.5 Summary

Three alternative formulations of the nonlinear e.m. field

solution were developed and programmed. Two formulations, one based on Lee's

approximate potential equations, and another using an equivalent treatment

explicitly considering e.m. fields, compared extremely closely with one

another, and quite well with a few data points available from a DYNASTY

calculation. The third calculation contained the unsimplified frozen-field

assumption as a physical basis for the solution formulation. Moderate

differences in the fields found with this model and with the previous two

appear to exist. All of the models use iteration to find a satisfactory

solution to the coupled-mode aspects of the problem; the iteration appears

accurate and extremely fast.

-112-



'a

5.0 REFERENCES F

1. R.L. Feinstein, D.A. Keeley, H. Kirch, and E. Simpson,
"Propagation Physics of High Current Beams", SAI-C-42-PA,
23 October 1980 (SECRET).

2. M. Lampe, W. Sharp, R.F. Hubbard, E.P. Lee, and R.J. Briggs, Phys.
Fluids 21, 2921 (1984).

3. R.K. Landshoff, Phys. Review 76, 904 (1949).

4. D.A. Keeley, "Beam Conductivity Code HICHEM,", SAI-C-49-PA,
30 June 1981 (CONFIDENTIAL).

5. R.R. Johnston, R.L. Feinstein, D.E. Maxwell, E.R. Parkinson, and
E.E. Simpson, "Topics in the Respose of a Gas to Charged Particle
Beams, II", SAI-C-IO-PA, 15 January 1978 (SECRET).

6. R.R. Johnston, R.L. Feinstein, and D.A. Keeley, "Theoretical
Studies in Charged Particle Beam Propagation", SAI-C-51-PA,
31 December 1981 (SECRET).

7. R.R. Johnston, R.L. Feinstein, D.A. Keeley, C.L. Yee,
B.B. Godfrey, L. Wright, D. Mitrovich, and T.P. Hughes, "Studies
in Charged Particle Beam Propagation", SAIC-C-73-PA, 31 January
1985 (SECRET).

8. D.A. Keeley and R.L. Feinstein, "Consequences of Non-Ohmic
Currents and Non-Local Energy Deposition for Electron Beam
Propagation in Reduced-Density Air", presented at the Fifth
International Conference on High-Power Particle Beams in San
Francisco, CA, 12-14 September 1983 (UNCLASSIFIED).

9. C.A. Keeley and C.L. Yee, "Low-Density Conductivity Models",
presented at the DARPA/Services Propagation Review Meeting in
Monterey, CA, 20-23 June 1983 (UNCLASSIFIED).

10. S.S. Yu and R.E. Melendez (LLNL), "Dynamics of Electron-Beam-
Generated Plasma ... 100 Torr", presented at the APS Meeting, New
Orleans, LA, 5 November 1982 (UNCLASSIFIED).

11. R.R. Johnston and E.E. Simpson, "Studies in Beam Propagation
Physics", SAI-C-38-PA, 9 August 1980 (SECRET).

12. R.S. Briggs and S.S. Yu (LLNL), "Modeling Beam Front Dynamics at
Low Gas Pressures", 13 May 1982 (UNCLASSIFIED).

13. R.L. Feinstein, D.A. Keeley, E. Cornet and W. Rienstra, "High
Current Beam Propagation Studies: Theory and Experiment", SAI-C-
56-PA, February 1983 (UNCLASSIFIED).

* -11--

¢ '. I-/ ' [ .-''7, ',(. ,' .. ., ,:. ". -.-'. / _ .- .. .._ ....i: i._ ..... .. T :i ..- i , --, 2



14. B. Hui and M. Lample, "DYNASTY I, A Nonlinear Implicit Code for
Relativistic Electron Beam Tracking Studies", NRL Memorandum
Report 5138 (July 1983).

15. J.R. Freeman and J.S. Wagner, "Field Solver Comparisons Between
the 3-D Non-Linear Electron Beam Propagation Code DYNADISC and the
Linearized Code (OOSIK)", SAND84-1785 (November 1984).

4 16. E.P. Lee, "The New Field Equations", UCID-17286, October 1976.

1-P

SI

VI

SI



4

K

/
/

I
/

~/ \~

(I.
I


