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Abstract

The precision of item parameter estimates can be increased

by taking advantage of dependencies between the latent proficiency

variable and auxiliary examinee variables such as age, courses

taken, and years of schooling. Gains roughly equivalent to two to

six additional item responses can be expected in typical

educational and psychological applications. Empirical Bayes

computational procedures are presented, and illustrated with data

from the Profile of American Youth survey.

Key words: EM-algorithm, empirical Bayes, marginal maximum

likelihood
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Exploiting Auxiliary Information about Examinees in the

Estimation of Item Parameters

A pervasive problem in item response theory (IRT) is the

difficulty of simultaneously estimating large numbers of parameters

from limited data. Even large samples of examinees may not

eliminate the problem when each examinee responds to only a few

items, as in educational assessment and adaptive testing. Certain

*improvements are obtained by using hierarcbial models along the

lines of Lindley and Smith (1972); treating examinee parameters as a

sample from a common population enhances the stability and precision

of item parameter as well as examinee parameter estimates. This

approach has been applied to IRT by a number of researchers

recently, including Bock and Aitkin (1981), Leonard and Novick

(IQ5), Rigdon and Tsutakawa (1982), and Swaminathan and Gifford

(1982).

For the most part, the aforementional writers consider all

examinees to be members of a single, undifferentiated, population.

This framework instantiates such beliefs as, "if the parameters

of most examinees seem to lie between -3 and +3, then the

parameter of an examinee who answered both of two hard math items

correctly is probably somewhere between +1.5 to +3.5--even though

his/her maximum likelihood estimate is 4-." Additional stability

' and precision may yet be achieved if auxiliary information is
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available about examinees, such as educational background or status

on demographic variables. A statement like "the parameter of an

examinee who answered both of two hard math items correctly and

studied calculus in college is probably between +2.7 and +3.7,"

might result.

.N This paper addresses the utilization of auxiliary information

about examinees in estimating item parameters. The following

-section reviews item parameter estimation when examinee parameters

are known, then when examinee parameters are unknown and nothing

is assumed about them. Attention then turns to the additional

assumptions of first, an undifferentiated population, and second,

a population differentiated with respect to auxiliary variables.

Following this are sections that discuss anticipated gains in

precision, outline computational procedures, and illustrate the

approach with responses to four items from the Arithmetic Knowledge

subtest of the Armed Services Vocational Aptitude Battery.

The Role of Auxiliary Information

The relevance of auxiliary examinee variables to item

parameter estimation is not immediately obvious, since they play

no role in the basic model for item responses. Letting x (Xil,

0..,xin) represent the responses of examinee i to n test items and

Yi represent values of auxiliary variables such as educational and

demographic status, the standard IRT assumption of local

i

.. '- -
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independence states that

n
P(xilei,yi,8) = T P(xijleij) (1)

-~~ j 61t

where 8i is the examinee parameter, t = (fl,...,tn) are possibly

vector-valued item parameters, and the form of P(xij leitj) is

specified a priori through the item response model. It follows that

Yi would indeed be irrelevant to item parameter estimation if 8i

were known. The likelihood to be maximized with respect to 8,

given the data matrix X = (x ,...,xN) of responses from N examinees

* . with proficiencies 8 = (6I,...,8N) and auxiliary variables Y -

-" (Y'''YN)' would be simply

N

L = IT p(xilei,) (2)

The maximum likelihood estimate (MLE) 8 would satisfy the

likelihood equations

0 at1(01)MB (3)
wr X

[.?:.:.where ti(8) = log p(xiIo,t2), and the covariance matrix of

[!A.%'.'
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"v:estimation error variances for 8could be approximated by the
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'=a

inverse of the observed information matrix 1:

1e 6 z 3 0 ass ) (4)"4.8

But Equation 1 gives response probabilities conditioned on e,

and a is not known in practice. The problem that must actually be

solved is to maximize the marginal likelihood

LM -I f p(xi18,S) dFi(8) , (5)

where Fi(6) is the distribution of the unknown proficiency of

examinee i. This is an "incomplete data" problem, in the

terminology of Dempster, Laird, and Rubin (1977), corresponding

to the "complete data" problem of maximizing Equation 2 when a

is known. Assuming the required integrals exist, the likelihood

equations become

0 =r Pi (xl) Iati(e)/3S] dFi(8)

where

,. . .. ..... , ,, .,... . _ .. . ..- . -.- -. . . . ... - .,.... ' . -. . y . ,a _ .* -a
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i 'i) = f ki(e)dF (o)

Louis (1982) shows that if Zack's (1971, Chapter 5) regularity.4

conditions are met and if Fi is known for all i, the diagonal

elements of the incomplete-data observed information matrix,

namely

I -1 ( ) ,) 1 dFi(O) (6)

cannot exceed the diagonal elements I In other words, the

precision with with elements of ; would be estimated if 6 were known

provides an upper limit to the precision to be expected when e is

not known but must be inferred.

A similar phenomenon arises in the context of sample survey

analysis when a clustered sampling design is employed to estimate

a mean. If n units are sampled from each of N randomly-selected

clusters, then the squared standard error of the mean, ignoring

finite population corrections, is given as
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2 2
SEM 2  a [1 + (n 1)p]"--'-nN

2
--Z, where a is the population variance and p is the intraclass

correlation coefficient indicating within-cluster homogeneity. If

the number of clusters (N) is held constant, increasing the sample

size (n) within clusters cannot decrease SEM 2 below pa2IN, the

the value of SEM 2 obtained when the means of the sampled clusters

are known without error.

The estimation of in the context of IRT must also deal with

".-" uncertainty from two sources. First is the usual limitation of

-. having data from only a finite sample of examinees. All other

-- conditions remaining unchanged, increasing N leads to greater
-- A

precision for 6. Second is the limitation that 0 remains unknown

even for sampled examinees. For a fixed sample of examinees,

reducing uncertainty about e leads to greater precision for 8.

This can be achieved through (1) item responses, (ii) assumptions

about the Fi's and (iii) auxiliary variables related to 8.

de Leeuw and Verhelst (1984) point out that finding maxima in

. * terms of 0 and of each individual 06 in the manner suggested by

Birnbaum (1968) is equivalent to maximizing Equation 5 when each

Fi concentrates its mass at the single (unknown) point ei. ThisThi

joint maximum likelihood (JML) solution utilizes only information

in responses x1 from examinee i to reduce uncertainty about61

,4- °°

" " ' "" "4 " "-, " " " ' " " '" , '''. "", '. :""""._."' - ''"' "" -_. r , .-- .
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Alternatively, one may consider the 6's to be identically

distributed, so that Fi = F for all i. An auxiliary variable y

*- is thereby implied for all examinees, an indicator signifying that

-. *each is a member of the population whose distribution is specified

by F. Appearing in the literature are treatments that assume a

completely specified form for F (e.g., Bock & Lieberman, 1970),

others that assume parametric forms with unknown parameters a to

be estimated along with a (e.g., Zwarts & Veldhuesen, 1985), and

still others that provide nonparametric approximations (e.g.,

Tjur, 1982). Under the first of these three approaches, the

assumed population distribution combines with xi to produce

X), which in this case equals p(Oi xi). Under the latter

two approaches, responses from examinees other than examinee i

also play a role in estimating F so that p(Oi lx i) * P(0iIX).

A third alternative, falling between unique, unconstrained

- Fi's and identical F.'s, is to posit distributions that depend on

auxiliary variables: that is, Fi(6) = F (8). Examinees with
Syi

identical y values are considered a random sample from a

population indexed by that particular value of y, and these

conditional distributions are allowed to vary with y. A following

section gives details for two special cases, namely a linear model

and a (quasi-) nonparametric mixture approximation.

'72
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How Much Can Be Gained?

Several factors contribute to the magnitude of the precision

gains that can be achieved through population assumptions and

auxiliary variables. One factor is the sensitivity of different

model parameters to missing information. Mislevy's (1984) analysis

of Bock and Lieberman's (1970) LSAT data showed that estimates of

the population variance were more substantially improved by

increases in test length than were estimates of the population

mean. This might lead one to expect increased information about e

to have more effect on item slopes than on item thresholds in the

context of item parameter estimation.

A second factor is the nature of the joint distribution of

auxiliary variables with 6. An auxiliary variable adept at

identifying low proficiency examinees, for example, adds

information for those examinees most useful for estimating lower

asymptote item parameters.

A third factor is the dependence of the estimated information

upon estimated parameter values. Although a slope parameter

may be consistently estimated under both the undifferentiated and

undifferentiated population models, a higher estimate under the

latter may appear less precise. This is because estimated standard

errors for slopes are directly proportional to the values of the

slope estimates, even though true standard errors depend on true
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slope values and not their estimates. A slope estimated with the

aid of auxiliary variables and obtaining a higher estimate can

thus have a lower true standard error but a higher estimated

standard error.

Since the same factors determine information gain from both

increased test length and auxiliary variables, however, it is

reasonable to consider the contribution of auxiliary variables in

units of additional item responses. In the special case of

dichotomous items, the amount of information conveyed by item

responses alone is

i(0)) 2
P.(8)[1 - P1 (6)]

J 3 .1

where P.(O) = p(x. = 110) and Pj(O) = dPJ(O)/dO. For examinees

with finite maximum likelihood estimates, Bayes theorem applied
^ 2

with a diffuse prior leads to the approximation p(61x i ) N(B,a)

2 -1
with a= i This follows by first rescaling the likelihood sox

that it integrates to one, then using its mode and curvature at the

mode in a normal approximation.

Consider as an example the two-parameter logistic model,

under which P (0) p(x = 1 0,aj,bj) = 1/{I + exp[-l.7aj(0 - b)]}.

w

," " --~~~~~~~~.. ...... .,%...".. "...,.....-,.'.,...... -.... ".. "...,-..,-.--. .
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The contribution of item j to information about 6 is

items for which b, = 0 and aI = a is simply 0.7225 na
2 . Table 1

22

'"2.89a P Ce )[1 -Pj0),and the total information from n identical

gives values of i and 2x in this simple case for selected test

lengths and values of a. Note that where 1.7a - 1.0 (i.e.,

a - .588, corresponding to an item trait correlation of .7071 in a

standard normal population), four additional items provide a unit

gain in precision. The results provide an indication of the amount

of information about e that is employed in JML estimation of Item

parameters. It is apparent that as test length increases,

information (i.e., precision) increases at a constant rate and the

posterior variance decreases at a decreasing rate.

Insert Table 1 about here

The magnitude of gain in information about 6 obtained by

assuming an undifferentiated population (i.e., Fi = F) can be

- gauged by extending the approximation employed for Table 1. If the

normalized likelihood function induced by xI is again approximated

2
as N(8 ,a ) and if it is further assumed that examinee i has been

2
selected at random from a population in which N(,a , then

p(e lxi) " N(eE)
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where

;0-2 + 1o-2
x
-2 -2

a +0x

and

- -2 -2 1

x

Table 2 shows values of the reciprocal of Z (i.e., "precision")

from various test lengths with identical items with 1.7a = 1 and a

standard normal prior for 0. Note that for each test length, a

unit gain in precision is achieved over the 1.7a = 1 column of

Table 1. These tabled values fall within the ranges encountered in

applied work, and suggest that the assumed distribution contributes

about as much information about e as four additional items. The

corresponding value for 1.7a - .5 is sixteen items, and that for

1.7a = 1.5 is about one item. Since the absolute contribution is

constant with respect to increasing test length, the relative

contribution declines.

To gauge the additional impact of differentiating the

population through auxiliary variables, we may consider numerical

91OX .
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values resulting from a regression model with homoscedastic

residuals. Suppose y values account for (100 x z)-percent of the

/variance in a population with total variance 1.0, so that

Fy(6) - 2 ) with 2 = 1 - r. If the normalized likelihood

y y e e

induced by item responses is approximately N( ,2), then

-2 -2
p(Olx,yi) Z N [0 x2- 2 +'11C (a-2 +  x- )-1

O o +o1 2+ -

x e

Using the same simplified item response model and 'a' value as

Table 2, Table 3 compares values of the inverse of the posterior

variance for 6 as determined by (i) item responses alone, (ii) with

knowledge of membership in an undifferentiated population with unit

variance, and (iii) with the additional knowledge of auxiliary

variables that account for successively greater proportions of

total variance. Values between 10- and 40-percent, a range typical

of educational and psychological work, increase information

(posterior precision) about 0 by amounts roughly equivalent to one

to three additional item responses. For items with 1.7a = .5,

gains in item units would be doubled; for items with 1.7a = 1.5,

gains in item units would be halved.

Insert Tables 2-3 about here

.....*"***'*.*.**.-*.------------------------...----.- - ~-.*-
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The Ignorability of p(y)

This section demonstrates that under reasonable assumptions,

the population distribution of y can be ignored for the purposes of

estimating item parameters 8 and population parameter a.

Suppose that the distribution of y in a population of examinees is

governed by the density function p(yly), which depends on possibly

-: unknown parameters y but not upon item parameters B nor on the

parameters a of the conditional distributions f(Oly,a). The

probability of observing the data matrix (X,Y) from a random

sample of N examinees is given by

P(X,YIB ,a,y)

=JH f f P(xje a ) p(Oly,8,a~y) (YiIB ' a y) dO

i

, P(X xi,8) p(OYya) dO) (6)

. i - i~

,.- = P(XIY,8,a) P(YIy) • (6)

I.'°°
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Likelihood inferences about a and are therefore independent of

inferences about y, and the conditional MLE's of a and given Y

are identical to MLE's obtained jointly with y.

,' Models and Methods

This section presents two IRT models that differentiate

examinees by means of auxiliary variables, and suggests computing

approximations based on Bock and Aitkin's (1981) marginal maximum

likelihood (empirical Bayes) procedures.

Mixtures of Finite Distributions

Mislevy (1984) decribes a nonparametric approximation of a

"" * continuous density function of a latent variable in terms of a

distribution with mass at a finite number of prespecified points.

The proficiency of each examinee, or 01, then, is assumed to take

one of only Q known values. The "latent trait" problem is thereby

replaced by an analogous "latent class" problem that is easier to

solve. A single population was addressed in that presentation,

and item parameters were assumed known. We now consider extensions

to the simultaneous estimation of item parameters, and to multiple

subpopulations indexed by an auxiliary variable y. This approach

provides considerably flexibility in the distributions Fi(e) =

F (8). It lends itself well to discrete auxiliary variables with
yi

ii relatively few values.

.
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1-'- It proves convenient to write such an auxiliary variable as

a vector of 0/1 indicators. Define Yi= by letting

Yik = I if examinees i is associated with the k'th of K exhaustive

and mutually exclusive subpopulations, and zero otherwise. The

probability of observing response pattern xi from an examinee

selected at random from a specified subpopulation is given by

Py
P(x = II { f P(xiIO,B) dFk(O)} yik (7)

kk

where F kis the distribution in subpopuation k. This probability

can be approximated by a finite distribution as

p(x { £ p(x1 0 q,)Wqk yik (8)k q

where 0 ,. . . , Q is a grid of points and Wqk is the weight or

density at point q in subpopulation k. The weights W play the

role of a in earlier notation. For the remainder of this

subsection, we limit our attention to distributions of the form

of the right-hand side of Equation 8. As demonstrated above, we

may carry out the estimation of 8 and W conditional on Y.

Pin
* % 

* *

k-°* * . . . . . -. ' *. . '.

m%--
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Let (X,Y) be the data matrix observed from a sample of N

- examinees selected either randomly from the population as a whole

or as random subsamples stratified on y. The probability of X

given Y is proportional to

LM =111 { E P(xIOq, )Wqk
i k q

and its logarithm is

I M = log LM

= E Z Yik log E p(xI0 ,O) Wqk
i k q q

Relative maxima with respect to B and W can be obtained by means

of the EM algorithm, under the special case of missing indicators

for a multinomial distribution (Dempster et al., 1977, Section

4.3). The expectation step of cycle t + 1 computes expected

values of the following quantities:

V

zo

lei-

i ° '%
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1. The expected number of examinees with proficiency 0 from a
q

sample of size Nk from subpopulation k, conditional on X, Y,

an =Z p(:

Nqk Zyip 0q1i

vwhere

tP (0 lxi) = p(xi = $t)Wt/ E p(xiI~r , 6 = t );t.
k " q "i ~ qk r ilo'e rk

an application of Bayes theorem, gives the posterior

probability that the proficiency of examinee i is 0 q, given

provisional parameter estimates a and W

2. The expected number of correct responses to item J from

examinees in subpopulation k with proficiency 0 q, given a

random sample of size Nk (again given t and Wt):

-"- ^t+1 t
R =E y kx p ( qjx)d

.j% jqk ik kijkq
Ii

'0

I.- -o-

S.-

",".' 2. 2," '',',', ""e,¢ ,';','. ' ,' ' ,, €'£ ,, , . ,%. • • .; g .,'," .'.,.. . . . . . . .. . . . . . .... .•.. . . . . . . . .- ,.. ....... ....... ,"e.',
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The maximization step computes what would be MLE's of B and

W if N and R were observed quantities rather than conditional

expectations. For W, we have simply

:'-,

S t+i t+l

qk qk k

For 8, we solve conditional expectations of likelihood equations:

^t~l~t+l ..
R Nq+rq+ P 0 q) aP (C )

o Z (9):.. P (0 )[1 - P (E) ] as
q jq jq 8

t+ t+l t+1
where Rtq+ - Z Rjqk and Nq+ is similarly defined. Under the 2-

parameter logistic model, for example, Equation 9 simplifies as

follows:

a,0-. "R - Nt+Ipj(Oq)](Oq - b )aj o r (it" tl 0M
SqRjq, q+ q q

I q

b - t - t+^p j(1q)Ia%bj o Z [R jq+ N + 1j( ]a j

q

In principle, the linear indeterminacy in the 1-, 2-, and 3-

parameter logistic and normal IRT models presents no impediment to

V".5.

5'-'--.-.-,-b " '--'" --- - -. "- " - -. "'-"--•" '- - ."- ": ";"--. --.. .;- v .. , .-
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the EM algorithm, which readily converges to one of the infinitely

many solutions on a ridge. Numerical stability and the quality of

the finite characterization of F are enhanced, however, by

controlling the scaling of the solution at this point. One.

convenient way of doing so is to standardize the weighted average

distribution. We have referred to the points 0 as specified a=. . q

priori; given the linear indeterminacy, we may conceive of only

their relative spacing as prespecified. After each EM cycle, then,

we may rescale the points as follows:

0 (0 -0)/s
q q

where

ON- EN k 0qW q
k q qk

and

, - s = N - E N E ( _ (0 ) 2

. k q 2 qk

Item parameters are adjusted accordingly. Under the 2- and 3-

. .

'.%
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parameter models, b is replaced by (bj - O)/s and aj is replaced

by saj. Under 1-parameter models, rescaling takes place only with

respect to 0.

Iteration from several starting values helps to verify whether

a given solution is indeed a global maximum. The observed

information matrix for the item parameter estimates can then be

approximated via Equation 6. Employing Louis's (1982)

simplifications for "missing multinomial indicators" problems, we

obtain

. -..

..

Ir,: Ix,y( ) r' E Yik r a B ) B Pk (0q 1xi) ,

-- i k q .~(10)

1.

where Pk(0qIXi) is evaluated at 8 and W

A Linear Model

The unrestricted mixture solution described above becomes

unwieldly as the number of potential values of the auxiliary

variable increases. The more structured alternative of a linear

model for p(e ly) is suitable when y is vector-valued or is

continuo rather than discrete. Assuming homoscedastic and normal

residuals, we would have

.%

-'.%

[ .- .°'* ~ * ' . .... U . * -
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e - N(y'a,o 2 )

where auxiliary variables are coded so that the K columns of Y =

(Y " "', which are basis vectors for the K elements of a,

are linearly independent. They may include values on measured

variables such as previous test scores and dummy regression

variables that encode selected contrasts among categorical

auxiliary variables.

2
Maximum likelihood solutions for a and o in the special case

of structured means for the cells of a multi-way design have been

given by Mislevy (1985) under the assumption that item parameters

are known, and by Zwarts and Veldhuesen (1985) under the assumption

that p(x[0) is the Rasch model with unknown item parameters to be

estimated jointly. These solutions are readily extended to the

case of a general IRT model with unknown item parameters. This

section describes an approximation over a grid of prespecified

points so that computation is similar to the nonparametric solution

described above. Attention is focused for convenience upon the I-,

2-, and 3-parameter logistic and normal IRT models.

The linear indeterminacies of these models are again

:e- conveniently resolved by restrictions on the population parameters.

2
First, we may without loss of generality fix a at unity to set the
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unit-size of the scale. For 1-parameter models, a slope parameter

common over items is then estimated. Second, we may set the

origin by centering the elements of each column of Y at zero. All

* .. effects are thus cast as deviations around a grand mean of zero.

This restriction, in conjunction with the independence of the basis

vectors, completes the resolution of the scale.

The marginal likelihood for a sample of size N is written as

L H IIfP(x,16 a) (6 y y'a) de

where represents the standard normal density function.

Approximation over a finite grid of points is accomplished by

L*= 1 Z P(XilOqa) Wqi(a)
i q

"7 where

- 2 )2
W qi(cc) exp[-(Oq- yia)2/21/ E exp[-(O - yjm) /2]

q" - " r

The weights W play the same role as those in the preceeding

approximation. The difference is that they are no longer estimated

,. a'.

*6"°a
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without restriction, but modeled as functions of the effect

parameters a.

MML estimation can again proceed in EM cycles that solve the

likelihood equations. Let F and a be provisional estimates from

cycle t. The E-step computes expected counts of examinees and

correct responses at each point:

Sq Ixi $a a

and

Et+ X Zij P(O q ~i,9t'at
3q i

where

P(Oq lxi , ;t p(xijOqt)W-( a V p(x (rilOr,8 t)Wri(ta t)

.. iqqi..,

It also computes the conditional expected value of each examinee's

S"proficiency:

eV' =z OqP(O Jxi'a at)

%.,

:.A
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The M-step pseudo-likelihood equations for item parameters can

be written as in Equation 9. The equations for a simplify to

"'" (^t+l -I It+l"-' (y1y) y'0

..-

....,whee ot+l .t+l 0t+l
where (N ). The posterior information matrix for

. can again be approximated via Equation 10.

A Numerical Example

This section illustrates the procedures described above. The

data are responses to four items from the Arithmetic Reasoning test

. of the Armed Services Vocational Aptitude Battery (ASVAB), Form 8A,

S- as observed in a sample of 776 participants in the Profile of American

Youth survey (U.S. Department of Defense, 1982). Table 4 gives

counts of the sixteen possible response patterns occurring in each

cell of a 2-by-2 design based on two background variables collected

along with item responses. Because these variables are based on

demographic information rather than the educationally-relevant

information we would prefer, we will refer to the factors as simply

Factor A and Factor B, nesting levels I and 2 w1thIn each.

Insert Table 4 about here

4 - - - - - - -- - - - - -
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Four analyses were carried out on these data. In each, the
#..

2-parameter logistic ogive was employed as the IRT model for

conditional probabilities of correct response. The analyses

differed in terms of the auxiliary information about examinees they

employed. The first run used IML estimation of item parameters and

densities over a grid of ten points, assuming examinees were drawn

at random from a single undifferentiated population. The second

and third runs differentiated the population via Factor A and

Factor B respectively, and the fourth run employed both factors

jointly.

Resulting item parameter estimates and standard errors, along

with subpopulation means and standard deviations, are shown in

Tables 5 through 8. The scale has been set in all solutions to

standardize the total population. For each item parameter type,

columns in Table 6 through 8 display the ratio of the squared

-" standard error of the item parameter estimate under the

undifferentiated model to the corresponding value in the
,€.4

differentiated model. The result can be interpreted as efficiency

relative to the undifferentiated model, and the excess of a value

above unity reflects the proportional increase in estimation

precision. Geometric averages are also shown for the relative

efficiency columns. The excess of such a value over unity, times

4 .-
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four, gives the increases of precision in the units of numbers of

"' additional items of the same kind.

Insert Tables 5-8 about here

It is apparent that including auxiliary information had little

effect on the values of the item parameter estimates. The

- -~ differences between the estimates from the undifferentiated and the

fully differentiated solutions occur only in the second decimal

place. More significant differences exist in the accompanying

(estimated) standard errors, however. The precision of threshold

estimates was improved only modestly; an increase roughly

equivalent to one additional item response per examinee was

observed in the fully differentiated run. The precision of slope

estimates was improved dramatically; an increase roughly equivalent

to eight items was observed. It would appear that Factor A

'C,% accounted for more increase in precision for slopes, while Factor B

accounted for more increase in precision for thresholds.

Discussion

This paper has outlined procedures for incorporating

9. auxiliary information about examinees into the IRT framework.

Enhancing the precision of item parameter estimates was the primary

focus. This section evaluates the value of improvements so

attained, and discusses two additional aspects of the model.

-',."o
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The increase in information about item parameters in typical

educational and psychological settings can be expected to lie in

the range of two to six items. The numerical example suggests that

the increase will vary by item parameter type, probably less for

well-estimated parameters and greater for poorly-estimated

parameters.

The expected increase is modest, to be sure, but in many

applications it is free in the sense that it is already available

for use. Because its incremental value decreases for longer tests,

auxiliary information would be most useful in settings where

relatively few response are solicited from each examinee. This

would include two applications of great current interest, namely

educational assessment and adaptive testing. In assessment, data

. that are sparse at the level of individuals--say, five items in a

given scale--yield more efficient estimates of population

parameters for a given total number of item responses. In

S . adaptive testing, new items are calibrated using joint response

patterns with previously-calibrated items while the number of old

items is held to minimally acceptable levels--as few as, say,

fifteen.

A side issue in the present paper but a fundamentally

important result is that when examinees are indeed a random sample

from a well-defined population, the estimated population

4 V . . . -• . .. -
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distributions and effect parameters are consistent within the limits

-. of precision afforded by the numerical approximations (see Mislevy,

1984, 1985, on population estimation when item parameters are

known). This stands in contrast to the asymptotically biased

results obtained by using the distribution of e to approximate the

distribution of 0. In fact, the discrepancy between the two

-. distributions is largest in exactly those cases in which the present

procedures offer most the benefit for item parameter estimation,

namely short tests.

Finally, it is implicit in preceding discussions that auxiliary

information about examinees can lead to improved estimates of

individual proficiencies. Whether estimates that are improved in

the sense of minimum mean squared error are unequivocally "better"

for all applications is not clear, however. We have avoided

advocating the use of auxiliary information when tests are used as

contests--i.e., when important placement or selection decisions are

made for individual examinees--because it would seem that in these

situations the tester ought to gather enough data directly dependent

upon proficiency (i.e., item reponses) to make satisfactorily

precise decisions on that strength alone. In adaptive testing, for

example, we would recommend the use of auxiliary information to

improve item parameter estimation, but not to estimate scores that

will be used to compare individual examinees.

.4
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Table I

Posterior Precision for e from Item Responses Only

1.7a = .500 1.7a ; 1.000 1.7a = 1.500

i a i C i an x x x

2 .125 8.000 .500 2.000 1.125 .889

4 .250 4.000 1.000 1.000 2.250 .444

8 .500 2.000 2.000 .500 4.500 .222

16 1.000 1.000 4.000 .250 9.000 .111

32 2.000 .500 8.000 .125 18.000 .056

64 4.000 .250 16.000 .063 36.000 .028

128 8.000 .125 32.000 .031 72.000 .014

n = number of identical items with a as noted and b = 8.

i = information posterior precision.

i .- a
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Table 2

Posterior Precision for 8 from Item Responses and Population Membership

1.7a = 1.000

'f..

Relative 2 Effective
" -- 1 Efficiency (ax/l)

i n i( ( - ) Gain

2 1.500 3.000 200.0%

4 2.000 2.000 100.0%
4.-3

8 3.000 1.500 50.0%

16 5.000 1.250 25.0%

32 9.000 1.125 12.5%

64 17.000 1.063 6.3%

128 33.000 1.031 3.1%

n = number of identical items with a as noted and b 6.

i = information posterior precision.

oil

f., ftf,

Jft.'.

,.f.-
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Table 3

Precision Increases for e Resulting from the Use of

Auxiliary Information

Increment Precision Gain over
in Posterior Gain in Undifferentiated

Source Precison Item Units Population

One-item response .250 1.000 --

Population membership 1.000 4.000 --

Auxiliary information

R2 = .10 1.111 4.444 11.1%

2
R = .20 1.250 5.000 25.0%

R = .30 1.429 5.716 42.9%

R2 = .40 1.667 6.668 66.7%

2
R = .50 2.000 8.000 100.0%

R = .60 2.500 10.000 150.0%

R= .70 3.333 13.332 233.3%

R= .80 5.000 20.000 400.0%

Rr= .90 10.000 40.000 900.0%

I".

I-'" . *. o . . ... . .
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Table 4

Counts of Observed Response Patterns

Item
Response
1 2 3 4 AlBi AIB2 A2B A2B2

0 0 0 0 23 20 27 29

0 0 0 1 5 8 5 8

0 0 1 0 12 14 15 7

0 0 1 1 2 2 3 3

0 1 0 0 16 20 16 14

0 1 0 1 3 5 5 5

0 1 1 0 6 11 4 6

0 1 11 1 7 3 0

1 0 0 0 22 23 15 14

1 0 0 1 6 8 10 10

1 0 1 0 7 9 8 11

1 0 1 1 19 6 1 2

1 1 0 0 21 18 7 19

1 1 0 1 11 15 9 5

1 1 1 0 23 20 10 8

1 1 1 1 86 42 2 4

Total 263 228 140 145

i
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Table 5

Item Parameter Estimates: Undifferentiated Population

Item bSE(b) a SEWa

1 -.422 .058 1.022 .171

2 -.226 .072 .666 .094

3 .152 .076 .705 .096

4 .397 .080 .839 .114

Population Mean: 0.000

Population Standard Deviation: 1.000

AL.
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Table 6

Item Parameter Estimates: Population Differentiated

with Respect to Factor A Only
-'S

Relative Relative
Item b SE(b) Efficiency a SE(a) Efficiency

1 -.436 .062 .875 .869 .069 6.142

2 -.217 .077 .874 .622 .054 3.030

3 .189 .072 1.114 .676 .056 2.939

4 .465 .069 1.344 .775 .061 3.493

Geometric average

relative efficiency: 1.035 3.718

Subpopulation means: .296, -.511

Subpopulation standard deviations: .960, .850

°°%%
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Table 7

Item Parameter Estimates: Population Differentiated

with Respect to Factor B Only

A Relative Relative

Item b SE(b) Efficiency a SE(a) Efficiency

1 -.408 .057 1.035 .941 .073 5.487

2 -.211 .077 .874 .621 .056 2.818

3 .185 .071 1.146 .686 .058 2.740

4 .431 .064 1.563 .842 .067 2.895

Ceometric average
relative efficiency: 1.128 3.328

Subpopulation means: .136, -.147

Subpopulation standard deviations: 1.021, .955

|.4
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Table 8

Item Parameter Estimates: Population Differentiated

with Respect to Factors A and B

A Relative A Relative
Item b SE(b) Efficiency a SE(a) Efficiency

1 -.421 .052 1.244 1.006 .080 4.569

2 -.213 .071 1.028 .672 .059 2.538

U" 3 .139 .065 1.367 .775 .063 2.311

4 .402 .066 1.469 .834 .066 2.983

Geometric average
relative efficiency: 1.266 2.994

Subpopulation means: .485, .073, -.513, -.502

.U Subpopulation standard deviations: 1.164, .855, .642, .640

.2
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