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Introduction

--2 In different branches of science one often encounters the so-called

stochastic partial differential equations, e.g., in quantum physics,

transport theory, polymer physics, chemistry, signal detection, etc.

These equations are then studied in the context of the particular situation

from which they originate. In this work we aimsto give a start for a

systematic treatment of these equations. In fact, -e begin; with the

ideal hypothesis: almost all of the operators are 'ellipticJ and the

equations are driven on one hand with a drift term absolutely continuous

with respect to the one dimensional Lebesgue measure and on the other

hand, the diffusion term is given by a stochastic integral with respect

to a finite dimensional Wiener process. This is typically the case

encountered in the filtering of diffusion processes (cf. [2], [5], [101),

except here the drift and diffusion operators are not respectively of the

second and first order, they may depend on the whole history, and their

coefficients are not necessarily semimartingales. -Even at this level there

are some interesting problems coming from this fact that the stochastic

calculus is essentially a second order calculus. A second difference

from the classical literature is the following: in all the works on the

subject, it is always assumed that everything is nicely integrable, so

that, one can work in some fixed Sobolev space using the hibertian

techniques. For the qualitative study of these equations; the difference

between integrable and nonintegrable cases is very important since in the

latter case one can not handle a stochastic process with values in the

-RY-
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space of the distributions as some Sobolev space-valued process. For

instance the process

W
{(I-A) 6; t > o}

where W is a standard, one dimensional Wiener process and 6 is the

Dirac's delta function, is a process which visits every Sobolev space

of every order. Consequently, it is natural to study these equations

in the frame of the distributions-valued stochastic processes and this

is one of the essential difference of this work from the literature about

the stochastic partial differential equations.

After some preliminary and important results, we begin by a general

condition of hypoellipticity for the stochastic partial differential

operators on the space of the "integrable" semimartingales with values

in the space of the infinitely differentiable functions with compact

support and we prove that this condition is sufficient for the hypo-

ellipticity of the corresponding stochastic partial differential equation.

By the hypoellipticity of an equation we understand that any distributions-

valued solution of the equation is undistinguishable from a semimartingale

with values in the space of the infinitely differentiable functions
4

when the latter is injected in the space of the distributions. In the

third section we extend the results of the preceding one to the non

.integrable case by using some recent results on the structure of the

trajectories of the nuclear space-valued semimartingales and we end up

by giving some examples of the operators satisfying the conditions

announced before.

There are some aspects which we want to emphasize: in the equations

the drift terms are perturbed by a certain operator derived from the
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diffusion coefficient. We can erase it by defining a generalized integ-

ral of Stratonovitch type for the operators of degree higher than one.

If we look at this equation, then it behaves as a deterministic equation

(i.e., without the stochastic integral term) as long as we are concerned

with its hypoellipticity. The second important observation is the

fact that the "purely random" part (i.e., the Stratonovitch integral)

of the equation neither helps nor destroys the hypoellipticity of the

equation; for the equations of second order this property is illustrated

by an example where the operators are with constant coefficients.

The same example can be extended to the case where the coefficients

are C , but, in this case, the flow of diffeomorphisms being nonlinear,

the calculations are tedious (cf. [18] for an example).

I tr i

.4

% % % % %

ol % o



I. Preliminaries and notations

In the following we shall deal only with the stochastic processes

with values in the space of the distributions or Sobolev spaces. However,

the results of this section are announced in abstract terminology since

they are true for more general spaces than the spaces of the distributions.

Let (0,F,P) be a complete probability space with a right continuous,

increasing, completed filtration (Ft; tE [0,1]) of F. Suppose that F is

a complete, separable nuclear space whose dual F' is also nuclear under

its strong topology (denoted by F ). Denote by RO the space of the

(equivalence classes of) continuous, adapted stochastic processes under

the topology defined by the following metric:

A d(x,o) = E((supo<t<l Ixti) (supo<t<l IxtI + ) -l

(RO,d) is a non-locally convex Fr6chet space and, if J is a linear,

continuous mapping from F into R° , then, there exists an adapted stochastic

process (Xt: t 4[o,1]) with values in F' having almost surely continuous

trajectories in F' such that, for any 0 E F, <X,p>= (<Xtp>; t E[0,1])

is undistinguishable from J(O) (cf. [6], [8]). Moreover, there exists

an increasing sequence of absolutely convex, compact subsets (Kn ; nE]N)

of F' such that (Xt; tE [o,1]) lives almost surely in n F'[Kn], where

F'[K n] denotes the vector subspace of F' spanned by K under the normn n

topology defined by the guage function PK of K and we can choose them in
n

such a way that each one becomes a separable Hilbert space (cf. [6]). This

result implies that such a process is locally bounded: there exists a

L



sequence of stopping times (Tn ; n EI.) increasing to one such that the
nn

stopped process Xn = (Xt^T ; t c [o,1]) lives in a bounded subset of
n

F'[K n. In fact, it is sufficient to choose Tn as

T = inf(t E [o,1] : X t i nK ) .

Since F is nuclear we can suppose the injections F'[Kn] -+F'[K n+l] Hilbert-

Schmidt or nuclear (cf. [11]), hence, if Xn is a weak semimartingale in

F'[K n] , its image in F[Kn+ 3] becomes a semimartingale (cf. [16], [17]).

Let us note that, if F is a countable inductive limit of Fr~chet spaces,

then, the continuity of the mapping J is equivalent to its sequential

continuity (cf. [1]) and this condition is very easy to verify with the

help of the closed graph theorem.

Let u be a semimartingale with values in a separable Hilbert space H,

having the following decomposition:

t t i
ut = u + f a ds + f b dW , t E [o,1]

0 0 0

1 NNwhere Wt = (Wt,...,W) is a standard Wiener process with values in RN

and we use the usual summation convention • a and (b i; i=l, ... ,N) are

adapted, measurable processes with values in H satisfying

2Ias 2 ds + 1 lb 112 ds< + a.s.
I0 II1 H ds s H s

We shall denote by S,(H) the space of such semimartingales for which the
'A.

following norm is finite:

IuIl EIlu 11 + E 2 Ia 1 + 1 11 b'H ) ds
H o i=l

We also use a weaker topology on S2(H) defined by the following norm:

2H .followin
N -nrm
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Iul I E f flu sll N  ds + Elluol1
0

and the corresponding scalar product is denoted by ("')H" The subspace

{u CS (H): u = o} of S2(H ) will be denoted by SO(H)

If H is a Sobolev space, the corresponding norms and the scalar

products will be indicated by replacing H with the index of that Sobolev

space. For u ES2(H), a and bi will be denoted respectively by D u and

D .u , i=, ... ,N. In fact, for such semimartingales D u and .u areW1  + 1z

uniquely defined up to equivalence classes with respect to the measure

dt xdP and D u is nothing but the forward derivative of E. Nelson (cf. [9])

and 3 .u is the dual operator of the stochastic integration operator and itsNz

uniqueness follows from the martingale representation theorem of K. It6.

For H = 1, S2 (R) will be written simply as S2 and for a nuclear space F,

S2(F), and S 2 F will be the equivalent notations, where, S 2 F denotes

the completed projective tensor product topology when S2 is equipped with
1.' -topology. The nuclearity of F implies that S 2 F is (topologically)

isomorphic to the tensor product S2 F completed under the topology of

bi-equicontinuous convergence, denoted by S2 F (cf. [11]), hence any

uE S ;F can be represented as an F[K] -valued semimartingale, Kc F being
2

compact, absolutely convex (cf. [21]), hence we can defined D u and. +

u as above.

Let us finally indicate that we are not very rigorous about the constants

and they are often denoted by the same letters even if they differ from one

line to another.

, ". % , % % " " % , * . * /o" .% % .' %~ Z. "-"- . "A •. " - ."-. % % ." -% ". . ." . '. "-.- *



11. A condition for hypoellipticity

Let U be an open domain in R d and pt(WX, x) be a (random) partial

differential operator of constant degree 2m, m> o. We suppose that Pt

has measurable, adapted, C -coefficients a ,B(t,w,x) such that, for

'N. dany iE N , KcrU (i.e., compact subset of U),

sup sup ID" a (t,ix)[ < c a.s.
EK t Eo,l] x cc, K

where cK is a constant depending only on K and p. We make the following

hypothesis about p t:

(H) There exists s> o such that, for any Ka=U, there exists constants

c=c(K,s) >o and c=c(K,s) >o with

Hull 2 < c(B(u,u) + jullo2)

for any uE So 0i 3(U), where So VU) denotes the subspace of

So iD(U) whose elements have their supports in K and B(u,u) is

defined by the linear form

1 1
B(uv) = E f +(D +p )u5,v ) 'V 0ds + 1/2 E X f (D iu s'9 0 ds

0 oi o W W

Remarks

i) In fact the hypothesis (H) is nothing but the infinite dimensional

form of the sharp Garding inequality.

(ii) In the above notations we are not very rigorous, in fact D u

(also i u s) should be understood as (D+u) s (respectively ( iU) s) but the
Wi 5

following we shall continue to use it for the typographical reasons.

m
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In the following, for OE R, we shall denote by T the properly

supported part of the pseudodifferential operator (I-A)a/ 2 who defines

the Sobolev norm of order a (cf. [15]).

Proposition II.1

Let aE R and suppose that the hypothesis (H) is satisfied. Then, for

any uE S2 oiK(U), one has

2 22 s c[B(u,T 2 a u ) + c l ull] +m -11

* . where c and c1 are positive constants depending only on a, s and K.

Proof:

By the hypothesis (H), we have

lull2 1= mIT'ul2  < c(B(Tau,Tau) + c1luH 2)

Moreover

-(~,Au = ~, 2 a a a
B(Tu,Tau) = B(u,T2 u) + ([p,T ]u, Tu)

Let S be the following operator:

S = Ta [ p , Ta].

Since p* = p + 0(2m-l), where 0(n) denotes and will denote in the following

pages a properly supported random pseudodifferential operator of order n

whose symbol is adapted, measurable, C , having almost surely bounded x-

derivatives uniformly in tc [o,1] on the compact subsets of U, we have

a a
S*= [T ,p] T  + 0(2m+2a -2)

= T [TC ,p] + [[T,p], Ta] + 0(2m+2a-2)

- -S + 0(2m+2,- 2 )

V using the well-known results about the commutators (cf. [151, p. 39).

% %



Hence we have the following estimate:

o 1 l +m-l
//Q.E.D.

Proposition 11.2

Suppose that u S 0V'(DI is a solution of the following stochastic2

partial differential equation:

(11.1) dut = (-p + 1/2(-l) i q) t + qt~d' h

where q1's are the operators as p = Pt (w, x, ) , of constant degree

m i<m and h is a semimartingale in S 2 R E(U) (E(U) denotes the nuclear

Fr6chet space of Co -functions on U). Let E V(U) with l=1 on the

support of P. If, for some Ot E IR, II4uf IC+ml1 < + C, then one has

11 U6 :t11 s < c [fl ul +4 11 ii D ii+11 h(
£2M+s - U,M 1ulI~m. 1 + 1 ~ O Vh + OL W lT.hI

where cm is a positive constant independent of E > o and u£ J Cu,

9being a Friedrich's mollifier.

Proof:

By Proposition 11.1, we have

IIu fl II C [((D0+ p)u T2 ~U ) +- I Ila .u~f 2  CiluciI +iI

'A Since u is a solution of (0.1), we have

N ~_ m +1 2
D u£ DJ J (_P( + (-1 2)+ J OD h

'C. - i 2 '

Then

61P J.. MA
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C(D++p)u , T2c u )o =E 0 (-p+ (-) 1 qi)u+pJpu+J SD h, T u 0

m.+1
(-[J 4 ,p]u + (-1) qi )u +

+ J D +h, T u E)

£ .+

-[JE,P]I + - (Z (-1) l qlU +

1

~+ J @I 1 D~h, T2 a J @1 u)

Letting v = u , we have

E: 2c1 m.+1 2
M(D++p)u , T u ) (-[J C, pjv + 1 L (-1) 1 j qiv ++ 2 i

+J s I Dh,T J tv) .

*,. Let M be the operator defined by

M = J T2 a[J E ' P

and let us calculate M*:

M* = [p*, c J ]T2 J2 C

= [p, PJ ]T J + 0(2m+2ct-2)

since p* p+0(2m-1) (cf. the proof of Proposition II.1 for the notation

0(2m-1). Then

M* = [p, jC ~+ [t, J ]] T J + 0(2m+2a-2)

S= [p, JC fl T 2a J E + O(2m+2ot-2)

= [pJ+ , + 0(2m+2c-2)

-.- ,
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2ct
= [p, T J + O(2m+2o.-2)

: [, ¢ 2c 2

= 1p,J T 2a + [T 2a , J ) + 0(2m+2ct-2)

= [p, J P] 4J T2 a + 0(2m+2ci-2)

= j 3 T2a(p, j ¢] + [Hp, J 2a [J T2a ] + 0(2m+2a-2)

= JT T2a[p J + 0(2m+2cL-2)

= -M + 0(2m+2a-2) .

Using this result and another mollifier and the fact that 
IluII+m-l is

finite we obtain

(11.2) ((D + +P)uc U)o 0 l lullm+al + uX a

m. +1 2 2oL c
+l12( (-1) 3 E q.i u,T u )0

2a 2

Letting Q = J [: T p C i ] and arguing as above, we have

Q + Q* = o(2mi + 2a-2) ,

hence, by the same reasoning, we have

(11.3) ((D++p)u, T 2a U ) < c1I uIll 2 +a 41  DhIa Ilulla +

m.+l u

1/2( (-1) 1 q u, T2auE)o
i

Let us look at the term 1/2113i U 2 :ow

1/2113 uEII2 = / Co2

S2 (T((wqiu CT a

1/21Tc(v Wi-qi ) u 11o + 0 qi u 0o

+ ,2 Tqi u E 2II~ 0

4~

A. K.
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Adding this term to the right hand side of (11.3) (omitting the summation

sign) we see that we have to estimate

m.+l 2 £ 2a c a. 2
(11.4) (-1) 1/2(qi  , T U ) + 1/21T (3i-q.)u

+ (Ta a + /E[T. £2

+ (T(3i-qi)u', T qiu )o + 1/2 1f qiu 10 2

We shall do this in several steps:

i) Let us look at the second term of (11.4): we have

.u E  qiu C = (q i
u + 3 ih ) - qiJ u u

Letting v = lu ' this sum can be written as

(3wi-qi)u = [JEb , qi]v + JC l 3 Wih

Therefore

2ITfa(Ti-qi)u']o  < 2 [J , qi]vII + 211TJ 3 hf1 2

<2c 4lU[m+_ 1 + 2c' Iq 3wh12

ii) Now let us look at the third term of (11.4):

(T( w i-qi)Jc l u, Ta qi J EF U)o =

(Ta[J , qi]v + T' J F 3 I h, Ta qiJ V)

< (T [JE q, q]Jv, Ta qlJt v) 0 +1 3 ihlla O 11  uIlm . l +

+ 415 a ihI 2m +cOtlll ull

Let N be the operator

N = J q! T [3 p qi.
I 1E;
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Then we have, as above,

N* = [q!, J IT 2otq J

= E qT 2 (x[q!, JI + 0(2m.+2a-2)

= J q! T 2x[q., J cfI + O(2m.+2a-2)
E 1 1 1

= 4j q! T [J p , q.] + O(2m.+2a-2)

=-N + 0(2m.i+2at-2)

M.
since we have q! = (-1) 1'q.+r. where r. is an operator as q. but whose

1 1 11

degree is less than or equal to m. - 1 and, similarly

M.

q= (-1) lq*+s. . Consequently, we have the following estimate:

(Ta[J 4. qi]v, Ta qi j _<cIlI 2 +(%l < c'II4uII2 1

1

iii) Now let us study the first and the last terms of (11.4):

a F_ a E1.+ 2£ 2(x E;(11.5) 1/2(T qiu, T qiu ) 0+ (((-1) ,)/2) (q iu ,T u 0

We have

Ta qiu = [TE q~iuc + qT U

hence

£2 l/ 1 [a 1 ~ 1 2 a tl/ 2 T q~u' H0  = /2 1(TqiIU'- 0  + Q[T , qi~uc, qTiucj

+ l/jqTOuj

a E a
<c/2IJ lU11la+M _ + Q[T , q.]u , q.T u 0 +

1

1
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The second term at the right hand side of this inequality can be written

as

6 E
1/2((L + L*)u , ti

where L = T q*[T , q.] and one can show as above that

L*= -L + 0( 2t+ 2mi- 2)

Hence

N2

1/2((L + L*)u, u ) < 2l~ull.O-

and (11.5) can be majorated by

(11.6 C4 11 + /211,Tcu~l 2 (-1/2) m.i+1lq2u, c
(11.6 CIUIa+mi 0 + q i 02 

tC

The second term of (11.6) can be written as

1/21IqiT tiji = 112(([q* q., T ]j + T q* q.)u ,T u)
0i i 0

Let H be the operator defined as

OcxH = T [q! %, To]

then it is easy to see that

H*= -H + 0(2m '.2a- 2)

4 therefore

l/211qiTax u611 2 < cl till2  OL + 1 2(Ta q*i qi u Ta ui)

and we can see that (11.6) can be majorated by

CI2a til ++ 2/q qcu 2a E:2+ /(!qu, T U) + (-1/2) "(q. u, Ta u)

Since q! = (1l)m qi+ri, we have

C1'~ 1a 1 1 1 22t (

1/2(q! q, u T2£ u + (-1/2) (q+ 2', T u ti) 1/2 1Ci Ta tI

1 1 0

- %
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Let 0. denote the operator riq i. Then 0. is an operator of degree less

than or equal to 2m.-l and e! can be written as -0. + t. where t. is
1 1 1 1 1

another such operator of degree less than or equal to 2m. -2. Let Z be1

defined as T2a8B.. Then we have
1

Z* = 0! T 2a = T 2o + 0(2Q+2m-2)11

= -Z + 0(2ot+2m.-2)1

Consequently (11.6) can be majorated by
CI4 1 uI I +m1

where C> o is independent of E > o and adding all the majorations, we see
that the proof is completed.

//Q.E.D.

We have the immediate

Theorem II.1

For any u which is a solution of the equation (11.1) in S 2 i D'(U), there

exists a semimartingale u belonging to S2 a E(U) such that u( ) and f[()

are undistinguishable for any € E D(U).

Proof:

We have u = h O so, modifying h, we may suppose that u = o. Since

u F S2 6 D' (U), for any p E D(U), there exists some ca 1R such that IupIPO

(hence Iu1POit) is finite (cf. [16], [24]). Let now (nk be a sequence

in D(U) such that

i) supp i c supp nk for any k > 1,

ii) 1 on supp k+1 for any k > 1.,~ ~ = k fr n
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Then, for any k > 1, we have alsollnkO u1,< +-, and Proposition 11.2

implies that Ink+l U1j < +-, for any k > 1, hence I4 uI+ <+0

and repeating this argument sufficiently many times we see that 11 ouI

is finite for any given a ER . Consequently, kpu defines a linear, continuous

mapping u from D'(U) into the Hilbert space of the dtx dP-square

integrable, measurable, adapted, real-valued processes denoted by L22 '

Define ii as

where (Cp ) is a locally finite partition of unity of U. Then the Theorem

of Banach-Steinhaus implies that i is a continuous mapping from E'(U)

into L22, hence there exists an element of E(U) L 22, denoted again by

u corresponding to this (nuclear) mapping. Then, it is sufficient to

define 0 by

t m.+l t.

Gi = h + f (-p + ((-1) 1 /2)q ) 25 ds + f qiis dWIs
t t s 15

0 0

//Q.E.D.

Remark:

Suppose that we have an equation of the following type:

(11.7) dut = pu t dt + qiut dWt + dh.

In order to apply Corollary (II.1) to this equation we write it in the

following form:

du t = + ((-l) 1 /2)qi) t dt + qiut dW + dht ,

where
m.+l 2

= p + ((-1) 1 /2)qi.



III. Some examples and extensions

In the preceding section we have supposed that the solutions of the

equation (I.1) were in S2 iV'(U), i.e., that D+u and 3 u were square

integrable with respect to dtx dP on [o,l]x l for i=l,...,N. In fact

this is rather a restricted case as one can see by looking at the following

equation:

(III.1) dut = 1/2 A ut dt - a. u dW1 + dht . = a/ax i
1 t t t

where h is a semimartingale with values in E(Rd) growing faster than the

function exp(Ix 2/2) at infinity. One can show, using the integration by

parts formula (cf. [16), [18], [20]) that the equation (III.1) is hypoelliptic

(it has even a unique solution) but ut is non-integrable for any t> o.

In order tosoIve the hypoellipticity problem in this case we shall

study with the processes indexed by R+ instead of [o,1] and modify the

hypothesis (H) in the following way:

(H') For any bounded stopping time T, for any Kcc U, one has

2 - 2

l1ull m+s-l, T. < C (B T(u u) + 1 ul T

for any u S2 VKD M, where

IullaT = E f HU s2 ds, a E R,

T T
BT(u,v) = E f ((D++P)Us, v s)ds + (1/2)E f (a i u s o a .v s)ds

0 50 W W

and C and c are positive constants depending only on K, s and T.

Now we have the following

/ , ;:
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Theorem III.1

Suppose that u is a semimartingale with values in V'(U) satisfying the

following equation:

m 1 2idu.+ q) ut dt + q~ut dW1 + dht(-P + 2(-)t

and h is a semimartingale with values in E(U) having the following

decomposition:

dht = D h dt + a .h dW'.
t +t Wi t t'

If the hypothesis (H') is satisfied, then there exists a semimartingale

A i with values in E(U) such that 6i(0) and u( ) are undistinguishable for

any 4 ED(U).

*Proof:

Obviously, it is sufficient to show the above result on [o,n) x0 for any

n E 1 . Hence we shall suppose that n=l for the notational simplicity.

Since D(U) is the countable inductive limit of nuclear Fr6chet spaces,

the fact that u(4) has almost surely continuous trajectories for any

r D(U) implies the almost sure strong continuity of the trajectories of u

as a V'(U)-valued semimartingale (cf. Section I). Moreover there exists a

sequence of stopping times (T n) increasing to one such that the stopped

process un = (u T ; t [o,I]) is bounded (in V'(U)). Consequently un .
n

an element of S 2 'U) on the stochastic interval ao ,T]] = {(t,w); t < T n(w)}.

Then, applying Propositions 11.1, 11.2 and Corollary 11.1 (in which we

replace the limits of integration with respect to dt by [o, Tn(w) ]) we see

that there exists a semimartingale 6n with values in E(U) such that, for

any , V(U), dn () and un () are undistinguishable on the stochastic interval

go, T B . Now define ut on [o,1) as

R 11 1Ft'

61i9 %4 PV.
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fi n if t<T
t n

for some n E N. Since (Tn) increases to one with probability one, u is

well defined on [o,1)x Q and this completes the proof.

14 ///Q.E.D.

Examples

1) The simplest example of the operator p satisfying the hypothesis (H')

is any deterministic operator p(x, a x) which is elliptic of order 2m.

In fact, for such operators, using Garding's inequality (cf. [22]) we have

2 < C((pu, u)U sou2

for any bounded stopping time T and u S 2 aD K(M. Using It6's formula

for IIutIi2

ut J2= 2 J (u , du ) + f 11 2 ds0 so 0 f II 00 0 W

we obtain

umT < C(((D_ + p)u,U)oT+ (1/2) 11 wUllT + c1lullT)

for any bounded stopping time T and u so V DK(U).

2) Let us look at the following equation:
m xN 2

dut = [1/2 m X + 1/2 z Z + X + c]u dt + Z u dW + dh
0 1 Jt t t

where Xi, XO, Z. are random operators as before but all of them are of the

first degree, c is an adapted, measurable process with values in E(U) having

almost surely uniformly bounded derivatives on the compact subsets of U and

h is an E(U)-valued semimartingale having a (unique) decomposition as in

Theorem 1lI.l. Then we have

"-' 4; ,,<"'.t',/. ,:'.' "' ,'', .X_ '' ., ",, ",,",'<,, ,,. " " ,." - ,-,r ,,--,.- ,w,.... ...
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Proposition III.1

Suppose that we have, for i=l,...,d,

3 a qCq=.) • qq

where C is defined by- q

C1 = X , C = [X jq, C q-l 1; Jl...,j q {,...,m},

a is an E(U)-valued, adapted, measurable process with almost surelyq

uniformly bounded derivatives on the compact subsets of U. Suppose further

that, for an E E(o,1), there exists some a E(o,1) such that, for any K U,

bounded stopping time T,

(111.2) sup Ia C v 'alT < 6/2d,.'-"ll vll ,T <_ , v E S 2i D (U) q ( ) q q a l T

for some r(c) EIN, depending on a,E and K where

r(c) < -in a/in 2.

Then the hypothesis (H') is satisfied for

p = (-1/2) X  - X - c.
i 1

Proof:

Since the proof is similar to those of [2] and [3], we shall underline

only the parts of it where the condition (111.2) plays an important role.

Let a,E and r(c) be as in the hypothesis. Then we have

2 2 + 2
IlullaT lulloT Ha d 1 T

iE d

ai i 2
H T I l aqC Ull_,T

i< d q

2 1 _ +11 1 ai Ci U12
Tllull 2 , ( q C 1,T a q ull 2-l

i<d qzr(c) q> r() qq a

WgV
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By the hypothesis, we have

2 11 112 2 Ia ul 2(1-6) H l u l ' l,- ,II c,~ ,T  <. <, i<d q<_r(E) q q

for any uE So i D (U). Using the same method as in [2] or [3], one can

show that

iiCquii 1 , T < C IiiuII 2 + 1 2 1, q < r(c)< C I ,Xiu,2 + t-1,o,

By the hypothesis about r(E), we have 2 q< 1, hence

(111.3) lcqUIIt,T < C { I Ixiui + Hull 2 T
q--- u1,To

Applying the following energy inequality (cf. [2], [3])

S2 < D+p',T2B U) (/)113 2 + llul1 2
f xiull, T <C[((D++p)u, TU)o,T + (1/2) W iull, T + ,T]

to the right hand side of (111.3) with 3=o and summing all the terms up to

r(c), we obtain
:!' "2 2 + 1 [2 T

-C ((D+P), + (1/2) jj ul +u1 Hul
(1-0) liuIIT <C 1 [((D++p)u,U) o,T + 1 Wi 0T i , T  1 ,TI

for any uE S K(U) and stopping time T.

///Q.E.D.

Remark:

The above case differs from the one treated in [2] since the vector fields

may depend on the past and the solution takes its values in the space of

the distributions, not in the space of the Radon measures. The hypothesis

that we have used above is implied by the restricted Hbrmander's condition

with uniformly bounded number of Lie brackets on each small neighbourhood.

Note that using the stopping technics as above, the results of [2] can be

.J% .% . ~ .. , ,. . * * * ~ *~'.~ ~ ~
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*. immediately extended to the solutions taking their values in the space

of the distributions.

". 3) In this example we shall study a very simple equation in order to

observe the effect of the stochastic integral part of the equation on itsS.

hypoellipticity: Suppose we have the following equation

(III.4) du t = (-p+ l/2 A)u dt - .u dWt + dh
t idt t t

with N= d and p is a partial differential operator with constant coefficients

and h is a semimartingale with values in E(JR d) . Let us denote by vt the

following process

vt =U t *t

Wt

* where 6- is the Dirac's delta function whose support is W (w). Using the-W t
t

integration by parts formula (cf. [16], [18]) we see that v = (vt; t>o)
md

is a semimartingale with values in V)'(R d ) satisfying the following equation:

: dv= -pv

v t pvt dt +dk~ d

* where k = (kt; t > o) is another E(R d)-valued semimartingale. Consequently,

all the hypoellipticity of the equation (III.4) is coming from the operator

p but not from the operator -1/2A . In other words, if we write (111.4)

in the following form
ii

du t = -pu t dt - 0 ° dWt + dht

where the stochastic integral with respect to W is taken in the sense of

Stratonovitch, then we see that this integral neither contributes to, nor

troubles the hypoellipticity of this equation.

,%,:
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