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Abstract

Massively parallel (connectionist) computational models are playing
an increasingly important role in cognitive science. Establishing the
behavioral correctness of a connectionist model is exceedingly difficult,
as it is with any complex system. For a restricted class of models, one
can define an analog to the energy function of physics and this can be
used to help prove properties of a network. This paper explores energy
and other techniques for establishing that a network meets its
specifications. The treatment is elementary, computational. and focuses
on specific examples. No free lunch is offered.
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1. Introduction

Massive parallel (connectionist) models are playing an increasingly important
role in cognitive science and are beginning to be employed more widely. The success
of initial exploratory studies has led to efforts to systematize and analyze this style of
computation. One important aspect of this effort involves the use of formal
techniques to specify the required behavior of a model and to verify that the
realization meets the stated requirements.

While the verification of complex computational systems has a long history
within computer science. these efforts have not led to significant benefits in the
design or performance of computer software. Similarly, verification of computer
hardware arose as a topic in artificial intelligence and is not part of the normal
design cycle. There is currently a mood of greatly reduced expectations among
researchers in formal verification.

It is not realistic to assume that we will be able to provide complete specifications
for complex connectionistic models any better than we can for traditional programs
such as operating systems on digital computers, or for digital circuits. This is certain
to hold for the complex connectionist models needed to study such intelligent
behaviors as vision and language.

Granting that formal specification and proof will not be feasible for complex
models, there are still several reasons for exploring these ideas. It is feasible to
characterize sub-systems, and these can then be used with confidence in larger
projects. The attempt to formally specify a sub-system is often of considerable
heuristic value in itself, and the verification process inevitably leads to insights and
often uncovers errors in design. In addition, having an explicit goal of formal
specification and verification influences the choice of primitive units used in a
model. how they are connected, and the rules of timing and data transmission
assumed.

This paper explores a number of methodologies for studying the behavior of
connectionist models and a number of strengths and weaknesses of each approach.
Special emphasis is placed on the "energy" formulations modeled on statistical
mechanics. All of the models considered share the notions of a large network of
simple computing units joined by links of varying numeric weights. We are
beginning to understand the computational basis of the success of connectionist
models (CMs) and that this success is fairly robust over a variety of choices in details.
The two central ideas are the use of numerical parameters and the simultaneous
utilization of all relevant information at points of decision. Numerical values can be
looked upon as providing evidence for various propositions or states of the system and
have proved to be useful on problems that have proved difficult in formalisms based
on logic and symbolic parameters. Evidential inference does not require parallel
treatment, but there does seem to be a natural fit which is well captured by
connectionist models. The network form emphasizes the interaction among
contributing factors rather than isolating them as rule-based formulations tend to
do. The implied computational rule, shared by all CMs, is that all of the inputs to a
given unit be combined to yield its output value. The following definitions attempt to
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capture the key ideas shared by CMs while leaving open the precise form of
combination and propagation rules.

The general computational form of a unit in our models will be comprised of:

{Q}-- asetofdiscrete states < 10

P-- acontinuousvaluein{-10,10] called potential
X-- anoutputvalue-1 =X <10

D -- avectorofdatainputsd ...d,

and functions from old to new value of these:

(tn P«AD P Q@
Q<+<gWD,P,Q)
X<hD,P @

The form of the £, g, and A functions and the precise rule for updating them will vary
within this paper and can entail probabilistic functions. Some of the notation will be
suppressed when it is not needed, e.g., we will sometimes have X identically equal to
P and will also sometimes refer to the inputs to a unit by X;, the output of a
predecessor unit.

Most models use only potentials in the range [-1. 1] and outputs in the range
(0, 1]). Some authors [Smolensky, 1986; Selman and Hirst. 1985] find it technically
convenient to use outputs of 1 while acknowledging that negative outputs do not
map well to biology. Others, particularly at Rochester. emphasize the limited
dynamic range of neural signals by restricting outputs to be integers in the range
[0,10) while allowing continuous valued potentials. None of the issues addressed in
this paper are effected by such considerations.

More generally, there is (already) a significant range of connectionist models
with varying goals and assumptions. The work on CM models overlaps a much
broader area of parallel algorithms, particularly for constrained optimization
problems. The distinguishing characteristic of connectionistic models is the
requirement that all decisions be computable in distributed fashion by simple
computing units. The biological or electronic plausibility of a given model is of
second-order concern here, but will be given some attention.

The definitions above are essentially the same as those given in [Feldman and
Ballard, 1982]. The hope there was that the definitions would be sufficiently general
to accommodate all connectionist paradigms and, so far, through a rich variety of
subsequent efforts, this has essentially held. The major difference here is that I
explicitly allow continuous valued output functions, whereas they were discouraged
in the earlier version. Continuous output values are unrealistic for most neural
computation, but are harmless if the model does not depend on the fine structure of
the values. The question of the exact rule for timing the updates of P, @. and X is a
critical one for formal treatment of behavior. The original definitions specified a
strictly synchronous rule, and most energy models rely on a strictly asynchronous




rule. What one would like is a methodology which is oblivious to the form of the
update rule. This issue is discussed further in Section 4. One additional condition
that might be made part of the definition is that the A function specifying the output
be a monotonically increasing function of the potential. All models have satisfied
this constraint and it is probably time to canonize it. Potential is used to capture an
internal level of activity and the external activity should increase with potential for
both computational clarity and biological versimilitude. The only other issue is the
scale factors on potential, weights and outputs for which conventions have not yet
stabilized.

In this paper, a number of particularizations will be employed because many
results hold only for special choices. All of our examples in Sections 1 and 2 will have
only one state so that parameter @ will be supressed for now. The first system to be
examined is composed entirely of binary linear threshold units. Each unit has an
output equal to its potential of 0 or 1. The potential and output are computed by the
rule:

(2) P=Nw X -0
. -y i
Xi=iU P >0thenl else0

where w); are weights of either sign. This is essentially the standard perceptron
[(Minsky and Papert, 1969] and has been used as the basis for much current work,
e.g. [Ackley et al., 1985]. A simple illustration of how such units might be employed
is given in Figure 1.1, which is a vastly oversimplified version of the word
recognition network of [McClelland and Rumelhart, 1981]. The idea is to have
recognizing units for letters in different positions (/), T2) that are linked to units
that recognize words ("IT"). One could have, e.g., all the weights be 1 and have the
rule for "IT" be

XiT= X,,. + X’r2 -1
so that "IT" would be recognized just when it should be. The major concern of this

_paper is formalizing the notion of a connectionist network "doing what it should,"
and we will see that this is not usually straightforward.

Figure 1.1
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One promising approach to proving the correctness of networks is based on the
notion of a global "goodness" or "energy"” measure [Hopfield, 1982; Ackley et al.,
1985; Smolensky, 1986]. These notions are usually motivated by analogies from
statistical mechanics but do not require such treatment. The basic idea is quite
simple--one would like to find a global measure that could be shown to decrease
every time an appropriate change was made to the potential and output of a unit in
the network. Should we be able to establish such a measure, and if it is bounded in
value, then the networks will always converge. A locally monotonic goodness
measure can also be used probabilistically to search for solutions of more complex
problems. The remarkable fact is that, under a specific set of assumptions, such a
measure can be established. We will proceed by pulling a goodness measure out of a
hat and then show how and why it works.

We will first assume the goodness measure G for a network is the sum of
contributions G; from its individual units. For each unit, its contribution will consist
of terms describing its interactions with other elements of the network. For
convenience we consider the threshold terms and any external inputs to be from
extra units whose outputs never change (cf. Figure 1.2). In this case. the contribution
of unit  and the total for the network are given by:

3) G =X>SwX and G=N¢G
L =" —_
J t
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First notice that G, = 0if X; = 0; a unit that is off makes no positive or negative
contribution. If X; = 1, then every unit connected to X; (i.e. w;; = 0) and that is also
on (X; = 1) makes a positive contribution if w;j; > 0 and a negative one if w;; < 0.
Intuitively this goodness measure is higher when units linked by positive weights
are simultaneously active. OQur goodness measure is essentially the same as the
Harmony of [Smolensky, 1986] and its negative is essentially the energy of [Hopfield,
1982; Ackley et al., 1985]. We will talk both of increasing goodness or decreasing
energy depending on what sounds more natural in context.

Now our purpose in developing the goodness function wasto. w convergence of
network computations by establishing that G can be made to alv ays increase. This
will be true if its derivative is always greater than zero. Let us assume that at each
time slot exactly one unit, X;, evaluates whether to change its value. We will look at
the effect of continuous change of X; on G which will be needed later anyway. The
total energy function G can be rewritten to pull out the role of the variable X, that is
being considered:

(4) G=XNw X - N XNy X)
t— - 1 k" &
J JE b

The derivative of G with respect to X; has two terms -- from the first term of (4) comes
the term Lwj, X;. From the remaining sum over) = i the derivative is non-zero only
where X; appears in the inner sum (i.e., when & = 1) and the derivative of each
summand is X,w;, yielding:
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E'. If we make a further major assumption that w;; = wj; everywhere (symmetric
R weights) and a minor one that w;; = 0 we get the main result:
G .
(6) — =2 w X
X T e

t J

In this case, the entire effect on G of changing X, can be determined from only the
incoming weights and values to X;. The factor of 2 in Equation 6 will be suppressed
throughout the paper for simplicity. Now recall that we wanted to guarantee that
each choice of X; makes G increase. This will be assured by the rule

(2) X, =ifSw;X, >0thenlelse0

This is just the original rule for binary linear threshold units--we have provided a
rationale for choosing this particular rule [Hopfield, 1982]. That is. our goodness
function was chosen so that its derivative with respect to X; was positive exactly
when X, = 1 by Equation 2. The remainder of Section 1 and all of Section 2 explore
the goodness/energy formulation and its strengths and weaknesses.

Let us consider how the G function would work for the example of Figure 1.1.
Assume that exactly I1 and T9 were on and the unit for "IN" was tested to see
whether it should go on.

Xy = 1.‘(,,_ - lX_v}-l
=0 inthiscase

and rule (2) says X[ should be zero. We can also compare the value of G with X|x =
Oorl.

Gin = XN X + Xy, -1
=0 forXjy=lorX;x=0

e T
pad AL »
P N

Now if the unit for "IT" is tested, we see that

HENE DA S

Gir = Xirl Xy, + Xr,- D

Ty

' =Xr 1
‘)

. The value Gyt is obviously one where X|T = 1 and zero when X[ = 0. Thus G is
t-{- higher when X1 = 1 and, of course, equation (2) does specify XiT = 1. We will look
¥ very soon at more interesting examples.

A number of assumptions were necessary to establish the increasing goodness
relation. The units had to be binary and to compute their output by a linear
threshold function. The weights linking any two units had to be symmetric. For

LRt




future reference, we will refer to networks with (binary) linear threshold elements as
(BILTE networks. If symmetric weights are also required, the networks will be
denoted SLTE or BSLTE when outputs are binary. Furthermore, a major assumption
was made about the timing of the units’ actions: only one unit could act at a time,
and its output had to reach all other units before they could act. All of these
assumptions are considered further below.

Even under all these assumptions, we have not shown that our networks do what
they should do, only that they converge. (They converge because goodness never
decreases, if we follow rule (2), and goodness clearly has an upper bound for any
specific network.) In order to extend the convergence proof to a correctness one, we
must show that the right answer is the one to which the network will converge. This
turns out to involve three hard sub-problems. The first sub-problem is to specify
formally the desired behavior; this is independent of any particular proof technique
and constitutes a recurrent theme. The second sub-problem is to show that the
desired state (for each input configuration) has the greatest goodness. The third sub-
problem is to show that the system actually reaches this state of maximum goodness.
It may seem, at first, that we have already solved the third problem by showing
convergence. The difficulty here is that while goodness always increases with each
change, the system might converge to a value of goodness which is only a regional
maximum, not the greatest possible value. This issue of regional (local) optima is
ubiquitous in search problems and is another theme of the paper.

The example in Figure 1.2 depicts a situation in which the regional optimum
problem can arise in a tiny system. The additions to Figure 1.1 are a unit for the
word "1," an explicit 8 node for the thresholds, and some specific weights on the
connections (all unlabelled connections have weight = 1). The idea here is that the
word "I" is in a mutual inhibition relation to longer words starting with "I" such as
"IT" and "IN." The threshold for the word "I" is assumed to be .5 and for "IT" to be 1.
This should all seem plausible; the network meets our conditions and the various
words seem to be activated when the right letters are activated. There is a bug,
however, and it shows up as a regional maximum in goodness. Assume that exactly
Iy and T9 are active (=1), and consider the contributions to G of the units for the
words "I" and "IT."

Gr=X; Xy, -Xir- .5
Gir = X7 Xy, + Xr,- X1- D

If unit "I" is considered first, X;7 = 0 and so Zw;jx; = 1-.5 > 0 and X7 will be set to
1. This yields a contribution of .5 to G. Now if unit "IT" is considered, its Zw;X;
term turnsouttobe (1 + 1-1-1) = 0 (because X; = 1), and so X;T = 0. However, if
"IT" were chosen before "I" for consideration, X7 would be 0 and X;7 would be set to
1. This would inhibit "I" but, more importantly, would make a contribution of + 1 to
G. Thus the configuration with Xy = 1 is better than the one with X; = 1. but is
unreachable from there. This is entirely typical of the general case; an early decision
precludes one that would turn out to be better (for G).

In this case, one could fix the bug--for example, by having a negative link from
any letter in the second position (e.g., T2) to the word "1." More generally, it is not at
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Figure 1.2

all clear how one could avoid the regional extremum problem, and much effort has
been devoted to overcoming it, at least partially.

It is also interesting to consider what happens to the example of Figure 1.2 under
an updating rule that examines all units simultaneously rather than one at a time.
Again assume that exactly I1 and T3 are on to start. Now at the first simulation step,
both "IT" and "I" will be turned on, according to rule (1). At the second step (since
each now has a rival), they would both be turned off, and so on, looping forever. This
shows how the choice of timing of the updating can have a major effect on the
behavior of a network. An important aspect of modeling is to develop models whose
behavior is not dependent on such properties of the simulation. Again, we don't
currently know how to do this in general.

One proposed way of evading regional optima is to add a controlled element of
randomness to the unit updating process. In the binary output case, we can have the
output be 0 or 1, depending on the value of a random variable, which is a function of
the unit’s potential. The analog with physics suggests the function

] {prob(Xk=1)=

-AGIT
(1 -e !

where AG is the difference in goodness between when X, = 1 and when X, = 0. This
formulation is called the Boltzmann machine [Ackley et al., 1985]. The parameter T
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is analogous to temperature and will be discussed later. For now, we assume T = 1,
yielding the solid curve in Figure 1.3. Qualitatively, we note that prob(X; = 1)is 1,2
when its contribution to energy (goodness) is zero and goes up as AGy increases. In
our little example, AG; = .5 and AGyr = 1, and the better answer will be chosen
more often. That is, even if unit "I" is tried first, there is a smaller chance that it will
be set to 1. By changing the value of T, one can make the system closer to a random
choice (T large, dashed line in Figure 1.3) or to a deterministic system like we
started with (T ~ 0; dotted line). One could arrange to start T at a high value (to
avoid regional extrema) and then lower it (to get exact fit locally). This is the idea of
"simulated annealing," and will be discussed below. There are a number of other
interesting issues that arise even in this simple example.

-
- -
-
-

AEk

Figure 1.3: Probability X} = 1 as a Function of AGy, (from [Ackley et al., 1985])

One important issue is the use of time-averages to characterize the behavior of a
network. In our example of Figure 1.2, even with random selection the network
would still get the wrong answer on something like 1/3 of the trials. One could try to
reduce the fraction of mistakes by changing weights, but as long as AGy is positive,
X; = 1 will be chosen at least 1/4 of the time. (The probability of "I" being tried
before "IT" = 1/2, and for AGy > 0, the probability of X; = 1is =2 1 2). People differ
in their taste for the general idea of time-averages as a criterion for behavior. It
seems to me to be difficult to have a system make a decision or choose an action based
on a time average without a network that essentially computes the averages. Other
workers have made a virtue of necessity by claiming that time averages are a good
mode] of reversible figures or ambiguous words [Selman, 1985], but the time course
of phenomena appears to be out of scale with the computational model. An extreme
view, which we will not pursue here, is that all mental activity is represented by
correlations among the firing patterns of neurons [Bienenstock, 1985].

.....................
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Much of the work based on goodness and energy takes a different approach to the
problem of uncertain behavior in networks that depend heavily on stochastic
elements. One can show formally [Ackley et al., 1985] that a system that uses the
computation rule (2) with the modification given in (7) will settle into different
states with probability related to their energy difference.

P(B) “EA -EB)/T

8 — —

=e
P(A)

This doesn’t help much by itself unless the desired state (correct solution) is much
better than all others, in which case the system will almost always be right. In the
more general case, people rely on an "annealing schedule"” to increase the probability
that the system will settle in the lowest energy state (always assuming that it has
been shown to be the correct answer). One can see from equation (8) that as T - 0,
the probability ratio can get arbitrarily small, even for small energy gaps. The
problem is that for very small T, the updating rule in (7) is almost deterministic and
thus has only a small chance of escaping a regional optimum (cf. also Figure 1.3) and
the system will take a very long time to reach the state where it is almost always
activating the right answer. A typical annealing schedule for a small problem might
start with a fairly high value of T (typically ~20) and lower it in steps down to 2.
The results, roughly speaking, are that a moderate number of temperature changes
(~10) can lead to a solution that is usually right, but with a significant fraction of
errors (~10%). A slower schedule and lower bottom can reduce the residual error.
Again, people differ in their taste for computations that require several successive
approximations and have significant error probabilities. In the learning paradigms
where this idea has been most widely used. it doesn’t matter much because the
learning typically involves thousands of runs. We will return to the role and
plausibility of annealing later in the paper. A particularly clean presentation of the
idea and its relation to physics can be found in Smolensky [1986].

An alternative to binary outputs is to model the computation with continuous
valued outputs whose value might be taken to represent average firing frequency.
There have been some very nice results developed for binary output units,
particularly in learning, and we discuss these in Section 2, but we will focus on the
continuous output case. In general, the restriction to binary outputs makes it
difficult to treat many important phenomena. For example, the McClelland and
Rumelhart work that was the basis for Figure 1.2 was concerned with visual features
and how they might contribute to recognizing a letter like [y or T (which share
many features). To model this, one would seem to need (as was used) a richer output
space than (0,1) to capture the notion of how confident a detecting unit might be that
it had seen its target. It turns out that the goodness/energy theory extends neatly to
this case.

In fact, our treatment of the goodness function and its derivatives was done
assuming continuous valued outputs X; and then specialized to setting X, to 0 or 1.
Now that we allow continuous valued outputs, the question arises as to what value of
output should correspond to a given value of potential P; = Zw;;X;. Most work uses
only non-negative outputs. and in such a system a negative potential should
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obviously yield an output of zero. But what about positive potentials? Any
monotonic function of potential is defensible, and the choice turns out to be a trade-
off between speed of convergence and the avoidance of regional extrema. We will
look more carefully at a sigmoidal output rule in Section 2b.

Even the simplest continuous output rule
= [fP, > 0then P, else 0

will suffice to fix the regional optimum problem we had in connection with Figure
1.2. Suppose everything is as before and (the worst case) unit "I" is considered first.
Now X[ = Py = .5, not 1 as before. The effect of this is that when "IT" is tested, it
will have XiT = (1 + 1-.5-1) = .5, and at this point both hypotheses will be equally
active. However, the next time that unit "I" is tested, X will be zero, and this will
lead to XiT being 1 on its next test and forevermore. This simple example is
illustrative of several general points. A continuous output system can sometimes
avoid traps that would catch the binary equivalent. Indeterminate situations are
well-modeled by equal potentials. Finally, we see how continuous output systems
can settle into a final state with binary outputs. More information and examples on
these points can be found in (Hopfield and Tank, 1985: Rumelhart et al., 1986].

1b. Winner-Take-All Networks

In any event, now that we are equxpped with continuous output units, we can
explore additional questxons concerning energy and the behavior of connectionist
models. To illustrate the issues, we introduce a second example: a two-unit mutual
inhibition network, shown in Figure 1.4. Mutual inhibition is among the most basic
computations in neural modeling [Ratliff and Hartline, 1974], and has been studied
for many years in various ways. There were mutual inhibitory links in Figure 1.2
between "I" and "IT" and between "I" and "IN." We will look at how one might
specify the desired behavior of such a network and whether goodness/energy
considerations could be useful in proving that the specification is satisfied.

w1 w1

[ A

e f

Figure 1.4: Mutual Inhibition Network
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As part of this exercise, we will look more seriously at the question of what is
involved in specifying the behavior of a network. Informally, mutual inhibition
suggests that the output of each unit should decrease as the output of the other
increases. For discussion, assume that the data input to unit A, d4 > dg. We almost
certainly want the steady state value of Xg < dg and might well want X4 = d4. One
simple question would be whether there is a symmetric linear threshold element
(SLTE) network that guarantees these two conditions hold.

It turns out that we have not specified nearly enough to make this a well-formed
question. For example, we have not specified whether the inputs will be clamped on
or will stop, how soon after the inputs appear that the final conditions must hold,
how long afterwards they should hold, etc. The assumption that both units start
with X = 0 can also be a critical one. The issue of whether updating is synchronous,
asynchronous, or continuous must also be specified, as well as assumptions on the
speed of transmission. One might well want the lower valued input to converge to
zero after some time, the winner-take-all (WTA) property. In addition, one would
need to know what the network should do in the event that d4 = dg. Even for this
small example, one could add a number of other considerations, and the specification
problem for scientifically interesting networks is formidable indeed.

In fact, people are more likely to design a network first and later try to establish
its properties. This program entails a serious risk of building a Procrustean bed for
the original problem, but let us pursue it for the moment. The obvious network is
shown as Figure 1.4. The SLTE updating rules for this network, assuming
thresholds of zero, are (where LX J denotes the greater of X and zero):

(9 Xz =dy-uwlXgd
Xg =dg-wilXd

Each unit in Figure 1.4 has an inhibitory link of the same weight w1 to the other
unit, as well as additional input and output. How can we determine acceptable
values for w) and establish the behavior of the network? For many such networks, it
turns out that no SLTE will suffice, and goodness methods are inapplicable.
However, the WTA problem does have a nice solution using SLTE. I have not
succeeded in using goodness methods to show this, but have done so with simple
algebraic considerations. It would be interesting to see if someone else finds
goodness measures more informative here.

It is easy to show that the network of Figure 1.4 will have the WTA property if i
(and only if) w1 = 1. Suppose d4 > dp in some instance, so that Xg should go to zero.
Since X4 = da always from (9), Xg = dp-w1ds. A little algebra shows that for Xp
- 0 we need

da/dA < w1

If wy = 1, this will be true whenever d4 > dp as specified. When wy < 1 there will
be cases when Xg » 0 and when w; > 1 there will be cases when both Xy and Xg —»
0. Of course values of w) close to 1 will only fail for small differences between X4
and Xg. As mentioned, there does not appear to be any way to use goodness
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< arguments to establish the correctness of the small network while simple algebraic
- considerations work fine.

It is also interesting to ask whether larger WTA networks can be built from
SLTE. If so, the mutual inhibition weight must be 1 because it could happen that
only two of the rivals are active. It turns out that the obvious extension to Figure 1.4
also works. The updating equation for the n-element WTA is:

n
(10) X =d-lLwd X |

N cEL

pol sl Rl e

where w = 1. Assuming all X; = 0 initially and that the asynchronous update rule

is used, this network will result in the unit with the highest input only remaining
£, non-zero. If the unit Xp;; with the highest unit is tried first it will have output =
o dpig and (by (10)) no other unit will be turned on. Moreover, whichever unit is tried
[ first will go on and no smaller or equal input will ever be activated. If a unit with a
o larger input than the current leader is chosen, it will be activated with its potential
20 (and output):

o1 X =d -S%¥

~ . tew Tew - t

(from (10)). But then the new value of ZX,; will be

SNY =N -d -NX)
- - ww —
rew aHd old

= daey

e Thus the total rivalry term is the data input of the largest seen so far. Obviously
0) when dpg is tested it will be activated and ZX; = dpig. From then on, any other unit
that is evaluated will have output zero. This result depends on the data inputs,
particularly dp;g, remaining clamped long enough, and can otherwise fail. It will
also fail for the synchronous updating rule. This is typical of results with the
asynchronous updating model, depending on the persistence of inputs, and the
Boltzmann machine experiments have all been done with static, clamped inputs.
Again, while the SLTE assumptions behind the goodness model support an elegant
o solution to the WTA problem, the role of the goodness function is not obvious. In
SRS fact, there are simpler and more robust and efficient WTA networks employing, e.g.,
S maxtmum (Shastri, 1985], available if one drops the SLTE restriction. One such
S example is discussed in Section 4. There are a number of issues concerning the WTA
L o problem, some of which appear in Section 3c, but that is not the focus of this paper
o (cf. [Feldman and Ballard, 1983]). In Section 2 we will consider a number of cases
. where the SLTE restrictions preclude desired computations and cases where the
[ formulation has been very helpful. Finally, in Section 2c, we consider some
P modifications that might extend the range of SLTE networks and goodness
"“ techniques. Section 3 deals with some other proof methods and a number of related
questions,
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2. The Range of Computations Covered by Goodness
2a. Some Cautionary Tales

In this section. we will attempt to explain some of the strengths and limitations of
the SLTE/energy model. The model is clearly not universal--the operative question is
whether or not it constitutes an adequate basis for essentially all modeling (with
minor adjustments) or rather should be treated as one of several special-purpose
techniques available in more general formulations. This first subsection points out
some computational restrictions on the use of linear combination rules, goodness
functions, symmetric links, and the proof techniques that depend on these
assumptions.

The idea of using the goodness/energy formulation to understand the behavior of
networks is very attractive and has been used successfully in some important cases
(cf. Section 2b). It has also been apparent from the outset that not all computations
are expressible as energy minimizations. Certainly any behavior that requires a
loop or cycle cannot be described by a monotonic goodness function. The system
cannot be made to return systematically to the same state while continuously (or
probabilistically) increasing the goodness measure. In this section we discuss some
other limitations on the computation that arise from the goodness paradigm.

Recall the key assumptions underlying the formulation:

1) linear threshold elements (sometimes with stochastic component);
2) symmetric weights; and
3) aninstantaneousasynchronous updating rule.

We first show that linear threshold elements not restricted to symmetric weights on
connections are universal, i.e., can compute any computable function. This is trivial
because one can easily make a complete set of binary logic devices (e.g., OR and
NOT) from binary linear threshold devices. An OR unit has its two weights as one
and its threshold as .5.

Xor =dy +d2-.5
A negation unit has a weight of -1 and a threshold of -.5.
Xvor=-d+ 5

This is well known and hardly surprising, but serves as a baseline for further study.
Notice that universality does not mean that a particular network of LTE will suffice
to realize a behavior. There are both computational and biological reasons for using
more general elements. With the symmetry condition added. there are many
computations that cannot be done at all.

This is true even for the case of asymmetric links of the same sign that occurs
routinely in practice. One obvious instance is when the weights represent evidential




links (e.g., conditional probabilities) between nodes. These are normally of the same
sign, but of different values. For example, the likelihood (in Figure 1.1) of T given
the word "IT" is much greater than the likelihood of the word given only the letter
position. It has been claimed that one can routinely eliminate asymmetric weights in
binary networks by changing the thresholds in one of the units. A typical case is the
transformation suggested by Figure 2.1, where 83 = 62 + (w1 - w2). This only holds
when the unit B has no other inputs; otherwise the changed threshold can obviously
effect the behavior of unit B when A is silent. And for the continuous valued model,
threshold revision doesn’t even work when B has no other inputs. It may be possible
in some cases to eliminate an asymmetric weight by substituting more complex
symmetric constructions, but this does not seem to be a promising avenue to pursue.
Similarly, results showing that isolated boolean functions can be realized with SLTE
(Hinton and Sejnowski, 1983b] should not be read to imply that arbitrary boolean
networks can be so realized. We will examine below the question of whether there
might be a generalization of goodness that would accommodate asymmetric weights
of the same sign.

A w7 - 8 A ) w1 . 8
w1
Figure 2.1

For subnetworks with weights of opposite sign (Figure 2.2), the situation is even
worse. Suppose the symmetric weight chosen to replace w) and wg were positive.
Then the effect of B = 1 on unit A would be the opposite of what it was in the original
network. This will only lead to an equivalent computation when the original
network had ws so small as to have no effect on A. Notice also that the asymmetric
situation violates our intuitive notions behind the goodness measure. The idea of
mutual consistency doesn’t make sense between two nodes with links of opposite
sign. This suggests that it might be difficult to find an extension of the
goodness/energy paradigm to networks with links of opposite sign. Notice that such a
network is the natural way to implement sequencing, unit A activating B and being

silenced by it in turn.
w1
O=—0
/ -w? \

wa we

Figure 2.2

Another assumption of the standard SLTE/goodness model is that no unit has a
link to itself or retains any "memory" of its previous values (hysteresis). This is
natural for the thermodynamic situation, but is not appropriate for neurons. There




are also a number of computational problems that become easier when memory
across firings is permitted. For example, the usual way to prevent regional maxima
problems like those of Figure 1.2 is to have units accumulate evidence internally for
some time before outputting values that might short-circuit the computation
(Sabbah, 1985]. Another use of unit memory would be to support models that did not
require the inputs to be clamped on. i.e., to implement what is called a "latch" in
circuit design. Fortunately, there does seem to be a systematic modification of the
goodness paradigm that will accommodate unit memory for some versions of the
continuous output model. The idea is to augment any unit requiring memory with an
auxiliary linked only to it by some positive weight, w.

e

Figure 2.3

The conventional goodness model has the output of A* always available to unit A, so
A* acts as internal memory. If the model being modified has output of units equal to
their potential, the value w can be set to 1. If the memory is intended to decay with
time, the weight w can be set to less than 1. In the event that output is not equal to
potential (X = P), the memory of P can be approximated by using a value of w and a
threshold in A* to approximate memory. The relation between output and memory
input for A is:

memory input = w (w - output - threshold).

In addition, one would probably want to arrange the simulation so that A* was
evaluated between evaluations of A without exception. To the best of my knowledge,
no one has tried this. It may also be possible to use a different goodness function that
incorporates self-links, but I have not found a way to do so.

While it is not possible to design loops within the SLTE restriction, one can
design sequences. The idea is to use successively smaller weights and thresholds so
that activation proceeds in sequence (cf. Figure 2.4). Thus the starting input value of
80 is greater than the first unit’s threshold of 70, but the backward linking output of
60 is not. The sequencer would work by the input with weight 80 being turned on for
some time and then stopped. Assuming the simulation timing worked out, the first
unit (threshold 70) would fire and activate whatever it was controlling as well as the
next sequencing unit. If the scale of values is much greater than the values used in
the controlled network, the symmetric links back to the sequencer will have no
effect. This construction is presented for intuition only and is not suggested for use.
A practical sequencer would need either a timer or a completion signal from the
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controlled network signaling the time to step ahead. A timer requires a loop and
cannot be built with SLTE units. A completion signal would be symmetric and
would restart the completed action unless great care was taken.

)

Py
) ‘l,:l

Y
»

controlled network

: 0 : e : ° : °
start

Figure 2.4

Thus far we have seen that the symmetric weight requirement imposes several
computational restrictions, but that asymmetric linear threshold units are
universal. The notion of increasing goodness couid be extended to networks with
unequal weights of the same sign, but not without a heavy price. The crucial step in

. going from (5) to (6) in the derivation of monotonicity exploited symmetric weights
& - and, without them. the effect on global goodness of a local change cannot be
computed at that unit. There are some applications where having the system
compute the global effect of a change might be effective, but this takes us out of the
range of connectionist models. Even so, one could not extend the goodness paradigm

to networks with links of opposite sign.

One can also question the possibility of using symmetric weights but non-linear

e rules of combination. Many investigators have used non-linear rules such as product,

e maximum, or logic functions to combine inputs, and there is no biological reason to

assume only linear combinations. Now the goodness derivation depends in a crucial

way on both the unit combination rule and on summation as the global measure of

goodness. There is a natural extension to conjunctive connections that are symmetric
in all three directions using an update rule analogous to (2), namely:

(11) P =3 Wy KT, = 8,
t‘- ky

and the appropriate energy function (Hinton, personal communication]. It is not at
all obvious how to extend the goodness model to more general combination rules

:}ZZ; while preserving the crucial property that the global effect on goodness be
- computable at the unit contemplating change. The derivation of local computability
- depends heavily on the form of the combination function and no direct extension to

functions like maximum or logic functions goes through.

- In addition to the computational restrictions like those described above. the
- goodness/SLTE paradigm imposes severe control limitations on meodels. For

oS example, one scientific goal in the McClelland and Rumelhart work behind our first

s example (and other models) was to explain why some letter identifications were

N faster than others. The whole question of computational time becomes problematical

o+ . . . .

> in the goodness formulation. The standard version relies upon random asynchronous
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activation. instantaneous transmission, and potentially unbounded memory at each
- incoming site for the activation level of its source. Versions that employ simulated
= annealing add another level of time variation in using several separate settlings of
t"' the system. Quite aside from the electronic or biological plausibility of these

assumptions, there does not appear to be a mapping to psychological time. A
different and promising treatment of time in an energy cum annealing paradigm is
the bipartite harmony model of Smolensky [1986], as depicted in Figure 2.5. The
current version uses BSLTE, a goodness function, temperature, and annealing, but
restricts connectivity to a bipartite graph. The idea is that each unit in the lower
layer connects only to units in the upper layer, and vice-versa. The advantage of this
is that the system can be shown to have good convergence properties (and can be
simulated) with synchronous updating. This can be viewed as inserting a layer of
synchronization units between levels of a tree of representational units. This and
some other possible modifications to the paradigm will be discussed in Section 2c,
after we look at some successes of the methodology.

segment/letter letter/word
knowledge atoms knowledge atoms

line segment nodes letter nodes word nodes

Figure 2.5: Bipartite Harmony Network for Words (from [Smolensky, 1986])

One question that arises about all these limitations is: do they matter? Perhaps
the SLTE formalism can compute all functions of interest, or a learning mechanism
1 can produce good approximations to any important computation. Computer science
s, has extensive experience with underpowered formalisms, and the prognosis is not
good for attempts to get by with one. A particularly clear example arises in the case
of formal grammars. where finite-state grammars (FSGs) play a role analogous to
SLTE networks. There are all sorts of lovely decidability and optimality theorems for
FSGs, and some practical problems where they are clearly the method of choice (cf.
Section 3b). However, for problems with a slightly richer structure (e.g., matching
- parentheses), FSG techniques fall apart. Any attempt to construct or learn an FSG
e for an inappropriate language leads to ever larger approximate models that
(necessarily) fail to incorporate the structure of the domain. It is true that
investigators who favor the energy paradigm tend to believe in (although not
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necessarily to use) massively distributed representations, but I fail to see how this
could effect the basic computational limitations of the technique.

2b. Some Success Stories

We have seen that many computational problems have no formulation in
goodness/energy terms. The problems that have thus far been handled effectively by
goodness techniques all fall into the general category of constrained optimizations.
The additive goodness function, uniform combination rule, and symmetric weights
comprise a natural vocabulary for expressing problems in which the individual
choices have degrees of compatibility and where the best solution maximizes the sum
of these individual measures. Several important questions have this character and,
for some of these, goodness formulations have provided valuable insights. Smolensky
[1986] suggests that mutual compatibility (harmony) is exactly the domain of
goodness methods. With this restriction on the domain, Smolensky can present a
coherent story covering all of my behavior criteria. The correct answer to a
compatibility problem is (by definition) the maximum entropy solution, and this is
found (with high probability) by an annealing schedule. Other work has focused on
solving problems for which the answer is specified by external criteria.

Both the word recognition and WTA problem discussed earlier can be at least
partially understood in goodness terms. For discrete assignment problems, the fit
can be even better. A simple example can be found in {Rumelhart and McClelland,
1986], where the Necker cube is treated as a problem of assizning to each vertex a
labeling such as "front lower left." Each vertex has two mutually incompatible
labels, and these partition into mutually compatible subsets in the obvious way.
However. by plotting the goodness function over the various values for the number of
units on in the two alternative coalitions, one can get a much better feel for the
structure of the computation (Figure 2.6). The local peaks correspond to
interpretations that are not three-dimensional objects.

The Necker cube example was one where the goodness map functioned as an aid
for a problem whose solution was known. There are some other cases in which the
goodness/energy formulation is central. Perhaps the most interesting of these is the
recent work of Hopfield and Tank [1985] on the Traveling Salesman problem (TSP).
The TSP is to find the shortest path through a graph in which each node is visited
exactly once. This is clearly a constrained optimization problem, and one of
considerable theoretical and practical importance. A key trick in the Hopfield and
Tank formulation is to represent the solution as a binary square matrix with a 1 only
in the entry corresponding to the sequential position in the tour (column) of a node
(row). Thus an acceptable answer is a binary matrix with a single 1 in each row and
each column. An energy function is constructed which is much better for such
configurations than for other binary matrices. This is done with strong mutual
inhibition links in the usual way. Finally, another term representing the total
distance of a tour is added to the energy function. The problem is now in the form
where minimizing energy would provably yield the shortest tour.

Another interesting aspect of this paper is the method used to "search for" the
energy minimum. Even though the final answer has only binary entries in the
assignment matrix, Hopfield and Tank allow the corresponding units to take on any
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Figure 2.6: The goodness of fit surface for tive Necker cube network
from Rumelhart et al., 1986]). The low point at the (0,0) corner
corresponds to the start state. The peaks on the right and left

correspond to the standard interpretations of the cube.

value between 0 and 1. They view the binary matrix as corners of a phase space and
the continuous values as specifying interior points. One can also view the approach
as avoiding local minima by moving more cautiously through energy space than
strictly binary units would permit. This idea was illustrated in Section 1 and was
also used in the Necker cube example above. Itisinteresting that Hopfield and Tank
employ a sigmoid function to map potentials to output values: this tends to push high
and low values to the extremes, but is more nearly linear in the middle. With some
additional adjustments, like adding small random bias to initial values to break
symmetry, the system turns out to do pretty well, and would be very fast on
appropriate hardware. The paper discusses performance and a number of heuristics
that might improve it. Some of the assumptions of the model are oriented around
electronic circuits and are questionable for neurons; we will discuss this further in
Section 4.

Another important paper whose success is at least partially due to energy
considerations is that of [Geman and Geman, 1984]. They are concerned with the
restoration of gray-scale images that have been corrupted by noise of a known
statistical character. Given this knowledge and the statistical character of the
domain, the best Bayesian restoration is the image which would most likely have led
to what we started with. The problem is that this maximum a posteriori (MAP)
estimate has been computationally intractable. Geman and Geman exploit the
equivalence of Markov Random Fields and the Gibbs distribution in
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thermodynamics to convert the MAP problem into one of minimizing an energy
functional. Using essentially the same ideas as we discussed earlier, they show that
local decisions which reduce energy are possible. The results, within the limited
domain approached, are quite good.

We briefly discussed simulated annealing in the energy paradigm in Section 1.
The general idea of simulated annealing in optimization problems has attained
considerable success. Some formulation of problems in vision, such as the Gemans'
work (above) and [Poggio et al., 1985], result in constrained maximization problems,
and simulated annealing will be one of the solution techniques employed. But most
of this work is not concerned with connectionist models. I will briefly discuss the
biological plausibility of annealing in Section 4. As a computational construct,
annealing has been primarily used to avoid regional optima, and doesn’t add any
functionality to the models. One potentially interesting exception to this
generalization arises in Selman’s Master’s thesis [Selman, 1985; Selman and Hirst,
1985].

Selman was concerned (like several others) with building a connectionist parser
for context-free grammars. One nice aspect of Selman’s work is an automatic method
of constructing the connectionist parser from a limited context-free grammar.
Figure 2.7 shows a tiny grammar and the resulting network. The construction
algorithm also supplies weights and thresholds and is one of several elegant new
model builders that will be discussed in Section 4. For our current purposes. the
interest centers on the mutually inhibitory "binder" nodes labeled 1-4 in Figure 2.7.
The idea is that only one of the three alternative constructions for VP can be present
in a sentence. (The three alternatives are represented by four binders for technical
reasons.) One could build a deterministic parsing network using enough nodes and
memory or state within the computational units [Cottrell, 1985a; Waltz and Pollack,
1984]. What Selman does instead is to minimize the number of units in his network
and employ an annealing schedule to find good matches. The interesting aspect of
this is that annealing is playing a role similar to the sequential search and back-
tracking of conventional parsers. Unfortunately, the Master’s thesis only involved
simple examples, and it is not clear how far the analogy will take us. The thesis
itself {Selman, 1985] contains interesting discussions of design decisions and other
considerations concerning the energy paradigm, and some possible modifications.

Some of the greatest successes with the goodness/energy paradigm have come in
studying abstract computational questions, particularly learning. Learning is a
central issue of intelligence and is particularly important for connectionist models,
which reject the notion of an interpreter and a store of encapsulated knowledge. It
turns out that SLTE systems, particularly the binary Boltzmann machine, have
remarkable properties of adaptation and learning. These have been explored in a
series of papers by Hinton, Sejnowski, and their collaborators [Ackley et al.. 1485;
Derthick, 1984; Sejnowski et al., 1985].

The learning algorithm for Boltzmann machines again is based on the average
occupancy rate of various states when the system has reached equilibrium. Learning
is designed to produce a system that will spontaneously produce the same statistics
in input/output units as was used in training. [flater some partial input is specified,
the system will generate maximum entropy estimates of the unspecified inputs.
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b - Figure 2.7: A Small Grammar and its Network (from [Selman, 1985])

Given that one accepts this model of learning, a very powerful local learning rule
obtains. Since relative energy among various states determine their frequency, any
errors in frequency must be due to some weights in the network being set sub-
optimally. But the energy function is a sum of local energy functions at each unit,
which is in turn a sum of contributions by each link. Therefore one can use the
following simple update rule. Let p;; be the probability of units : and j both being on
in the clamped situation and p’;; be the joint probability when the system is free
running. Then the weight-updatingrule:

Awy =¢(py-py

where ¢ is a scale factor, will converge to the correct expected values. The proof of
this is given in [Hinton et al., 1984] and uses partial derivative techniques like our
treatment in the introduction. A distributed version of this algorithm would require
that the system go through successive cycles of stochastically accurate training and
free-running simulation. The free-running state has been likened to dreams (cf. also
[Crick and Mitchison, 1983: Hopfield et al., 1983]). The value of the learned weight
pij would have to be stored (for each connection) during the simlation runs and
recalled for normal activity. Again, reasonable men can differ on the plausibility of
all this.

One way of looking at these results is to notice that the Boltzmann learning

algorithm will eventually converge (in the appropriate sense) for any function
computable by a Boltzmann machine. assuming enough units and connections are
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available. Of course, the range of learnable functions is limited, but it does provide
an excellent vehicle for theoretical study. Very recently some powerful results on
learning in more general networks have begun to appear [Rumelhart et al., 1985;
Parker, 1985]. Although they do not employ SLTE, energy, or annealing, there is a
clear intellectual link with the Boltzmann formulation. The course of true science
does not run smooth.

2¢. Some Possible Extensions

The results of the previous section show that there are some modeling problems
for which the SLTE goodness/energy formulation can be directly applied to good
effect. All of the ones discovered so far are optimal assignment problems with
symmetric constraints and an additive quadratic objective function. In this section
we will look at the question of regional and global maxima, of classes of problems
that might fit directly into the paradigm, and of modifications that might extend its
applicability.

The results of the previous sections enable us to provide a clear answer to the
primary question raised in the paper. Linear threshold elements, symmetric
weights, and asynchronous updating support a powerful paradigm in which
termination and sometimes correctness can be established. They do not. however,
come close to covering the range of computational problems of interest in
connectionist models. The situation is no different than it is with any other
mathematical formalism; it requires considerable judgement to decide whether a
problem might fit into the energy paradigm and how best to do it. To start a
modeling project on the assumption that it must be made to fit the energy model is to
court disaster. Of course. one must also consider whether any connectionist model is
appropriate for the task at hand.

For those with appropriate background, the analog with statistical mechanics
can be quite suggestive. Smolensky {1986] has the best treatment of this. What one
must realize is that statistical mechanics is most powerful in systems lacking
significant structure. For structured domains, e.g., protein folding, statistical
considerations play a minor role. It seems to me that cognition is much more like the
interaction of complex structures than an ideal gas. Moreover, the symmetric weight
(interaction strength) condition does hold in complex physical situations but not in
many cognitive domains. The physics model would have to be expanded greatly to
explicate the nature of parallel computation. On the other hand, the general
metaphorical notion of a parallel system settling into a stable state could have
lasting value.

The principal attraction of the energy paradigm is the property that it is
guaranteed to converge. To ensure that a network will deterministically converge to
the right answer, one must also show that the right answer has the lowest energy
and that the energy surface s convex (uni-modal). We assume for now that the
former is accomplished. and examine the latter question. It should be clear from the
Necker cube example (Figure 2.1) that it will not generally be feasible to construct a
uni-modal energy or goodness map. This does not mean that networks cannot be
proven to converge, only that the simplest methods do not suffice. The most common
way of addressing the problem of regional minima has been the use of random
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perturbation, usually becoming less random as the computation progresses. This
idea of "annealing"” is taking its place in the general repertoire of combinatorial
optimization techniques [Aragon et al., 1985}, but does not seem to be a useful idea
for connectionist models, for several reasons, some of which were outlined earlier.
The annealing process has been much too slow and uncertain to form the
computational basis for basic neural perception, action, etc..

Given a problem that will fit the SLTE energy model, there are a variety of other
ways to combat the problem of regional optima. One method was discussed in
connection with Hopfield and Tank’s TSP network, where the amount of descent (in
the steepest direction) was varied. Of course, no such deterministic technique will
escape an energy valley, but it should work fairly well for neutral (non-perverse)
initial conditions.

Another interesting possibility arises from making a virtue of the transmission
delay present in neurons but missing from all the models. If, in a real or simulated
system, we allow units to be evaluated with information that might be out of date,
this will have the effect of adding noise. If one assumes that the probability of
outdated information is random (as would occur with random choice of units to
activate), then there will be random noise. Moreover, as Francis Crick first pointed
out, the noise will be greater in the early stages of computation when things are
changing a lot. and will be less later in the computation; thus simulating simulated
annealing. Some preliminary experiments by Terry Sejnowski along these lines
have had moderate success. It will also be interesting to see how the bipartite
synchronous formulation {Smolensky, 1986] extends to more complex problems.

Another way of improving the pure energy method is to develop the analogy to
multi-grid and resolution hierarchy techniques. The idea there is to first solve a
(spatially) crude approximation to the optimum and then refine it. One way to carry
this idea over to the SLTE world is to put in extra units that explicitly represent
areas of the solution space and establish heavily weighted inhibitions among them.
In an ideal case one could even make the solution space uni-modal.

One major problem with the energy method is that (except for noise) it must
improve the metric on each and every calculation. One trivial, but powerful,
modification would be to allow some fore-play period of time in which energy was
ignored. One way to realize this idea is to use the state variable, @, from our original
definition. One could allow enough time for information to spread through the
network and then have units switch to a state where the energy minimization
became operative. In addition, one could restrict the energy minimization to a
selected subset of the units. The early phases and non-energy units could have
asymmetric links and would presumably be characterized by different methods, like
those of the next section. Recall that the whole idea of the method is to show
convergence and, hopefully, correctness. There is no reason why these results can't
be established considering part of a network for a restricted part of the computation.
In fact, these are some of the kinds of techniques that have been used to construct
connectionist models in the past. A number of other alternative ideas for specifying
and proving the behavior of parallel systems are discussed in the next section.
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3. Other Specification and Verification Techniques
3a. Evidential Reasoning

There are, of course, many ways of specifying computations and verifying the
networks that carry them out. One useful idea is to specify the desired computation
in another computational language and then show its equivalence with a particular

- network. Ideally, one would like to be able to do this generally for a class of problems.
{ For example, one could try to devise a "compiler" from standard (Ballard and Hayes,
e 1984] or non-monotonic [Cottrell, 1985b] logic to connectionist networks and prove
e that it always yields the right results. No one has succeeded in doing this, but some
interesting results have been achieved. In a more restricted domain, Fanty [1985]

g has a system that will produce a provably correct parser (over fixed length input) for
i, any context-free language.

Some of the best results in network specification have been achieved with
evidential reasoning systems. There are a number of conceptually similar
formalisms for specifying how pieces of evidence should be combined to reach the

. "best” conclusion. We could view our first example as a specification (via the

L network) of rules for combining evidence for letters (e.g., [{, T2) to compute the
likelihood or confidence of the appearance of words. There is a natural
correspondence between levels of evidence, probability, etc., and the levels of
activation in network models. This has been obvious from the outset and appears to
have been understood by Freud in his (abandoned) neural net project [Pribram and

( McGill, 1976]. Certainly the "spreading activation” models of cognitive science
[Collins and Loftus, 1975] had an implicit evidence theory.

More recently, there have been a number of efforts to examine formal theories of
evidence as computational engines, and some of this effort has been done using
network models. Formal network models embodying Bayesian [Pearl, 1985] and

@ Dempster/Shafer [Lowrance, 1982; Wesley et al., 1984] evidence theories have been
N studied. These networks require complex calculations at each node and do not fall
o directly into our topic, but many of the ideas carry over to connectionist models. A

recent thesis by L. Shastri (1985] carries out a detailed analysis of connectionist
S networks for solving inheritance and categorization problems using an evidence
F @ ¢ theory derived from maximum entropy. We will examine this effort as another
paradigm for producing connectionist models with provable behavior.

Shastri’s model is a conventional hierarchical semantic network augmented with
relative frequency information (cf. Figure 3.1). The network is required to compute
"o the most likely answer to inheritance queries (e.g., pacifism of DICK) and
categorization problems (e.g., who is a pacifist and Republican). Shastri argues that
the appropriate notion of "most likely" derives from maximum entropy. This is not
relevant to our discussion and, in the cases considered. conventional Bayesian
inference would give identical results. The relevant point is that a tight specification
of the required behavior preceded the design of the network.

The specification of the semantic network that exhibits the required behavior and
the proof that it does so are given in {Shastri, 1985]. We will just try to convey the
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g computational flavor of the design and the correctness proof for inheritance.
b Shastri’s problem is made easier by the fact that his sub-networks have no negative
- links or loops. The simulation rule is parallel--all units recompute at each cycle.
Convergence is assured because activation spreads in a controlled fashion to the top
of the hierarchy and back down. Explicit control units (triangular nodes in Figure
" 3.1) are designed into the network as in conventional logic design. Different "enable"
e and "relay” units are activated. depending on the type of query being processed. It is
e then fairly straightforward to show that activation will flow through the network in

- a controlled fashion and that the results of a query will stabilize in time proportional
to the depth of the semantic hierarchy.

Given that the network will converge, it remains to show that it will yield the
o correct answer. Shastri's evidence model specifies that a query such as "Do
[ - Republicans tend to be pacifists or not?" be answered by comparing two ratios:

) . # Republican pacifists # pacifists
L{Republican = paciist) = e X X .-
# pacifists # people with beliefs

and

L . ) , # Republican non - pacifists # non — pacifists
L(Republican = non — pacifist) = x

# non — pacifists # people with beliefs

SN The remainder of the proof consists of showing that networks like that in Figure 3.1,

- with the various ratios as weights and appropriate (multiplicative) combining rules,
{ - do produce activation levels proportional to the required L values. This gets
T somewhat complicated for multiple and conflicting inheritance questions, but this is
due to the nature of the calculation more than its network implementation. Shastri
- then goes on to show how the same network, units, and weights will also answer
L categorization questions (e.g., "Who is a Republican pacifist?"), using different
O enabling rules.

The Shastri results also provide the clearest instance of why evidential
considerations have been at the core of much of the success of connectionist models.
From an abstract computational viewpoint, there is no reason why a parallel
formulation should have descriptive advantages over a serial specification such as a
. set of rules. Two factors, one of them incidental, has led to the descriptive success of
L connectionist models. It turns out that categorical (all-or-none) rules are not
L appropriate for describing many cognitive tasks and that some sort of evidential or
e probabilistic reasoning is required. This has no inherent connection to parallelism,
as Shastri clearly shows. Where parallelism does come in is that it permits (and
@ encourages) the simultaneous consideration of all the relevant evidence. The
sequential application of individual probabilistic rules does not capture the same
notion. Of course, Shastri’s problem is enormously simplified by the assumption that
the evidential network has no cycles. The general case involves "relaxation” and
problems analogous to the problem of regional optima in gnodness/energy models.

There are some attractive and some problematical aspects of these results. The
idea of exploiting a powerful theory of the domain (here, maximum likelihood
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evidence theory) is clearly of great importance to connectionist models. Many other
recent efforts have used linguistic theories to specify networks (e.g., [Dell, 1985;
Cottrell. 1985a; Selman, 1985]). Shastri is the first to prove formally that his
networks realize the theory, and it is important to see how this can be done. On the
other hand, there is something overly rigid about the precision with which the
network is designed and controlled. An earlier version of Shastri's model [Shastri
and Feldman, 1984] seems much more natural, but it had no underlying theory and
was intractable. Another problem, not directly relevant here, is that the frequency
ratios currently require far more precision than one can reasonably expect in nature.
We will say more about the biological plausibility of various models in Section 4.

3b. Finite Automata and Related Methods of Computer Science

We will now consider, for the first time, the symbolic state variable @ that was
included in the original unit definition (1). There are excellent biological and
computational reasons for allowing a unit (neuron) to have different computational
rules that apply in varying circumstances. Fatigue and habituation are two simple
state-dependent phenomena. There is good reason to suspect that learning and
perhaps dreaming involve distinct computational states. At the biochemical level.
the discovery of a rich variety of peptide modulators has also strengthened the notion
that an unchanging computational device is not the best model of a neuron. The state
variable in definition (1) provides a formal mechanism for incorporating state
dependence without much bias as to how it is used.

From a computational point of view, finite-state machines (FSMs) provide a well
explored formalism for specifying and verifying the behavior of networks. One major
advantage here is that the FSM formulation allows one to formalize systems that
have cyclic behavior--which none of the previously discussed techniques can.
Another use of FSM techniques is in defining discrete behavior transitions which are
harder to see in a continuous formulation. We will present an example from (the
errata sheet of) (Feldman, 1982] that uses FSM techniquesin two related ways.

The problem here is to develop a model of short-term memory that can quickly
(without weight change) learn to connect paired associates, e.g., (B-¢), in an
originally uniform network. The idea is to use dedicated inter-units, shown as
rectangular arrays, to represent each pairing. The behavioral requirements are:

1) high inputs to both ends of a pair activate the inter-unit;
2) this activation will decay in the absence of new input;
3) while the inter-unitis active, an input to either associate will lead to

activation of the other.

A major complication arises if one wants the network to support several associations
simultaneously without crosstalk. This requires WTA networks among the inter-
units, and these are indicated by inhibitory links as in Figure 3.2.

The FSM tables for the end and inter-units given in Figure 3.2 are essentially the
complete specification of the network. For example, the second entry in the first row
specifies that an idle inter-unit, upon receiving input from both ends, will switch to
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high and block its rivals. Columns headed by a dash describe what happens in the
absence of input, and X denotes impossible situations. It is possible to formulate a
one-state, continuous potential version of this network, but it is much harder to
describe and prove its behavior. Moreover, the blocked state of inter-units conveys
the intended idea that inputs are ignored better than very large negative weights. A
similar, but more complex, use of discrete states can be found in the work of Sabbah
[1985]. In this case, the discrete states with different computational rules appear to
be necessary to make the system work.

Thus far in the paper, all of the systems studied have converged to an answer
configuration, at least probabilistically. Many computations do not have this
character at all, but rather cycle through various states. Obvious examples of this
inciude rhythmic behavior like walking or breathing and, in computation, systems
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like computer networks and operating systems. Continuous methods for cyclic
systems basically lie in the domain of control theory and will be discussed briefly in
Section 3c. In computer science, people have developed a variety of techniques. often
based on FSM, for specifying and proving properties of cyclical systems (Filman and
Friedman, 1984]. Much of the detailed specification efforts have come in the area of
distributed systems where the designer must protect against perverse timing effects
and lost, garbled, or duplicated messages. A major concern in the analysis of
networks of computing devices is to show that the system never enters certain
erroneous states. Typical problems include deadlock, where each unit is awaiting
information from another, and lockout, where one unit is precluded from operating.
There is some similarity to the issue of regional optima, and the design and analysis
techniques may carry over. In particular, the issue of behavior that is proof against
communication glitches has received considerable attention. This question of
robustness over vagaries of timing and communication is important in connectionist
modeling and will recur in Section4. A recent and potentially interesting
development is the use of the module-message paradigm from distributed computing
(Filman and Friedman, 1984] as a specification language for connectionist models.

3c. Control Theory

¢ The computational formalism with the longest and strongest record of success in
modeling neural systems (as well as many other applications) is control theory.
There is ample evidence that negative feedback control loops are widely used in
nature, and conventional linear control theory has proved to be very useful in
analyzing them [Arbib, 1975; Cannon and Robinson, 1985]. Almost all of this work
has been with "lumped"” models where no direct map to neurons and firings is
provided. There have been some attempts (e.g., [Addanki, 1983)) to develop neural-
level, connectionist models of motor behavior, and conventional control theory will
continue to play a major role in these efforts. There is also some recent work directed
at bringing lumped models closer to neural behavior [Cannon and Robinson, 1985],
i and there is hope that these efforts will converge.

A more general question concerns the role of mathematical control theory in
exploring the behavior of connectionist models. Since control theory is well
developed for linear systems with loops, one might hope that it would complement
goodness theory, which deals with linear systems without loops. The difficulty is that
[ most of the interesting behavior in connectionist models occurs at the saturation
limits of the units and not in their linear range. We will illustrate this with a very
simple example: the 2-unit WTA network of Figure 1.4.
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The mutual inhibition network appears to be a simple feedback system that
should be easy to analyze using control theory, but there are several difficulties. For
one thing, the upper and lower saturation limits of our units makes linear systems
theory problematical. We could try to examine the behavior of the system in its
linear range, using the unbounded variant of equation (12):

112) Xi‘=d*—wXB
X =dg —wX,
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If we attempt to treat these equations literally (with X z(¢t) and Xg(#) as functions of
time), bizarre results obtain. One can substitute the expression for X 4(¢) in the
second equation of (12) and solve for Xg(¢), yielding

d, - wd
13 XB(t)= 5 =

1-w2

First of all, Xpg(?) is constant, which certainly violates the WTA condition , as well as
our intuition. And the value of the constant approaches » as w nears 1, the value
that works for the WTA network. The basic difficulty here is that equation (12) is
really a shorthand notation for a mutual assignment statement, not a true
functional relation that should hold for all times (¢). A more accurate rendering
would be

14 X“(t) = dA - wXB(t—c)

YB(t) = dB - wXA(t— £)

where ¢ is a small transmission delay. From this we can write down the differential
equations (using the chain rule):

(15) XA(t) = —wXB(t—e)

XB(t) = - wXA(t-e)

Equation (15) at least conveys the intuitions that the outputs of the two units change
in opposite directions and that larger w yield faster change. One could proceed from
here by employing some approximation of X (t-¢) as a function of X z(¢) and solving
the resulting system. But, even ignoring the saturation bounds, there does not seem
to be any point to it. Control theory is excellent at exploring the detailed temporal
characteristics of linear systems, but the questions of interest in most connectionist
models are not of this form.

What all this suggests is that (at least conventional) control theory is not an
appropriate vehicle for studying the detailed behavior of most connectionist models.
The major exception is in the study of motor control both at the system level and as
we move to more detailed neural models. It does appear that (at least the sub-
cortical) neurons involved in motor control do operate largely in their linear range
and that units that saturate are "replaced" by ones operating in a higher range. But
for most connectionist models of perception, representation, inference, etc.. there are
better formalisms. For cyclic behavior in these domains, the finite state methods of
the previous section appear to be the best current choice.
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4. Related Issues and Conclusions

Computational models involving very large numbers of simple computing units
are certain to be the subject of considerable effort for some time. Animal nervous
systems clearly have this character, and neuroscience is rapidly advancing to the
point where computational models (theories) are a central aspect of the field. People
are already building computer hardware designs that allow for a million or more
simple processors [Hillis, 1985]. At the abstract level, many investigators have
found massively parallel formulations of their problems more effective than
descriptions in more traditional computational formalisms. Even un computers
without enormous parallelism, algorithms expressed in connectionist language may
prove to be efficient to write and run.

With all of this existing and potential achievement, the deep understanding of
massively parallel computation takes on increasing importance. No one is satisfied
with a large network having ad hoc units, connections, and simulation rules.
Progress in all aspects of massively parallel computation will depend on systematic
treatment of underlying computational questions. The formal analysis and proof
techniques discussed in this paper represent one line of approach to structuring
connectionist systems. A few points that transcend these particular methods are
pursued in this section.

One major source of confusion (not surprising in this early stage) is that the
scientific goals of a particular modeling effort are often not clear. For many of us, the
ultimate goal is detailed models of intelligent behavior that are directly testable
down to the single neuron level. At present, this perfectly explicit goal provides
direct guidance on modeling requirements only for the simplest systems. Essentially

“all cognitive level models deal at a level of abstraction at which units of the model

cannot be identified with neurons or groups of them or parts of them. The question
becomes: what should "biologically plausible” mean in this setting? My view of this
is that there are basic computational constraints which are sufficient to keep the
models reasonable. The foremost of these are the restrictions on the number of units
and connections, the processing and information transfer rate limitations, and the
absence of an interpreter that can operate above the level of the network. An
important additional consideration, which is often ignored, is that the simulation
itself be robust over variations in exact values transmitted and timing of updates.
Neither the purely synchronous or purely asynchronous model is biologically
plausible, and we do not have good tests for the robustness of models over variations.
None of the proof techniques discussed in the paper take this question seriously. We
have done some simulations using a synchronous rule with random noise added to
each output. This appears to be a robust and biologically realistic methodology, but
nothing is known of its formal properties. Insightful recent discussions of the
biological role of connectionist models can be found in [Ballard, 1986] and
(Sejnowski, 1986]. There has been some work in computer science on asynchronous
systems with variable timing. The problems encountered have been sufficiently
difficult to establish a strong bias towards synchronous computers and to restrict
inherently asynchronous systems, such as networks. into very simple modes of
processing. Nevertheless, it does seem possible to develop connectionist models that
are robust over simulation details.
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Consider, for example, another variation on the Winner-Take-All task discussed
earlier. Suppose each unit in the WTA network got input from all the others and
computed the maximum activity level of its rivals. If each unit simply turned itself
off when it saw a rival of greater activity, the WTA property would obtain. Moreover,
this construction will work for any reasonable simulation method. A variant of this
network that does not require N2 ccnnections was used in [Shastri and Feldman,
1984]. Each rival fed its output to a single MAX unit which fed back to all the rivals.
The units computed their new output by subtracting MAX from their previous
output; again this is stable over all reasonable simulation strategies. There is no
compelling evidence on the biological plausibility of a MAX function, but it will be
surprising if nature did not evolve something of this sort to solve computational
problems like those suggested by the WTA example.

In addition to biological motivations, several groups studying massive
parallelism are interested in hardware realizations. The physical constraints here
are quite different. Speed of computation and transmission become less critical and
the number and length of connections much more so. The robustness of simulations
also takes on a different flavor, getting into the standard problems of synchronous
and asynchronous circuits. Another important issue is the physical plausibility of
models that assume continuously valued output functions. Such models are
biologically realistic for only the restricted range of problems involving non-spiking
neural signals. For most neural processing of interest in cognitive science, the
limited range of neural firing frequencies limits outputs effectively to a few bits, and
this has major consequences in modelling. For electronic circuits, the continuous
output assumption is fine, and this may turn out to change our ideas of "digital"
computation. It is almost certainly a mistake to take the same model as an
engineering proposal and a description of neural functioning.

In addition to the robustness and physical realizability issues discussed above,
there are important questions about connectionist networks as expressive
formalisms. While it is clear that the connectionist framework is the right kind of
formalism for many tasks, the understandability of a particular model is less
obvious. For example, the McClelland and Rumelhart model {1981] was helpful in
understanding a number of experimentally important effects. but did not incorporate
a great many known constraints on the structure and interaction of lexical items.
There is a danger that connectionist models can grow so complex that it is difficult or
impossible to recognize the governing principles behind the behavior. Notice that if
some system learned such a network for itself, we would be in an even worse position
to extract the principles of organization. The specification and proof techniques
discussed in this paper can only help if the abstract specification itself contains
manifest information characterizing the structure of the problem.

This general idea of a higher-level description which captures the structure of a
domain is one of the most promising recent developments in connectionist modeling.
We saw in Section 2b how Selman transformed a restricted context-free grammar
into a connectionist parser. The point, of course, is that we can consider the linguistic
adequacy of the grammar independent of its realization. Cottrell [1985a] has
indicated how automated construction could be employed to cover semantic case-
roles of words in English. There appears to be no problem, in principle, prohibiting
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the development of a "compiler” that will convert a natural language specification
(including relative frequencies, etc.) into a connectionist recognizer. Were we able to
do this, it would constitute a major scientific advance, because it would allow the
direct test of linguistic models against psycholinguistic data. Once we developed
confidence in the underlying implementation and translation, differences between
predictions and findings could be traced to the theory. The role of the connectionist
realization would be a functioning map from competence to performance. Returning
to the current paper, a critical step in this ambitious program would be to prove that
some translation realized the given formal specification.

In a simpler domain, this is just what Shastri (Section 3a) was able to do for his
evidence theory. In this case the input to the system is just semantic network
knowledge with relative frequency information on properties, values, and sub-types.
Given this input, Shastri’s constructor builds a connectionist network that produces
optimal answers to inheritance and categorization queries, by the maximum entropy
criterion. The point, here again, is that the theory of evidence and the knowledge
base structure and content can be studied independently of the realization. And
again, the connectionist implementation is claimed to be sufficiently realistic to
support direct behavioral tests.

Formal specification and proof techniques will become increasingly important as
connectionist modeling matures. The current flurry of interest in energy models is
motivated by the right goals, but the formalism itself is too weak to carry us very far.
Professional theoretical computer scientists are beginning to take a serious interest
in some of these problems and are providing valuable insights [Valiant, 1985:
Goldschlager, 1984]. Automatic learning is a central issue and can be fruitfully
studied independently of domain. For direct modeling of intelligent behavior, the
greatest promise appears to lie with methods for automatically translating formal
specifications into connectionist networks.
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