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- ~ Introduction

:' ) I . . -

s / In different branches of science one often encounters the so-called

R

:5 ’ stochastic partial differential equations, e.g., in quantum physics,

i; transport theory, polymer physics, chemistry, signal detection, etc.

:§f These equations are then studied in the context of the particular situation

35 from which they originate. Innkhis work we aim&to give a start for a i
ol systematic treatment of these equations. In fact,-;; begins with the |
o . | L

W ideal hypothesis: almost all of the operators are "elliptic"” and the

it

;é: equations are driven on one hand with a drift term absolutely continuous

é:* with respect to the one dimensional Lebesgue measure and on the other

:E hand, the diffusion term is given by a stochastic integral with respect

%: v to a finite dimensional Wiener process. This is typically the case

il encountered in the filtering of diffusion processes (cf. {2], (5], [10]),

;&i except here the drift and diffusion operators are not respectively of the

Bﬁ second and first order, they may depend on the whole history, and their

coefficients are not necessarily semimartingales. -Even at this level there
are some interesting problems coming from this fact that the stochastic

calculus is essentially a second order calculus. A second difference

L from the classical literature is the following: in all the works on the
RS
5y subject, it is always assumed that everything is nicely integrable, so
4
A that, one can work in some fixed Sobolev space using the hibertian
2}7 . techniques. For the qualitative study of these equations; the difference
e
"
%* between integrable and nonintegrable cases is very important since in the
1
)
KX latter case one can not handle a stochastic process with values in the
374
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x:i);i: "
§§§ space of the distributions as some Sobolev space-valued process. For
3&3 instance the process
ER
W
N {1-8) %65 t >0}
ehy
}Qﬁ where W is a standard, one dimensional Wiener process and § is the
W
'ﬁ& Dirac's delta function, is a process which visits every Sobolev space
ég of every order. Consequently, it is natural to study these equations
§s: in the frame of the distributions-valued stochastic processes and this
R is one of the essential difference of this work from the literature about
;g: the stochastic partial differential equations.
?::» After some preliminary and important results, we begin by a general
fﬁ? condition of hypoellipticity for the stochastic partial differential
a
5;: operators on the space of the "integrable'" semimartingales with values
3:} in the space of the infinitely differentiable functions with compact
w*?‘ support and we prove that this condition is sufficient for the hypo-
;,i: ellipticity of the corresponding stochastic partial differential equation. 5
,;3 By the hypoellipticity of an equation we understand that any distributions-

valued solution of the equation is undistinguishable from a semimartingale

with values in the space of the infinitely differentiable functions

when the latter is injected in the space of the distributions. In the
third section we extend the results of the preceding one to the non
integrable case by using some recent results on the structure of the
trajectories of the nuclear space-valued semimartingales and we end up
by giving some examples of the operators satisfying the conditions
announced before.

There are some aspects which we want to emphasize: in the equations

the drift terms are perturbed by a certain operator derived from the

b 'V "N 3. 1% 'V’)"" A yJ ST T T R, YL o, -
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:33: diffusion coefficient. We can erase it by defining a generalized integ-
I
ﬁﬁ, ral of Stratonovitch type for the operators of degree higher than one.
“ . If we look at this equation, then it behaves as a deterministic equation
K
N
Q,. (i.e., without the stochastic integral term) as long as we are concerned
b
h, ) with its hypoellipticity. The second important observation is the i
LI i
sl fact that the '"purely random" part (i.e., the Stratonovitch integral) |
L)
b M ¢
xﬁg' of the equation neither helps nor destroys the hypoellipticity of the
Aoy :
) - . . c s
duf equation; for the equations of second order this property is illustrated |
"y by an example where the operators are with constant coefficients.
) 2]
18]
' 3 The same example can be extended to the case where the coefficients
Bt .'.\
'.' i
;ﬂw are C:, but, in this case, the flow of diffeomorphisms being nonlinear, 1
L o
L the calculations are tedious (cf. [18] for an example).
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I. Preliminaries and notations

In the following we shall deal only with the stochastic processes
with values in the space of the distributions or Sobolev spaces. However,
the results of this section are announced in abstract terminology since
they are true for more general spaces than the spaces of the distributions.

Let (Q,F,P) be a complete probability space with a right continuous,
increasing, completed filtration (Ft; te [0,1]) of F. Suppose that F is
a complete, separable nuclear space whose dual F' is also nuclear under
its strong topology (denoted by F! ) Denote by R° the space of the
(equivalence classes of) continuous, adapted stochastic processes under

the topology defined by the following metric:

d(x,0) = E((supo<ti1 |xt|) (sup0<til |xt| + 1)'1).

(Re,d) is a non-locally convex Fréchet space and, if J is a linear,
continuous mapping from F into R° , then, there exists an adapted stochastic
process (Xt: t €[o0,1]) with values in F' having almost surely continuous

trajectories in F! such that, for any ¢ ¢ F, <X,p>= ( <Xt,¢:>;t €fo,1])

B8
is undistinguishable from J(¢) (cf. [6], [8]). Moreover, there exists
an increasing sequence of absolutely convex, compact subsets (Kn;rleN)

of F' such that (Xt; te [o,1]) lives almost surely in nglﬂ F'[Kn], where

F'[Kn] denotes the vector subspace of F' spanned by Kn under the norm

topology defined by the guage function Px of Kn and we can choose them in

such a way that each one becomes a separable Hilbert space (cf. [6]). This

result implies that such a process is locally bounded: there exists a

‘ . O U
> -.._‘C\"\t y \"'- "'-."-\.' - ‘; "‘\ ~." :i&\':- Pl ! "-._:.:‘
ST R
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$te

:7: sequence of stopping times (Tn ; n€N) increasing to one such that the
R

5§ stopped process X" = (xtAT ; te[o,1]) lives in a bounded subset of

. n

[y - F'[K_]. In fact, it is sufficient to choose T_ as

35 n n

T = inf(t € [o,1] :Xtd nl(n) .

Since F is nuclear we can suppose the injections F'[Kn] g+F'[Kn+1] Hilbert-

'é Schmidt or nuclear (cf. [11]), hence, if X" is a weak semimartingale in
‘? F'[Kn], its image in F[Kn+3] becomes a semimartingale (cf. [16], [17]).
N Let us note that, if F is a countable inductive limit of Fréchet spaces,
:% then, the continuity of the mapping J is equivalent to its sequential

Q? continuity (cf. [1]) and this condition is very easy to verify with the

-

help of the closed graph theorem.

Y TOOC T L

Let u be a semimartingale with values in a separable Hilbert space H,

.
§

. o -

o having the following decomposition:
. t t i

3 . u =+ f a_ ds + / b, dW,, tefo,1],
iy °
b
U 1 N, : : . N
xS where wt = (Wt,...,W}) is a standard Wiener process with values in R
;é and we use the usual summation convention - a and (b'; i=1,...,N) are
A
‘» adapted, measurable processes with values in H satisfying

Cd

h’
.;9. 1 1 3

2 iy 2

o [, aglly ds + 1 [ b llj ds<+ = a.s.
e i o
134
-ﬁq We shall denote by SZ(H) the space of such semimartingales for which the
DCa following norm is finite:

- 1 N
! 2 _ 2 2 i

¥ ull = glullZ + &/ dRZe T Iblidas.

‘J (o] 1=1

‘\) ‘
‘ . We also use a weaker topology on Sz(H) defined by the following norm:
¥
)
34
7
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3 1

ks lullf = E ! lugllZ ds + Eflu ||

;; and the corresponding scalar product is denoted by (.,.)H . The subspace )
}; {u €SZ(H): u = o} of SZ(H) will be denoted by S;(H). ,
b If H is a Sobolev space, the corresponding norms and the scalar

i; products will be indicated by replacing H with the index of that Sobolev

b space. For u ESZ(H), a and bi will be denoted respectively by D+u and

" Bwiu, i=1,...,N. In fact, for such semimartingales D,u and Bwiu are

“

uniquely defined up to equivalence classes with respect to the measure

R
A A,

dt x dP and D ,u is nothing but the forward derivative of E. Nelson (cf. [9])

{ and 3 U is the dual operator of the stochastic integration operator and its
W

1
b uniqueness follows from the martingale representation theorem of K. Itd.
L
.? For H = R, SZ(RJ will be written simply as S, and for a nuclear space F,
.“ SZ(F), and SzﬁF will be the equivalent notations, where, SzéF denotes ‘
() 4
i i
%: the completed projective tensor product topology when 82 is equipped with ]
L) :
‘.- -
E& |-! -topology. The nuclearity of F implies that S,8F is (topologically) ‘
&,
i isomorphic to the tensor product Szaffcompleted under the topology of !
:‘ bi-equicontinuous convergence, denoted by Széf?(cf. [11]), hence any 3
i ‘
:“ Ue Szgr?can be represented as an F[K] -valued semimartingale, Kc F being

{
y compact, absolutely convex (cf. [21]), hence we can defined D+u and
Ca .
=$ 3 ,u as above. |
&. W
& Let us finally indicate that we are not very rigorous about the constants
. |
- and they are often denoted by the same letters even if they differ from one
: i
i line to another.




I1. A condition for hypoellipticity

Let U be an open domain in R and pt(w,x,ax) be a (random) partial
differential operator of constant degree 2m, m>o0. We suppose that Py
has measurable, adapted, C”-coefficients a, B(t,au,x) such that, for

any ue Nd , KU (i.e., compact subset of U),

| Ha (t,w,x)| < ¢ a.s.,

su
P X “a,B - K

x ek *YPt ¢ [0,1]
where x is a constant depending only on K and p. We make the following
hypothesis about Pt

(H) There exists s> o such that, for any K«U, there exists constants

c=c(K,s) >0 and c=c(K,s) >o with

2 - 2
hallZ,g., < cB@w « T [lu)

for any ue s° aq((U), where S q((U) denotes the subspace of
SZSD(U) whose elements have their supports in K and B(u,u) is

defined by the linear form

1 1
B(u,v) = E fo ((D,+pJu_,v) ds + 1/2 E E fo (awius,awius)ods.

Remarks
i) In fact the hypothesis (H) is nothing but the infinite dimensional
form of the sharp Garding inequality.

(ii) In the above notations we are not very rigorous, in fact D+us

(also 3 .u_) should be understood as (D u)_ (respectively (3 .u)_) but the
wis +°s wi's

following we shall continue to use it for the typographical reasons.

,,,Pj

.A.;ﬁ. 'L.'L
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i~ ,

';: In the following, for ae¢ R, we shall denote by T the properly

N

L

o~ supported part of the pseudodifferential operator (I-L’\)O‘/2 who defines
the Sobolev norm of order o (cf. [15]).
&

‘!.‘.

Yo Proposition II.1
i_':.,

1 Let ae R and suppose that the hypothesis (H) is satisfied. Then, for
] ‘_.‘- 0O -~
ﬁ'.'. any ue€ SzaDK(U), one has
e

\':- . 2 20. 2

:' 1lulla,,m+s_1 < ¢[B(u,T""u) + CIHUHCHm—l]
O where ¢ and ¢, are positive constants depending only on a, s and K.
10 Proof:

o ;
* By the hypothesis (H), we have !
K. 2 e 2 S — 2
2 2 ey = ITuli2, < ea®, T + Tl

S

---r.

Moreover

>

¢ Qa 2

o B(T™u, T) = B(u,T%w) + ([p,T ]u, T"‘u)o
o

;::i Let S be the following operator:

e

e

v o a

b S=T [P:T ] .
Lr
K :: Since p* = p + 0(2m-1), where 0(n) denotes and will denote in the following
AN

l‘..
'\;: pages a properly supported random pseudodifferential operator of order n
'-',.\
: whose symbol is adapted, measurable, c” , having almost surely bounded x-
,":?.
:: derivatives uniformly in te€ {[o,1] on the compact subsets of U, we have
e
., L .
a0 S* = [Ta,p]TQ + 0(2m+ 20 -2)
A
7 = T7[T,p] + [[T",p], T7] + 0(2m+20-2)
-}:: = -S + 0(2m+2x-2)

)

D using the well-known results about the commutators (cf. [15], p. 39).

R0

!
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Hence we have the following estimate:

2

([p,TaJu,TQUJO < Elffulfa+m-1

//Q.E.D.

Proposition II.2

Suppose that u Sgﬁly(U) is a solution of the following stochastic
partial differential equation:

m.+1 2 i
i q.l)ut dt + q;u, dwt + dh

(II.1) du_ = (-p + 1/2(-1) t

t
where qi's are the operators as p = pt(w,x,ax), of constant degree

m,<m and h is a semimartingale in S, & E(U) (E(U) denotes the nuclear

2
Fréchet space of c” -functions on U). Let ¢, ¢1 e D(U) with ¢1=1 on the

support of ¢. If, for some ae R, || ¢ +, then one has

luHa+m-1<
15 meser < S, mlle28 g+ g g ey 2,00+ Tl ey picy)
1

where o m is a positive constant independent of ¢ > o and u® = J€<bu , J

H

€ |

being a Friedrich's mollifier.
Froof:

By Proposition II.1, we have

€2 e} 1
Hu II0.+m+s-1 f,C[((D++p)u€, T u€)0+-§ ;lld

Since u is a solution of (I.1), we have

mi*l
Du”=D.J ¢u=J€cp(—p+§ (-21) qjJu + J_&6Dh. (
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(0, +p)us, T* w9 = (3 ¢ (-p+ 7 (—1)miﬂ 2)urpJou+d_¢D h, T2 9,
+ s Is) € p 2 1 ql PE € + 2

i

1 mi+1 2
(-[J ¢.plu+ 35T ¢ (g (-1) qjlu +

2
+J_¢Dh, T T

1 A
(-[I &,plou + 3 J ¢ (g (-1 qjleu ¢

20
+ J€¢>¢1 D+h, T J€¢¢>1u) .

Letting v = d)lu, we have

+1

20 ¢ 1 my 2
u’) = (-[J ¢, plv + 5] (-1) Jooaqpv ¢
1

((D++p) ue, T

. 2a
+J€q>¢)1 D+h,T JEQ)V).
Let M be the operator defined by
M=o J_ T ¢, p)
' € e? P

and let us calculate M*:

_ 20
M = [p*, 03 1T U9

[p, $3_1T% J 6 + 0(2m+20-2)

since p* = p+0(2m-1) (cf. the proof of Proposition II.1 for the notation

0(2m-1). Then

M*

[p, J_o+ [6, J.1] T°* J_o+ 0(2me20-2)

[p, J,6] T“J_¢+ 0(2m+20-2)

[p, J.0] T2*(0J_ + [J_, 6]) + 0(2m+20-2)

B SRR o a2

W n'\-h'\)\ \,\)’\1.\ -
\

SRR e e s s
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= [p, 301 T%0J_ + 0(2mr20-2)

20

: - Ip, 3 0] (83 TP+ [1%%,65.]) + 0(2me20-2)

20

a = [p, J€¢>] ¢J€ T + 0(2m+2a-2)

63, T%[p, 3,61 + [lp, I8, 83, 2% 4 0(2m+20-2)

6 3, T[p, J 0] + 0(2m+2a-2)

-M + 0(2m+2a-2) .

Using this result and another mollifier and the fact that ”u“a+m-1 is
finite we obtain

20

2 .
(11.2) ((D++p)u€, T ua)0 < c1”¢’1““m+a—1 + “¢1 D,,h“a ffo 11‘“a

m.+1

v1/2 (D3 eqdu, TG
i

Letting Q =¢J€T20L[J€cp R qi] and arguing as above, we have
Q+Q*=0(m + 2-2),
hence, by the same reasoning, we have

2 . 2
(11.3) (@, +p)uf, T %) < eillopull ,, y +llohllg [Togully

m,+1 2 ¢

/2] (1 qp v, %) .

Let us look at the term 1/2]{{3 .uEHZ
wi o

1/2it% 3

€2 €2
Iy ek

wl

a . €12 Qpn - £ L €
1/2]|T"(3,i-q;)u ||o + (T7(3,i-q)u”, T  q;u ), *

¢ 1/2]I1% qu ll7

?

& .c‘f"f‘\ YR ORNETY Lt .o,-r,c . :--(-' ‘ _:_{., ARGV TN ]& «- y -\-.:-p -.‘,a. IR D “'-r.{ o

MRy
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Adding this term to the right hand side of (II.3) (omitting the summation
sign) we see that we have to estimate

mi+1 2 € 200 € A . £ 2
(I11.4) (-1) 1/2(q; u™, TT u7) o+ 1/2]|T (3,i-q;)u Il ot

o . € o0 £ 0 el
+ (T (3yi-q)u”, TO quu)  + 1/2||T q;u Il
We shall do this in several steps:
i) Let us look at the second term of (II.4): we have
£ € _ _
awiu - qlu - JE(b ¢1(q1u + awlh) qlJ€¢¢1u .
Letting v = ¢1u , this sum can be written as
. € _
Therefore
T Gyi-a 08|12 < 2T 0, avli? + 21 86, o ;n||2
W° i o — e’ i o € 1 wi'o
2 2
< 2cflopull g * 2t llog awihlla
ii) Now let us look at the third term of (II.4):
(T%(3,i-q.)3_¢ ¢, u, T q. J 96 u) =
W tifTem Y1 7V i et Yo
_ o o
= (T7[J. ¢, q;lv+ T J_0¢; Bwih, T qJ_¢V)
o o
< (T [J€¢” qi]V, T quE(bV)o +“¢1 awih”a ”¢1 u”mi*-a-l +
+ g3 hll, L lleg ully
W i
Let N be the operator
N=6J qf TOW ¢, q.].
S | S |
*‘y-_, W e TS S T TR Y

.- : - .'$« P’l) 1 - ‘.H‘ " k] ...
5-1!‘.!‘.':*, ABnICIR I ?: OO '3.;1 ';2. o) "'.. " ‘. "' '.'.'?:.‘9

O l'c':::t i

o
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Then we have, as above,

A N* = [qt, 61T q, J ¢

i i’ Te i ¢

e

¢ _ 20,

k '¢‘J€ qlT [qlx J€¢] + O(Zmi+2a’2)

O ‘ 2a

s -¢J q* T [q., J_¢] + 0(2m.+2a-2)

i’ T¢ i

= =93 qt T 4, q.] + 0(2m +20-2)
€ i g’ i i

! = -N + 0(2mi+2a~2)

m.
. i .
: since we have q; = (-1) qi+ri where ri is an operator as a4 but whose

degree is less than or equal to m, - 1 and, similarly
;ﬁg q; = (-1) 1q‘.1’+si. Consequently, we have the following estimate:
A
Wil (T*J ¢, q.1v, T q. J ov) _ < clle u||2 <c'l¢ u“2
e’ 117 i e 70— 1 mi+a-1 - 1" "m+a-1

LA
qg' a iii) Now let us study the first and the last terms of (II1.4):

::'. m,+1 2
e (I11.5) 1/2(T% quu, T qu¥)_+ (((-1) * )/2) (q u®, T ) .

o
;Q' We have

5&? T qiu€ = [Te, q.l]ue + qiTauE

hence

L]

T @ €y2 a €2 o € o €
~;- /2|77 qqu I = /20T q 1w [| 0+ ([T, q;u”, qTu) o+

¢ 1/2[|q;T%F |2

A

< c/2||oull? + ([T%, qlu%, qT%®)  +

a+m

e, + l/zllqlTO. uE:”cz> .

»

B
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The second term at the right hand side of this inequality can be written

as
1/2((L + L*)u®, u‘:)o |
where L = Taq;[Ta, qi] and one can show as above that
\
L* = -L + 0(2w+2m.-2) . |
Hence

1/2((L + L*)uen ue)o < C|]¢1ul|n +-1

and (II.5) can be majorated by
m,+1

a €2 i 2 e 20 . ¢
(11.6) c[|¢>1u|[a+m-1 + 1/2||qiT u ||0 + (-1/2) (qf v’ T u) .
The second term of (II.6) can be written as
a ey2 a a € L0 €
1/2||qiT u ||o = 1/2(([q; q;, T+ T qf qu, T uw) .
Let H be the operator defined as
- o * a
=T [qi qi, T ]
then it is easy to see that
H* = -H + 0(2mi+2a—2)
therefore
a € o € L0 €
1/2]lq; T u H < cH¢1‘1Hm woe1 tV2(T0 qf qp un, TOuT)

and we can see that (I1.6) can be majorated by

m.+1

€ T2a e) s (-1/2) 1 (qi ue’ TZa ue)

cllo,ull + 1/2(q} qu,

m+a-1
. e = (1M
Since qj (-1) q *r, , we have

1
€ 20 ¢ m* 2 e .20 €, . € .20 ¢
1/2(q; q; u, T u )0 + (-1/2) (qi u, T u )0 = 1/2(riqi u, T u)

As
h

*" 'lh v'&g'h olb ‘ ,3.“:'\:'. “'A "o .:'.‘0‘ 39 .\”4'&

Y 4"' (R 540 ,i

b .“'.'o""". \ "' % X‘q IA“i “u" '::.""

0 0
Mot ‘»i '« R A AT AN 'l’ 't‘. n‘o"n \J' W AR KX
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Let ei denote the operator r.q;- Then Gi is an operator of degree less
than or equal to 2mi-1 and e; can be written as -61+ t. where t, is

’ another such operator of degree less than or equal to Zmi-Z. Let Z be

defined as Tzaei. Then we have

7¢ = g* T = e T2 4 0(20+2m-2)

-2 + O(2a+2mi—2).

Consequently (II.6) can be majorated by

cllo,ul

o+m-1
where C> o is independent of € >0 and adding all the majorations, we see

that the proof is completed.
//Q.E.D,

We have the immediate
Theorem 11,1
For any u which is a solution of the equation (II.1) in SZSIW[U), there
exists a semimartingale u belonging to Sza E(U) such that u(¢) and G(¢)

are undistinguishable for any ¢ € D(U) .

We have u = ho’ so, modifying h, we may suppose that u, = 0. Since
ueSZED'(U), for any Y € D(U), there exists some o R such that luw[a
(hence ihnp“a) is finite (cf. [16], [24]). Let now (n ) be a sequence
in D(U) such that

i)} supp Yc supp Ny s for any k > 1,

ii) N, =1 on supp Mot for any k > 1.

! D T Do L A R

A .‘ h\w’s' Y
- ’!’t" Sty " * \i.n“ v loa i'qll‘v ey !".‘ ‘l.' ] (¥} ‘\'. .‘ L’;r ‘ at 4 LN A\ Q".! i“‘ "‘ W

LY
K, ‘,l‘ Nu

iy 7 O,
S A

¥,
DO ql‘ 5'%

“"‘" .u.
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Then, for any k > 1, we have 315°|hH<W u|L1< +o , and Proposition II.2

implies that ||nk+1wu|| +o, for any k > 1, hence |[pul| , <+o,

<
s+0 s+Q

and repeating this argument sufficiently many times we seethatll\pullB
is finite for any given B ¢ R, Consequently, yu defines a linear, continuous
mapping u¥ from D'(U) into the Hilbert space of the dtx dP-square

integrable, measurable, adapted, real-valued processes denoted by L22.

Define U as

Y
d=)u o
a

where (wa) is a locally finite partition of unity of U. Then the Theorem
of Banach-Steinhaus implies that U is a continuous mapping from E'(U)
into L22, hence there exists an element of E(U) §L22, denoted again by
U corresponding to this (nuclear) mapping. Then, it is sufficient to

define G by

t mi+1 2 t i
G, = h + {) (-p + ((-1) ' /2)q)) G ds + ‘L q i dw_ .
//Q.E.D.
Remark:

Suppose that we have an equation of the following type:

i
(I1.7) dut = -pu, dt + q.u, dwt + dht'

In order to apply Corollary (II.1) to this equation we write it in the

following form:

m*l i
du, = (-p + ((-1) /2)q;) u, dt + qu, dW_ + dh

t’ !
where
m*l 2
p=p+ ((-1) ° /2)q;.

] AT g 3 » “ LW X ; -~ Ve - - . e e m -t N E
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Yl III. Some examples and extensions
‘o]
?: In the preceding section we have supposed that the solutions of the
[/ : o -
*::, equation (I.1) were in SzuD'(U), i.e., that D+u and 3 ;U were square
’ W
’;:;‘: integrable with respect to dtx dP on {[o,1]x§ for i=1,...,N. In fact
1) .\'
:?;é‘ this is rather a restricted case as one can see by looking at the following
1
i}
KhR equation:
Tyt = - i =
_‘ (111.1) dut 1/2 A u, dt ai u, dwt + dht s Bi B/E)xi ,
T
o d
_‘ where h is a semimartingale with values in E(R™) growing faster than the
.ii '
av’ function exp(|x|2/2) at infinity. One can show, using the integration by
RO
%) parts formula (cf. [16], [18], [20]) that the equation (III.1) is hypoelliptic
i
’:..‘A‘ . (it has even a unique solution) but u, is non-integrable for any t>o.
RO
. In order tosolve the hypoellipticity problem in this case we shall
N -
:;::;: study with the processes indexed by R _ instead of [0,1] and modify the
Q!'!l’ i
::::;E hypothesis (H) in the following way:
o h
;_. (H') For any bounded stopping time T, for any K< U, one has
i 2
1)
3 laliZ, oy ¢ < CBrtuw + Tl
6:"

for any u S;SDK(U) , where

e T

I 2 2

b lellgr =8 [ llugly ds, o <R,

S

i T T

.,; ‘ BT(U’V) = E J' ((D++p)us, vs)ds + (1/2)E f (3 iYsg’ 0 ivs)ds
N o o W W

$ :l‘

b — .

;::.:: * and C and ¢ are positive constants depending only on K, s and T.

- Now we have the following

p
(d

L]
DO TP B Al .P.r./ EAC e
. RS ) N ') LA
RN S R IO '$$J

,‘h"“‘ *y ’5 'A‘ Q.‘

95 "‘d"f-' (p .(n:in;ﬁ

< ! 4- < 1 h - -‘l’ <
‘Y el i’ \ " \.\' 'ﬁ
143 “‘i¢ W S

’f-\' d\-.

.

~
’k ;
I STAVPA . n 2, e -I.,‘

2




-
(3
4
9

»‘” e -

P

-18-
\"’5:
o Theorem III.1
0
A Suppose that u is a semimartingale with values in D'(U) satisfying the
W
» following equation:
,5 1, M2 i
3t = (- =(-
2 ; dut (-p + 2( 1) qi) u, dt + qiut dwt + dht

and h is a semimartingale with values in E(U) having the following

i decomposition:
bl
o o h i

¢ =
B dht D, ¢ dt + awiht dwt.
';k If the hypothesis (H') is satisfied, then there exists a semimartingale

o

0 N : .
.éﬁ i with values in E(U) such that G(¢) and u(¢) are undistinguishable for

o™,
""3
i any ¢ e D(U).
L) ]
v Proof:
ﬂ\ -
W . L, ..
) Obviously, it is sufficient to show the above result on [o,n) X{ for any

¥

n ¢ N. Hence we shall suppose that n=1 for tke notational simplicity.

13

Lt{ Since D(U) is the countable inductive limit of nuclear Fréchet spaces,
o

"
t:ﬁ the fact that u{¢) has almost surely continuous trajectories for any
R
P ¢< D(U) implies the almost sure strong continuity of the trajectories of u
o
:g-ﬁ as a D'(U)-valued semimartingale (cf. Section I). Moreover there exists a
L ]
f ", sequence of stopping times (Tn) increasing to one such that the stopped
AN
W

process u” = (utAT ; t [o0,1]) is bounded (in D'(U)). Consequently u” is

N n
W ~
‘%E an element of SZUIV(U) on the stochastic interval [[o,T ]] = {(t,w); t i_Tn(w)}.
B Then, applying Propositions II.1, II.2 and Corollary II.1 (in which we
%f% replace the limits of integration with respect to dt by [o, Tn(w)]) we see
',$' that there exists a semimartingale 6" with values in E(U) such that, for
‘?0‘ any ¢« D(U), ﬁn(¢) and un(¢) are undistinguishable on the stochastic interval
oa Uo,TnH . Now define Gt on [o0,1) as
£y
hy
ity

' AORIO00 U P T N PO P PO AT ‘-,_
“‘ﬂ.n -m';l ‘:‘l"-‘\" :‘l A ‘| *'*-\.’:\-"")hm“ﬁ" g, -::ﬁr'--':"\r "'.-: :’::'W:S
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n .
ﬁt—ﬁt if t<Tn

for some n € N. Since (Tn) increases to one with probability one, u is

well defined on [0,1) xQ and this completes the proof.
///Q.E.D.

Examples
1) The simplest example of the operator p satisfying the hypothesis (H')

is any deterministic operator p(x, ax) which is elliptic of order 2m.

In fact, for such operators, using Garding's inequality (cf. [22]) we have

2 2
lall2 ¢ < cCepu, w g+ IlullZ

for any bounded stopping time T and u Sg 8 D (V). Using Itd's formula

2
for”ut”o

t t
o =2 § g, au)_+ f nawiusnﬁ

s ]

(o]
o

we obtain

2 2 - 2
llullg r < €U, + plu,w + (1/2) Ei:“awiu“o,T + clhulls )

for any bounded stopping time T and u S; @ 0, (V).

2) Let us look at the following equation:

m 2 N 2 j
= [1/2 ; X; + 1/2 g zj + X+ clug dt + Zjut dwy + dh

where Xi, Xo’ Zj are random operators as before but all of them are of the
first degree, ¢ is an adapted, measurable process with values in E(U) having
almost surely uniformly bounded derivatives on the compact subsets of U and
h is an E(U)-valued semimartingale having a (unique) decomposition as in

Theorem III.1. Then we have

.,;.‘,:_;. Wi ! .»2;{"/’4'//_'*" A1 - N QRN Lt ‘*«’ R R T DO A (AN WS et «“"vs“-w"-

f »
l 3
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.

[

;j

a: Proposition III.1

N

i Suppose that we have, for i=1,...,d,

§ 3. =Y acC

» = a

o i q°q

e 1

) .
d

f. where Cq is defined by

ﬁ C,=X,,C =[X.,C 3 Jase-enj_ € {1,...,m},

) 17 %5 Ca T Yy Cqadi g

3 a

)

he aq is an E(U)-valued, adapted, measurable process with almost surely

)

uniformly bounded derivatives on the compact subsets of U. Suppose further

.l

o that, for an ¢ €(o0,1), there exists some a ¢(o0,1) such that, for any K= U,

L~

'i bounded stopping time T,

K.

\ (111.2) 1 cvll /2d

. sup aCuyv < g
2 0 : qq Na-1,T =
: ”VHa,Til’ ves, 80, (U) q>i (€)

N for some r(e) €N, depending on o,¢ and K where

r(e).i -1n a/1n 2.

-
' -

' h Y
g Then the hypothesis (H') is satisfied for

fe

l: 2

' = (- - -

0 p=(-1/2) z X{ - X - c.

i

g
é. Proof:

oA

1 Since the proof is similar to those of [2] and [3], we shall underline

- only the parts of it where the condition (III.2) plays an important role.

)

:: Let a,e and r(c) be as in the hypothesis. Then we have

)

‘? 2 2 2

K .

. g | S S E Y g

‘ ’ 1 i € d »

ol

; 2 ind o2
» =flullg ¢+ 1 N agcyull

" o,T i<d q qq "a-1,T

I

2 idi o2 i.di 2

E sflully +2 L U 3 alulli g+l 1 aCoulli o)
:; o,T i<d Q< r(e) qq "a-1,T q> r(e) qq "o-1,T
"

"

K

o ‘.’.“ o ‘;,, -.-_;;_:;_:::;* 9 f.f.;(_; ;;,:;{{_;f_;a_:f .-:‘ o ‘1\.{.-.,5_“- ‘rq., :-; L f'.’\f"k \(._f;ﬂ:\;.‘::\ : #-,';4, :“:' {
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By the hypothesis, we have

2 2
o sl p <lullgr +2 T L aictulll )

for any ue Sg 3 UK(U)- Using the same method as in [2] or [3], one can

show that

leqully c{z IxguliZ,  +flullg g3 a s

a-1,T = 2%-1,T

By the hypothesis about r(e), we have 2q<1§_1, hence

2
(111.3) ||C uII _C{E I, u|I r iy}

-1,T

Applying the following energy inequality (cf. [2], [3])
2 ' 28 2 - 2
lIXgullg ¢ < CLUMD, + Py, Tw) o+ (1/2) E Il'awiullﬁ,T + clluliz 1]

to the right hand side of (III.3) with B=o and summing all the terms up to

r(e), we obtain

2 — 2
(1-¢) delj r < C LU, +pluu) o+ (1/2) z llawiu[fo T * c1||u||o 'y
I 3 1 >

for any ue S;EUK(U) and stopping time T.
///Q.E.D.

Remark:

The above case differs from the one treated in [2] since the vector fields
may depend on the past and the solution takes its values in the space of
the distributions, nct in the space of the Radon measures. The hypothesis
that we have used above is implied by the restricted Hormander's condition
with uniformly bounded number of Lie brackets on each small neighbourhood.

Note that using the stopping technics as above, the results of [2] can be
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immediately extended to the solutions taking their values in the space
of the distributions.

3) In this example we shall study a very simple equation in order to
observe the effect of the stochastic integral part of the equation on its

hypoellipticity: Suppose we have the following equation

L. | ) i
(I11.4) du_ = (-p+1/2A)u dt - 3.u_ dW_ + dh

with N=d and p is a partial differential operator with constant coefficients
and h is a semimartingale with values in E(Rd) . Let us denote by Ve the

following process

v, =u,_ * 3§
t t -W
t
where é_w is the Dirac's delta function whose support is Wt(w). Using the
t

integration by parts formula (cf. [16], [18]) we see that v = (v_; t>o0)

t;
is a semimartingale with values in U'(Rﬁ) satisfying the following equation:

dvt = -pv, dt + dkt

where k = (kt; t > o) is another E(Rd)-valued semimartingale. Consequently,
all the hypoellipticity of the equation (III.4) is coming from the operator
p but not from the operator -1/2A . In other words, if we write (III.4)

in the following form

o awl
dut = -pu, dt - aiut dwt + dh

t
where the stochastic integral with respect to W is taken in the sense of
Stratonovitch, then we see that this integral neither contributes to, nor

troubles the hypoellipticity of this equation.
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