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1.0 INTRODUCTION

This document is a final report on studies of high current beam
propagation in low density gases, The study has extended over several years 5
and has resulted in two informal interim topical reports -- resummarized ﬁ
| herein. Three topics have been addressed: Ohmic Hall currents, non-local
non-Ohmic conductivity modelling, and non-linear electromagnetic algorithms, :_
The Hall and non-local conductivity studies are important primarily for high E;
beam currents in low density gases; the non-1inear electromagnetic field
solvers are important for studying beams in low density channels.

Our infitial studies of Hall current effects were motivated by the
observation that the ExB drift of plasma electrons would tend to expand the
(o radfal distribution of plasma current and reduce the normal axfal current.
The initfal supposition was that these stabilizing effects would be most
important for high currents and low channel densities, since the Hall currents

scale directly with the Larmor frequency, S’L' and inversely with the coliision

[ J frequency, “m® Countervailing effects, however, include: .
o} The high level of current neutralization characteristic of high- =
current beams, -

[ 0 Saturation of Hall-current effects by their associated potential

bufldup, and

o} Transition in the high-current regime to Spitzer conduction in the
beam core, enhancing on-axis conductivity relative to neutral-

collision-dominated conductivity in the wings of the beam's
< profile.

Further complexities in the actual situation include the interplay
between Er- and Ez-f1e1ds in the progress of avalanche breakdown at the head
< of the beam, the effects of air chemistry processes (especifally recombina-
tion), and the role of radiative cooling in determining the onset of Spitzer
conduction. Progress in modelling these effects included the development of a -
dependable electromagnetic algorithm; the algorithm f{ncluded forward-time ;%

o c¢ifferencing and an {terative approach to find fields in tre highly nonlinear

sftuation createc by the presence of tensor concuctivity effects,
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Studies of the effects of Hall currents in a local, Ohmic approxi-

- mation are reported in Section 2, No consequences significant to beam propa-
gation or stabflity are seen for gas pressures greater than 76 torr, At lower
pressures, however, the usual local, Ohmic air conductivity models employed in

the study are inappropriate, Significant effects which must be considered
v include:

o} Time-dependent (delayed) and nonlocal ifonization production, in
contrast to the usual local, instantaneous production models,
° e} Contributions to the total current from the delta-ray components
of the beam—driven ionization cascade,
o Non-Chmic conductivity effects,
0 Transport of electrons from their local volume of creation, and
-
o} Non-Maxwellian energy distribution of the conduction electrons,

notably in the "runaway"™ regime; low effective collision
frequency, in comparison to ., could especially enhance the
contributions of a high energy conduction group.

A conductivity model incorporating the above-noted effects has
been developed and is reported in Section 3., The model treats three electron-
energy groups: a relativistic (celta) group, and high- and low-energy con-
duction groups. The beam, as well as each group, populate lower-energy groups
via fonization energy loss; E-field acceleration can move low-energy electrons
upwarc to the intermec¢iate group. Fluid models represent the cynamics of the
two lower-energy groups, and a detafled air-chemistry reaction scheme also
mocifies the population of the low-energy group. The air chemistry was cali-
brated against the detafled HICHEM code in an applicable regime.

Calculations with the phenomenological model sketched above showed
consicerably enhanced and broadened effective current profiles at times
tetween 1 and 10 nsec for high-current beams. A1l of the features of improve-

ment eppeared to make significant contribution to the results obtained.

In the rost recent portions of our work, reported in Section 4,
ceverel electrere:netic fiele alcorithms for beam-propagation werk were
cevelepes anc corparec, The ein of the work wes te finc solution rmethcecs

ciirerriete te extene prencrenclenfeal nooele of team ayrarice foopeliaell,
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those relevant to hose stability) into the nonlinear regime -- 1.e.,» to be

applicable for displacements comparable to beam radii, Several fast and
accurate algorithms were found. A1l were based on a modal expansion of the
transverse spatial dependence of the fields, and all used an iterative pro-
cedure to simplify the solution for the mode amplitudes. (The modes are all
coupled through the non-axisymmetry of the conductivity, and require, in
principle, simultaneous solution for 211 modes.) Formulations involving
explicit consideration of fields as well as potentials in Lee's approximation
(an important simplification of the frozen-field approximation) and a frozen-
field formulation were used., The simplified approaches were found to agree
well with one another, and with the few-point data available from other
nonlinear field-solver algorithms. Moderate differences -- especially in

electric fields -- were seen in the frozen~field formulation results for a

standard test case. Substantial improvements in speed for the algorithms
developed over direct-solution methods for the fully-coupled-mode equations
appear to have been realized.
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2.0 HALL CURRENT EFFECTS IN A LOCAL CONDUCTIVITY MODEL .

¥

2.1 Introduction

This section summarizes our studies of the effects of Ohmic Hall E
v currents on the propagation of high current beams in low density gases, Non-
Ohmic, non=-local Hall effects are discussed in Section 3. Beams of very high
current have attracted increased attention recently due to potential stability
and application advantages (Refs. 1, 2).

The Hall currents derive from the ExB drift of the plasma elec-
trons. Thus, due to the pinching azimuthal magnetic field B¢, plasma elec-
trons driven by the inductive longitudinal electronic field will drift toward -
larger radii, and those driven by the Coulombic radial electric field will .
tend to cancel the axial plasma current., Initial estimates of the resulting
redistribution of plasma currents relative to beam currents suggested poten-
tially significant consequences to beam stability and propagation. The -
purpose of the study herein reported was to substantiate the initial estimates -

and to explore some of the consequences. )

Hall currents enter Maxwells equations through terms proportional

to the Larmor frequency ;L divided by the collision frequency }m'

Thus, Hall effects vary directly with pet current and inversely with gas den-

sity. One anticipates Hall effects to become important at very high currents
and low densities. In the Ohmic approximation, however, these two require-
ments tend to be mutually exclusive; high current beams in low density gases
tend to be strongly current neutralized and develop very small net current - =

remains small.

In the body of the pulse, Hall effects achieve a quasi-stationary ?;
state and all quantities important to beam dynamics become nearly independent
of :» no matter how large : may become. Thus, Hall-depencent consequences
require that current neutralization be substantially less than complete in the

very early porticns of the pulse. l}i
[
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For a realistic range of high current beam parameters -~ assuming
Bennett beam profiles and local conductivity models - Hall current effects
remain small, Near complete current neutralization obtains near the pulse
head and . remains small. Only by artifically constraining the conductivity
profile evolution have we demonstrated important Hall current sensitivities.

Results are thus very sensitive to non-local conductivity effects, described
in Section 3.

In Section 2.2 the general development of Hall currents is pre-
sented, including monopole and dipole decomposition, and Section 2.3 describes
some numerically stable algorithms for monopole Hall currents effects.

Results are in Section 2.4 and our conclusfons to date are in the concluding
section.
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v 2.2 Theory
In this section we derive the relevant electromagnetic field equations
as employed in this study, and discuss some important properties of tensor con-
- ductivity. We begin with Maxwell equations in free space (Gaussian units):
IR A S B -
LB = ctt T J : Ampere's Law (2.1)
TEs- 128 . Faraday's L (2.2)
S . STt : araday S Law .
where the net-current J consists of both the primary beam-current jb and the
plasma-current jp,
(¥4
I3+ 3 (2.3)
For the purposes of discussion, a simple model of the Hall current
v effects may be obtained as follows. We assume that the plasma electrons obey
the Lorentz equation of motion with a phenomenological momentum transfer
frequency Vi
® mﬂ=eE.+g’-E§—mx v (2.4)
e dt C e m )
In trie local anprosi~ation, tre inertial tern may be ignored, dv/dt = 0. With
this approximation, we obtain the generalized ohmic relation for the plasma-
(> current density:
J’:en\;=vE-.'xJ 2.5a
0 o = ( )
with e; n
- £ (2.5b)
m
e m
e d )
m‘ E . (<_.5C)
e
»
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- o is the usual scalar conductivity and |§5| is the electron gyrofrequency. It is B
the cross-product on the right side of Eq. (2.5a) that produces the Hall current. -

Later in this section we discuss a more rigorous treatment where the "momentum F‘

transfer frequency" in Eq. (2.4) is itself a function of the plasma electron ;

o distribution. &
3

Solving for jp in Eq. (2.5a), we find ;:

. R [gl‘/v;,) E % t *%%‘El (2.6)
In cylindrical coordinates (r,¢,z), Eq. (2.6) becomes 2;

- Yor T (T T ]Slz/vﬁ) lEr ) gi'Ez * gi B * gi.iﬁigl i (2.7a)

3, = T lglz/vﬁ,) 1€, - U:i E, + :—; E, + %ﬁ@_"?i (2.7b)

Jpz=(1+wglz/vp}Ez-% E¢+§§Er+i—;%ﬂi (2.7c)

This form for Jp may now be substituted back into Maxwell equations (2.1 and 2.2)
to provide a closed set of equations for generating (?,ﬁ) from jb'

-‘,.;_1'.‘:
4, b ‘

e
)

To make the problem computationally tractable, we decompose Maxwell
equations into monopole-dipole subsets. We assume the following form for £, B
and 3:

s A e e e
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where we have made the dependence on ¢ explicit. Furthermore, we introduce the
retarded variable x = ¢ t - z which we define to measure the distance back from
the pulse head (in the laboratory frame of reference) for a beam moving along the
z-axis with v, v C. Finally, we make the frozen field assumption; all dependent
variables are functions only of the independent variables (x,r), achieved by the

following transformation on the partial derivatives in Eqs. (2.1) and (2.2):

?_’ . -—| , { (2.9)
ot . IX z 3z t

The monopole equations reduce to three equations relating Eg. Bg, and
Eg and a second set of three equations relating Bg, Eg, and Bg. We may ignore
the second set for J°. = 0 (Bg = g0 = Bg = 0). We are left with the set of

bo ¢
equations for the axi-symmetric beam:

0
oF
13 o_ _z 4r , .0 0
Far " B¢ = o + < (Jbz + Jpz) (2.10a)
52
3 o0 _ r 4m .0 0
5§'B¢ "3 ¢ (Jbr * Jpr) (2.100)
0 0 0
oF oF 2B
_r zZ_._¢
1% ¥ ar X (2.10c)
For the dipole fields, we have
B! at!
13 v r oz 4 '
ror " B¢ T r 3% C <"]bz ¥ Jpz) (2.11a)
38! 93B! oL
X ar IX ¥ c (ch Jp¢) (2.11b)
5L B
Tt Tt et Jpr) (2.11c)

.......
.........
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£ 3B!
1o L or_ _ 2z
F Ir r E¢ + r Ix (2.11d)
of! oF! aB!
rL.__Z._9
X * ar X (2.1le)
E! oE! 3B
R e S T_ﬁ (2.11fF)
r ax ax

Note that the 5+B = 0 condition is treated as an initial condition which is pre-
served by both the monopole and dipole equations.

From Eq. (2.7) we find

0 o
o _ g ] ‘ 0 _ 0 0 0o .0
Jpr = a1 Qoz/voz) [Er - —% EZ] =0, Er - O, EZ (2.12a)
o Vm m
Jg¢ = 0 (2.12b)
0 0
ng = e [E + —3 E°] = o) £y + ) Y (2.12¢)
(1 + Q® /vm ) Vi
with o ,.0,0
0 o (Q./v_)
ol = g . o = g _m (2.12d)

- 02, 02
(1 + Q¢ / Vo )

The dipole plasma current-density J' also follows from Eq. (2.7). After lineariz-
ing with respect to the dipole variables, we find

(o]

1 = 0 ] ] o - o 1] - )
Jpr o Ep o) EL-cl B -0l E (2.13a)
o ¢.C ' Q! o Q!
N e o’r 0z |.0 07z o'r|oo
Jp' = fe” + ol Er ol R 5 Ez -1 -7 5|k (2.13b)
Ym Vi Ym Ym Y
] = . 0 ! ) 0 0 1] I} O
Jpz : EZ + 0 EZ + Er + Er (2.13c)
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with 0 2 ' [l
' 0 19} f v
" g 2 Q Q m
Oy T (1+ PO/ - 1+ og 02,2 o) 0 - o] (2.13d)
QQ /vm )« Q¢ /\)m ) Vo Q¢ v
0 0 0?2, 0%, , 0
. oo (1 -0 /v )R Qv
e T N (“A © (2.13¢)
(1+ 27700 1+ @70 W fl® WP
b m m o " m m ¢ m
where
z, _ _€& ' ' '
Qo= mec (Br, B¢, BZ) (2.13f)

This completes the specification of the tensor plasma currents in terms of the
electromagnetic field variables.

In the presence of the Hall current terms, the radial plasma current
Jgr (2.12a) flows until Eg v o?Eg/oﬁ, in contrast to scalar calculations where -
the condition for Jgr ~ 0 is Eg v 0. Thus Eg actually reverses in sign from its
original value set up by the Coulomb field of the beam particles. When Eg reaches
this "quasi-equilibrium" value, the expression for the axial plasma current J°

pz
as given by Eq. (2.12c) becomes
9 o0 g (2.14)

which is exactly the same as the scalar result without Hall currents. Similarly,
for the Ohmic heating term Jgoﬁo, we find

P o E‘Z’Z (2.15)

for Jor ~ 0, which is the usual scalar relation. Thus, the non-zero equilibrium

value of Eg in the tensor case exactly compensates for the fact that @< &% in
Eq. (2.12). Eg # 0 effectively describes a polarization of the plasma.
-10-
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We might conclude from this cancellation of terms that the Hall current X

effects on an axi-symmetric beam are negligible when the radial plasma currents =
are small. This would apply to the body of a beam pulse where charge neutraliza- f§

tion is complete and the beam envelope has settled down to some quasi-static )
equilibrium profile. However, if the Hall effects are sufficient to alter the O
evolution of the conductivity channel and EM-fields near the beam head, where the
condition Jgr ~ 0 is not satisfied, we might still expect to see a residue of the
tensor conductivity effect further back in the beam where Jor ~ 0. In other words,
both c° and EZ would be noticeably different in both Eq. (2.14) and (2.15) in the
body of the pulse due to Hall current effects in the pulse head. It has been the
purpose of the present study to explore the non-equilibrium evolution of tensor
conductivity near the beam head.

!‘1.1 g’

"y
P

RO

The tensor conductivity contribution to the plasma current in Eq. (2.12)
relies on the parameter Q/vm. Initial estimates of tensor effects were based on
the observation that Q/vm varies roughly as p~! where p is the ambient gas density
due to the basic density dependence of Vo However, the gyrofrequency Q depends
Tinearly on the net current which in turn depends indirectly (but strongly) on the

channel density and channel profile. Hence, there is no simple or unique relation-
ship between Q/vm and density

For a high intensity beam in a lTow density medium, a further ccoplica-
tion results from the fact that the dominant contribution to the momentum transfer
frequency Vi shifts from electron-neutral collisions to Coulomb collisions. Two
important changes occur at this point: (1) The conductivity becomes independent
of electron density (in fact decreases if multiply-charged ions contribute a sub-
stantial fraction of the electrons); and (2) o scales as Té” instead of roughly
T;‘”- The transition to the Coulomb regime on-axis sharpens the conductivity
profile, allows more plasma current to flow near the axis, and tends to decrease
the net current flowing in this region. This sensitivity to electron temperature
points up the importance to radiative cooling effects -- only roughly modeled here. =

-11-
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We conclude this section be noting that the exact cancellation of the
tensor effects in Eq. (2.12) for Jgr ~ 0 is a model dependent result. Its
validity requires that

L]
I M
i - 0 :".
. e (_l) - (2.16)
for all values of B. A more general theory in which the random motion of the
electrons is taken into account does not satisfy this requirement. For example,

® if electron-electron scattering is neglected (Ref. 3),
N e “ an
P - x3/% exp (-x) dx
e mr(é)f YOERE (2:17)
BAYARES)
@ where
X = % mv2/kT

and v(v) is the electron collision frequency with neutrals or ions. Only if v is
independent of velocity v, or for other very special cases, can the relation (Eq.
2.16) be satisfied exactly.

-12-
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2.3 Monopole Tensor Electromagnetic Algorithm
2.3.1 Introduction

The basic monopole equations in the frozen approximation (Eq. 2.10) can
be written in the form

SE

z _Cc3
-;-—— + 4 7 JZ = 'FB——r’ (r B) -4 \]B (2.183)
ok

r _ aB
TN (2.180)
oF

zZ _4n

where the superscript "o" has been dropped through this entire section. [Note
that in the frozen approximation, the step /x along the pulse length is equiva-
lent to a timestep /t as the beam passes a given fixed spatial point.] The
plasma current densities Jz and Jr take the form

JZ =0, EZ t o Er

m

If ¢ =0 (no Hall current) the equations are much less strongly coupled together,
and are linear except for the indirect dependence of ¢ on £ through the ohmic
heating. However, if Hall effects are included a more explicit non-linearity
enters because ¢ is roughly proportional to B.

Several different numerical treatments of these equations have been
investigated in this work. The algorithm currently in use is described below,
followed by discussions of some other methods which were tried and the reasons

they were found to be unsatisfactory.

-~
N
o)

s ol
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A major difficulty with standard electromagnetic algorithms in the
charged particle beam context is that the conductivity becomes so large that
it is impractical to adhere to the timestep constraint 4- Gy ltes 1 which arises
in the usual difference treatment of these equations. Although forward center-
ing can eliminate the numerical constraint,it can also prejudice the solution.
. This is an uncertainty which has yet to be completely resolved satisfactorily.

AR ARAASLSS

| & AR AN

In at least one case, however, our forward-centered methods have been checked

by choosing the time step to satisfy At <<%4n’; no significant difference was {:
observed.

-
o
D

2.3.2 The Present Algorithm

Equation (2.18a) is written in the time-integrated form

- - ca (1-exp(4noiat)) |
£, = Epg exp(-dmo £t) + [ 2 (rB) - dmay - dnoyE | B, (2.19) =3

where EZo is the value of Ez at the teginning of the timestep At, but all other
quantities are evaluated at the end of the timestep. Although the centering is
not perfect when 4n o. £t <, 1, the forward centering is found to contribute
significantly to stability and is simpler. When 47 o, >> 3/3t, as is usually the

case in the spatial region occupied by the beam, the centering used above gives
the correctly-centered result

€7
OISR

v

[

4 4n, 1
C(C EZ+O_E)+ J_F

. - g (r B). (2.20)

@
=

In this equation all quantities are evaluated at the forward time. It is exactly
the same result as is obtained by neglecting displacement current in Eq. (2.18a),
and requiring that the resulting equation hold at t + At.

Equation (2.18b) is written as

5E
f g =B g
— + 4+ - Er x: + 47 = EZ (2.21)

-13-
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from which
E.(1 + 4no,lt) = (%—E— + 4o, EZ) Lt + B, (2.22)
or
(3B
Er = i‘(ﬁ LTT&EZ) Y TE ng 3 (2.23)

In this equation,Ero is the value at time t, and all other quantities are to be
evaluated at t + £t. In practice, 3B/3t is evaluated as (B(t+at) - B(t))/4At, a
possible weakness tc the method because of the centering. Note that the exponential

method as used for the EZ equation could have been used here also.

Equation (2.23) is then substituted into Eq. (2.18), written in the form

3k
~z_4x o (2.28
or < (o E, o E;) ( )

and interpreted as being at time t + £t. The result is

_ 4 ° .o/ 2B . .
or ¢ l 1+ 4 it (‘i(ﬁf v Ao, )+ Ero) “-EZJ (2.25)

i

When this equation is simplified a very important cancellation occurs in the
coefficient of C~Ez’ which takes it from being of order unity to order (1+¢T::Lt)'1.
a small number when 4mo,4t>> 1. An analogous cancellation occurs if the exponential
form is used. The resulting equation is

BEZ 4TTO” 5B 4:700 EZ (2.26)

+ E

¢ ar B 1+ 470“[.t [t ot ro T 1+ 4nc”Lt
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The final form used for differencing is

z _ 1 -z _
i as o LEE R RN (227

where again the subscript "o" indicates terms evaluated at time t. A1l other
terms are evaluated at t + . t.

The two Equations (2.19) and (2.27) must be solved simu)taneously.
Since neither is linear because of the strong and direct dependence of o, on B,
an iterative procedure is used. The ¢ E /o, term in Eq. (2.27) is written as

‘Ez o B

Oy S

@]
»

and ¢ /o” is adjusted during the course of the iteration process. Thus the co-
efficient of B in Eq. (2.27) becomes

et
(1-m2)
mC .

in the simple theory of the Hall effect. This quantity is > 1 except when EZ >0
at the end of the pulse. In Eq. (2.19) the term in O‘Er is updated during the
course of the iteration process, but is regarded as given for each iteration. Also
the weaker dependence of

,on B (for most sitations encountered) is ignored

within each iteration step.

With these approximations, Eqs. (2.19) and (2.27) can be combined into
a single equation for B

L SJB—-(V‘B)W- B(l-i) o ‘i
srlr ar . oy 1 ell + &g ot)
B-t 4 .
) R T T AR OIS I M S (2.28)
C (1 + 4”t r . B = tple 20" . /

~16~




in wh'ch x = exp(-4io Lt)
and o= (1 - A)/(4"" Lt).

[Note that the c_Er term in Eq. (2.19) could be rewritten as O.Er z Bé_, in
analogy to the treatment of the ;.Ez term in £q. (2.27). However, the explicit
B-dependence introduced in that way would spoil the diagonal-dominant nature of
the final equation for B. Also, Er itself has a strong B dependence which would
be ignored by the procedure in any case.] With GLEF’ 3_/0 , and ¢ regarded as
fixed, this equation is solved for B as a tridiagonal difference system. The
values of O;Er’ 61/c;, and o, are then updated and the iteration procedure is
continued until the values of the fields stabilize. Although there is no
guarantee that this iteration procedure will converge, it has been found

to converge well in the cases studied.

This algeorithm has been installed and used in the HICHEM air chemistry
code (Ref. 4) and in the HIGAP monopole-envelope code (Ref. 5). It appears to
be numerically stable whether or not Gl/or is large. If o is set = 0, this
algorithm (and minor variations of it) yields results essentially identical
(within reasonable limits for numerical studies) to the previous scalar algorithms
used in HIGAP and HICHEM, The latter two algorithms are different from each
other and from the one described above in some aspects of the time centering.

The agreement of numerical results for the scalar case does not guarantee the
tensor results. Some aspect of the centering or differencing method could tend
to suppress or enhance the potential non-linear evolution of the tensor solutions
away from the scalar solutions.

2.3.3 Alternative Numerical Approaches

In the treatment discussed in Section 2.3.2 above it was necessary to
split up the L and H parts of the plasma current, treating the 1 part as a
source term on the right hand side of the equation. An alternative treatment
whnich avoids the problem is to define

L( PIDRIE L WP U PRy WP g _ RPN = - . Y __;'."_M"'+A . - L o KA I R Y- > LI U P S




b FzE, +i E,.

7z JZ + 1 Jr’
+ then multiply Eq. (2.18b) by i and add to (2.18a). The result is

Srky =S (rp) - an gy ¢ B8 (2.29)
+ Now .7 = c*&, with the definition

c* = ¢ - ic

Then the exponential treatment, or full forward centering as indicated below,
can be used to perform the time integration:

(oot lc3 8|, %o 2.30

€= T Guovrt |7 or (TB) - 47 Jg T S|t T gnot (2.30)
This result is a more parallel treatment of E, and E, treating only the magnetic
field and the bean current JB as source terms. The exponential treatment has the
auvantage of eliminating the initial value /o faster, but has the added complica-~

tion of (g?;)( 77 't) appearing, which can lead to sign changes in various terms
where 4~ 't is not small. HNote that in Eq. <.3v' B/t acts directly as a

source of EZ, and %F (rB) acts directly as a source of Er’ unlike the situation
in the formulation described in Section 2.3.2 above.

The attractiveness of this approach degrades when the next step is
examined. Since Eq. (2.18) cannot be written in terms of ¢ and - only, it is
necessary to split (2.30) into its real d imaginary parts. In principle both
E. and £, separately from (2.30) can be inserted in Eq. (2.24), vielding a sincle
equation for B. However, because of the B/t term in the expression for EZ and

the spatial derivative in tne expression for Er, the resulting equation does not
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involve B in a diagonally-dominant form, and thus is much less convenient to solve
accurately. In addition it is much more complicated than Eq. (2.28) because of
the splitting of (1 + 4no*At)'1 into real and imaginary parts.

A variation of this approach was actually tried prior to beginning the
present study. This consisted of using Er from Eq. (2.30) to eliminate Er from
Eq. (2,24), which was written in the form

E13
z , 4 _ 4 "
—t ok, = < 9,k (2.31)

This equation was solved simultaneously with the E, equation from (2.30) for E,
and B. Several minor variations of this were tried. In one case Eq. (2.31) was
centered as

E

k1~ Bk 20

or C

_dn
(O‘EZ)k + (OAEZ)k"’l i (O\. Er’)k+l/2 (2.32)

Since all field variables were to be defined on the same spatial grid, the k+%
centering of the Er expression from Eq. (2.30) is not inconvenient because of
the appearance of the spatial derivative of B. However, the EZ equation from
(2.30) is awkward to center with EZ and B on the same grid. The most direct way
would involve B at three successive grid points. This was avoided by writing
the left hand side of (2.30) as

(E E

PO

zk * zk+1)

and using the natural centering on the right hand side. It was found that this
method of solution was highly unstable and totally unreliable.

Another variation tried involved writing (2.31) as

(1 + a1 Sor) =B Irohos ) \2.33)

Ezk+1 c zk ’ e
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' (in which r.h.s. is a function of B only), when c. > 0, and the analogous thing -

v with centering in the other direction when ¢ < 0. The EZ equation from (2,30) .
was treated as described above. This system of two equations gave reasonable- :::
looking solutions most of the time, provided that ¢ was large, although it some- ::

. times went unstable even in that situation. For cases where ¢ /¢ << 1 it .
frequently exhibited unstable behavior. Thus it was impossible to do a study on
the transition from small to large ¢  using this one algorithm.

- Apart from the occasionally unstable behavior, this algorithm has a '
more serious problem associated with the spatial centering of Eq. (2.33). That
spatial centering is seriously biased if

dmc lr o
c -1

-

It was not always possible to avoid this situation with a reasonable number of
smoothly-distributed spatial grid points extending to large radius. This problem
could have been avoided by a more complicated treatment of the right hand side.

- The basis for such a treatment can be seen by writing the solution to Eq. (2.31)
in the form:
mn rm rk+1

4-c lr (,_ Er) (4*@ (r-Lr))
o Eer = Eox exp(- . ) =) exp dr (2.33)
k
in which r-dependence of - has been ignored for simplicity of exposition. Even
the simple assumption that : Er/"p varies . linearly with r over ./r would allow
a formulation in which the obvious bias of Eq. (2.33) is avoided. However, the

< cost involved is that the magnetic field at as many as four points rather than
two would appear in the analogue of Eq. (2.33) because of the unnatural centering
required in Eq. (2.30) for E,..
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There is another more fundamental objection to any simple implementation
of Eq. (2.33). For sake of discussion assume that it is further developed by

assuming ¢ Er/:‘ is *. linear over Lr. Then it is clear that when -
o
&
41- .r > 1 o,
C

it will enforce the relationship

(01 Ez)k+], - (GuEr)k+1

on the fields. Thus it is equivalent to forcing Jr + 0, but is independent of
the time-evolution of the solution and is therefore not physical. The resolution
of this paradox is that o“Er/oi must be allowed to have exponential behavior in r.
Only then can aphysically-consistent treatment be developed along these lines.

The bad behavior of the scheme using the correctly centered Eq. (2.32)
can be identified by recalling the cancellation that occurred in going from Eq.
(2.25) to (2.26). 1f the fields from Eq. (2.30) were both inserted in the right ) N
hand side of Eq. (2.24) and the cancellation done analytically, the remaining :&
equation could then be centered as in Eq. (2.32). Although this procedure has )
not been tried, it is likely that much of the bad behavior of the system based
on Eq. (2.32) would be eliminated.

As in the method discussed in Section 2.3.2, there remains the problem
of the non-linearity introduced by the strong dependence of o, on B. All of the
methods discussed in the present section 2.3.3 involve o  in many more places
and in more complicated ways than in Eq. (2.28). No attempt has been made to
iterate them because of the general success of the method discussed in Section 2.3.<.
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2.4 Computational Results

7
T

2.4,.1 Introduction

> >

Two different SAl codes, HICHEM and HIGAP, were used to perform the
calculations described below. Both incorporated the same basic electromagnetic
algorithm which was described in Section 2.3.2. The tensor cases were iterated b
until the magnetic field changed by less than 1% between consecutive iterations.
The simple model of the Hall current described in Section 2.2 was used for all the
case studies. One comparison case was repeated using the full theory as described
in Ref. 1.

The HICHEM code (Ref. 4) is a radially-resolved air chemistry code -
specifically designed to follow the air chemistry processes generated by an electron
beam. It follows the non-equilibrium time evolution of up to 60 chemical species,
and can account for radiative energy losses when these are important to the overall
energetics. The conductivity calculation is also described in Ref. 1; it incor-
porates a very detailed model for electron collisions with neutral air species, -
ions, and other electrons, and computes the off-diagonal (Hall) component of the
conductivity tensor in a consistent way. The electromagnetic field equations were
solved on a grid of 290 radial points extending to 500 Bennett radii. The geometric
grid spacing provided 18 points inside 1 Bennett radius, and 58 points inside 5
Bennett radii. Except as noted below, all the HICHEM calculations used the same
31 chemical species and 283 reactions. The cases which were followed out to 50 ns
used 37 species and 337 reactions in order to account for substantial radiative
cooling of the longer pulses.

The HIGAP code (Ref. 5) is a monopole propagation code designed to study
monopole envelope evolution and nose erosion for axi-symmetric beams. The con-
ductivity calculation in this code is provided by the BMCOND (Ref. 6) package of >
subroutines. This package uses a highly simplified model of the chemistry which T
has been calibrated against the more complicated HICHEM code. Several important




changes in these calculations were required to handle the high degree of ionization
produced by high-current beams in low density air. The electromagnetic field

equations were solved on a radial grid of 250 points extending to 20 cm from the
beam axis.

Since the HIGAP code (in its non-propagating mode) is much less costly
to run than the HICHEM code, it was used to investigate some more unusual or
extreme cases for sensitivity to Hall effects.

For all calculations except Case 6, as noted below, the beam profile was
assumed to be Bennett. The time-dependence of the beam current was given by

1

=1, tanh(E—) tanh(i’ u t) . (2.34)
T T

The expanded nose of the beam was described by a time-varying Bennett radius
specified by

a=a [1 + %»(g—-— 1) (1 - tanh (t ; TC))] . (2.35)

0 R

in which a, is the final radius as t - x. The initial radius and the position
and steepness of the pinch-down are controlled by the parameters b, Tes and R

2.4.2 Case Studies

Numerical results are discussed below for the cases described in Table 2-1
The beam current in each case was 100 kA. These cases were selected to provide a

wide range of beam parameters and channel properties.
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The basic model for the hot channel cases had a central temperature of
6000°K with the density chosen to give pressure equilibrium at 1 atmosphere. Three
channel widths -- flat out to 1, 2, or 3 Bennett radii of the pinched beam (as in
Eq. 2.35) -- were investigated. For cases 3 - 6, a cold uniform medium with density
(and pressure) = 0.1 normal was used. v

Nose parameters were chosen to simulate a variety of situations. For 2
Cases la and 2¢ the parameters are interpreted as providing a tailored emittance q
which decreases significantly along the beam. Case 3b represents a beam with a N
moderately expanded nose, in contrast to Case 3a which is a cylindrical slug of
charge. The parameters of Case 4 represent a very mature nose after considerable
erosion of the beam-head has occurred.

p

)

I' Case 5 was chosen to investigate the effect of an initial distribution-
of electron density provided by an annular laser beam. This was expected to change
b the conductivity development in the wings and, hence, the distribution of plasma

current.

Case 6 had a hollow beam current distribution, which resulted in
significantly different conductivity and plasma current distribution from the
conventional Cases 1 - 4. The beam current density on-axis was about .075 of
the maximum, which occurred at about 0.5 Bennett radii.

In addition to the fully self-consistent calculations from the HICHEM and
HIGAP codes (Cases 1 -6), two artifically constrained situations were studied in
order to assess the sensitivity of the calculations to the conductivity profile.
Conductivity profiles with (a) the square root of the beam profile and (b) the
Bennett profile of the beam were imposed. The axial conductivity was taken to be
proportional to the beam current, and there was no feedback to the conductivity
from the rest of the calculation.

A1l the cases listed in Table 2-1 were calculated using both the scalar
- and tensor versions of the electromagnetic algorithm., Detailed discussions of )
the individual cases are given in Section 2,4.4 below, nreceded Sv a deneral dic- L
cussion of results in Section 7.4, %,




2.4.3 Discussion of Results 3

"
For a self-pinched beam the JxB force (Hall term) exerts an outward .E
force on the backwards-flowing JZ plasma current. If this effect reduces the .
. plasma current density near the beam axis, the net current density and local =
magnetic field increase. This in turn leads to an increased JxB force on the
remaining plasma current. If this non-linear response is effective in expelling
a significant amount of the JZ plasma current from the vicinity of the beam, the
v beam is more strongly pinched and its propagation characteristics are improved.

The calculations show that with or without Hall currents, the electro-
magnetic fields rapidly evolve toward the situation Jr ~ 0. The magnetic force
v term which pushes the JZ plasma current outward is then balanced by the radial
electric field. Only a small residual Jr remains, generated by longer time-scale '
evolution of the magnetic field (due to conductivity profile evolution, for :§
example, or continued evolution of the beam current or its radial distribution). ;;

In none of the self-consistent cases investigated was there a large
scale redistribution of the plasma current. Although ratios c /o, ~ 0.25 were <
achieved late in Case la, for example, Jz(r) was essentially unchanged from the N
scalar case. This result is consistent with the simple theory discussed in
Section 2.2, because the condition Jr*J() was reached Tong before - /- reached a

large value.

The constrained model with conductivity profile specified to be the
square root of the Bennett beam profile was the only case to show significant
differences between the scalar and tensor cases. The magnetic field at 1 Bennett
radius increased steadily and essentially linearly with time from before 0.01 ns
to beyond 10 ns. The scalar and tensor calculations even in this case did not
differ significantly until about 1 ns. 1In contrast, the constrained model with
a Bennett conductivity profile had a net current which was a factor 4 lower
at 0.01 ns, and rose at a much slower rate initially. By 10 ns the ratio
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of the Bennett profile constrained case; it increased relatively slowly in time,
or even remained roughly constant.

l
e
Ld
g
‘<'

o /c, reached v 0.25, but the difference between scalar and tensor calculations

was negligible, in accordance with the simpie theory. For all the self-consistent }
o

cases, the early (before 1 ns) behavior of =~ /c, was qualitatively similar to that o~
‘P

It is tempting to conclude from the comparison of the two constrained
cases that the conductivity profile determines whether or not Hall current effects
can develop. For self-consistent calculations, several proccsses operate to
determine the conductivity profile evolution. 1Initially, in a cold gas the ioniza-
tion is produced by the beam and has a beam profile -- Bennett in all but Case 6
of the present study. As the Coulomb Er field grows rapidly, it breaks down the
air off-axis, causing a temporary (usually) off-axis peak in c. Later the Ez
field rises on-axis and dominates the air breakdown. The peak EZ field may occur
as early as 0.05 ns if a broad nose is not present on the pulse. Usually the EZ
field brings the peak of the conductivity profile back to the axis and gives it a
shape roughly Bennett or even slightly narrower. As the conductivity grows
rapidly near the axis the Er field begins to short out and its peak moves outward
beyond the main body of the beam. Conductivity in the far wings rises as the air
is broken down by Er‘ If the electron production on-axis is not too great, No

Sttt
N PO

begins to saturate due to dissociative recombination on molecular ions. In this
situation a profile comparable to the square root of the Bennett can develop (but
generally at t ~ 1 ns). On the other hand, if the gas on-axis is ionized too
quickly for recombination to keep up (or molecular ions are destroyed by the high
temperatures) the Spitzer conductivity regime may be reached. As noted in Section
2.2 above, this generally sharpens the conductivity profile near the axis, although
broad wings will persist. This entire sequence can be modified by providing a
broad initial hot channel (as in Cases 1 and 2), an expanded nose, a long taper of
the beam radius due to a variable emittance, or by a non-Bennett beam profile
(Case 6) or a laser-prepared channel (Case 5). A very wide variety of profiles
was provided by the self-consistent cases investigated, but in no instance did

the qualitative behavior of the constrained broad-profile Case 7a emerge. The




feedback between the fields, net current, and conductivity is evidently more
important than any of the modifications of conductivity profiles achieved by
choice of channel parameters, beam parameters, nose parameters, etc., in the
numerical calculations. For high current beams in low-density air the con-
ductivity evolves rapidly enough, and the induced EZ is strong enough to allow
very nearly complete current neutralization to be achieved early in the pulse,

in the spatial region occupied by the beam itself rather than through large
return currents in the wings.

As noted above, the constrained Case 7a did not develop large differences
between the tensor and scalar calculations until after ~ 1 ns, but both were
qualitatively different in magnetic field behavior (as measured by o /o ) from
Case 7b and the self-consistent cases. This suggests that it may be possible

to identify, from scalar calculations only, situations in which significant
tensor effects may arise.

-2t~




..........

2.4.4 Details of Case Studies

Case 1: 2 mm beam into a low density hot channel

Several different channel widths were investigated, as well as the
effect of a variable emittance along the beam. Case la achieved the largest
ratio of ¢ /o . The radial profiles of o, and o, are shown in Figure 2.1 at
several times late in the pulse, where o has grown to significant values
~ 0.25 ¢, at 2 Bennett radii from the axis. In spite of the large ¢ /o, the
difference in pinch function, net current, Ez filed, etc. between tensor and
scalar calculations is negligible. Only the Er field is substantially different
from its value in the scalar case, and is closely given by the condition er'O.

The net current integrated to radius r (including displacement currenf)
is shown in Figure 2.2 as a function of radius and time. The specific volume
relative to sea level air is also shown. It is clear that the plasma current
density exceeds the beam current density in the region between about 2
Bennett radii and the channel wall at 4 Bennett radii. Even as late as 50 ns
into the pulse, the net current inside 4 Bennett radii is only 2 kA, although
inside 1 Bennett radius the net current is about 16 kA at that time. In the
region r < a, the beam current is ~ 84% neutralized by plasma current.

For Case 1b with channel walls moved inward by 2 Bennett radii, tensor
effects are weaker still because the plasma current flow is even more strongly
confined to the same spatial region as the beam current. Although an expanded
nose and emittance tailoring could have improved the situation, it is unlikely

they would have resulted in significant differences between the tensor and scalar
calculations before Jr -+ 0.

s
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Case 2: 5 mm beam into three different hot channels

The conductivity is shown for this lower beam current density in
Figure 2.3. The channel profile is the same as in Case la, Figure 2.1. In
Case 2c the Tower current density results in less strong plasma currents near
the axis, but the magnetic field in the current distribution is weaker in
general than in Case la. The ratio ¢ /o, barely exceeds .10 even Tate in the
pulse. Again, this is long after the radial plasma current has approached zero,
so there is essentially no difference between the tensor and scalar computational
results except for the Er field. As expected, the narrow channels (Cases 2a and
2b) were less favorable to the development of a strong magnetic field because of
the confinement of the plasma current to the region near the beam.

Case 3: 2 mm beam into uniform density = 0.1 of sea level value

In some ways this case is like the extreme of a very wide channel, but
with a very important qualitative difference. Since the Case 1-like channels are
all chosen to be in pressure equilibrium, they have a significant initial
conductivity - 1012 sec -1 in their low density (high initial temperature)
regions. In Case 3, however, there is no initial conductivity channel because

the temperature is taken to be uniform at 288°.

Conductivity results are shown in Figure 2.4. Because the beam itself
is confined to a narrow region, it (and the accompanying ohmic heating) generates
its own conductivity channel which is initially relatively confined within a
few Bennet radii. Again, the plasma currents overlap the beam current sub-
stantially at early times, preventing it from establishing a strong magnetic
field early in the pulse. Integrated plasma current profiles are shown as a
function of radius at several times during the pulse in Fiqure 2.5.
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In Case 3b an expanded nose was added to the pulse of Case 3a. This
resulted in somewhat earlier development of conductivity in the region outside

the beam, but was still insufficient to prevent a high-density plasma current
from cancelling much of the beam current.

Case 3a was repeated using the full tensor calculation of ¢ rather than
the simple model. In general this gave slightly larger values of o , but still
too small at early times to have any influence on the electric or magnetic
fields before Jr - 0. Out to 13 ns the non-cancellation of tensor effects in

the more compliex theory of the Hall current led to only small deviations from the
earlier calculation.

Case 4: 5 mm into 0.1 normal density cold air; mature nose

This case models a very mature nose such as might exist after a consider-
able amount of erosion has occurred. The full 100 kA is flowing in the expanded
region before the pinch-point. This initial broad beam generated before the rapid
pinch-down an electron density of ~ 5 x 1013 and conductivity ~ 5 x 1010 sec-1 - -
much broader than the final beam radius of 5 mm. It was a further attempt to get
the plasma return current to flow outside the beam. Some redistribution was
achieved, as in Case 3b. However, the degree of current neutralization in the
core of the pinched beam was not reduced sufficiently for Hall effects to be
important in the pinch-down region. 7o some extent the generation of initial
conductivity in the wings is also counterproductive to the generation of Hall
effects early in the pulse. This same conductivity which allows the plasma
current to move outside also shorts out the Coulomb Er field, allowing the Jr -0

condition to be achieved more gquickly. As noted before, this works against strong
Hall effects.
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Case 5: 5 mm beam in 0.1 normal density cold air

An initial electron density profile given by

Py '( A LAY,

| A5y

_ 1012
€ !r—-3(7+1
ao |

® N

was used to simulate an annular ionized but cold channel provided by a laser.
PY The peak Ne is at 3 Bennett radii from the beam axis, and drops off quickly
inside 2 BR and outside 4 BR. This initial seeding with electrons provides a b
conductivity in the range 108-109 sec'l, and changes the breakdown characteristics
of the channel. However, it did not result in plasma current redistribution

@ sufficient to promote significant Hall effects early in the pulse. ~

The electron density profile at 0.05 ns is shown in Figure 2.6 for ]
Case 5 (the laser channel) and Case 6 (the hollow beam), along with a comparison g
profile for the same type of case with no channel or hollowing. For Case 5 the
peak electron density on-axis was already three orders of magnitude greater than
that in the initial laser channel and the Er field had already reversed in sign
out to ~ 2 Bennett radii. The peak electron density and conductivity occurred
at ~ 0.3 Bennett radii, the result of earlier breakdown by the radial Coulomb
field. Essentially no net current flowed in the region between 0.5 and 1.2
Bennett radii.

et
: T

atatet e
PRSI LN

Case 6: 5 mm beam into 0.1 normal density cold air; hollow beam profile

The radial profile of beam current was calculated from

1+¢ 3 1
5= . 2 (2.36) "
B Bl maz (1 + _at;_)z T.Tb?' (1 + ;2)2 i

instead of the usual Bennett formula. Parameters used were a = 0.5, b = 0.25,

-~ = 0.32. With this choice, the beam current had a hollowed profile, with the
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axial current density less than 1/10 the peak value which occurred near 0.5 ]
Bennett radii. This profile function was chosen only as a crude representation
of what a physical hollow beam profile might be like.

The distribution of plasma current was found to remain very similar to "
the distribution of beam current up to about 1 ns, with a high degree of current
neutralization. By 1 ns the beam current density had reached its peak value, but .
the plasma current density on-axis continued to grow to about 50% higher than the
beam current density; the magnetic field was reversed inside ~ 0.25 Bennett radii. =
The conductivity profile remained peaked off-axis through the 10 ns of the cal-
culation. The net current integrated out to large radius was a few percent higher n
than that for Case 5 at 10 ns, but a factor of about 2 lower than for Case 4. o
As in those cases, there was no significant difference between the tensor and -
scalar calculations.

Case 7: 2 mm into uniform low density channel; artifically-imposed
conductivity profile

The purpose of this calculation was to assess the sensitivity of the
electromagnetic fields to an artifically-imposed conductivity profile. This was
done by decoupling the conductivity calculation completely from the fields. The
beam current was calculated as described by Eq. (2.34) above, and the conductivity
on-axis was simply chosen to be proportional to the beam current, with a peak
value of 1024 sec™l at 1 = 100 kA. (a) *, has a radial profile which is the .
square root of the Bennett beam profile and (b) o has a radial profile the same -
as the beam current. The ratio -~ /- , and - itself, were computed according to -
the simple Hall theory described above. The collision frequency vy Was chosen

to represent a uniform low density region with . ~ 0.036 of normal air density. 3%

Tensor and scalar results for the two different profiles are shown in T
Figure 2.7. The axial electric field and axial plasma current density are shown. .
For the Bennett profile case, the beam current is very highly neutralized; the
tensor and scalar results are virtually identical out to 20 ns. On the other hand,
for the flatter conductivity pro‘ile, a significant reduction in EZ and plasma
current occurred in the tensor case beyond 1 ns.
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2.5 Conclusions

From the local conductivity studies described in this section, several
conclusions emerge.

(1) In order for Hall effect to radially redistribute the plsams
currents it is necessary that a : (“L/Vm) become significant
very early in the pulse before the radial Coulomb field reverses
and Jr vanishes, typically within the first few tenths of a
nanosecond. If this condition can be achieved, on-axis plasma

Y

current decreases, net current increases, a increases, and the
effect feeds on itself.

(2) At low gas density, Vi decreases, but so does the net current-
decreasing ~. Faster avalanche breakdown or ambient ioniza-
tion result in Jr tending to zero earlier in the pulse, allow-
ing less time for Hall effect to act.

(3) The strong non-linearity of the field equations - including X
Hall terms - requires great care for their stable solut.on.

(4) To date, we have numerically studied a range of "realistic"
cases, with conductivity evaluated self-consistently with the
fields but always assuming local conductivity generation. In
all these cases, the race is lost; current neutralization occurs
so fast that « never becomes significant until well into the
body of the pulse when Hall effects essentially cancel.

Critical to all these results is the conductivity and plasma response to the
beam during the first few tenths of nanoseconds - a time-scale for which our
local, instantaneous conductivity modelling is not appropriate, especially at

B R

low densities., More adequate non-local conductivity models are described in
the next section.
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3.0 NON-LOCAL CONDUCTIVITY EFFECTS
3.1 Introduction

This section summarizes results from an initial, simple non-local,
non-Ohmic air chemistry model - including Hall effects and their impact on
beam stability.

In Section 3.2 the results of modelling high current beams in low-
density air are discussed. At low-densities, the standard simplifying assump-
tions usually employed in conductivity modelling no longer apply: scalar con-
ductivity, Ohm's law; local-instantaneous energy deposition; Maxwellian dis-
tributed plasma electrons; no delta rays; and no {nertial effects. These
assumptions are not made in the present model, It 1s concluded that Hall cur-
rents do play a significant role at low enough densities and that the redfis-
tribution of plasma current can result in a significant but sudden increase in
the magnetic pinch below a "critical™ afr density. The conductivity model
described here is a simpified version of the LOCOND model described elsewhere
(Ref. 7) and has been developed as an intermediate step toward a truiy simple

model for inclusion in beam stability codes.
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3.2 High Current Beams in Low Density Air

3.2.1 Introduction

We report here the results of applying a phenomenclogical Tow-
density chemistry code to high current beams. A brief account of the model has
been given previously (Refs. 8 and 9). However, substantial modifications were
necessary for application to high current beams. The model is not considered
complete, and there. are no independent calculations in the same parameter regime
to which it can be compared; thus,the quantitative results are tentative.

Conclusions based on the calculations are:

1) Below a certain model-dependent density ~ .01 normal, the
electric field drives a bulk runaway which changes the dis-
tribution of plasma currents. The net result is a sudden
significant increase in the pinch force as the density is
decreased below the critical value.

2) If Hall currents are turned off, the enhanced pinch may be
reduced by as much as a factor of two at one Bennett radius.

3) Significant amounts of plasma current are driven by the
gradient in electron pressure,

4) Significant amounts of plasma current are carried by the
high-energy non-Maxwellian part of the electron distribution.

This section is divided into three main topics: (1) a discussion
of the physics requirements for low-density calculations, (., an outline of
the present status of the model, and (3) a discussion of the computational
results for high current beams,




3.2.2 Beam-Driven Chemistry in the Low-Density Regime

Simple order-of-magnitude argments show that at background densities
sufficiently lower than normal atmospheric density, several key assumptions

¢
,
2
’
N
PN

built into standard beam chemistry codes are not justified. Among these in-
applicable assumptions are:

v ¥

1) The beam-initiated cascade results in local, instantaneous
production of electrons and ions.

Vet e
.

2) Currents associated with the cascade itself can be neglected. -
3) Plasma currents can be calculated from Ohm's law. -

4) The electron and ion densities are always almost equal, so
[ transport effects can be ignored in the chemistry calculations.

5) The electron distribution remains close to Maxwellian, so
that the high energy parts of the distribution are no more X
important than usual in determining currents, ionization -
rates, etc. ]

In addition, many beam chemistry codes use electromagnetic algorithms
which ignore Hall current effects. This assumption can break down in two ways
at low density: (a) the momentum transfer frequency goes down with the density,
so that it may not exceed the Larmor frequency by a wide margin as in full-
density air, and (b) the highly-overpopulated high energy tail of the electron
distribution at low density may have a momentum transfer frequency considerably
lower than that of the bulk of electrons, and thus make a larger contribution
to the current.

In Section 2, we have investigated the effects of Hall currents in
full and reduced density air, but did not address problem (b) above. In addi-
tion, we have made assumptions 1 - 5 in our chemistry codes. We have recently
developed a multi-energy-group model which abandons assumptions 1 - 5 and
addresses the non-Maxwellian aspects of Hall current calculations (Ref. 7).
Recent calculations by Yu (Ref. 12) have confirmed the importance of Hall
current effects for ATA-like beams when the electron energy distribution is

treated in detail. The present work verifies their importance for high current
beams,

R
x
-




P ST AU S Y Y

Fl o IR IR S A N A S M A SRR O G wm e ST e - PCE A e S e 2 a0 Ay ; (B ie S

3.2.3 Non-Local, Non-Ohmic Conductivity Model

The ultimate goal of the development program is to produce a relatively
simple BMCOND-1ike model which can be incorporated into propagation codes. This
requirement eliminates the possibility of doing a "first principles" calculation.
The approach taken is to develop a phenomenological model which represents the
most important physical processes in a simple way, and to adjust the "free"
parameters associated with various simplifying assumptions to obtain agreement
with more fundamentally-based calculations.

The model described below considers the electron distribution broken
into three energy ranges. The lowest energy group represents basically the usual
bulk of approximately-Maxwellian electrons. The next higher energy group
represents those that in the presence of an electric field are in the runaway
regime and thus behave very differently from the bulk of the electrons. The
third group represents the relativistic particles produced directly by the beam.

The organization of the model is summarized in Fig. 3.1, in which the
sources and sinks of particles for each group are shown schematically. The
three energy ranges will be referred to by the names low-group, high-group,
and : -group,in order of increasing energy. The beam particles themselves

constitute a fourth group which is treated in the usual way (e.g., no energy
straggling).

The beam particles collisionally produce secondaries directly in each
of the three groups, according to a Moller distribution (modified at Tow energy).
The maximum 5-ray energy is one-half the beam energy, since the higher energy
particle emerging from a primary interaction remains associated with the beam.
Collisions by beam particles are the only source of electrons in the &-group.

A more detailed discussion of the :-ray model is given below in Section 3.Z.3.1.
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N
The high-energy group extends downward from 1 MeV to a variable-energy boundary N
which at present goes no higher than 10 KeV. It is fed mainly by primary beam 3,
collisions and by the collisional degradation of the 3-group through its 1 MeV i
Tower boundary. Under some conditions, electrons are also transferred up from :;

the Tow group.

»w v

Both the high and lTow energy electron groups are represented by fluid
equations for particle density, momentum and energy. The equations of motion
provide the means for abandoning the ohmic representation of plasma current

KX IO

flow. The fluid equations are solved on an Eulerian grid which is the same
grid used for the electromagnetic field calculation. It is assumed that every-
thing is a function of the "retarded" time variable 7 = t - z/c only, so that
the only independent variables are r, the radial position, and ¢, the distance
back from the pulse head in seconds. The electromagnetic fields are obtained
using the algorithm described in Section 2.

In principle it is necessary to solve the fluid equations and § -group
equations simultaneously with the electromagnetic field equations. Since the
Maxwell equations themselves are explicitly non-linear when the Hall current
terms are included and the fluid equations are also non-linear, an iterative
procedure is required. In order to maintain maximum modularity under these
circumstances, the procedure adopted involved solving first a linearized set
of fluid equations, followed by the field equations, and then iterating to
convergence.

In addition, the algorithm has been designed to allow differential
comparisons between the three-group model and a model with the high energy
and 5 -groups eliminated and with the standard local-instantaneous approximations
made., However, this latter "one-group model" still differs from standard
chemistry codes in that it solves an equation of motion for the one group ~ 3
rather than using Ohm's law, It is also possible to turn off the pressure
terms in the equations of motion and the Hall current effects
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3.2.3.1 Delta-Ray Group

In the present discussion, 3-rays will refer to the part of the beam-
initiated cascade which has energy greater than 1 MeV, These particles are
represented by a model essentially identical to that developed by Johnston
(Refs. 7, 11). As applied here, the model has two main deficiencies: (1) it
does not provide detailed information on the radial distribution and (2) it
does not include the detailed effects of electric or magnetic fields on the
~-particles. With the assumption that everything depends on ¢ = t - z/c,
the model gives an integral expression for the total §-ray current as a function
of distance : back from the beam head. (Particle energy distribution information

is available but not used at present.)

It 1s assumed that most of the particles produced as secondaries by
the 3-rays have very low energy. This is consistent with the continuous slowing
down approximation which forms the basis of the model. In the present model,
as the 3i-rays lose energy, they produce low energy electrons at a rate of one
particle per 33.73 eV of energy lost; these parti;]es immediately enter the Tow-
energy plasma electron group of the three-group model. The S-rays themselves
degrade in energy due to collisions., They reach the cutoff of 1 MeV at a rate
given by the Johnston model, and at this point they are added to the high energy

electron group.

The radial profile as a function of distance back from the beam head
% is estimated in a crude way, based on two pieces of information: (1) the :'s
are produced with the beam profile and (2) they evolve from that profile to
form a halo with radial dimension estimated by Johnston (Ref. 11) to be . 4
Bennett radii about a Bennett-profile beam (for particles above 1 MeV). It
< is assumed that at a given -, the profile towards which the *'s evolve is a i-!
weighted average of the beam profile and a specified halo profile. The relative N
weights are deteriined from the rate of local production as compared to the 'ﬁ%

total instantancous number density, and tne rate of evolution towards tne nalo

™Y srofile, Tric asqurition 15 used in tne following interpolation formula for

thicoredial Lretiie for, AU dn terrs of o,
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f(r, g+ag) = (f(r,g) + ALF)/(1 + v a8).
The function F is given by

F =

=2l»n

h+gv),

where S is the local rate of 3-ray production by the beam, N is the total number
of s-rays present, and h is the beam profile, from which the S-rays are produced.
The profile g is the assumed halo profile, and v is a characteristic rate at

@ which the §'s evolve towards the prpfi]e g. The rate Vg is set equal to S/N + v,
With this choice, f(r,5+Af) is normalized to unity if h, g, and f(r,g) are,
The rate v is taken to be an average radial velocity of the 8's divided by the
assumed halo characteristic radius.

-
3.2.3.2 The High-Energy Group
The schematic forms of the fluid equations for the high-group are:

L 3
My Gu(NV) + vN =S, +S +5 (3.1)
ot 1 B ) L '
r+ > -5 > >

Py 5%+V-(Jv)+%VP+v2J=KB+K5+KL+B%(E+%XB) (3.2)
el 2 3 a2l 2 3 ey
3{»(§-va + §-P) + ¥ [v(§ Nmv© + 5 PYJ+ T+ (VvP)

1 2 .3 _ z
c +v;( 5 Nw© + 3 P) = L+ NeEev (3.3)

-

The terms SB’ KB’ etc. are the sources due to the beam, the 3-group, and upward
transfer from the low-group, respectively, It is assumed that all collisional
- ionizations by high-group electrons produce a low energy secondary which goes
directly into the low group. The energy equation (3.3) has been written with
the total energy split into a drift part and a thermal part, represented by a

pressure F.  Tne term L includes energy deposited by the beam, energy brought in

e by trancfer of ;articles from the low-group and 3-group, and energy losses due
to ionizatisr.,  fner:y loss due to 1oss of particles from the high group is
L -49-
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represented by the vy term on the left side of the equation. It has been assumed
|® that the particles lost take with them the average energy of the high group. The
momentum 1oss rate Yo includes the effect of particle losses, momentum 10ss due
to ionizing collisions, and momentum loss due to elastic collisions.

lo The fluid equations are solved as a finitedifference systemon the Eulerian
electromagnetic field grid. The outer boundary condition allows an outflow of
particles. No explicit assumption is made concerning the distribution function

of the high group electrons except at % = O+, when it is dominated by the Moller
distribution from primary beam particle interactions. The average total energy

and z-momentum are then used to give an initial "temperature" T, defined by P = NT,
where P is the pressure from Eq. (3.3). At all subsequent times, the temperature,
particle density, and drift velocity are obtained from the fluid equations.

For simplicity, ionization and momentum transfer rates are evaluated
at the mean particle energy. An analytic formula given by Briggs and Yu (Ref. 12)
is used for the ionization cross section. The momentum transfer frequency Vi is
given by the approximate formula

- (1.08 x 1072 N_§)/(178.89 + E?)

6 3/2
equiv

‘m

e + (1.46 x 107° N 10g A)/T (3.4)
wnerffiiis the total electron energy in eV, The first term represents the
effect of collisions with neutral particles and the second represents Coulomb
e collisions., The "equivalent" temperature is defined as Tequiv =T+ 1/3 mvz,
log .. is the usual Coulomb logarithm, Ng is the total density of neutral atoms

and molecules, and N+ is the total density of positive ions.

- The boundary between the high and low energy groups is set by finding
tne solution of the equation

e £ =m v

m (35)
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corresponding to the high energy side of the peak in Ve The average ve]ocity
v is related to the total energysi appearing in Eq. (2.4) byff 3 M v .
However, the boundary energy is not allowed to exceed 10 KeV even when the
total electric field E is very small.

Another special case occurs when the field is so strong that there is
no physical solution to (3.5); this corresponds to a bulk runaway, in which the
field is capable of accelerating the electrons through the peak of the momentum
transfer cross section. In this case, the choice of the lower boundary of the
high group is somewhat arbitrary. The lower limit to be used for the boundary
during a strong runaway condition can be specified as input data. Usually it
is taken to be a few volts, so that essentially all the electrons produced
directly by the beam go into the low end of the high energy group. The transfer
of electrons from the low to the high group is discussed below.

3.2.3.3 The Low-Energy Group

The equations for the low energy group are similar in form to those
given above for the high group with the exception that they contain loss terms
due to recombination and to transfers to the high energy group, and input terms
due to transfers from the high group and to collisional ionization by high
group electrons. The main difference in the treatment of the low group is in
the chemistry detail. At present, the abundance of N2, 02, N, N(2D), 0, and a
composite representative of the triplet states of N2 are followed explicitly by
differential equations. The system of equations used is essentially the same
as in the chemistry code BMCOND (Ref. 13). This degree of complexity was found
necessary to obtain reasonable agreement with the comprehensive code HICHEM at
low air densities for high current calculations.
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‘ Ionization rates are given by tables identical to those in the HICHEM ;
1. code up to 500 volts "equivalent" temperature (Tequiv = Te +1/3m v2). The -
collisional excitation rates from the BMCOND model are used. Ionization and o
excitation rates due to the beam are computed as in the HICHEM code, but with N
appropriate adjustment for the differences between time-delayed deposition model \'
o used here and the instantaneous deposition model in HICHEM and BMCOND.

It is very important to distinguish between the positive ion density
and the electron density, since electron transport effects can be very large;

o thus a separate differential equation for the total rate of positive ion produc-
tion is integrated. 1In addition it was found necessary to calculate a vibrational
temperature because of significant sensitivity of computational results to the
dissociative recombination rate; the HICHEM treatment was adopted for this

P calculation. The momentum transfer frequency used in BMCOND is used for low
energies, with a smooth transition to the analytic formula (Eq. 3.4) used for
the high group. The Coulomb term of Eq. (3.4) is used throughout.

@ Reassignment of electrons from the low group to the high group is a
relatively arbitrary procedure. The goal is to remove electrons from a presumed
high-energy non-Maxwellian tail of the low group and put them into the high
group, which hopefully represents better their contribution to currents, ioniza-

] tion rates, etc. than does the assumed Maxwellian bulk of the low group electrons.
However, there is no simple model of the super-thermal tail as generated by
strong electric fields which vary rapidly in both time and space. Several

different ad hoc procedures have been tried, but none is especially defensible
& in detail.

Qualitatively, what happens in a weak field (or high ambient density

gas) is not very sensitive to the details of the transfer rate, Under strong
¢ runaway conditions, the entire low group is accelerated to high drift energy
and heated to temperatures -~ kilovolts on a very short timescale. During this
time, the distinction between the two groups is not very meaningful, and again
tne behavior of the bulk plasma is not too sensitive to the details of the transfer
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rate. However, after the fields which precipitate a strong runaway die out,

the distribution of electrons between the two groups can be important; this

does depend strongly on the transfer rate. Similarly, if conditions for a
strong runaway are just barely achieved for only a short time, there may be
some sensitivity to the transfer rate. These problems are continually being
studied, both in the context of the model described here and through comparison
with other, more comprehensive models being developed.

The transfer rate presently used is calculated as follows. A velocity
v, isdefined by v =+ v + .5V, where the + sign is taken if the radial drift
velocity is parallel to Er, and a negative sign is taken if it is opposed. The
thermal velocity term Vt is added to account for the fact that,at high enough
temperature, a substantial number of electrons may be able to run away even
if the bulk drift is not large (or even parallel to the Er field). The transfer
rate of electrons is then given by

S, = min{.5, 1N /N.) min(1., exp( °V Sy, (3.6)

in which Ve is the velocity corresponding to the energy boundary between the
groups, Nh is the local density of high-group electrons, Ne is the local density
of low-group electrons, and A% is the proposed timestep. The purpose of the first
minimum function is to assure that the high-group density is not changed by more
tnhan 10 during the step. In actual computations, the transfer rate is usually
very low, or else as high as permitted by the first factor of (3.6), even for
exceedingly small timesteps.

The momentum transferred with the particle is taken to be parallel
to its total drift velocity, with magnitude given by the larger of the velocities
Yo and Vo The energy transferred is the average energy per particle of the
Tow group, plus an additional amount arranged to come (by suitable terms 1in
the equations of motion) entirely from the drift energy of the low group, to

make up the tot>1 drift energy of the electron injected into the high group.
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The net result is to decrease the drift energy of the low group but leave its !
temperature unchanged. The effect of the energy and momentum transfers on the

high group depends on its energy and momentum at the time of the transfer. Y
Other procedures for transferring electrons to the high group are being evaluated. .

3.2.4 Calibration in the High Current Regime

At present there are no comprehensive, first-principle calculations
to provide detailed guidance in the development of the three-group model for
high current calculations. Yu (Ref. 10) has presented Boltzmann-code calcula- .
tions for ATA-like parameters, but even these calculations incorporate assump- ;
tions which are not always justified in the context of high power beam plasmas. :'
The purpose of the calibration runs discussed below is to check that the p,
relatively simple model described in Section 3.2.3 agrees reasonably well with-

detailed chemistry codes in regimes where the assumptions of those codes (see

Section 3,2.2) are not thought to be seriously in error. Results of calibration
at 10 kA have been presented elsewhere (Ref. 8). A similar comparison with the "
HICHEM (Ref. 4) code at 100 kA and gas density 0.1 normal is given below. The g
rise time is 5 ns and the Bennett radius is 0.5 cm. ;j

The comparison of electron densities on-axis and at one Bennett radius
is shown in Figure 3.2. The agreement is very satisfactory. The effect on the .
electron density due to the time delay for the three-group model is not large Ei
after 2 or 3 ns, The electron density on éxis 1s mainly determined by the -
close balance between collisional ionization and dissociative recombination
after a few ns, The recombination rate itself decreases significantly as the
molecules (and molecular ions) are depleted, and as the vibrational temperature
increases. After about 6 ns, the continued increase in Ne is determined mainly
by the decrease in the recombination rate, with a large part attributable to
the vibrational temperature dependence.
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Figure 3.2. Electron Density Comparison at ./. = 0.1.
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A similar comparison of electron temperatures and total currents is
shown in Figure 3.3. The temperature agreement is quite good from 1 ns on.
At 0.1 ns, HICHEM gives Te ~ 18 volts, compared to the 12 or 13 volts given
by the simple models. At such early times the ohmic approximation used in
HICHEM is not very good, so the ohmic heating rate 15 likely to be incorrect;
thus it is not clear which values are closer to the truth.

As in the 10 kA comparison (Ref. 8), the agreement between HICHEM
and the simple models is not as good for the net current and effective current.
This difference is mainly due to the difficulty in matching the momentum
transfer frequency calculated in HICHEM by a very simple formula. However,
the agreement in currents is still acceptable, particularly since the most
interesting sensitivities described below develop before 1 nsec.

Because the results of the HICHEM code are suspect below p/p0 ~ 0.1,
especially for © < few ns, it cannot be used for calibration comparisons at
lower densities. However, many of the results presented below are differential
comparisons or sensitivity studies, and thus can provide useful information in
spite of uncertainties in the quantitative results.

3.2.5 Computational Results

3.2.5.1 Introduction

The beam parameters for the calculations described below are:

Current = 100 kA
Rise time = 5 ns
Bennett radius = 0.5 cm
Energy = 10 MeV
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The discussion below is divided into two main sections. The sen-
® sitivities to gas density, Hall currents, and pressure terms are described

briefly in Section 3.2.5.2, and the remaining sections discuss the calculationa
in more detail.

‘lrf"l’l'l LA

® The main conclusions have been stated earlier (Section 3,2.1). In
brief, it has been found that the pinch force is strongly dependent on the gas
density below some threshold value, and significantly dependent on the presence
of Hall currents and pressure terms. The plasma current and electron density

l. radial distributions change dramatically over a very small range of density

ratio near o/p0 = ,01, resulting in an increase of pinch force by a factor

of 3 or more for a density change of only ~ 20%.

3.2.5.2 Sensitivity Results

Density Sensitivity of Pinch Force

The dependence of Ieff(r) on p/po is shown in Figure 3.4 for the
three-group model, and in Figure 3.5 for the one-group model. The sharp onset
of current enhancement begins in the range o/oo ~ ,0085 - .01 for the three-
group model, and between .005 - .008 for the one-group model. In both cases,
the current enhancement is a factor ~ 3.5 or greater, compared with a base
level at :/:O - 0l. These large effects set in when the plasma electrons can
be sustained in a state of bulk runaway for several tenths of a nanosecond.

The sharp density threshold results from the sensitivity of the charge .
neutralization process to gas density. Several effects contribute. The beam
production of positive ions is directly proportional to the density; the
electrons produced by the beam provide "see =" for the avalanche process of
plasma electron collisions. The peak e-folding rate of the avalanche is also
proportional to the density. These two processes clearly delay the charge
neutralization as the gas density is decreased and allow higher radial electric
fields to develop {assuming the rise time is not -+ 1 ns). In order for
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Figure 3.4, Ieff Dependence on p/:o at 1 ns (3-Group Model).
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neutralization to occur, plasma electrons produced by various processes must

move out of the spatial region occupied by the beam, leaving the positive ions

to cancel the charge of the bear particles. Higher fields help move the by
electrons out quickl,, but tnat process dilutes very considerably the avalanche 2:
ionization and thus slow” tre rnraduction of the needed positive ions close to S
the bear axis. In trie try. (- rewice, avalanche is relatively unimportant, and

tne accunulation rate U0 Lo -gurerated positive ions determines the neutral-
ization time and the pear fielde.

The difference 1n density threshold between the two models is caused :
by (1) the time-delay in ionization in the three-group model which reduces the o
effective beam ionization rate by more than a factor of two; and {2) the effects "
of the non-Maxwellian high-energy group on the ionization rate and on the
moverent of plasma electrons away from the beam. It is difficult to assess
these separately because beam production of the high-energy and $-ray groups
(which degrade relatively slowly at low densities) is the cause of the time
delay. Since gualitatively-similar results occur whether or not the high-

energy group is included, it seems that the time-delay is probably most directly
responsible.

Sensitivity to Hall Currents and Electron Pressure

The radial pressure gradient in the equetions of motion for the high ;
and low energy electrons can drive currents both radially and in the z-direction
due to the magnetic part of the Lorentz force (Hall effect). This works in
conjunction with the electrically driven currents. The result of deleting
either the pressure terms or all Hall effects (by zeroing the magnetic force
on the plasma electrons) is shown in Figure 3.6, Clearly, the Hall currents
have the largest effect, but the pressure terms are not negligible either,
Note that these comparisons show the cumulative effect of removing the terms
for the entire calculation, and not simply the contributions to the current

at the time shown. A similar calculation was done with only the high group
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Figure 3.6. Ieff at 1 ns with ./AO = 008 (3-Group Model).
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pressure turned off. The effect at £ = 1 ns was considerably smaller than shown
in the figure. Low-group pressure contributes dominantly during the bulk
runaway because the electrons reach temperatyres in excess of a kilovolt and
their number density is large. However, it will be shown in later discussion
that the high-group pressure-driven Hall current is important.

3.2,5.3 Comparison of 1-Group and 3-Group Calculations at p/po = ,008

The purpose of the following discussion is to provide a more detailed
description of the phenomera which lead to the enhanced pinch force. At
p/oo = ,008, the 3-group model shows a very strong effect, whereas the l-group
model shows very little because its density threshold is somewhat lower.

Effects on Plasma Current Distribution

The net current (including displacement) integrated out to radius r
is given by Inet = ,005 r B(r), where I is in kA, B is in gauss, and r is in cm.
The effective current, which measures the pinch force, is the beam-profile-
weighted average of .01 r (B(r) - Er(r)). The value of the effective current
integral taken to radius r, and the net current, are shown in Figures 3.7(a) - (h)
at various distances from the pulse head. Large differences are apparent by
1 ns and persist to 10 ns.

At 0.1 ns, the net currents for the two calculations are similar,
but the effective current js substantially weaker for the 3-group case because
the radial electric field is higher (due to slower charge neutralization).

At 1 ns the effective current in the 3-group model is ~ 28% of the
beam current at that time, whereas in the 1-group model it is only ~ 7.5%.
The net current profiles imply a very much broader plasma current distribution
for the 3-group model, although net currents inside 5 cm radius (10 Bennett
radii) are -~ .5 to 1 kA in both cases even at 10 ns into the pulse where the
beam current is almost 100 kA.
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Figure 3.7(a)-{d). Inet and Ieff (./.O = ,008).
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A comparison of the plasma current (Jz) radial profiles at 1 ns is
v shown in Figure 3.8. The breakdown of the 3-group profile into contributions
from the high and low-energy electron groups is discussed below,

Electron and Ion Density Profiles

L
Major qualitative differences in the evolution of the electron density
are apparent in Figures 3.9(a) - (d). The 1l-group calculation shown in
Figure 3.9(a) has the usual peak slightly off axis due to the Er-initiated
| avalanche and is not unusual. The 3-group calculation for the low group

(Figure 3.9(b)) is much more interesting. It shows a large peak well off

axis and much higher density at large radius. The high-group density

(Figure 3.9(c)) has features which invite interpretation as propagating sound
waves. The ridge which appears earliest in time is associated with the rise

of the Er field and the second begins on the axis near the peak of EZ. There
is a hint of the first ridge in the low-group density also.

The total positive ion density is shown in Figure 3.9(d). Since
the immobile ions show the same gross features as the low-group electron
density, it is clear that the large off-axis peak must be interpreted in terms
of the history of the ionization rates. However, the weak ridge in the low-
group electron density does not appear in the ion density, and thus may be a
flow feature. The number of particles in the high group is not large enough
for the ridges of Figure 3.9(c) to show up in the ion density (Figure 3.9(d)).
It seems 1likely that they are similar in nature to the ridge in the low-group
electron density. Further support for the flow explanation is nrovided by
Figures 3.10(a) and (b). These show the low-group and total ion-densities
for the l-group calculation at p/p0 = ,005, in which there is a large current
enhancement compared to p/po = .008 (see Figure 3.7). Here the ridge
structures in the electron density are more prominent, but still have no strong
counterpart in the ion density.
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The difference in positive ion density radial profiles at 1 ns is X
@ shown clearly in Figure 3.11(a). At this time the ion density is much greater
than the beam particle density, so these profiles are very close to the electron
density in the charge-neutralized state. The effect on the z-component of y
plasma current was shown earlier (Figure 3.8). Figure 3.11(b) shows how the \
relatively small difference in ion densities on axis due to time delay before ‘

0.1 ns, becomes very large for a few tenths of ns before coming together again.

For ease of detailed comparison, electron density radial profiles
for the 1-group model and for the low and high-energy components of the 3-
group model are shown in Figures 3.12(a) - (c). The large temporary off-axis N
hump in the low-group electrons is very clear at 0.6 ns in Figure 3.12(b). :
The very much broader density profiles produced by the 3-group model are alsc
very obvious, and persist out to 10 ns from the pulse head.

A summary of electron and ion number density comparisons on axis is
given in Table 3-1 below. The first two entries of the third column show the
magnitude of the time-delay effect, while subsequent entries show the large
differences seen in Figure 3.11(b). The first two columns give an indication
of the importance of electron transport. At 0.3 ns for the 3-group model, only
47% of the plasma electrons ever produced on axis remain there.

TABLE 3-1
ELECTRON TRANSPORT EFFECTS
Time (Ne/Ni) (Ne/Ni) Ni(B-Group)
(ns) 1-Group 3-Group FETT:E?EUET
.03 .98 97 .69
.06 .87 .86 .68
1 .77 .67 .37 ,
.3 .99 .47 .014 :
.6 .99 .76 .027 -
1 .99 .99 1.27
3 .82
10 .93
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Figure 3.11(a). Positive Ion Radial Profile
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Electric Field Effects

Both the EZ spike and the final decay of Er occur significantly earlier
in time for the l-group model (Figures 3.13(a) - (d)), and the peak field strengths
are lower. The large negative oscillation in Er at 1 Bennett radius is especially
prominent in the 3-group calculation, but appears to damp out satisfactorily.

The negative spike in Er in caused by an overshopt of the outward-moving electrons
as charge neutralization is finally achieved near the axis. The significant
overshoot is consistent with the fact that the electron plasma frequency is much
greater than the collision frequency at ~ 0.3 ns. The large off-axis hump in

jon density at 0.6 ns (Figure 3.12(b)) seems to be associated with the decelera-
tion of the low-group electrons by the reversed Er’ and by their final cooling
through the peak of the ionization cross section. The final cooling occurs
considerably earlier off-axis, as shown in Figure 3.14(a). The temperature
behavior of the 1-group model is also shown for completeness in Figure 3,14(b).

3.2.5.4 Hall Current Effects

Introduction

Hall currents may be comparable to ordinary currents when the Larmor
frequency eB/mc is comparable to or greater than the momentum transfer frequency.
Tnis criterion is a strong function of both ambient density and electron energy.
The 3-group model allows the possibility of accounting for the energy dependence
in a strongly non-Maxwellian plasma. The momentum transfer frequency at 1 eV
in N2 is about the same as that at 200 eV, and decreases with energy beyond 50
or 60 eV. Thus, if a substantial fraction of the electrons have energy in excess
of 200 eV, their low momentum transfer frequency may result in a significant Hall
current, out of proportion to their fractional number density.
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Detailed Discussion

It is clear from Figure 3.6 discussed in Section 3.2.3 above that Hall
currents are important to the pinch force. In the calculation at o/;o = ,008,
even the low-energy electron group achieves high velocity for a short time,
and contributes substantial Hall current. However, this is generally masked
by the Ez-driven return current. In the far wings, however, and at early
times near the axis, the radial outflow driven by Er is turned forward by the
magnetic field and the net plasma current density is forward. The amount of
current involved, however, is insignificant in magnitude compared to the beam
current,

When the high-energy electron group from the 3-group model is examined
separately, it shows quite large effects. The z-component of plasma current
for the high group is shown at various times in Figure 3,15(a). Beyond about
1.5 Bennett radii it is always directed forward with the beam. Nearer the axis,
the strong E, field keeps the current going backwards, although by 10 ns there
is relatively little backward-moving current in the high group. A small part
of this forward-going current is due to the fact that high-group electrons
produced directly by the beam are injected with forward velocity. However,
most of it is due to the Hall force acting on the radial out-flow.

The effect of Hall current in the high energy electron group is shown
in Figure 3.15(b). At 1 ns, the forward-going current near 1 Bennett radius
amount to almost 2 kA/cmz, compared to the v 5 kA/cm2 of low group plasma
current going backwards at the same radial position. The result is a very
significant reduction of the total return current.

It is important to note that at late times ° - 0.5 ns, the radial flow
which i< turned forward by the magnetic field is driven not primarily by Er’
but by the radial pressure gradient of the high-group particles. Yu (Ref. 10)

first recognized this as a possible irportant corjonent of the total current,

-7

e IR

a F_A_d_

T

| S AR
T UoRR ,
. o Q_0_=_ 0




nlo

[}
el
sty

-3000.0 -

Y |}

%0 10 20 30 &0 S50
R (cm)

Figure 3.15(a). Current Density J, of High Energy
Electrons (p/p0 =,008).

w10
2.0
3

H1%2 Energy Group

0.0
1

'y

Low Energy Group

1

-4.0 -2.0
X

8.0

JZ
0.0 -6.0

A

-18.014.0 -12.0 -1

Figure 3.15(b). Effect of High Energy Electrons
on Total Plasma Current Density J_
at 1 ns (./.0 = ,008). -




Mk ie e e AN gra fte gt ) A tia 2t pab 8 Rt Y §40 4" Mt Suf b By 0g bat v

From the equation of motion it is clear that a density gradient is equivalent
to a radial electric field of magnitude

Er = - T Egl%_ﬂ volts/cm.
For T ~ 10 KeV as suggested by Yu (and used for the high group in these cal-
culations), and a density gradient with scale v 1 cm, .this corresponds to

Er ~ 10 KeV/cm. Assuming that the system as a whole approaches a steady state
solution of Maxwell's equations, Jr must - 0. In the presence of the Hall-

force terms, the radial Er adjusts itself to shut off the net current driven

by VzBe’ Er’ and the pressure gradient. In the present context it seems that
zero net radial current could perhaps be achieved by a balance between an in-
ward flow of very low energy electrons and an outward flow of a much smaller
number of fast electrons. Because of the differences in v_ for the two streams,
the corresponding Hall currents would not cancel exactly in this case. Under
some conditions such counterflows may be limited by instabilities.

3.2.5.5 Delta Ray Effects at Low Density

Although the steady state §-ray current is independent of air density,
the time required for the current to reach its maximum value depends strongly
on the density. There is also a significant dependence on the beam energy if
only relativistic particles (. 1 MeV) are included, as shown in Figure 3.16.
The pulse length used in this calculation was 100 ns. (A very steep drop in
8 -current at 1 atmosphere on a timescale of 10 ns beginning just before the
pulse ends is not shown.) It is c]eaf that at densities as low as .0l atmosphere
the s-current represents a very small increment to the beam current over the
first 10 ns considered in the calculations presented above. Before 0.1 ns,
the s -current is comparable to the plasma current in the z-direction, but
both are very much smaller than the beam current. It seems unlikely that the
relativistic part of the beam secondary cascade can be important at early
times for air densities as low as .01 atomsphere. However, for propagation
in a density channel, the interaction with the high-density walls may be very
inportant.
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3.2.5.6 Comparison with Ohm's Law

Both the 1- and 3-group models use equations of motion to describe
the electron flows. In general, the difference between the currents calculated
this way, and by using an Ohm's law relationship involving only electron density
and momentum transfer frequency, is large at early times. The duration of the
deviation from Ohm's law increases as the gas density decreases. Figures 3.17(a)
and (b) show the actually-computed plasma current compared with what would have
been obtained from an ohmic calculation using the instantaneous values of Ne
and Ve The results are shown for the 1l-group calculation at p/po = .008, but
comparable effects are present for the 3-group case. At 0.1 ns the ohmic current
shows an extremely strong Hall effect due to the large radial field; the current
given by the equation of motion is very much smaller, and the Hall effect does
not show on the linear scale. At 1 ns, the two methods of calculating the
current give virtually identical profiles, as shown in Figure 3.17(b).

3.2.5.7 Concluding Remarks

The calculations discussed above show the magnitude of the effects to
be expected when low-density phenomena are taken into account. A1l the commonly
used assumptions listed in Section 3.2.2 above have significant impact on the
results at p/oo = ,01. (The current carried by relativistic beam secondaries
is important at low densities only if the pulse is long enough for the full
build-up to occur.)
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4.0 NONLINEAR FIELD ALGORITHM DEVELOPMENT
4,1 Outline of the MAHD Approach

The MAHD (for "Moderate Amplitude Hose Displacement") e.m. field
algorithms were developed for application to a phenomenological model of elec-
tron beam hose dynamics in the nonlinear regime. The value of a phenomeno~
logical hose dynamics model in the 1inear (small hose displacement) regime has
been well demonstrated by codes such as PHLAP (Ref. 1); the extension to the
nonlinear regime is critical for studying non-linear saturation and propaga-
tion 1n non-uniform ambient density and conductivity channels. PHLAP and
other similar models approximate some of the physical details incorporated in
elaborate particle simuiations, but are fast-running and economical. With
careful calibration against comprehensive simulation codes (Ref. 7), phenome~-
nological models make parametric studies over extended ranges of beam
characteristics more feasible,

The MAHD electromagnetic (e.m.) field algorithms are required to
be fast in execution and sufficiently accurate for the applications of
interest. A1l field solution methods presently 1in use (DYNASTY, Ref. 14,
DYNADISC, Ref. 15, and IPROP, Ref, 7) employ a modal expansion of the beam's
fields about some axis of symmetry; MAHD {is not an exception. Because an
accurate representation of the fields for a beam that 1s strongly displaced
(say, by more than a Bennett radius) from the nominal propagation axis
requires an extremely large number of modes, validity for moderate displace-
ments only is claimed for the MAHD algorithms, This 1imitation is shared, in

practical terms, by other schemes using the modal expansion approach as well,

The present study considered two distinct physical approximations
in the formulation of the field equations . A first approximation considered
was the so-called "frozen approximation”™, A further approximation, developed
by Lee (Ref. 16), neglects the effects of the éz- and ﬁz-terms that appear in
the field equations. One has the further option of considering equations
written in terms of potentials or of dealing directly with the electromagnetic

fielcs., In this study, we compare three algorithms as follows:
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o Potential equations in Lee's approximation, o
o Field equations in the frozen approximation, and s
o Field equations in Lee's approximation. :

The basic solution technique employed in the MAHD algorithms is as i
follows: In all formulations of the field (and potential) equations for the ¢
® modal components, coupling between modes occurs in the field equations because
of the angular dependence of <, For example, the m-th mode of the conduction td
current, {GE}m, is just the coefficient of cos(m9) in the expansion of the 5:
product of the two series for o and for E, Besides contributions from the -
mode of interest, o E , other terms o E, appear, where |k £ 1] = ms This
coupling requires, in principle, that the equations for the amplitudes for all
modes be solved simultaneously. We have here instead employed a scheme close
to that used by Godfrey in IPROP (Ref. 7). In this scheme the modally-
resolved set of field equations are solved in mode by mode subsets. Contribu~
tions to the current from cross terms other than OoEm are regarded as approxi-
mately known and fixed for the m-th mode calculation. Cross-term contribu-
tions are refined in an iterative procedure involving repeated sweeps through
solutions for sequential mode values. The iterative scheme avoids the labor o
in the alternate approach of solving the very large set of equations generated :
by solving simultaneously for the field amplitudes in all modes. We have
found that only a few passes are required (two to three, at most) for good
accuracy; fast computer execution, and a nearly linear increase in execution

tine with the number of modes carried, result.

The remainder of this section will provide details of the three

® algorithms studied and of the {terative solution scheme that they all used. A
standard test problem, formulated by F. Chambers of LLNL and G. Joyce of NRL,
was used for comparison of the three algorithms among themselves and with

other solution codes; results of those comparisons will also be given.
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4.2 Formulation of the MAHD Algorithms v
l
l

A The MAHD algorithms are formulated with the frozen approximation -

"

and the modal expansion as a common basis., Given fields in the laboratory ¢
cylindrical coordinates (r', &', 2', t'), we make the usual Galilean trans- 2

formation to beam coordinates W

6 N
r=r iy

5 =g

: (4.1) -

. Z = Z' /

E = tl _ ZI :

- -

where the coordinate ¢ measures "beam time", or time elapsed since the head of 2
the beam (at £ = 0) passes an observer at some value of z'., The frozen g
approximation follows {mmediately from a transformation of the field equations ij

) to beam coordinates and the assumption that, in beam coordinates, fields vary -

L J

slowly with z; that fs: -
9 o« 9 (4.2) »
az 13 -

. .

Specific sets of field equations will be shown later in the section. -
The modal expansion is simply a Fourier-series representation of N
< the dependence of the various fleld quantities on the transverse coordinate ©.
We have assumed, to simplify initial development work, that the (x,z)-plane is
a symmetry plane for the fields, corresponding physically to hose displace-
ments in the x-direction only, and that the ¢~ and r-components of the beam
-

current can be ignored. With these assumptions, the primary beam current

Jz(r.E.i) {s given, for example, by:

N
g Y= E . : (4.3) e
Jz<f‘, ) ) sz(r" ) cosm "

m =0 .
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The beam—1induced conductivity O, the e.m. potentials A and ¢, and the e.m.
field quantities Er' Ez' and Hy are also even (symmetric) functions of 8, and
are given by analogous cosine-series expansions. The remaining field quan-
tities H, H, and E are odd (antisymmetric) functions of 6, and are given by
a sine-series expansion; for example:

N
= 1 (4.4)
H,(r,6,e) = E Hyn(rsg) sinme

m=1

A11 three algorithms use essentially identical methods to resolve
the (r,6) sources into modes -- as generally required by the algorithms -~ and
to form the modal amplitudes associated with the products of two modal expan=-
sfons (as required by the iterative scheme). We briefly summarize those
methods next,

The present algorithms all use straightforward Fourier series
expansion formulae., It was felt that, for small numbers of modes, the speed
advantage of FFT techniques was probably not sfignificant. The modal resolu-
tion procedure does in fact typically use only about 5% of the total time
spent by the solution algorithms as presently programmed (see Sec. 4.4).

By our convention, an even function o(8) is expanded as

N
(4.5)
ole) = Go+2°m oS mé
m=1

where

4

m
a - _1- f F(e)d”) (4.6)
0 d
0

-
o
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and

(4.7)

\Y

2 it
m S T / o(6) cosme de m
0

(The integrals in the above equations are evaluated using
Simpson's (3-point) rule in a direct numerical integration. If N is the
highest mode number to be used, 2N+1 points {in the finterval [0,7] are
typically used in the integration.)

A1l of the MAHD algorithms require re-expanding the products of
two modal series into modes. Assume that a(e) and b(s) are even functions
representable by a finite cosine series (maximum mode number N), and that c(6)
and d(6) are odd functions given by sine series of the same length N. We
ignore modes of higher order than N in the product.

Even-Even Products. The product al(g)b(g) is also even, and the
cosine series coefficients are as follows: -

m=20:
"abQ = ab,+ 3 % a,b (4.8a)
Lo 00 2 i 11
m2 1:
j ? 1 -l 1 N-m
'ab’% = aobm + ambo + ? & afbm_£+ §- ; (aibm+£ + am+£b£) (4.8b)
= —
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The first summation on the right is dropped if m < 1, and the second 1is
dropped if m = N,
e
0dd-0dd Products. The product c(8)d(e) {s even, and the cosine
series coefficients of ¢d are as follows:
m=_0:
®
‘cd'- = 1 i d (4.9a)
( ‘ 2 Cl 1
Jo 1=1
L
m> 1:
) . m-1 N-m
v bl - 19 g 4l (cod .o+ c . odyp) (4.9b)
| ’m 2 £'m-4 2 L m+d m+lT A *
=1 L=1
hd As before, the first summation on the right is dropped if m < 1, and the
second 1s dropped 1f m = N,
Even-0dd Products. The product a(s)c(o) is odd, and the sine-
o series coefficients for m > 1 are as follows:
‘ ) m-1 . N-m
ac, = a4 ¢ + = a.c + = (4.10)
‘m om 2 E § m-p 2 E(ag Cmg‘amgcz) :
< ' £ =1 £=1 '
Summatfons ere dropped for m = 1 and m = N as in the previous cases.
< As indicated earliier, we employ iteration schemes in which (for
exanple) conduction current in a particular mode, {oE}m. i{s separated into the
princigal contribution from the mode of interest, OoEm and other contribu~
tions., We thus cdefine the function Pcc(a,b,n) as representing the summed
L

~4




terms in the m-th mode of the product of the two cosine series for the even
functions a(o6) and b(g), except for the term aobm:

_ _ (4.11)
Pcc(a,b,m) = {ab}m aobm

Inspection of Eq. (4.8) above shows that Pcc(a.b.m) as defined may contain the
high-order term GZmbm, but contains no other low-order terms involving bm. Ve
also define the analogous function Pcs(a.c,m) to separate a Cn and other con-
tributions to the m—th mode of the product of the cosine series a(6) and the
sine series c(6). Note that 1n this case, a(g)c(e}) is an odd function of 6,
and 1s expanded in a sine series; there is no m=0 component in the product
expansion:

- _ (4.12)
Peglascsm) = fac) -ac  (m>1)

Finally, simply define Pss(c,d.m) as the m-th mode amplitude in
the (cosine) series expansion of the product of the odd functions c(6) and
d(),

- (4,13)
Pegle,dym) = {cd}

Explicit expressions for Pcc. Pcs' and PSs follow immediately from
Eqs. (4.8) - (4,10).

4,2.1 Reduced-Potential Algorithm MAHD1

The first algorithm we will consider is based on Lee's simplifi-
cation (Ref. 16) of the frozen approximation for the e.m. potential equations,
The assumptions leading to the final set of equations are equivalent to neg-
lecting beam-time derivatives of Ez and Hz in the e.m. field equations., It is
unnecessary to find the transverse component of the vector potential, Al' It
is convenient to define the remaining two potential components of interest as

A and :, where : {s the usual scalar potential, and
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A= Az - ¢ (4.14)
PY where Az is the axial component of the usual vector potential,
In RMKS units, Lee's equations for A and ¢ are
2 -7 R (4.15)
® Vi(A+ce) = Zoo5; o9,

> 2
= (v . + Z oV (4.16)
Vi 1Zo0) * (Vpe) + Zyovi¢

(A and ¢ in the above equations are expressed in units of volts; the beam=time
coordinate £ is expressed in meters, Z° is the free-space impedance of

376,7 ohms, and the units of the conductivity, o, are mho/m.) The e.m. fields
are found from the potentials via the following relations:

BA > > -
E, = - = H, = V. x A ]
: 3 z L (4.17) ]
- > - -> -
= - V = - U VA
El l¢ Hl 2 X | z[

(The units of £ and H in the RMKS form above and to be used hereafter are
volts/meter; the nore usual RMKS H~field differs from our usage by a factor of

->
Zo.) As noted earlier, Al and Hz are not calculated in this formulation,)

Equations (4.15) and (4,16) are recast into finite-difference form
by resolving them into m~th modes (0 < m < N). Potential quantities are
3 (l1<3zx< NR) and at the beamtime
points £1 (t =1, 2, ....). The differencing is centered at ({+1/2,]), t.e.,
on the radial gridpoints, but midway between £y and Eie1° An arbitrary radial

defined on a set of radtal grid points r

grid structure (in terms of spacing) {s assumed, and 3-point Lagrange dif-
ferentiation formulae are used generally to evaluate first- and second-radial

derivatives at rj.




Equation (4.15) is readily differenced. The lefthand term is
represented as follows: for the m—th mode,

SN _+%8_ﬂ. (A + o) (4.18)

Radial derivatives centered at rJ in the above equation are simply expressed

in terms of potentials at the points rj-l’ rj. and rJ+1.

The first term on the r.h.s. of Eq. (4.15) {s separated (as
suggested at the beginning of 4.2) into two portions:

120 B = 7o =Per (72, m) (4.19)

The quantity Zooo(aAm/ag) is represented as a simple difference, centered at

(i1+1/2,3). The function PCC {a,bsm) represents the summed terms in the m-th

moce of the product of the cosine series for the functions a and b, except for

the term aobm. PCC contains no other low-order bm mode terms, and is con-

sidered a known quantity in the solution of the m—th mode difference equations

derived here, Specific expressions for PCC and other related product expan-

sions are found from Eqs. (4.8) = (4.13).

Collecting the m-th mode fields on the left, Eq. (4.15) finally
yields

2

m

dy (Ap+ep) = Lo ——m =P (2,2 -7 (4.20)

0 zm

where
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The finite~-difference representation of Eq. (4.16) {is obtained in
an analogous manner to Eq. (4.15), The lefthand term of Eq. (4.16) is written

(see Eq. (4.18))

2 al [
1 3g\m 2

with finite-difference repesentations of the derivatives centered as explained

above,

The first term on the r.h.s. of Eq. (4.16) 1s a vector product:

T (2g) -V =
1 (Zge) Vo) =) ety 38

The radfal cerivative product is a product of cosine series, and is handled as

before:

The s-derivatives in Eq. (4.23) generate a Fourier sine series for each factor

in their product; for example

03¢ . 1 30

(4.21)

(4.22)

.13 (4.23)

Y 36

(4.25)
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Because the sine series does not include a monopole term, b'ﬂ does not contri-
bute in low order to the m-th mode of the sine-series product.

The rightmost term in Eq. (4.16) {is handled as the previous
cosine-series products:

‘2I~ 2

{ _ 2 (4.26)
‘Zo“vi‘:s Z6% 9ném * Pec (Zgog0 vy,

Collecting the m-th mode fields on the left, Eq. (4.16) finally yields

3A a0 3¢
2 m 2 0 m
4 E 2% Ytm " Lo I v
z (4.27)
- 3¢ 03 13¢ .
pcc(zoo’ ar m) + Pss r 36 *rae M

2
+ Pcc (Zoo, vl¢, m)

The finite-difference forms of Eqs. (4,20) and (4.27) are applied
§ (223 <Ny
boundary conditions must be imposed to complete the set of equations for the

to each of the interior gridpoints r ). Two inner and two outer

NR unknown values cf A and :. We adopt the standard bouncary conditions,

:0;

4,.28)
A (o) =0, ¢ (o) =0, for m>1; (

at r

1]
—
~

(1]
.-
<

3
—
Pl

Yy =0, for all m =
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The band matrix representing the set of 2 NR equations for the A's
and ¢°s has a bi-tridiagonal structure; the equations can be solved readily

via any of several schemes, including straightforward Gaussfan elimination.

The computational cycle for a particular field timestep is
i{1lustrated in Fig. 4.1, which outlines the major aspects of the {terative
approach, Equations (4,20) and (4,27) (with the boundary conditions of
Eq. (4.28)) are solved for potential amplitudes at successive m~values. At a
given point in a pass through the m-values, the arrays from which the PCC and
Pss terms are calculated involve recently-updated mode amplitudes for m-values
less than the mode of current interest, and "last-pass" amplitudes for modes
equal to and higher than the current mode. Updated amplitudes are entered for
use in the PCC and PSS computations as they are generated. Only a few {tera-
tions (two to three passes at most, for the test case considered) appear to be
required for accurate results. (A discussion of comparisons will be given in
Sec, 4.4).

4,2,2 Frozen-field Algorithm MAHD2

The next algorithm to be considered is a calculation that treats -
e.m. fields directly (rather than through potential functions) and with no
simplifications beyond the frozen approximation. Inserting the transforma-
tions (4.1) and the frozen approximation (4.2) into Maxwell's equations
immeciately ylelds the basic field equations treated in MAHD2 and (with
further approxinations) MAHD3:

. 2z )
UZ ( lXEl) - aT :
»1 ‘{
. SO :
uz(-EZ*"; ) = - = S
1 * o (4.29)
HE
C i - 2
UZ'(-i‘Hl) - ZOJZ t ,
f; 'Ew
1 501
U: ( 'HZ * - ) = ‘/’O“l + ~h:
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Figure 4.1.

Iterative computation cycle.
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The RMKS Maxwell equations are readily decomposed into modal _
& equations; maintaining the symmetry assumptions outlined at the beginning of
the Section (gyen angular symmetry for o, Jz. Ez. Er' and He; odd angular
4
symmetry for H_, H_, and E), we find: N
H \
< 1 me o .. 2 (4.30a)
[ r ar (rE.,)+ A 3z
13 13
__rm zn aH“T’I (4,30b) :
(Y 9f or ot s
3F . aH o
E . 8fp - MM (4.30c) :
3£ rozm 9k K
v
3
13 m _ aEzm
r 37 (Y‘Hrm) ey Hr‘m BNEY; + Zo {‘Jz + GEZ% (4.30d) BN
L - \
oH aH ot
rm r M |
® 56 Tar 3 + Z0 goE%(m (4.30e)
~
< oH )3
. . m - rm { - .30f
3 + - HZ 3% + ZO) VEY‘ . (4,30f)
L 3
L J
]
9
]
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Note that the mode amplitude {oEe}m in Eq. (4.30e) 1s for an odd-symmetry y
mode; the adjacent equations are for even-symmetry modes.

Because we have not included any components of the beam current
but Jz. the monopole-case (m=0) fields collapse to the TM set Ez. Er' and Hy.

N
Solutions for this axisymmetric case are quite standard, and will not be ,:

® considered in detail here. We will concentrate on the (m>1l)-modes in the
following discussion, %

Equations (4.30a-e) are differenced in a straightforward fashion, .
° First, note that Eqs. (4.30c) and (4.30f) are local equations in the sense -
that they do not involve spatial derivatives. Finite-difference representa-
tions of the "c" and "f" equations are thus centered at (1+1/2,j) and written
for each of the NR radial gridpoints., For one boundary condition treatment,
° special forms of "c" and "f" are required at r1=0. and will be discussed in :
connection with boundary conditions on the fields, below,

PRy A

., .
3
2 % ‘et G0 fn

Equation (4.30c), differenced with the indicated centering, leads
to a relation for Ezm(1+1.J) in terms of Eem(1+1.j) and Hm(Hl.J):

. -
. . - . . . . - . (4.31) ':
En(+13) = Gy [E_.,mh + 1,3) +H (G4 1,3)] Caj :
®
where 5
2r. .
< G5 = wot
- (4.32) )
CZj = Ezm(i,j) + C]J' ‘E:;m(i’j) + Hrm(1’3)]
L 3
Equation (4.30f) is formally integrated in time to obtain a
relatfon for Hzm(1+1,J) in terms of Erm(1+1.,j) and H__'m(Hl'J): .
L J
o
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1 ta [ Mon | om (4.33)
Epn( + 7o) = b (1,3) + 7o 5r * v Mt LoPec(osEs m) )
00 . .
i+h,]
L
yielding
) . o . o . . (4.34)
Hop (1 # 153) = Fy E (1 + 1:3) FoHgn (1 + 1,5) + Fy
i
where
|
ay = exp(-ZoooAg)
1-a.
] - = ——l
| L oA
- 0
AN (4.35)
b 1] MASKE .
J
or.
l.' Fo.o= —3 )
23 mAg
t F3J = FZJ(H(1’J) + PCC(ZOOL;’Er’m)) - 3JF1JEY.(13J) - HZ(1’J)
[

The remaining equations, which invoive radial derivatives, are
cast into finite-difference forms centered at (1+1/2,§+1/2). (Again, special
- forms of Eqs. (4.30a, b, d, and e) are written at (1+1/2,3/2), the first
radfal differencing cell, in connection with field boundary conditions; they
will be discussed later.) Equations (4.30a) and (4.30b) are differenced in
analogy with Eq. (4.,30c) (see Eq. (4.31) above), while Eqs. (4.30d) and
(4.30e) are formally integrated in analogy to Eq. (4,30f). The differenced

3

form of Eq. (4.30a) (dropping the subscript "m" and the index "{+1") is thus:
I
: AE(J + 1) - AE (§) + AJE (3 + 1)+ E () + H:(j 1)+ Hz(j) (4.36)
* = rhe,

=Y
4
o
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where Q
("
A roq 4% N
r. ...
A = _j__—-—
2 rj+12 Sr :
. . . (4.37) L,
Ao o= == v
> Tin, :
“~
LY
. rhs, = Hz(1,;|+1) + Hz(1,3) - A1E6(1,3+1) + AZE,&(MJ) >
- Ag(E (1,3) +E.(1,3+1)) R
.
. Equation (4,30b) 1s differenced analogously to (4.,30a), resulting in an A
v equation of the form: .
. . - i+ 1) - E_(3)) 2
E(5+1) +E()-HGHN KOG By(E(3 + 1) - &y (4.38)
. r Y' ~ N L] -
= rhsg =
-
o The differenced form of Eq. (4.30d) {is obtained by a formal .
integration ::
< 1 .1
E(i+1,]+5) =af (i, +3)
2 2 2 2 (4.39)
(1-a 13 7 £
+ ——:—(FH_)'—H -72J_-P ( T 9m)
L 3 Zooo r sr = o zm ¢cs O
L
o
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where the quantities enclosed in square brackets are evaluated in ordinary
difference form, centered by (1+1/2,j+1/2). Expansion of this equation leads
to

2., 2,0v . . . .
E,(3+1) + EZ(J) - P(3+:)AH (3+41) + £(3+:)AH (3) (4.40)

* £ (A (3+41) + H(3)) = rhsg

where

rhsp = a(§+L)(E,(1,3+1) + E (i,3)) + B(3+:)AH (1,§+1)
- B(3H)AM (1,5) - 8(G+)A5(H (1,3+1) + H (1,§)) (4.4D)

- 26(3+a) (23889, + P ((Z,0,E,m))

A precisely analogous procedure {s applied to Eq. (4.30c), beginning with a
formal integration:

L
E i+ 1,3 +7) = oE (] +3)
(4.42)
3H
(1= r z - \
- 7 -———-+—r+PCS(LO,E,m/

We finally obtain from (4.42) and equation of a form analogous to (4.38),
involving Hr' EE. and Hz.

Equations (4,.31) and (4.34) are used to eliminate Ez and Hz from
(4.36) - (4.39), generating in principle an incompliete set of 4(NR-1)
equations in the 4NR unknown fields Erm(1+1.J), Eem(1+1.J). Hrm(1+l.J). and
Hﬁm(1+1.J). Two outer boundary conditions and two inner boundary conditions

are required to complete the set of equations and make it soluble,
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Simple conducting-boundary conditions are always imposed at the
outer wall at 'SR = Rmax' namely

"max (4.43)

At the inner boundary, several sets of boundary conditions have
been tried. A satisfactory set appears to be

E - E. =0

HovHe =0 (4.48)
£, = 0
H, = 0

with the latter two equations replacing "c"™ and "f", As an alternative pro-
cedure, a more complicated procedure can be followed at the inner boundary,

ry = 0. Because of the 1/r-factors in Eqs. (4.30c) and (4.30f), 1t is
necessary to look more closely at the behavior of the fields as r approaches

zero, We find that, near r = O, Ezm’L rm. Hzm ﬁ«rm; and the transverse fields
m-1

Erm' Eem. Hrm’ and Hem all vary as r ~. Within the first radial grid cell,

we thus assume

_.m
E, (rsg) = r e n(rsg) (4,45)

m
3
—_
=
-
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3
L}
—_
[4¢]
—_
S
-
My
~—

and so on, for the remaining field quantities. We find that, at r = 0, the
fielc equations (4 30c) and (4,30f) are replaced by equivalent relations S

between the e's and h's:
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de Z‘hr '
. =. L (4.46) p
oL ne 13 1
aer sh ) 5
= 1oSg € = Sp *tmhy - L3, (4.47) ]

and that the remaining field equations yield the two independent boundary
conditions

r (4.48)

The remaining equations (4.,30a, b, d, and e) are written for the interval

" £rg ry in terms of the e's and h's, but are otherwise expressed in
finite-difference form with the handling and centering described above for the
"usual™ situation of the differencing cells between ry and Rmax‘ We thus
obtain a set of 4NR equations for the 4(NR—1) fields at rr = For T3r eee Typ )
and e, ec» h.» and he defined at r,. The axial fields EZ. H,» e, and h are Ej
" und by back-substitution in Eqs. (4.31), (4.34), and their analogues,

obtained from Eq. (4.46) and (4,47), once the solution for the transverse

fields is complete.

The MAHDZ calculational cycle is carried out exactly as the MAHD1
scheme discussed in connection with Fig, 4.1. Arrays used to determine the
conduction current appearing in the varfous modes are assumed known (except,
of course, for the OoEm contribution separated from the remainder) and updated
as the sequential solutions for mode amplitudes proceed. The solution to the
monopole-mode (m=0) equations simplifies to the usual axisymmetric field equa-
tion solution, and is carried out in a separate algorithm. The monopole solu-
tion is integrated into the iteration procedure, however; the contributions to
the monopole conduction currents {cErlo and {:EZ}O are evaluated from the yet-
to-te corrected higher-orcer moce fielcs, and solutions fer m > 1 follow the

monopole sclution in the iterative cycle, es they co in the MAHD] calculation,
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4,2.3 Simplified Field Algorithm MAHD3

In order to extend the range of comparisons possible, a variation
of MAHD2 was also constructed. The physical assumptions that led to the
further simplifications of the frozen approximation used in the Lee potential
formulation algorithm, MAHDl, amount, in field language, to neglect of the
terms aHz/ai and aEz/agthat appear in Eqs. (4.30a) and (4.30d) above,

The finite difference equations solved in the MAHD3 algorithm were
derived by modifying the Eqs. (4.30a) and (4,30d) as noted above. In pro-
gramming terms, the modifications are quite small., The differenced form of
Eq. (4.30a) shown in Eq. (4.36) {s replaced by:

AUE (5 + 1)+ AE (3) + Ag(E (3 + 1) + EL(3)) = rhsty  (4:49)

Since Hz no longer occurs in the above equation, it is used directly {n the

equation set to be solved,

Equation (4.30d) 1s no longer formally integrated, and Eq. (4,39)
is replaced by:

Bouncary conditions and the handling of the (r=0)-versions of Eq. (4.30c) and
(4.30f) (shown in Eqs. (4.46) and (4.47), respectively) are {dentical to
MARC 2,
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4.3 Aux{liary Models and Methods

I s

The algorithms discussed in Sec. 4.2 above are intended to inter-
face in a reasonably tidy way with other portions of a compliete hose dynamics
model. The principal fnputs to the field algorithm are thus quite simply the
two-dimensional field source arrays of primary beam current density and con- Y
ductivity that reflect the spatial (r,06) variation of those quantities at the
currently interesting &-step. Such field source arrays may be defined in any .
way that suits the physics of the desired model (e.g., analytic formulae, :

LR % 4

particle simulation results, or phenomenological models), The field sources K
are then passed on to the field-advancement scheme, which operates indepen-

dently of the details of their origin. At present only simple analytic pre-

b scriptions for JZ and o have been used to exercise the algorithms., Details of

those prescriptions for a standard test problem will be considered in the

following section,

4.4 Test Calculations and Comparisons

The algorithms described above were programmed in detail for
actual machine execution, Since intercomparison of the algorithms (yis a yis
their accuracy, speed, the effects of further simplification of the frozen
approximation, and differences between field- and potential- formulations of
the e.m, equations) was of most interest, a simple prescribed model of beam
current and conductivity was used in exercising the MAHD algorithms.

4.4,1 NRL Standard Nonlinear Test Problem

MELIRE i e ame s ee o L B ge JB it S ma

The beam model used in the test calculations was a prescription
developed by F, Chambers of LLNL and G. Joyce of NRL as a standard test
problem for nonlinear field algorithms. The beam cirrent density distribution
{s assumed to have a Bennett profile characterized by at -independent Bennett
radius parameter, rge The total primary beam current Ib(g) is given by the
analytic form

A L) = g tenh (—) (4.51)

® -103-
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characterized by the peak-current parameter Ib-pk and risetime parameter
£r = CT. The beam displacement 1is modeled as a Gaussian "kink™ of width Ey
and centered at %ﬁ the peak displacement {s Xo'

(4.52)

The conductivity is characterized by an infitial ambient background conduc-

tivity obkg' and a rate of increase directly proportional to the local primary
beam current density:

3 = o, Jz(r,e,g) (4.53)

Specific parameters for the Standard Test Case (STC) are summarized 1in
Tab]e 4-10

4,4,2 Results of Calculations

The Standard Test Case (STC) problem was run for each of the three
algorithms described above. Identical radial gridding schemes (60 gridpoints
on an expanding mesh to Rwa11 = 10 cm) and timestep intervals (A4f =2x10-1lsec)
were used., Five radial modes (m = 0, 1, 2, 3, 4) were used, and three itera-
tions per timestep (probably one more than necessary, see below) carried out.
In calculations run to £ = 1 nsec, typical elapsed CDC-7600 cpu times were
between about 4 and 6 seconds, for all of the algorithms. The MAHD]1 algorithm
was also reprogrammed to take some advantage of the vectorization capabilities
of the Cray~l. Calculations to £ = 2 nsec with MAHD]1 on a Cray-1 used a total
of 3.2 sec, with about 1 sec used in the output routine. Of the time not con-
sumed in output operations, most of the time was used in solving the 120-row
band matrix (240-row for MAHMD2Z and MAHD3) representing the differenced equa-

tions for the unknown potentials/fields, The algorithms appear quite fast in

-104-
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TABLE 4-1
L
SUMMARY OF STANDARD TEST CASE PARAMETERS
Beam Current
® Ib-pk = 10,000 amperes
T, = 1 nsec
(er =~ 30 cm)
® Beam Current Density
rB = 1l cm
Beam Displacement
v
Xo = lcm
To = 1 nsec
(F,o ~ 30 cm)
® T' = .25 nsec
(£, ~ 7.5 cm) -
Conductivity
g Opkg = 1-113 X 10~2 mho/m (10% sec™l)
ac = 350 mho/amp
<
3
®
@ -105-
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comparfison with the time (over two minutes) required for the same problem,
using the full-mode-set-inversion approach.

Elapsed time for the MAHD algorithms should scale with the product
of separate linear dependence with time and space grid size, number of modes,
and number of fterations. In the STC problem, differences between 1 and 2
iterations led typically to differences of about .5% in the calculational

results at £= 1 nsec; differences between 2 and 3 iterations were less than
.05%.

Detailed comparison of the results of the three calculations
showed nearly {dentical field profiles for MAHD1 and MAHD3. Individual field
values compared to better than 2% everywhere, with comparison to better than
.5% for most fields and locations. This agreement is encouraging from a
programming standpoint, since the MAHD1 and MAHD3 algorithms, although con-
taining the same (or equivalent) physical assumptions, are quite different in
analytic and programming details. Comparisons with a few data points avail-
able from DYNASTY results for the STC, as quoted in Ref. 15 , are also en-
couraging. The results concern field/potential profiles along the beam=
displacement (X-)axis at &= 1 nsec, the time of maximum beam displacement in
the STC (see Table 4-1). Values at r = 0 and maximum/minimum values along the
outgoing radfus at 6 = 0 are tabulated for comparison in Table 4-2, Dif-
ferences, which are not large, may probably be attributed to differences in
tine- and space-gridding and details of the source (current and conductivity)
algorithms in DYNASTY and the MAHD codes. More detailed comparisons with the
DYNASTY-11ke field solver in the DYNADISC code are anticipated.

Detailed MAHD2/MAHD3 comparisons are shown in Figs, 4.2 through
4,6, The figures show STC results at £ = .5 nsec and £ = 1 nsec for Er- and
He-fields. Monopole and dipole modes are plotted separately, together with
the "cumulative" values representing actual radial profiles aiong the direc-
tion of beam displacement, 6 = O,

Radial E-fields are compared in Fig. 4.2 at £ = 0.5 nsec, The
monopole fields are essentially identical from MAHD2 and MAHD3, but cif-
ferences in the dipole modes are fairly large and significant inside the beam.

A similar comparison at & = 1 nsec is shown in Figs, 4,3 and 4,4, Sizeable
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L
Ez(O)
° Ez(max)
Er(min)
Er(max)
v JB(O)
JB(max)
Zoa(O)
- Zoc(max)

-6.23
=2.73
-5.67
+2.91
6.04
2.39
1365

1471

........

TABLE 4-2

-----

COMPARISONS WITH STC*

MAHD1

-6.57
-2.60
-4.69
+3.05
6.05
2,26
1359

1460

(5)
(6)
(5)
(6)
(6)
(7

MAHD3
{E.H;Lee)

-6.58 (5)
-2.60 (6)

-4.75 (5)

+2.97 (6)

MAHD2
SE.M; full)
-6.07 (5)
-3.00 (6)
-8.01 (5)
+3.31 (6)

*Freeman & Wagner, SAND84-1785 (RMKS units)
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Figure 4.2, STC E,. profiles at 7 = .5 nsec. The m=0 fields for
& both frozen and Lee approximation are almost identical.
Differences in the m=1 modes do affect the cumulative-
field comparison inside the beam, however.
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Figure 4.3,

Comparison of monopole and dipole amplitudes.
Er amplitudes vs, radius at £ = 1 nsec.
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Figure 4.4, Comparison of cumulative fields (-=0) at © = 1 nsec.
(Monopole and dipole components were compared in
Fig. 4.3.)
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Figure 4.5, STC H.-profile at 7 = .5 nsec. Monopole components
domindte the fields, and differences in the m=1
fields have little effect on the cunulative profiles.
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Figure 4.6, Contributions to H, at £ = 1 nsec. The frozen-field
and Lee approximations give essentially identical
results here; separate and cumulative contributions
to radial profiles are shown for the frozen-field
algorithm,
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differences appear there, both in the monopole and dipole modes, and therefore
again in the cumulative fields (plotted separately for clarity in Fig. 4.4) as
well, Outside of the beam (here, beyond about 2 cm), the fields again are
similar,

Comparisons for the magnetic fields are typically closer,
Figure 4.5 shows He-prof11es for the STC at £ = .5 nsec. The relatively small
differences in the dipole-mode fields do not significantly affect the cumula-
tive fields. At £ = 1 nsec, there is essentially no difference between the
MAHDZ and MAHD3 results; only the results for MAHDZ are shown in Fig. 4.6,
which shows the relative ampliitude for all five modes carried, as well as the
summed profile.

Since the magnetic fields dominate the particle dynamics of the
beam, the E~field differences shown in the calculatfonal results may not be
critical. On the other hand, breakdown effects in the beam (not modelled in
the STC) may differ. Further, the higher-mode differences are more important
for dynamics effects than the (m=0)-f{elds, so that further comparison cal-
culations would be of {nterest.

4.5 Summary

Three alternative formulations of the nonlinear e.m. field
solution were developed and programmed. Two formulations, one based on Lee's
approximate potential equations, and another using an equivalent treatment
explicitly considering e.m, fields, compared extremely closely with one
another, and quite well with a few data points available from a DYNASTY
calculatifon. The third calculation contained the unsimplified frozen-field
assumptfon as a physical basis for the solution formulation. Moderate
differences in the ffelds found with this model and with the previous two
appear to exist. A1l of the models use iteration to find a satisfactory

solution to the coupled-mode aspects of the probiem; the fteration appears

accurate and extremely fast.
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