
NDAO757 INTEGRATED COMMUNICATION NAVIGATION AND IDENTIFICATION 1/1
AVIONICS RESOURCE ALLOCATION(U) ANALYTIC SCIENCES CORP
READING MA B E GRIFFITHS ET AL JUL 86 AFHRL-TR-8"-18

UNCLASSIFIED F33615-82-C-6802 F/G 9/3 M

EEEEEEmomhoiI

MEEE..



.1 0

32

r~o

11.8

11 18

0---



AFHRL-TR-86-10

INTEGRATED COMMUNICATION, NAVIGATION, ANDAIR FORCE 1R IDENTIFICATION AVIONICS RESOURCE ALLOCATION

H"/
nL Barry E. Griffiths

Mum The Analytic Sciences Corporation
One Jacob Way

Reading, Massachusetts 01867

N LOGISTICS AND HUMAN FACTORS DIVISION
Wright-Patterson Air Force Base, Ohio 45433-6503

,,,::: ,a:DTI( .

R JUL 3 0 198

EMa 9 July 1986S Final Report for Period March 1982 -March 1984

S
0
U
"R Approved for public release; distribution is unlimited.CR

E
S LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601

• ::-:,:" : :':" ,. ",,: :-:"""" -, ," ''.'."""- -- "'"', .".""""""". ...."" :"."--"- -" " -- - ' "... ".1I



. .. - . . --

NO1 ICE

When Government drawings, specifications, or other data are used fo, -ary

* - - purpose other than in connection with a definitely Goverrnmcnt-rclater:

procurement, the United States Government incurs no responsibility or an

*- obligation whatsoever. lhe fact that the Government may have formiulate nor

in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication, or otherwise in any manner construed, as

licensing the holder, or any other person or corporation; or as conveyirl

any rights or permission to manufacture, use, or sell any patcnte.;

invention that may in any way be related thereto.

The Public Affairs Office has reviewed this report, and it is releasable to

the National Technical Information Service, where it will be available to

the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

JAMES C. McMANUS

Contract Monitor

BERTRAM W. CREAM, Technical Director

Logistics and Human Factors Division

DENNIS W. JARVI, Colonel, USAF

Commander

,*-

4~(,-

'S
:--.-,

_-..,. .

,v~~~~.'.<.'...'-'............:.'...- . .' "-:"' -'.:,,-." .. " .... -'-,, " . 5 \K"-.-:" .



- Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATiON lb RESTRICTIVE MARKINGS

Unclassified

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION 'AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

AFHRL-TR-86-10

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

The Analytic Sciences Corp. Logistics and Human Factors Division

6c. ADDRESS (Oty, State, and ZIPCode) 7b ADDRESS(City, State, and ZIP Code)

One Jacob Way Air Force Human Resources Laboratory
Reading, Massachusetts 01867 Wright-Patterson Air Force Base, Ohio 45433-6503

Ba. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
Air Force Human Resources Laboratory HQ AFHRL F33615-82-C-0002

Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDJNG NUMBERS
Brooks Air Force Base, Texas 78235-5601 PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO NO. NO ACCESSION NO
62205F 1710 00 26

11 TITLE (Include Security Classification)

Integrated Communication, Navigation, and Identification Avionics Resource Allocation

12 PERSONAL AUTHOR(S)
Griffiths Barry E.; Miller, David E.

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year Month Oay) IiSPAGE COUNT
Final FROM Mar 82 TO Mar 84 July 1986 j30

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP communication mean time between critical failure

05 08 fault-tolerant avionics mean time between failure

14 04 identification avionics mean time to repair
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The Integrated Communication, Navigation, and Identification Avionics (ICNIA) architecture is being

designed to replace a number of discrete avionics components with an integrated, modular system. In order to
maximize the usefulness of ICNIA-supported functions, a new resource allocation technique is needed. This
report presents a preliminary assessment of several methods of reallocation and describes measures of
performance for all of these techniques.

JL30 19 8 6 F

20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION li.

UNCLASSIFIED/UNLIMITED l SAME AS RPT El DTIC USERS Uncl ssified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22( OFFICE SYMBOL

Nancy A. Perrigo. Chief. STINFO Office (512) 536-3877 AFHRI/ITSR

DD FORM 1473, 84 MAR 83 APR edition may be used urtil exhausted SECUIRITY CLASSIFICATION OF HIS PAGE
All other editions are obsolete

UnclassifiedI * -~.* *-- ~ - ~ - * .' - - -



Item 18 (Concluded):

logistics analysis
mission completion success probability



SUMMARY

The Integrated Communication, Navigation, and Identification Avionics

(ICNIA) architecture is being designed to replace several discrete avionics
components with an integrated, modular system. The goals of the project
include improved system reliability and decreased size and weight. In order
to meet these objectives, the ICNIA technology must allocate available
resources in order to respond to changes in the mission environment or to
compensate for the loss of system components. Thus, the reliability of ICNIA
depends on both hardware design and on the efficiency of the resource
allocation technique.

This report describes the ICNIA resource allocation problem and presents

the mathematics that can be used to approach a solution. In particular,
mathematical programming methods, sequential allocation algorithms, and
combinational algorithms are each evaluated for their ability to solve this
problem. A preliminary analysis of these techniques was completed by defining
several measures of performance. The results of this analysis are given,
along with several recommendations for improving the design of an ICNIA
resource allocation technique.

A2A1

E.N

............................................ .......... . . . .. ..-. , , - . . -"



PREFACE

This report documents research into the
behavior of resource allocation algorithms for Inte-
grated Communication, Navigation and Identification
Avionics (ICNIA) and methods for evaluation of the
performance of such algorithms. These findings are
results of the Fault Tolerance Analysis task of the
Impact Analysis of ICNIA, Air Force Contract No. F33615-
82-C-0002. This work is jointly supported by the
Air Force Human Resources Laboratory and the Air
Force Wright Aeronautical Laboratories. The guidance
and support of Mr. James C. McManus and Lt Lee H.
Dayton are greatly appreciated.

14

i..

. . . . . . . .. . . . . . . . . . . . . .. .~-i



TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 Background 1
1.2 Approach 1
1.3 Organization of Report 2

2. OPTIMAL ALLOCATION FRAMEWORK 2
2.1 Algorithms and Implementations 2
2.2 Dynamic Optimization 3

2.2.1 Priority Sets 4
2.2.2 State of System Health 5
2.2.3 Resource Strings 5
2.2.4 Control Vector 5
2.2.5 Form of Objective Function 6
2.2.6 Characteristics of Optimal Solutions 7

2.3 Static Optimization 7
2.3.1 Problem Simplification 7
2.3.2 Example 9

3. STATIC ALLOCATION ALGORITHMS 11
3.1 Mathematical Programming 11
3.2 Sequential Allocation 12
3.3 Combinatorial Methods 13

3.3.1 Computational Trade-Offs 13
3.3.2 Combinatorial Compromise 14

3.4 Performance Comparison 14

4. ALGORITHM EVALUATION 16
4.1 Performance Measures 16

4.1.1 Measures of Algorithm Effectiveness 16
4.1.2 Computability Measures 19

4.2 Evaluation Methods 20

5. SUMMARY AND RECOMMENDATIONS 21
5.1 Summary 21
5.2 Recommendations

REFERENCES 23

*
! i::i!;)i:.i ) i i i __ i~i~i~i I~ II~i i :;:?!:i"ii ii iiiiii~ "i i~ !:} '



LIST OF FIGURES

Figure Page

1 Dynamic. Optimization 4

:22 Example: System State (Full-up) 10

LIST OF TABLES

Table

I Static Optimization Example Function
, Set Priotities 9

o- 2 Example: Resource Strings 10

3 Algorithm Performance Comparison 15

4 Algorithm Effectiveness Measures 17

iv

-" -A.- "



1. INTRODUCTION

1.1 BACKGROUND

The Integrated Communication, Navigation, and
Identification Avionics (ICNIA) system is being designed
to replace a number of discrete avionics components with
an integrated, modular system. This project has several
design goals, including decreased system size and weight,
improved reliability, and decreased logistical support
requirements. The approach being taken is that of active
redundancy; that is, available system resources will be
reallocated to perform particular tasks in response to
changes in mission requirements or to compensate for the
loss of system components. As such, the reliability of
ICNIA in providing designated functions depends on both
the hardware design and the efficiency of the resource
allocation technique.

New methodologies have been required to project
the probable performance of alternative ICNIA designs.

- One such tool, the Missionized Reliability Model (MIREM)
(Veatch, Calvo, Myers, and McManus, 1985), is used to eval-
uate several measures of the reliability of ICNIA hardware
designs in providing designated functions. MIREM is de-
signed to be independent of ICNIA resource allocation tech-

..niques and allows the best performance achievable with a
particular hardware design to be determined. The objectives
of the current effort are to complement MIREM by defining
measures of performance for resource allocation techniques,
and to provide a preliminary assessment of the strengths

* *. and weaknesses of several such alternative techniques.

- 1.2 APPROACH

The objective of the resource allocation technique
is viewed here as maximization of the expected usefulness
to the operator of the ICNIA-supported functions. The
approach taken in evaluating the resource allocation prob-
lem is to employ the framework of optimal control theory.
In order to make use of the substantial body of work on
optimal control theory, certain notions such as "useful-
ness" are first made concrete. Reasonable simplifications
are made in order to improve the analytical tractability
of the problem.

•o."

i.

9"i



1- ..v'all optimization framework is then used
t,) t - :.is, ur-s of allocation performance for general
u1) IItLi iioc tion techniques. Since these proposed

[flJ-u -. '."" drived directly from the previously stated
opt imi,,-t o, Qr,)bem, they capture important features of
.'itocati, V peormance. In addition, several measures of
the comput t i oa burden of allocation techniques are pro-
posed. inL this Wav, an explicit evaluation of the alloca-
tion [)enefttr and computational costs of any allocation
technique can be made. Such evaluations can be used in
making trade-off analyses during the design cycle of ICNIA
resource allocation techniques.

Because no well-defined allocation techniques

* hav e yet been developed by ICNIA contractors for evalua-
tion, this report provides preliminary assessments of the
pertormance ot several generic resource allocation tech-
niques. Each of the techniques -- mathematical programming
methods, sequential allocation algorithms, and combinatorial
algorithms -- is evaluated for its ability to provide a
good-quality solution to the ICNIA resource allocation
problem.

1.3 ORGAI ZATION OF REPORT

This report is organized in five chapters. The
introductory chapter establishes the scope of the effort
and the approach taken. Chapter 2 formulates the optimal
control theory framework for the ICNIA resource allocation
problem and includes a simple example of these concepts
(Section 2.3.2). Chapter 3 addresses the preliminary assess
ment of alternat ive allocation techniques, and several
measures ot allocation performance are proposed in Chap-
t- .t- 4 . A summary and recommendations are presented in

- I IMAL ALLOCATION FRAMEWORK

.~ipiS .:\Nu 1MPLEMENTATIONS

0 : !-_ii ques to be applied in allocating avail-
"',' . accomplish desired functions can be divided
"" ".ii I- i. t,. tV(o phases. The first phase is algorithmic

i, , :.,,. )h.se is implementation.

eg3



The algorithmic solution phase descrihes how il! -
cation decisions are made. An allocation al-orithm is

defined in terms of its inputs, calculations. and outputs.
Inputs to such an algorithm include diagnostic inlormatin
about the state of system health and operator inte-actiri:.
Outputs include statements about how functions will 1_ t
supported by the system resources. The calculations de-
scribe the way in which the outputs are deriv-d tiou the
inputs.

The implementation phase describes how a partic-
ular algorithm will be performed in a particular hardware
system. Implementation includes the software and hatdw.are
partitioning of the algorithm. In general, although there
may be many possible implementations of a given algorithm
in a given hardware system, they will all have identical
performance from the standpoint of providing ICNIA tunc-
tions. Proper partitioning is needed to satisfy the compu-
tational capabilities of the system. Consequently, the
allocation algorithm must be designed before an implementa-
tion can be selected.

The allocation algorithm must be optimizted within
the framework imposed by the ICNIA system constraints.
These constraints can be stated as follows. The I rithm

must allocate limited system resources to perform multiple
functions. It must provide for dynamic reconfigurat ion t,)
support operator-defined changes in preferred functions
and to allow graceful degradation of overall ssttem turnc-
tionality as resources fail. The timing of resour(e fa il-
ure is not known, although the statistical ret iibi I i tv )t
resources is known. This problem can best 1h : 1 toratd.,

in terms of dynamic stochastic optimization.

In Section 2.2, the ICNIA resource. a- l c. ion
problem is put in the form of dynamic stoch,stic ,) ijuiza-
tion, and some of the characteristics of an , pti mi ilu-
tion of this problem are noted. Under certair e(n lit ions.
this problem can be simplified consideribl. >.i -wsult

* in a static deterministic optimization pr' b-H.m,
in Section 2.3.

2.2 DYNAMIC OPTIMIZATION

The fundamental concept in using dynalmic ,)p t imuv:a-
tion techniques in allocating ICNIA resourcts ij .lt at e
in Figure 1. That concept is that the "m:-',,lrI.'f-
an ICNIA resource allocation depends on the- oriri it i, . .
to the functions implemented. Ordering th,. -im '1
all possible sets of functions is th, r-.

3 .

- - -- - - ..i.. .7



MISSION A 18826
PILOT PHASE

TIME -H ORDER

FUNCTION SET
EVENT A PRIORITY

PRIORITIZED
FUNCTION SET

AVAILABLE SELECT
RESOURCES CONFIGURATION CONFIGURATION

Figure 1. Dynamic Optimization.

the pilot and/or mission planner; in this way, the alloca-
Lion algorithm is told what is desired. In turn, the allo-
cation algorithm must use both the function set priorities
and information about available resources to select the
best allocation available.

-.-.I Priority Sets

Lt. is important to note that sets of functions,
r-ithtir thin individual functions, must be arranged in order
)t 'priority. This approach is more general, as it includes
*tri ,)rdering of individual functions as a special case.

v .)rd-ring sets of functions, it is possible to allow the
,.,,i;n of two functions, each individually slightly

o.mp,,rtant, rather than one function which is individ-
more important. For example, the "limp

. i'nv" ions may include any one communication system
irld iri, -n- navigation system. Ordering functions individ-
4~ oi 1 night result in the selection of two communication
.vst,:m: r two navigation systems, which would be less
(Ys i rai 1-.

I4



2.2.2 State of System Health

It has been pointed out (Veatch et al, 1985)
that the condition of the system hardware at any time can
be specified by the number of healthy units in each pool
of resources. ICNIA will contain facilities for Built-In
Test (BIT), which will allow the allocation algorithm to
be informed as to the current state of system health. It
should be noted, however, that there may possibly be device
failures which are not detected by BIT. Thus, the state
of system health may never be known perfectly.

2.2.3 Resource Strings

There are generally a limited number of ways in
which any ICNIA function can be accomplished. Each such
way can be specified in terms of how many units are re-
quired from each pool of system hardware. Such a specifica-
tion is called a resource string in this work. If desired,
all of the possible resource strings for each function
could be formed into a table of resource requirements of
the form r(i,j,k), where

i is the function number

j is the resource string number (for the
ith function)

k is the pool number (for the jth resource
string for the ith function)

r(i,j,k) is the number of units required in pool k
* to accomplish function i using resource

string j.

Note that resource requirements can be fractional, repre-
senting time-shared resources. By specifying pools rather
than individual devices, the allocation problem is held to
a practical dimension. Selection of particular devices
within a pool can be handled by a very simple local sched-
uling algorithm.

2.2.4 Control Vector

An allocation decision must specify not only which

functions are to be performed but also which resource strings
or paths will be used to perform them. This is because not
all resources of one type can be connected to all resources
of another type; only certain interconnections are possible.

5

S.

"°. . .. ° * - - --



-. V, - . . . .

,' If all possible resource strings for each function are

& *-. listed, then the allocation decision consists of selecting
which particular string is to be used for each function.
The list of all of these resource string selections, taken
together, constitutes the control vector.

2.2.5 Form of Objective Function

All of the above components of the dynamic stochas-
tic optimization problem can now be assembled. An optimal
allocation algorithm generates a function, h, that maps
all available information about system health, 1, into a
control vector, u:

u = h(I) (1)

in order to maximize the objective function

e'l T

J(T) E f p(f(x(t), u(t)), t)dt (2)

0

where

f denotes the system functions actually
operational given a control vector u
and a system health state x

..- p denotes the priority of this set of
- . functions

T is the time between maintenance actions

E denotes the statistical expectation
due to uncertainties about x.

1-1 L:-h;:( bjective function reflects all of the essen-
. ii l rhricttrist -,s of the ICNIA allocation problem. It

• ..]'.. i mlp,,r- , nt 1,() riot-: that the al~location algorithm may

nt"'l to ik,. Into .-1C(.Unt explicitly the probabilistic
natur,. ,t ,\"-t.m htealth. It is also important to note

, *thit tht i4,r ithm must b(e concerned with the performance
-t the sv,,t ,II wv-r tht- whole t ime between maintenance ac-

""-'- t i,)~t . Ihi - p.rt mu arlv signiticant if IGNIA- cquipped
- .ircr-t t r. .x I,. t,.( to op(eratt- troi austere bases, where

.-.o.r-pi 0 , t n , ,. 0 v no0t b, IV.IilabLc atter e.ch mission.

ele.'1 .:

A' . - * A.



2.2.6 Characteristics of Optimal Solutions

Optimization problems of this general type have
been addressed in the literature (Chizeck, 1981; Griffiths,
1983; Rishel, 1978; White, 1974). Some of the characteris-
tics of the solutions to these problems should be pointed
out.

First, reconfiguration time is implicitly con-
sidered in the optimization, since the whole time interval
is of interest. For time-critical functions such as
Identification-Friend-or-Foe (IFF) Transpond, this may
result in the simultaneous operation of a function in two
or more independent resource strings in order to provide
an instantaneous backup. Furthermore, similar considera-
tions would apply to the time required to turn off and
reinitialize system resources.

Second, an optimal algorithm can make use of all
information about the state of health of the system. This
may include BIT, techniques for soft failure detection,
and the monitoring of functional outputs. These sources
of information are combined using probability models both
for resource failures and for the effectiveness of the
fault detection methods employed.

Third, the allocation algorithm may actually select
a control vector partly in order to learn more about the
state of system health. This "dual control" aspect (Feldbaum,
1960/1961; Griffiths, 1983) results from an implicit trade-
off between the cost of reduced functionality now versus
improved knowledge of system health and improved functional-
ity in the future.

Fourth, due to the probabilistic and dual-control
aspects of this problem, optimal solutions are generally

- . very difficult to obtain.

' 2.3 STATIC OPTIMIZATION

2.3.1 Problem Simplification

The difficulty in solving the dynamic stochastic
problem arises from two factors. First is the implicit

" recognition of the importance of speed of reconfiguration;
second is the imperfect knowledge of system health. Con-
sequently, the problem can be greatly simplified if two
approximations can be made to hold. If there is an insigni-
ficant penalty for downtime while the system reconfigures

7..S



4 - V W K

and if there is an insignificant penalty for decoupling
resource allocatiun and failure detection ie., only cur-
rently available resource health information is used),
then the dynamic stochastic optimization problem resolves
into a sequence of static problems.

To simplify the discussion, it will also be assumed
that there is perfect knowledge of system health (100% BIT
effectiveness), although static optimization can also be
applied to the case of imperfect BIT. For the static case,
the reconfiguration algorithm is solved each time there is
a change in function set priorities or in the state of
svstem health. A control vector u is selected in order to
maximize

J p(f(x-(t), u(t)),t) (3)

where all terms are defined as before. Note that this
optimization problem itself is not concerned with antici-
pating future effects, nor does it have a random element.
This is because the temporal and random effects enter via
the changes in priorities and in system health state, which

li signal when to perform the static optimization.

For the static problem, it can be seen that the
control vector selected must not require more resources
from any pool than are available. That is, referring to
Section 2.2.3,

Z r(i, u i , k) < xk for all k 4)
i

thwhere u. is the resource string selected for the i func-
thtion, and xk is the number of healthy units in the k pool.

-This condition forms a set of constraints for the static
optimization problem.

It should be noted that good system design can
force the approximation conditions to hold. The require-
ment that ICNIA be able to reconfigure in 10 seconds is a
way to guarantee that there is an insignificant penalty
for system downtime. Similarly, if all known device failure
modes are detectable through BIT, the penalty for decou-
pling resource allocation and failure detection is proba-
bIv insignificant.

-..:<

.9-.

- . . V *.. .-.



2.3.2 Example

In this subsection, a simple example of resource
allocation will be presented to point out various aspects
of function set priorities, state of system health, table
of resource strings, and control vector. In Chapter 3,
this example will be used to examine some of the strengths
and weaknesses of alternative allocation algorithms.

In the example depicted in Table I, there are
three functions: Fl, F2, and F3. Thus, there are eight
function sets to be ranked by relative priority. One such
ranking is presented here. Different priority rankings
can be generated for different mission phases, and rankings
can be modified by the pilot. (It is not yet known how
the pilot interaction will be managed in ICNIA.) Note
that it is sometimes preferable to have one function (Pri-7 .ority 4) rather than two functions (Priority 5). Note
also that no single function has absolute priority in this

,-. •example.

*- There are four pools of resources in this example.
The state of system health depicted in Figure 2 can be
represented as x = (1, 2, 1, 2), summarizing the number of
healthy units in each pool (P1, P2, P3, P4). If one unit
were to fail in pool P4, the system state would be repre-
sented as x = (1, 2, 1, 1).

Table 1. Static Optimization Example
Function Set Priorities

Function FFunctions
Set Priorities

1 Fl, F2, F3

2 Fl, F2

3 F2, F3

4 F2

5 Fl, F3

6 Fl

7 F3

8 None

-°. . -.

.'- . .



A 18825

POOL 3 P00L14

Figure 2. Example: System State (Full-Up).

The resource strings representing all possible
ways of performing each of the three functions in the given
system are presented in Table 2. Each of the functions
can be performed in either of the two chains in the system.
In addition, F3 can be performed cooperatively in both
chains, although this results in increased total resource
requirements due to increased overhead (compare resource
strings 1 and 2 of function F3 with string 3).

Table 2. Example: Resource Strings

Resource Resource Utilization

Function Stin Pool Pool Pool Pool
Designation P1 P2 P3 P4

Fl 11 10 0
2 0 0 11

1WF 0. 5 10
2 00 0. 5 1

1 0.5 1 0 0
F 3 1 2 0 00.5 1

3 0.25 0.7 0.25 0.7

It can be sieen that two di fferent control vectors,
(-in exercls( 11l three functions when all svstem resources
aret healtthy. Fht-;- two control vectors are' u (1, 2, 2
aI Id 1-1 (2- 1 1 It im (I 2. 2 s 5 j~ td then:

.%

X-.-~.. - - .-- -



1. Fl is performed via resource string 1
(pools P1 and P2)

2. F2 is performed via resource string 2
(pools P3 and P4)

3. F3 is performed via resource string 2
(pools P3 and P4).

If u = (2, 1, 1) is selected, the reverse will
take place. It may be expected that for the general case,
control vectors are non-unique -- that is, that several
possible allocations will perform equally well.

3. STATIC ALLOCATION ALGORITHMS

Three categories of static resource allocation
algorithms have been identified in this task. These cate-
gories are mathematical programming, sequential, and com-
binatorial. In this chapter, an initial assessment is
made of the advantages and disadvantages of these kinds of
algorithms in the ICNIA resource allocation problem.

3.1 MATHEIATICAL PROGRAMMING

The mathematical programming category includes a
number of related methods. Among these are linear pro-
gramming, integer programming, and a number of nonlinear
programming techniques. All of these methods are well
documented, and there is a great deal of available software
(Kuester and Mize, 1973). When these methods are applicable
to a problem, they generally yield good-quality solutions.

Unfortunately, these techniques do not appear to
be applicable to the ICNIA resource allocation problem.
Linear programming requires that constraints be linear in
the control variables. In this application, linear pro-
gramm ng would require that the resource requirements in
each pool would increase (or decrease) steadily with
changing selection of the allocation control vector. Clear-
ly, this requirement is not met.K More generally, mathematical programming techniques
require a smooth objective function and/or a convex feasible
r( gion (Luenberger, 1973). By a smooth objective function,
it is meant that any two control vectors that are "close"

r. 1 1

r'



will yield objective function values that are "close." By
"convex feasible region," it is meant that any control
vector interpolated between two control vectors meeting
the constraints of Equation 4 will also meet those con-
straints. If either of these assumptions is not met, these
methods will yield poor-quality results, if they can be
made to work at all.

It can be seen in the example of Section 2.3.2
that the static optimization problem does not generally
have a convex feasible region. The control vectors (1, 0,
2) and (2, 0, 1) are feasible, but (1, 0, 1) and (2, 0, 2)
are not, indicating the nonconvexity of the feasible region.
In addition, this example demonstrates that the objective

* function can exhibit significant discontinuities, and is
thus unsmooth. As a result, it appears that standard mathe-
matical programming methods are not applicable to the ICNIA
resource allocation problem.

3.2 SEQUENTIAL ALLOCATION

+.+ The class of sequential allocation algorithms is

intuitively appealing. First, priorities are assigned to
each individual function. Second, an available resource
string is allocated to the highest priority function.
These resources are not available for subsequent alloca-
tion to functions with lower priority. Third, an avail-
able resource string is found for the function with second
highest priority, and so on.

The advantages of this algorithm are that it issimple to implement and fast to execute. The fast execu-

tion speed is due to the fact that only a limited number
of combinations of resource strings must be examined for
feasibility, given the current state of system health.

However, the fact that the algorithm requires
priorities for each individual function limits its flexi-
bility. As was noted in Section 2.2.1, there are many

-- situations in which such an individual ordering could yield
unacceptable results.

In addition, the algorithm itself can result in
unnecessary functional degradation. Because the algorithm
does not consider what resources will be needed for a lower
priority function while it is selecting a resource string
to be allocated for a higher priority function, the algo-
rithm may not implement all functions even when sufficient
ICNIA devices are available. An example of this situation
will be presented in Section 3.4.

12

eq .

(°-: J..



3.3 COMBINATORIAL METHODS

In order to avoid the difficulties presented by
mathematical programming and sequential allocation methods,
a new type of allocation algorithm was developed. These
are called combinatorial methods.

In these methods, priorities are assigned to sets
of functions, as recommended in Chapter 2. All possible
control vectors can then be arranged in order of desirabil-
ity, according to which set of functions will be supported.
Note that there will usually be several control vectors
which, if they meet the constraints of Equation 4, will
provide the same set of functions; these are therefore of
equal desirability. All that remains is to test each con-
trol vector for feasibility given the current state of
system health, starting with the most desirable control
vector. The first feasible control vector is selected for
implementation.

For the static case, this approach is completely
optimal. Moreover, the algorithm should be reasonably
simple to implement. The disadvantage of combinatorial
methods is that the number of possible control vectors is
likely to be extremely large. Although not all control

- --vectors need to be examined for each reallocation, this
approach may place an excessive burden on available computer
resources.

3.3.1 Computational Trade-Offs

As in almost all computer applications, it is
possible to trade real-time computational requirements for
memory. The most direct method of implementing a combina-
torial algorithm is to completely calculate the optimal
control whenever a reallocation is required (due to either
device failure or change in priorities). Although this
approach would require little computer memory, a severe

- processor load would be imposed. A calculation time of
several minutes is possible, although the maximum calcula-
tion time has not been determined.

At the other extreme, optimal controls could be
- calculated off-line and stored in onboard memory. Using

this approach, memory would be required for each possible
state of system health and function set priority. Although
this approach would result in a negligible processor load,
several megabytes might be required for table storage.

13

. ...." ,



3.3.2 Combinatorial Compromise

Rather than imposing a large peak processor load
or a large memory requirement, it may be possible to imple-
ment a combinatorial algorithm using modest processor loads L4

and memory. The approach would be to precompute and store
the optimal control vectors for only the next several pos-
sible changes in system health state and function set pri-
orities. These controls would be ready for immediate use.

Such an algorithm might reside in an intermediate-
level maintenance facility, in a flightline computer, or
in an onboard computer. If the algorithm resides in a
maintenance facility or flightline computer, a new table
can be computed between missions and downloaded into the

onboard computer. The new table would account for all
device failures and maintenance actions. If the algorithm
resides in the onboard computer, the new table would be
computed as a background task after each reconfiguration.

Clearly, the size of the required table increases
geometrically with the number of possible failures and
priority changes to be anticipated. The design of a com-
binatorial compromise algorithm must balance required mem-
ory, compute time, and the risk of "running off the table"
after an unanticipated event. Note that a small, fast
backup algorithm can also be put in place, if needed, to
avoid catastrophic delays.

The combinatorial compromise offers the possibility
for fast reconfiguration and moderate memory requirements.
In addition, calculation of the optimal allocation as a
background task would smooth processor load. A comparison
of the combinatorial method with the sequential allocation
method for a simple example is presented in Section 3.4.

PERFORMANCE COMPARISON

In this section, the sequential and combinatorial
methods are compared for the simple example of Section 2.3.2.
This example involves three functions, to be implemented in
six devices. The six devices are organized in four pools
in two chains as depicted in Figure 2.-'"]

.

Flightline programming of avionics equipment is currently

performed in advanced Electronic Countermeasures (ECM)
systems.

1. 4V' '.
r~



For five of the possible system health states,
.-- the selected allocations and supported functions for both
" - algorithms are presented in Table 3. Note that the sequen-

tial allocation algorithm is inherently less flexible than
the combinatorial algorithm, as it requires functions to
l be assigned priorities individually. Therefore, it cannot
trade off one function for two slightly less important
tunctions. Note also that there is one case where the
sequential algorithm cannot support all three functions,
even though the combinatorial algorithm can. No ordering
of resource strings and priorities is possible to avoid
this situation; it i:esults from the sequential nature of
the search. Thus, it is seen that the combinatorial algo-
rithm is both more flexible and more efficient than the
sequential algorithm.

Table 3. Algorithm Performance Comparison

-a I Combinatorial
S e tSequential Compromise-.-- System State

__ __ Control Functions Control Functions

1, 2, 1, 2 F, 2, 2 F , F2, F3 1, 2, 2 Fl, F2, F3

1, 2, 1, 1 1, 2, 0 Fl, F2 b  2, 1, 1 Fl, F2, F3

1, 2, 0, 2 1, 0, 0 Flc 0, 1, 1 F2, F3

1, 1, 1, 2 1, 2, 2 Fl, F2, F31 1, 2, 2 Fl, F2, F3

0, 2, 1, 2 2, 0, 0j Fc 0 , 2, 2 F2, F3

Prirites:Fl, F2, F3
Suboptimal due to algorithm inefficiency

.1 LSequential cannot trade one function for two slightly

less important functions.

C-.-

p.i? 15)

... ,.- -. . . . . . . . . .. -I. .. A i



4. ALGOR IJ. V

4.1 PERFOR.LANCE >1L\SLRES

Chapter 2 hais statcd t ht o)pt 111lidi [->-0,)11"', 'l1OCl
tion problem and tzstabi ishted Lte fraimewrK n;nc
must be solved. There are2 tw.o otentra-ci .C t lIUe

for evaluating the performance ot refsourc il locit ;er; I Io
rithms; these are:

1. Measures at alg.or ithmi etffec t ivenei -s
They evaluate how ieairly the t gllo rItn
behavior resembles that ot an, ottifrral
algorithm.

2. Measures of computability: fh(eV e-va-luatt
the burden that would be- place2d on the
aircraft computer systems it the algo(rithm
were implemented.

d71

In selecting a resource allocationi algorithmn tor
onboard allocation, both types af performance measures
must be considered. Clearly, if one algorithm is superior
to another in terms of both effectiveness and computability,
that algorithm is to be preferred. If sefverail alg-orithmis
are evaluated as providing different mixe-s at 2ttectiveness
and computability, then trade-off studies cain be performed
in order to select the preferred algorithm. Thus , these

* -two types of performance measures can be vailuable during,
* the system design cycle.

Measures of algorithm e tctivn r(, t (urid inl
* Section 4.1. Measures of computabilitvY arLrsne n
-: Section 4.2.

4.1.1 Measures of Algori thin E tfec tivt-ne-ss

04
Three general algorithm etei'esmaue

have been identified in this e-ffort. I'hey ir-s1mrz(

problem discussed in Chapter 2. T-he firs t ofthe ts th
Compos ite Ut iIi ty mneasu re , wh ic prvie a i efgr
of merit represent in- the averaige te f t,- t vn h
algorithm over a predetermined time hor i zen). 1he ecn
is the Worst Case measure. This- Ime.su re v i sh

argest deviation bctween the funct ions, ,upp)rt- ei )% thec
optimal algorithm and thet tunct ions spotI> h i[o

rithm under stud,, over a, 1 pr(ldet ermme j e ri t,!i t

Ru



device failures. The third measure of algorithm effectilx"-
ness is Probability of Success. This measure is closu:Iv

* related to the performance measures used in MIREM and
represents the probability that a predetermined set orsets) of functions will be supported over a predetermined
time interval.

All of these measures are implicitly related to
possible maintenance policies. If all ICNIA devices are
to be repaired after each mission, then the time interval
of interest is the mission duration, and the set of cred-
ible device failures should be selected accordingly. How-

- ever, if it is desirable to allow missions to begin with
failed devices, then the time interval of interest is the
maximum maintenance interval, and the set of credible device
failures is significantly larger. It is quite possible
that a suboptimal alsorithm which is superior over short
periods will be inferior over longer periods. Algorithm
effectiveness measures are discussed in detail in the fol-
lowing sections.

Table 4. Algorithm Effectiveness Measures

" Measure Description

Composite Utility Provides a single figure of merit
representing the average effec-
tiveness of the algorithm over a
predetermined time horizon.

Worst Case Evaluates the largest deviation
between the functions supported
by the algorithm under study
and an optimal algorithm over
a predetermined set of credible

* •device failures.

Probability of Represents the probability that a
Success predetermined set (or sets) of

functions will be supported over
a predetermined time interval.

* •(This measure is closely related
to MIREM performance measures.)

17



Composite Utility. The approach taken in this
performance measure is to evaluate the expected utility
attained using the resource allocation algorithm under
study, according to Equation 2. This method averages over
the probabilities of all device failures, and accounts for
the relative priority of all sets of supported functions.
Note that the composite utility is explicitly a function
of the time between maintenance actions.

This performance measure has several advantages.
It is derived directly from the resource allocation opti-
mization problem so no additional heuristic inferences are

required. It results in a single, comprehensive figure of
merit so it is easy to compare the effectiveness of several
different algorithms using this measure.

Unfortunately, the fact that there is only one
figure of merit means that this performance measure does
not permit a detailed analysis of the suboptimal behavior.
No indication is given of what factors cause the algorithm
to work poorly. Similarly, no indication is given of
whether suboptimalities are consistent and small, or occa-
sional and large. These factors may be significant in
selecting which suboptimal algorithm should be implemented.

Worst Case. The Worst Case performance measure

is simply the maximum difference, over a predefined set of

device failures, between the functional set priority sup-
ported by the optimal static algorithm and the functional
set priority supported by the algorithm under evaluation.

,- This measure is also directly related to the optimal resource
allocation problem, being defined from the integrand of
Equation 2. In addition, this measure is deterministic --

O* that is, it does not depend on the statistics of device
* *failures.

The advantages and disadvantages of the Worst

Case measure are essentially the reverse of those of the
- Composite Utility measure. First, it is straightforward
04 to use the Worst Case measure to analyze the conditions of

system health that result in poor performance. Second,
the Worst Case measure informs the designer directly about
situations resulting in extremely poor performance.

On the other hand, the Worst Case algorithm has a
0, number of disadvantages. First, an optimal static resource

allocation algorithm is required for comparison (such as
the algorithm presented in Section 3.3). In order to use
the Worst Case measure, an optimal reference algorithm
must be developed and run, which would involve substantial

18

eq.°



costs. Second, the Worst Case algorithm cannot be used to
assess the average performance of the system; average per-
formance depends on the statistics of device failure.
Thus, the Worst Case measure can help in the design of an
algorithm that avoids catastrophic allocation decisions,
but it cannot determine whether the algorithm will perform
well under average conditions.

Probability of Success. The Probability of Success
performance measure is the probability that a predefined
function set is supported over the predefined period. This
can be calculated from Equation 2 by assigning zero priority
to non-relevant function sets.

The Probability of Success measure allows direct
comparison with MIREM. The MIREM measure is the probabil-
ity of success over a predefined period, given the best
possible algorithm. Thus, comparison with MIREM yields a
direct measure of the effectiveness of the algorithm under
test. If the Probability of Success is computed for several
different sets of functions, a detailed analysis of algo-
rithm suboptimalities is possible. Moreover, if the Proba-
bility of Success is computed for all sets of functions,
direct calculation of the Composite Utility measure can be
accomplished.

4.1.2 Computability Measures

These performance measures are designed to indicate
whether a proposed allocation algorithm can be implemented
in available computer resources without imposing an ex-
cessive burden. There are two categories of computability
measures: memory requirements and processor load.

Memory is required both for program space and for
,- data space. Program and data may require different types

of memory (for example, read-only memory versus random-access
memory) and should be calculated separately.

Similarly, processor load should be assessed both
on the basis of peak load and average load. Peak load will
probably occur when a system reconfiguration is required,
whereas average load is relevant to allocation algorithms
that perform background calculations (as, for example,
precomputation of several likely possibilities for the

* next reconfiguration).

Peak processor load directly affects the reconfig-
uration delay. ICNIA specifications require configuration
delay to be limited to a maximum of 10 seconds, including
failure detection, resource allocation, and reinitialization.

19

. ... .... . . ...... •. o.. .o.... .- .. o . . . ....



QW. V VOW --- - - - - - *V j

Some algorithms may require more time for some combinations
of system health state and function set priorities than
for others. For this reason, allocation delay should be
calculated for both the average case and for the maximum.

The evaluation of these factors is not a straight-
forward numerical comparison. Growth potential must also
be considered. Sensitivity to such factors as added func-
tions, changes in resource/function definitions, redefini-
tion of functional set priorities must also be evaluated
and weighed against the ability of the system to expand,
if necessary, to accommodate the changes.

4.2 EVALUATION METHODS

A software tool is needed to evaluate measures of
algorithm effectiveness for a wide range of suboptimal
algorithms. Since many types of algorithms might be pro-
posed, very few statistical assumptions can be used to

-1 simplify evaluation.

Any of the performance measures proposed in Sec-
tion 4.1.1 can be evaluated using Monte Carlo methods.
These methods involve actually implementing the algorithm
and operating it over a statistically significant number
of resource failure sequences. Thus, the evaluation soft-
ware must include resources strings, statistical models of
resource failure, and the true priorities attached to sets
of functions, in addition to the algorithm under evalua-
tion. Although there are no significant theoretical
difficulties with this approach, software development is
required, and evaluation run times could be substantial.
Furthermore, true priorities have not yet been established
by the Air Force.

Although it would be desirable to evaluate the
Probability of Success measure in the same computational
framework used by MIREM, this may not be possible due to
computational shortcuts in the MIREM software. These short-
cuts take advantage of the fact that in MIREM only the
best possible allocation is of interest. Such shortcuts
are clearly inapplicable in the context of evaluating the
performance of allocation algorithms.

20

. . .-. . .
Z-. . . ....---i .. . .i . ..-.. . -.- ," .i- - / ''2. -



SUM-MARY AND RECO>MENDAT IONS

5. 1 SUMMLRY

fhe 1CIA system approach to improved reliability
and decreased log-istical support requirements employs an
active redundancy concept which relies on a resource allo-
cation process to respond to changing mission requirements
and compensate for the loss of system components. This
report establishes that the optimal solution to this prob-
tem requires a dynamic stochastic optimization. The opti-
mal algorithm would consider timing and fault isolation as
part of a global view of the ICNIA system. However, solu-
tions to this overall optimization problem are very diffi-
cult to compute and do not appear to be feasible.

Under two simplifying assumptions, the dynamic
stochastic optimization problem can be reduced to a
sequence of static problems that can be solved readily.
First, the total reconfiguration time must be small rela-
tive to the allowable downtime of any function; second,
resource failure detection must be separated from the
resource aLllocation algorithm. Any separate fault isola-
tion process then results in an updated system health state
and triggers a reconfiguration event.

Three performance measures which evaluate the
effectiveness of the resource allocation algorithms have
been derived from the optimization framework. Each of
these performanct- measures explicitly depends on the time

between maintenance actions, thus allowing the interaction
between the resource allocation algorithm and maintenance
pol ic ies to bt. co)nsidered. Software using Monte Carlo
. tatisti cil :t hods can be developed to evaluate the per-
-tormance i alternative ,allocation algorithms against these
performaince measures. Of these measures, the Probability
1)t Success m1easure is the most versatile, and its results
can be c:rmpared directly with MIREM in the algorithm and
sys tem d,'sign ,ycle.

In addition to algorithm performance, a system
iesi gner must c)nsider the ability to implement the algo-
rithm within th, IC(NIA system constraints. Implementation
charactristics identified here include memory require-
mfents, processor load, and total reconfiguration time. In
addition, the margin ot safety and the sensitivity of the
implementation t, changes in system constraints must be
cons 1 de red.

21

%1 ".



Three potential algorithm design approaches were
evaluated against the basic criteria of effectiveness and
computability. The first approach, including linear pro-
gramming and associated techniques, was found to be inap-
plicable to the ICNIA problem. The second approach -- that
of sequentially assigning functions on the basis of indi-
vidual priorities -- was demonstrated to result in unneces-
sary functional degradation even for a very simple example.
In addition, this approach is intrinsically incapable of
allowing trade-offs between sets of functions, as in the
"limp home" situation.

A third method, termed the Combinatorial Method,
was proposed. This method would store in memory the op-
timal allocation for the resources currently available and
for the next several possible sequences of resource fail-
ures. After each reallocation for resource failure, the
algorithm would recompute the optimal allocation for the
next set of resource failures as a background processing

""* task. This approach, if feasible, will provide an optimal
static resource allocation.

5.2 RECOMMENDATIONS

Currently, the sets of functions required to support
each mission phase have been defined. To design or evaluate
an allocation algorithm, a priority list by set of functions,
rather than individual functions, must be established within
each mission phase. This list will permit the algorithm
to delineate what subset of these functions (or substitute
functions) is the next most desirable, down to a set of
"limp home" functions. Until this is done, algorithms
cannot be practically designed or consistently compared in

* . evaluating performance. It is recommended that the Air
Force take steps to establish such function set priorities.

It is further recommended that:

1. A Monte Carlo-based model be devel-
oped for evaluating the performance
of specific reconfiguration algo-
rithms in terms of Probability of
Success.

2. The feasibility of using a combina-
torial reconfiguration algorithm in
ICNIA be investigated, and its bene-
fits be quantified and compared with
any other proposed algorithms.

22

.. .. . . . .. . . . .



1L

REFERENCES

Chizeck, H. (1981). Fault-tolerant optimal control (Doc-
*, toral dissertation, Massachusetts Institute of Technology).

Feldbaum, A. (1961) Theory of dual control (Parts 1, II, Ill,
IV). Telemkh., Automat., 21(9,11), 1960; 22(1,2).

- Griffiths, B.E. (1983). Optimal control of jump-linear
gaussian systems (Doctoral dissertation, Case Western
Reserve University).

Kuester, J.L., & Mize, J.H. (1973). Optimization techniques
with fortran. New York: McGraw-Hill.

Luenberger, D.G. (1973). Introduction to linear and non-
linear programming, Reading, MA: Addison-Wesley.

Rishel, R. (1978). The minimum principle, separation prin-
t. ciple, and dynamic programming for partially observed jump

processes. Journal of Mathematical Analysis and Applications,
65.

Veatch, M.H., Calvo, A.B., Myers, J.F., and McManus, J.C.
(1985). Logistics engineering analysis techniques for
fault-tolerant avionics systems (AFHRL-TR-4-, AD-A161981).
Wright-Patterson AFB, OH: Logistics and Human Factors
Division, Air Force Human Resources Laboratory.

White, C.C. (1974). Finite-state, discrete-time optimiza-
"* tion with randomly varying observation quality. Automatica,

10.

*US nOVERNMEN7 PRINI,. J OFFICE 1 9 P 6 6 59 0 55 i 0 0 1 9

o. .-°. .. - . . -. .. .... -• ,- . . . .. . - .. . . . . . -. .. -. . . ... . .. -



- .- ~."--~ ~

F.

I

0

0I
- V.
-V

-S

4


