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I. Introduction
Connectionist networks consist of simple elements which communicate by

sending their level of activation over links to other elements. Connectionist units
(hereafter just "units") are patterned after neurons, but they are not exact neural
models. They have a small number of states and perform simple computations.

, The behavior of a network is determined by the pattern of connections and the
weights on the links. Connectionism has been gaining popularity among some Al
researchers and other cognitive scientists (special issue Cognitive Science, vol. 9.
no. 1, Januar\-March 1985: Rumelhart & McClelland, 1986).

As with other computational models, it is important for the researcher to be
able to implement and test. The Rochester Connectionist Simulator (forthcoming)
evolved to allow the user to build and execute connectionist netorks. It is
designed to be as flexible as possible. Each unit can compute a different function
of its inputs (functions are provided by the user), and links ma. be made arbi-

- trarily. This flexibility exacts a cost in efficiency. Each unit and link must be
explicitly represented by a data structure. Efficiency is an issue as connectionist
networks can easily grow large enough to overwhelm any existing computer. (The
human brain presumably computes in the connectionist style and uses billions of
neurons with thousands of connections each.)

A version of the simulator was implemented on the BBN Butterfl\ Multipro-
cessor in order to increase the size of networks which can be simulated efficienth.
The Butterfly at the University of Rochester consists of 120 Motorolla 68000 pro-
cessors with a Megabyte of memory each. The speedup achieved is quite good, as
described in section 5.4.

The primary purpose of this report is to describe the implementation of the
connectionist simulator on the Butterfly. To that end, an overview of the connec-
tionist approach is given in section 2. Section 3 describes the simulator from the
user's point of view. Section 4 provides a brief overview of the Butterfly and
describes the implementation in detail. A basic familiarity with the Butterfly and
its operating system, Chrysalis, would facilitate a careful reading of this section.
Details of the implementation are given because of the novel architecture and
because this report is, in part, intended as a guide to other Butterfly programmers.
But this section can also be read at a more general level ignoring the particular
Chrysalis calls used. Section 5 presents performance data for some sample net-
works. Section 6 describes ideas for future improvements.

2. Connectionist Networks
A detailed discussion of connectionist models may be found in Feldman &

Ballard (1982). In this section, I will attempt to give enough of an overview to r
allow the reader to understand the requirements of a simulator. The connectionist
model is not firmly fixed. Generally speaking, the simpler the better from a
scientific standpoint. Simple models can be more difficult to work with however.
The philosophy of the simulator to give the user as much freedom as possible.
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Connectionist networks consist of some number of simple units with links
between them (see Figure 1). Each unit has a potential, or level of activation. In
Feldman & Ballard (1982) this is a real value in [-10,10], though the simulator does
not impose this restriction. Each unit also has an integer output value in the range
[0,101 which is typically the nearest integer to the potential but can include, for
example, random perturbations. The output is meant to correspond to the rate of
firing in a neural model. This output %alue is transmitted down all links emanat-
ing from that unit. Each unit also has an internal state, which can influence its
response to inputs. The number of internal states should be fairly small in order
to keep the units "simple". The units are updated synchronously. Each computes
a new potential, state and output as a function of the inputs and the old potential,
state and output.

The links may have weighis. so the value reaching a unit is a function of the
output of the source unit and the %eight on the link. Typically, a negative weight
means the link is inhibitory: a positive weight means the link is excitatory a
weight of zero is equivalent to no link. The weighting occurs at the receiving unit.
Weights may be changed dynamically as a function of the old weight, the potential
and state of the receiving unit, and the histor. The history of a link is a single
value which is meant to encode recent activity of the link. It was added for
modelling learning algorithms in which weights are increased when the unit is
active and the link has been active recently. At each step it is updated as a func-
tion of the current input and the old history.

In addition, units may have more than one site at which to receive inputs.
This allows differential treatment of inputs. For example, a unit might have two
sites: one for inputs from Area A, the other for inputs from Area B. The unit
function could specify a positive potential if and only if it is receiving input at
each site. To achieve this behavior without sites, it would be necessarN to use
more than one unit since the links themselves bear no indication of their origin.
Figure 2 illustrates the model described.

3. The Simulator
The major features of the simulator's user interface will be described in this

section. It is still being developed, so changes will no doubt occur in the near
future. A more detailed description with example networks will appear in the
forthcoming user manual. Figure 3 shows the basic configuration of the Butterfly

2. ."simulator. There is a single control program which interacts with the user. There
is a sir program which runs simultaneously on several processors. The sim pro-

* w grams manipulate the network; the control program interprets user commands and
runs the sims.

3.1. Philosophy
The simulator is meant to be as general purpose and flexible as possible.

There is no attempt to force any particular model on the user. However, decisions
had to be made; the kinds of networks which can be simulated are essentiall)
those described in the previous section.
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The behavior of the units is defined by functions written by the user. The

functions are written in C and loaded with the simulator. They are passed the
structures defining the units and links and make whatever changes ai-e desired.
This does not mean that we accept a definition of connectionist models which
allows all the manipulations possible.

3.2. Integer arithmetic
Because the Butterfl) does not have floating point hardware, we have to

decided to represent all values as integers (shorts, actually). In order to pirovide
more precision, users can expand the interval used in their model. For example,
instead of using potentials in the range [-10,101 they can use integers between
-1000 and 1000. Weights are more difficult to deal with as multiplying by 0.25
cannot be mapped to an integer multiply. One possible convention would be to
consider the weight as a fraction of 100. The site function would first multiply the
input by the weight and then divide by 100. These manipulations are unpleasant.

but provide about an order of magnitude speedup.

3.3. Network Representation

3.3.1. Units
The basic data structure is an array of units. The fundamental identification

of a unit is by its index in the array. The units are represented by a C structure:

typedef ,hort Output:
typedef struct unit{

char * type:
/* these two fields are for internal use */
/* they point to this unit's name table entry */
short nametab:
short name_offset:
int (* unitf): /* function pointer */
short init potential:
short potential:
short rest.potential:
Output output:
short initstate:
short state:
unsigned int sets: /* set membership bits a/
unsigned int ubits: general purpose bits */
Site * sites: /* array of sites */

I Unit:

The type is just a character string. It serves no function beyond user
identification. Unitf is a pointer to the user-supplied unit function. How it is
linked will be described in section 4.10. Init..potential is the potential the unit is
given when the network is reset Potential is the unit's current potential.
Rest-potential represents the potential of the unit when at rest. It can be used, for
example, to dynamically change the threshold of a unit. Output is the output of

*. -.w-3



the unit.
lnit slate is the state the unit is given when the network is reset. State is the

unit's current state. The states are shorts instead of character strings for efficiency.
The user can define a mapping between state numbers and symbolic descriptions
to make output more meaningful. The same mapping can be represented b
macro definitions in the unit function, e.g.

#define EXHAULSIE) I

if(unit->statc FXHALSTED){ ... I

4Sets is a bit vector representation of the sets to which this unit belongs. Sets
are a recent addition to the simulator. The. are not intended to influence the
behavior of the netorks during a simulation, but to gi~e the user more control
over displaying and modifying units. However, they may also be useful for
debugging networks. Since the user code has access to the set vector, it could do
such things as ignore units in certain sets or freeze the execution there. Exacth
how useful sets prove to be will be determined in practice.

Ubits is a vector of general purpose bits. One is used as a show bit, which
marks the unit as one to display when the user does a show. One is used as a
change bit: it is set by the simulator if the potential of the unit changes during a
step of the simulation. The other bits have not yet been fixed. Sites is a linked
list of site structures.

3.3.2. Sites
There must be at least one site if the unit is to receive inputs. The sites are

represented by the following data structure:

/* site */
typedef struct site{

char * name:
int (* site-)):
short value:
Link * inputs: /* array of inputs */
struct site *next:

} Site:

W. Name is a string which is the name of the site. Site.is a pointer to the site func-
tion, which processes the inputs to that site. It assigns a value to the site. The unit

function typically looks only at this value and not at the inputs directly. Of
course, the user function can get at the inputs if desired. Inputs is a linked list of
input structures representing the inputs to the site.

3.3.3. Inputs
. The inputs are represented by the following structure:

4
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/ link */
_tpedef struct link{

int (* link- f):
short weight:
short hist:
Output * value:
int fromunit:
struct link *next:

I Link:

The %eight and histor. of the link are stored in weight and historv; Linkjf is
called each step of the simulation. It modifies the weight and history, if desired.
The ouput of the unit at the sending end of the link is pointed to by value. [or
the user functions. (*%alue * weight) is the weighted input. The index of the send-
ing unit is stored in ftom uni for displaying. This allows backward tracing of
links (forward tracing is all but impossible).

3.4. Building Networks

3.4.1. Sequential Building
Because of the large size of the networks which can fit on the ButterflN, we

are most interested in building the networks each time they are run, though we
will probably add the capability to load networks from UNIX files (or from
Chrysalis files when we get them). This will be necessary to preserve changes
which occur in networks which learn.

- - Networks are built in the sequential simulator b. user programs written in C.
The same routines will work with the Butterfly simulator. They must be loaded
with the control program. They build the network sequentially across the switch.
The user interactiveN invokes the routine with the call command. The following
functions are provided by the simulator to facilitate building networks:

int MakeUnittype. func.ipot.pot.rpoLout.istate.state.sets.ubits)
char *type.*func:
int ipotpotrpot.out.istate.state:
unsigned int sets.ubits:

AddSite(unit,name.func)
int unit:
char *name.*func:

MakeLink(from.to,siteweight,history,func)
O int from,to.weight.history:

char *func.*site:

Here is a sample program which builds a network with random connections.

'5
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# include <chrs.h>
# include <stdio.h>
# include "control.h" /* this program is run by the control process */

build()

int ui.junclc:
char buqI20]:
long randomo:

printf("\nentcr # units #links each: "):
scanf"%d %d".&unc.&lc):

/* make units */
for(i = :i < unc:i+ +) {

u = .MakeUnit("neuron"."unitfunc"0,12,130,1,0.0):
AddSite(u."site 1","sitefunc");

/* make links */

for(i = O:i < unc:i+ +)
forj = 1: j < = lcj + +)

MakeLink(randomo%unc.i."sitel".10."link-func"):

...

Each unit has only one site named "sitel". Notice that there is no notion of which
processor the unit is going to be created on. The sims are filled up in order. The
index returned by MakeUnit is the global index of the unit. This index is used to
identify the unit in calls to MakeSite and MakeLink.

3.4.2. Parallel Building
Because of the large size of the networks, building them sequentially can take

three or more hours (see section 5.2). In order to allow the user to build networks
in parallel, I have added an rcall command -- "rcall all rbuild 30" causes the user
function rbuild to be called for each sim with the argument 30. Rbuild must be
loaded with the sim program. The sims know how many other sims there are and
how many units have been allocated for each (they are all the same), so simple
networks can be built in parallel. This build runs in a different environment and
the functions have different implementations than the build program which is
loaded with the control program. It can only make local units. The indices used
are local. The one exception to this is the source unit of the link, which is a global
index.

# include <chrys.h>
# include <stdio.h>
#include "sim.h" /* this program is run by the sim process '/
rbuild(lc)

int ic;

6a
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int u.i.j.unc:
char buq20]:
long randomo:

srandom(.SimN umber): /* initialize random number generator */
unc= NumberOtSims * UnitsEach: /* global unit count */

/* make all local units */
foroi = 0:i < UnitsFach:i+ +) {

u = M akeUnit("neuron.",unitfunc.O.1.2.3.0,1,O.0):
AddSite(u."sitel" .site-func"):

/* for each local unit. make Ic random links */

for(i = 0:i < L nits-ach:i +
tor(j = 1:j <= lc:j±+)

\Iakel-inkrandomo' %unc.i."sitel".1.2."linkfunc"):

Because all the activity is local, building networks in parallel can be faster by more
than a factor of 100 when 100 processors are used.

More complicated networks may prove difficult to build in parallel. It ma.
be easier to build the units sequentially and then make the links in parallel. A
substantial time savings would still be realized since most of the build time is used
for links.

3.4.3. Naming units
Units may be named individually. In addition, a consecutive block of units

may be given a single name and treated as a vector. The function NameUnits
declares a name. The name goes into a global name table and may be accessed
from any sim or the control program.

NameL nit( name.t. pe.index.length)
char *name:
int type.index.length:

Type is either SCALAR or VECTOR. Index is the global index of the unit (or

first unit of the vector). Length is for vectors. When a member of a vector is
displayed, the name is given with the index in brackets, e.g. "levell[39]". The user
interface recognizes names in this format as well.

The names are stored in a distributed hash table. Lookup is fast enough for
build programs to efficiently use it when making links. Eventually, we would like
to support more sophisticated unit data structures.

3.5. Simulating Networks

7



3.5.1. Start up
The user must provide a build function and the unit, site, and link functions.

In addition, a function which provides the mapping from function names to
pointers is necessary (described in section 4.10). We have a utility which will
automatically build one from a list of user functions.

These functions must be loaded with the simulator. There are two programs
used by the Butterfly simulator: a control program and a sim program. A tem-
plate must be made for each. A sequential build function must be loaded into the
control template. The other functions are loaded into the sim template. There are
shell scripts to do this, so the user types something like

makebsim random.funs.o68 /u/bbin
makebcontrol build.o68 /u/bbin

The first argument is a file to be loaded: the second is the directory in which to
put the executable .68 files.

To run the simulator, the user types "control" to bshell to start the control
process. It will ask how many processors to use (there will be one sim process
each) and how many units to allocate on each. Then it starts the sim processes.
When internal startup communication is done, the control process interacti elv
prompts for commands and execute them.

3.5.2. Command Interface
Many commands expect a unit identifier (<uid>). This can be either a global

index, a unit name, a range of units, e.g. bottom[3] - bottom[100], or a set name.
Some of the commands available are:

reset - resets the network
go [<count>] - does count steps of simulation
list units - lists key information about each unit
display unit <uid) - gives complete information about the specified unit(s).
show on I off - turn oi or off the show facility (explained below)

... show pot <num>- when showing, display all units with potential greater than
<num>

pot <uid> <num> - set the potential of the specified unit(s) to <num>
out <uid> <num> - set the output of the specified unit(s) to <num>
state <uid> <state> - set the state of the specified unit(s) to <state>
call <func name> [<num>] - call the named function, which must have been loaded

S~ISwith the control program. If num is present, it is passed to the function.
otherwise 0 is passed.

-- " rcall <which> <func name> [<num>] - call the named function at the specified sim.
->- If <hich> is "all", call it at all sims.

pipe <on> I (off> - determines whether output from show, list and display are
piped or just written to the terminal. See section 3.5.5.

' pipe "(command>" - which command to pipe the output through if pipe is on.
read <file> - read commands from the file.

~ .~ 8
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3.5.3. Execution
When the go command is given, the units are simulated in sequence. The

outputs they see are from the previous step, so the order of simulation is not
important. Each sim does the following.

for each (local) unit, u
for each site of u. s

call the site function, passing it the site structure
for each input to S

call the link function,
passing it the link stnucture and the unit structure

call the unit function, passing it the unit structure

Notice that the link function is passed the unit structure. This is because the
. weight change may depend on the state or potential of the unit. When each siM

has finished, they write their new outputs into the output arrays used for commun-
ication.

3.5.4. Showing

If show is turned on. the units which have their show flag on or which have a
potential greater than the show potential are displayed after each step (or every n
steps) of the simulation. This has been adequate for small networks, but we are
looking into more sophisticated control over display. Note that the user functions
can set the show bit. It could be set, for example, so that only just-changed units
of a certain type are shown. And the user functions can themselves display infor-
mation.

3.5.5. Piping output to UNIX
The standard interface for Butterfly users is a Sun workstation, which has the

capability for several windows, each running a UNIX shell. Using a local package
called pipsys, it is possible to start a program in a window which will wait to
receive popen and system calls from the Butterfly. When the simulator pipes its
output, the control process opens a pipe via the waiting program to the specified

*I UNIX command. The default is "more".

3.5.6. Reading UNIX files
Popen can also be used for reading from a pipe. In order to use the read

command. the pipsys program must be running. "Read setup" does a popen("cat
* setup","r"). The contents of the file are treated as user commands. At the end-

of-file, commands are once again read from the terminal. Read is useful for
involved or often-repeated setups, running demonstrations, etc.

3.5.7. Sophisticated manipulation of networks
The command interface is currently fairly primitive. The only modification

commands which exist allow the user to change the potential, state and output of
units as well as reset the network. Structural changes are not possible, except

9
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through further build calls in user code. With smaller networks, changing the
,- build function, recompiling and rebuilding takes only a few minutes. With the

huge networks possible on the Butterfly it could take hours. Debugging code on
smaller networks when possible will help, as would more sophisticated dynamic
modification.

Some networks may benefit from a specialized user interface. There are func-
tions corresponding to the interactive commands which can be called from user
code. For example, the input for a parsing network may be an English sentence.A user function could map the input words to the corresponding units with a
name lookup, set the potentials, and run the network the required number of
steps.

4. The Implementation

4.1. Overview of the Butterfly
This section Aill give a brief overview of the architecture and operating svs-

tem of the Butterfly. Our Butterfly has 120 processor nodes, each consisting of an
8 Megahertz Motorola 68000, 1 Mbyte of memory, and some switch hardware.
The processor nodes are connected by a high speed switch consisting of 4x4
crossbar nodes laid out a, a radix four Fast Fourier Transform or "butterfly" net-

- •work.
* The hardware allows mappi:,s between segments in a process's address space

and memory on a remote processo,,. Each process is limited to at most 256 of the
available hardyare Segment Address &et-gisters (SAR), %hich means that at most
256 remote memory blocks may be mapl I in to its address space. Each block is
no more than 64 Kbytes, so only a fraction ." the remote memory can be mapped
in at any one time.

If a process wants to sha,'e memory, it must ivqt make a memory object with
the Chrysalis MakeObj call. ibis returns an ObjecL1 Identifier (OLD) which pro-
vides a unique, global identificatiu., of that object. Al.. other process with that
OlD may map that memory into its aldress space (if the pi, tection allows it).

Besides shared memory, the simulator uses events to comi, linicate. A process
which creates an event receives an Event Handle (EH) which it v --v share. Other
process with the EH may post the event, which will be detecteca Sy the owner
whenever it checks on that event (there are no asynchronous interrupts). A posted
event contains one word of data. There is also a more flexible messag, passing
mechanism called a dual queue, but this is not used directly by the simulatoi.

A memory reference which must go across the switch is slower than a lox.
memory reference by a factor of two for writes and a factor of six for reads. Thus.

Vif remote memory is going to be accessed often, it pays to make a local cop).
There is an efficient mechanism for moving blocks of contiguous data across the
switch called a block transfer.

* 10



ic" 4.2. Overview of the simulator
The control process typically runs on the king node. The n sim processes run

one per node. They are numbered 0 through n-1 (see Figure 3). Each is passed
its number and the number of sims in the command line.

*" 4.3. Network Representation
The unit array is cut into equal length pieces, one per sim, so it is easy to

map a global index to a sim number and offset. Each sim has a corresponding
output array used for communication. Each sim maps in the output arrays of the
other sims (see Figure 4). There is a local variable OutputArrays which is an array
of arrays of shorts. OutputArrays[i] is the output array of sim i mapped in as
described below%. Code which accesses OutputArrays[0[31 is going across the switch
to the node sim 0 is running on (unless it is already there) and retrieving the out-
put of the fourth unit there.

Site structures are stored as a linked list attached to a unit structure and input
• -structures are stored as a linked list attached to a site structure. Linked lists make

dynamic creation easy.

4.4. Communication between control and sims
Control handles the user interface, It reads and parses the commands and

sends them to the sims when appropriate. The communication scheme used is
simple but quick. Control allocates a command structure which has enough fields
to represent the data of any command. This is mapped in by each sim. Since
they share one command description, it is not possible for two sims to be execut-
ing two different commands at the same time. There seems to be no serious
memory contention for this one structure. Commands which execute in parallel
have, as it happens, little data, and it is read only once. For make commands,
enough data must be sent to justify a block transfer of the command structure to a
local copy.

Each sim creates a command event and gives it to control. When control
wants to send a command, it posts the event(s) and waits for the sims to finish.

A- .t When a sim receives a command event, it executes the indicated command and
increments a global short variable. Control busy waits on the global variable.

- .* Here is the routine sendall, which sends the same command to all sims. The glo-
- . bal command structure has already been filled in. Notice that the event data is the
-_ command code. This is enough for many commands; the command structure will
* ,not be consulted.

/ in control /
sendall()

int who:

.II
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/* tell all sims to eXecute the command */
for(who = O:who < no-sims:who+ +){

Post_EN ent(simevents[who](long)cmd->cmd):

/* busy wait for them to finish */
while(*icount ! = no-sims){

/* check to see if an% have died */
ifOMReceieFcent(deathE.NUIl.1) ! = NUI.1)

fprintfl stderr."termination due to death of child sim\n"):
exit( 1):

% Sleep(10): /* do not want to monopolize icount */

*icourt = 0:

There is a similar function sendone, which sends a command to a single sim.
It is used when the command involves a unit on one sim or to send commands
synchronously: e.g. a list command must finish on sim 2 before beginning on sim
3 or the output will be mixed. Here is the code from the sims which waits for the
above event.

/* in sim */
while(1){

e = MWait(CommandE.(long)O):
cmd = (int)EventData(e):
switch (cmd) {

case SHOWPOT_C
show-pot = Cmd->idata: /* Cmd->idata set by control */
break:

Reset.Event(CommandE): /* so it can be reused */
Atomic.add(lcount.1): /* let control know you are done */

, } /* while(1) */

4.5. Start up

4.5.1. Stage one
There are three stages to the start up procedure. The control process is

started by the user. It prompts for the number of sims to use and how many units
each is to allocate. It then makes and declares global names for several objects the
sims will lookup and map in. It must make an array of Event Handles. Each sim
will place an event in its slot which control will use to inform it there is a com-
mand.

12



sime~entsOI) = Make_Obj(O.-I.sizeo1EH) * no-sims,RWrw):
simevents = (WH *) MapObj(simeensOl).O.RW_r_):
Name_Bind("Elist",sime en LsOl). NTYPFOBJ): /* Chrysalis name table /

Similarly. it makes and names a command structure. Each sim will map this
in and refer to it for command arguments when necessary. Control also makes
and declares an object large enough to hold nosims OlDs. This will be mapped
in by the sims. Each will write the OlD for its ouput array here. Control calls a

- name table initialization routine. which will be described in section 4.7. The last
global object control makes is the short variable Icount. This is incremented b\
the sims when the) finish a command.

Control nov, starts all the sims. This marks the end of stage one. The call to
LoadStart in the following code starts the named program, downloading it if
necessary. There are some special considerations which should be pointed out.
First, the sims are started as child processes so that they will all be stopped if con-

4/ trol dies. Because each sim maps in the output array of every other sim and
because of the number of mallocs they do when building a network, they need a
large number of SARs. LoadStart asks for 150 (which actually grabs 256). Also.
because of the large number of mallocs done, cp-msegsize is set to the maximum
of 64000. This could result in out-of-memory errors when there are actuall%
blocks smaller than 64000 left (we may fix this in the future).

/* in control */

deathE = MakeEsent(O.O.0,O); /* event is posted upon death of child */

/* start all sims */
for(i = 0:i < no_sims:i+ +)J

char *argv[51,bufl[20l.but-[20.buf3[20]: /* to setup command line /

arg [O = "sim":
sprintffbufl."%d".i): /* this sim's number */
argvill = bufl:
sprintf(buf2."%d".no-sims): /* number of sims */
argv[21 = buf2:
sprintftbuf3."%d",units each): /* number of units to allocate */
argv[3= bu=3:
LoadStart("sim",nextprocessorO,4,argv.deathE);

.13
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/* wait for them all to finish stage two
while(*icount ! = no-sims) I

if(MRecei'.eFvent(deaithF.N'I.1 )I= NUlIj4
fprint 0 stdlerr trm ination due to death of child\n"):
ex it( 1):

Sieep( 10):

*icount =0:

4.5.2. Stage two
Stage two of the startup Is carried out by the sims %khile control busy waits.

Each sim interprets its command line arguments. They find and map in the global
Output array OlD table and enter their ow~n output array 0lD.

/ * i f] S im s / TOlisriOll) = Find\ aILI(OlINC.N IX PFOBJ):
Olist =(Oi1) *)MapObj(OlistOlI),0 RW_r.k_)-
NIv0utputArra\OlI) = \ake-Obj(0. -1, last_uitsizcof(OutpUt). RW_r4 _):

OliSt[Mv.SiMNLumberi = \y~utputArrayOl D:
/* Outputs is the local name for this Sim's output arra ~
Outputs =(Output *) Map-Obj( MyOutputArravOl..RWrA-:

V. Each sim maps in controls event array, enters an event, and unmaps the arra%.
Each sim maps in the command structure and calls its name table initialiiation

* routine (section 4.7). Finally, each simn maps in the variable Icount. They then
increment Icount, do some local initialization, and enter a command loop. This is
the end of stage two.

4.5.3. Stage three
When the sims finish stage two, control sends each a mapin command v"hich

causes them to map in the output arrays of every other sim.

/* in sims ~
for 0i= 0. (N umberOfSims: i ++)

if (i !=MySimNumber) /* my output array already mapped in ~
OutputArrays[ij = (Output *)MapObj(OlisjijO.RW_rw_):

else OutputArraysfij = outputs:

When this commands completes, control enters the command loop where it
* prompts for, reads and executes user commands.

4.6. Building networks

4.6.1. Sequential building
Build programs which run with control send make commands across the

-. *..switch. The fields in the global command structure are filled in with the relevant
values for the unit, site or link and the command event for the appropriate simn is

*114

t. 14e



posted. Control knows how many units have already been made (by it), so it
knows where the next one goes. It sends its idea of which local unit structure
should be used for the unit being made. If it is not consistent with the sim an
error is generated.

The sim command interpreter calls the local make functions with the
appropriate data from the command structure. When a unit is being made, the
structure already exists and is just filled in. When a site or link is being added.
the space must be allocated. In order to avoid doing a malloc for each site and
link made (to save time and space), space for several is malloced when there is a
need and individual structures are assigned from this.

4.6.2. Concurrent building
When networks are built concurrently, control loses track of what is %khere.

The sims are each in charge of their own piece of the unit array. The local make
functions are called directly. They can. perhaps, orient themselves by doing name
lookups.

4.7. Global name table
Each sim allocates a piece of the name table. The table is an array of name

structures:

typedef struct n.iLdesc {
char name[22]: /* Pointer to name */

-I.. short type: /* Type of unit {o, 11 /
Sint index. /* Index of first unit */

size: /* Size of vector if type 1 /
NameDesc:

Each local table holds 2039 records, the largest prime number of records which
will fit in 64 Kbytes of memory. When the entire Butterfly is being used, there
will be over 240,000 records all together, which should be enough even if every
unit has a distinct name.

Much as with the output arrays, control makes and names a table called
Tables during start up which will hold the OIDs for each local name table. Every
sim maps this table in, and enters the OID of its name table. The name tables are

4? not mapped in by each sim because of SAR scarcity, but each sim has the OlD for
each table.

Each sim also allocates a short and puts the OlD for it into another global
table called Locks. Locking is used when inserting names into a table to prevent
two processes from finding and using the same record. Locking is not necessary
when looking up names.

When a name is declared, the location in the table is stored with all units
which have been named. This allows efficient mapping from unit index to name.

. i The following is the hash function used:
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n =name:

*for~hash = O~shift =0: *n ':shift =(shift+ 3)%1 Ln +±+
hash + = (( ) << shift) + *fl:

tab = hash '7, no tabies:
* offset = hash 'T NORECORDS:

This function has a good distribution even when there are many names vhich
differ by only one or two characters. The one hash value is taken modulo the
number of tables to find the local table to be used, and modulo the number of
records per table to find the offset within the table. In the event of collisions, a
linear search from the point of collision is made. Following is the code for inser-

a tion as implemented for control. The simn code is the same except for the last
-~ three lines. Control Must send a command to enter the name table index for each

unit named. The sim code directly modifies the unit structure (note that this
means an off-node unit cannot be named by sim code).

~ /* map in lock %ariable and buss wait for that table to be free ~
lock =(short *) MapObjllockjisttab.O.RW'-w_):
)&hile(Atomic_add(lock.l)){

Atomic-add(lock,- D):
Sleep( 1):

/* map in table *
table = (Namel~esc *)MapObj(table listltab.O.RW rvA )

/* search for first free record starting at offset s

for(i = offset,ct = 0:tabletii.size && strcmp(tablelil.name, name) &&
ct(<= NORECORI)S:ct + +,i = (i +1)%1NOR FCORIDS):

if~ct > NORE-CORDS)l
fpri ntt~stderr. "name table Ted full: did not insert 'Zs\n ".tab. name):
RFTURN(-1):

~ *.fprintf(stderr"name already in table: %s\n",name):.

~ a' else I
tablefil.type = type:
tablefil.index = ABSOLUTEND(index): /* passed local index
tableil.size = length:
if(stren(name) > 21) narnel2ll ='W
Do-bt( name.table[iJ.name,strlen( name) + 1):

Atomic..add(lock- 1): I' unlock table1
Unmap..Obj(table isftabl, tabl): 1. unmap .
Unmap..Objflock-listltabllock):

/pack table and offset into one int to send to sim/
namecode = ((tab << 16) 10i:
for(s = index:s < index + length:s+ +

1* Send-Cmd conv.erts index s into sim number .
Send_Cmd(MOI)_NAME,s.naniccodc.""),
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In order to test a record to see if it already contains the name, a strcmp is
done across the s,%itch. In another implementation, the remote string is block
transferred and the strcmp is done locally. In tests of the name ser'er. the tAo
implementations took about the same amount of time. The block transfer is more
efficient per byte, but always retrieves 22 bytes; the strcmp retrieses only as man%
as necessary. To copy the string into the table record, a block transfer is used.
This should be more efficient than copying each character individually.

The code for finding a name's entry is similar. except the table need not bc
locked. A block transfer is used to copy the remote record to a local record.

4.8. Simulating
When the user types a go command, the follow.ing happens.

clock + = 1:
A /* tell each sim to do one step */

Send_Cmd(G0_C.\ FRY..""):
/* when the are done. tell them to update ouput arrays */
Send_Crnd( UPDAT _C.FVERY,0.""):
if((i c ech,,_step) = = 0) printf("End of step %d\n".clock):
if(sho% && (i % shoAstep) =0)

it(pipeflag)
SendPipeCmd(SHOWC.EVERY.0, ,ppecommand):

else
Send_SyncCmd(SHOWC,EVERY.0,""):

}

The sims must wait until everyone is done before updating their output
arrays. A show is a listing of certain units as described in section 3.5.4.
Send.PipeCmd is described in the next section. Send_SyncCmd waits for the
current sim to finish before sending the command to the next. This keeps the out-
put in order.

4.9. Piping output to UNIX

Before executing a popen, the user must start the pipsys program in some
UNIX shell. It responds with its network port number. On the Butterfly, the net-
work code must be downloaded and the Chrysalis environment variable PIPSYS
set to this number. Any program loaded with the pipsys library can now do a
popen.

Rather than have each sim open a pipe, which would result in discontinuous
output, control opens the pipe and the sims send their output to control using a
stream. Here is how SendPipeCmd works.

cmd->pipeflag = 1:
cmd->pipeQ = ComQ: /* ComQ is a dual queue handle */

17



catch
pf = popen(pipec"%"): /* pipec is UNIX command to pipe to /

onthro%
when(TRLF){

fprintftsiderr."cannot open pipe: %s\n",throw text):
return 0:

endcatch:

for(i = 0:i < nosims:i+ --

cf stream fdopen(O.ComQr'): /* 0 meaningless */
if(cf = = NUI.I){

fprintftstderr."control could not open pipe stream\n"):
REItRN(0):

PostEkent(simeentsjiJ.(long)cmd->cmd):/*tellssim to look at cmd*/
/* read from stream */

"% " while( 1 )1

.-'.. readec = read(cf.readbuff.BLEN):
if(readct = = 0){ /* output done */

close(cf): /* close stream */
break:

else write(pf.readbuffreadct) / write to pipeV
Ahile(!*icount)

if(M Recei eEvent(deathF.NUL.l.) - NUI.LL.){
fprintflstderr."termination due to death of slave\n"):
RETURN(0):

*icount = 0:

close(pf): /* close pipe /

The fact that the output is to be piped is communicated to the sims by the
pipeflag field of the command structure. The dual queue required for the stream
is also put there.

The catch around the popen makes the program more robust. If the pipe
cannot be opened, a throw will be generated which would kill the program if not
caught.

The sims surround all output which might be piped with pipebeginO and
pipe.endO calls. All output is written to the file dispf.

/0 in sims /
A .* pipe-begin()

if(Cmd->pipeflag) / output is to be piped ./
ifR(dispf = stream'fdopen(5,Cmd->pipeQ."w")) != NULL){

return:
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else I
fprintflstderr." #%d sim: cannot open streamnO.M',SimrNumber):
exit( D):

else dispf = stdout:

pipe-endi)

fflUsh( dtspt):
itRCmd-)pipeflag && dispf !=stdou){

close( divpf):

4.10. MIapping function names to pointers
The make functions need to find a function pointer given its name. So do

call and rcall. In order to do this. a table is built by the user-prouided function
bind-func. The table is also be used to map function pointers to names for
display. This is why function names need not be stored in the unit, site and link
structures. The table building function looks like:

# inc1ludc 7u/conneCC/src/sim/names.h'

char *store stringO0:
int linkj'unco:
int buildo:
FunclFable *bind-func(length)

int *length:

int i:
Funclable *table,

(able = (FuncTable 5)malloc(sizeotl'uncTable) *2):
*length = SIZE-,

table[Ol.naine =store_string('linkjfunc").

* table[OJ.func =link-func;

tableflJ.naxne =store -string('build"):
rtableIlifunc =build;
return table:.

There is a utility to generate this function from a list of names. and we may
generate it directly from the name table of the user's .o68 file in the future.

5. Performance

5.1. How large a network will fit
p. Each unit uses 40 bytes. Each site and link uses 20 bytes. Because the largest
* array which can be allocated is 64 Kbytes, 1599 units per sim is the maxtimum.

This figure could be increased in a number of ways. The unit array could be split

19



into two or more parallel arrays, for example. This would leave less space for
links, of course.

There is 1 Mbyte of memory on each processor. Chrysalis takes about 90
Kbytes, lea~ing 14 chunks of 64 Kb.tes each. The space for sites and links is
allocated using malloc. Since the malloc size is 64 Kbytes, chunks of memor\
smaller than this cannot be used during a build. The sim template uses about 2(0
Kbytes. leaving 13 64 Kbyte chunks. The name table grabs 64 Kbytes (this \ill
probably be made adjustable) leaving 12 chunks. If there are enough units, the\
will use another 64 Kbyte chunk, leaving 11 for sites and links. This means the

,. total number of sites and links must be less than 35,200 per sim. I have ignored
overhead space used by malloc, so call it 35,000. This could be increased by about
10% by making the name table smaller (so it uses a smaller chunk) or by makino
malloc more flexible.

5.2. Build times

*" The tests "ere conducted using 100 sim processes. The code used is that in
section 3.4.1. The network built had 100,000 units and 3,000,000 links, 30 links to
each unit from a random source. When it was built sequentially from the control
process, the units and sites took 9 minutes to build and the links took 2.75 hours.
When a network of the same size was built concurrently. the total time for units
and links was 56 seconds. The speedup was due to concurrency and locality. This
difference makes us anxious to develop concurrent build techniques for all our
networks. The speedup would still be dramatic even if the units "ere built
sequentially and the links made in parallel. This would require a "call unitbuild"
followed by a "rcall all linkbuild".F :5.3. Name table performance

When the above tests were run no names were used. I have conducted
independent tests of the name table software. 90 processes were used, one per
processor. Each allocated a 64 Kbyte block of memory -- 2039 name records. So
the global name table had over 180,000 name records.

Each process entered 1000 distinct names (90,000 total names) simultaneously.
This took about 6 seconds. Each process then looked up all 90,000 names
(8,100,000 total lookups) simultaneously. The names were generated in a different
order so no two processes were looking up the same name at the same time. A
lookup involved finding the record and retrieving three fields of data, one of
which was generated from the name and used to check that the correct data was
retrieved. The total lookup time was 409 seconds. This is fast enough so that
even parallel build programs which do a name lookup for each of several million
links will still run reasonably fast.

These tests involved very intense switch traffic. They encounted bus errors
unless the switch timeout was increased to one second and alternate paths were
enabled. Surprisingly, the intense switch traffic did not increase the running time
significantl. This was determined by changing the test program so that only one
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process did the 90,000 name lookups. This took 401 seconds, only 8 seconds less
than when there was heavy sw~itch traffic.

I varied the test program to leave all the local tables mapped in. This saves a
Map_..Obj and Unmap_.Obj on each name lookup. It ran 15% faster. Since it Was
looking up names as fast as it Could generate them, the speedup for a build pro-
gram would be a mutch smaller percentage. In any case, there are not enough
SARs to leave the name table mapped in for the sims because of the number of
Output tables already mapped in.

5.4. Simulation time
I ran a number of tests to measuire the run time and speedup of the simula1-

tor. The same network could not be used with different numbers of processors
because of limited memory (and a small network does not show~ much impro%e-
ment on a large number of processors because the overhead of control begins to
dominate the time). What I did is run each test with the same number of units
per processor (1000) and the same number of links per unit (30). With perfect
speedup. the simulation time would be the same no matter how mans processors
are used.

The user function was smple: the potential wa s as set to the sum of the inputs.
Th e link function set the history to the value of the input. In the first series of
tests, w~eights were ignored: the inputs were simply summed. This represents
about the fastest possible run time for a network this big. More complicated unit.
site and link functions would slow it down appreciably. After all, a link function
is called 30,000 times per step per sim.

For the simple network, running on one processor, the execution time was 2.0
seconds per step. Running on 90 processors, the execution time w~as 2.6 seconds
per step. This works out to about 70 effective processors. A graph of the speed
up for these and other configurations is shown in Figure 6.

As expected, when the build function was changed so that all links were from
other units on the same processor, 90 sims also took 2.0 seconds per step.

In the next series of tests, the inputs were multiplied by the weights and
divided by 100 (see section 3.2). This represents a more typical amount of compu-
tation. For I sim, the time was 4.1 seconds per step; for 90 sims the time was 4.6
seconds per step. This works out to about 81 effective processors. The speedup is
better because a smaller percentage of time was spent retrieving outputs across the
switch. The r, -Its of this test are given in Figure 5.

With 90 sinis and 90,000 units, show was turned on with the show potential
set so that only 30 units would actually be displayed. All 90,000 units had to be
examined sequentially, however, to see if they were eligible for showing. This
took almost 2 minutes.

1 ran some tests comparing different ways of using weights. In each test the
inputs to a single site were summed. The first test used no weights. The second
test used integer weights and did a multiply followed by a divide as described in
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section 3.2. The third test used floating point weights. The floating point code ran
6 times slower than the integer code with multiplies and divides and 20 times
slower than the integer code without weights. We consider this difference
sufficient to justify the somewhat troublesome manipulation of integer weights. If
we acquire floating point hardware, we will probably use floating point weights
and potentials, if not outputs.

6. Future work

6.1. Saving networks
There are many directions future work on the simulator mav take. We will

better know what we most need after more experience using it. The purpose of

this section is to outline some of the changes and improvements we are consider-
ing. One of the first features we want to add is a compact format in which to save
the state of the network. This is especially important for networks which learn b\
changing weights. The new weights cannot be recoved except by running the
same simulation. A complete sa-e would require a file tens of Megabytes big and

take a long time to do. Since the topology of the network can be recreated exactl\
b\ calling build with the same parameters (and same random number seed. if
appropriate), it will suffice to sa~e the link weights. This will require less than 10
Mbytes. If we get Butterfly disks, it may be feasible to save an entire network.

6.2. Compact representations
We are considering adding the ability to represent arbitrary numbers of units

with a single unit structure. Each of these units would have its own position in
the output array, but the% would have no other individual representation, no expli-
cit list of inputs. The one unit function would be responsible for filling in the out-
put array. This might be useful when modeling a retina in a vision application.
for example. A 100x100 retina might have its values set once by reading from a
file and not changed after that. Having a single function take care of all 10,000
units would save time and space. Such blocks of units could have inputs of a sort.
The single unit structure representing them all could have a list of inputs. Sorting
out which go where would be up to the user function. Of course, other units
could receive inputs from these compact units since they have their output in the
output array.

Another space saving technique is possible now. Instead of relying on a list
of inputs, user functions could generate indices of units through name lookups or

. by other means and retrieve the input values by a lookup in the OutputArraxs
table. This would be slower and would not allow histories or weights on the links.

One more trick we have considered is the dynamic creation of units. This
technique was used successfully by Sabbah (1982). It is useful when the network
contains a very large number of units, but any one computation uses only a frac-

6 tion of them.
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6.3. Better tools
We %ill probabl$ need more sophisticated network -xamination tools in order

to deal \ith huge netvorks. We are especially interested in graphics tools to run
on the Sun xorkstations. For example, a windowk which continuouslh displays the
potentials of several hundred key units could prove very useful, as kkould the abil-
it to trace the activation emanating from a single unit. We may add a list of out-
puts for each unit so we can trace the links either \a.. The reason %e do not no%%
do this is to sa'e space, but fitting lots of units in memory does us no good if c

cannot effecti\el\ %Nork with them. We could e\en add a svitch to turn thils
feature off on really large networks.

6.4. Internal impromements
Carla Ellis plans to implement her distributed hash table (Ellis. 1985) on the

Butterfly. The impro\ed name table \ould be extendable, allow deletions and
would not impose string length limits.

I am not entirel\ happ. with the communication mechanism between control
and the sims. It does not allow different sims to be executing different commands

'1 at the same time because of the single global command structure. Consider rcalls,
which could be quite invol\ed: it might be nice to start a remote procedure on
one processor and then start another somewhere else without waiting for the first
to complete.

7. Discussion
The simulator is important from a systems point of view because it is an

example of a complicated program which can take full advantage of large numbers
of tightly-coupled processors. There are many applications for \hich it is difficult
to divide the task into n pieces so that anything like a speedup of n occurs. The
large connectionist networks cannot even run on any other machine in the depart-
ment because of memory limitations, and storing networks on disk during a simu-
lation would be too slow.

The simulator is important for connectionist researchers because it gives them
a tool with which to test their theories. The behavior of connectionist networks is
not always easy to predict using analysis. It is necessary to actually run them.

K-" And connectionist networks can easily grow large. The only existing "connec-
tionist networks" which can handle sophisticated Al tasks use billions of units (i.e.
neurons in the human brain). Of course, this does not mean that this many units

04 are necessary to do intelligent tasks, but we should not expect to get by with just a
few.

Even with the Butterfly, the number of units we can simulate is five orders of
magnitude !ess than the number of neurons in the brain. More important, the
number of links is about ten orders of magnitude less. In any case, we ha~e
plenty of work to do learning how to use hundreds of thousands of units. The
Butterfly connectionist simulator gives us a tool for this task.
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