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Abstract.)Consideran statistical decision problem in which nature

has a finite number of states. The elementary theorems of decision

theory, namely the Minimax theorem, the Complete class theorem, and

theoreas on the structure of admissible rules, are proved in most

texts under the assumptions that the risk set is closed from below and
bounded from below . The condition that the risk set is bounded_from
below is sufficient for t':he existence of the lower boundary points;
however , that it is not necessary can be seen from simple examples. The
purpose of this paper is to.nxtend the elementary theorems of decision
theory to include the case in which the risk set is not bounded from
below and the set of lower boundary points is nonempty. A-:iea vaui“:;c:: shows
that if the risk set is bounded from above then it is neceasary for the
risk set to be bounded from below for the set of lower boundary points

\‘_) /T riic b 4;\’5
to be nonempty. We present ex-nples‘to illustrate eur theorems. (

— e

1. Introduction and Definitions. A statistical decision problem
consists of atriplet (Q,D,R) where Q is the set of all possible states
of nature, also known as the parameter space. The set D is the class of
all randoniznﬁ decision rules available to the statistician. When the
statistician chooses the randomized decision rule 6§ € D and the state
of nature is 6 € 2, the risk of the statistician is given by the real
valued function R(é,a). For a complete discussion of. randomi zed
decision rules, risk functions, the reader is referred to
Ferguson(1967) and Berger (1985). Throughout this paper we shall
assuse that the parameter space Q is a finite set, say (6,,0,,...,0,7,

where k 2 1 is fixed.

»
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Given any decision rule 6 € D, the risk vector of 6 is defined

as the vector x= (R(8,,6),....,R(6,,6))%. The collection

(1.1) g = {x = (R(B,46)y.0..4R(0,,6))% 25 & D}

of all risk vectors is known as the risk set. It is well known that Sis
a convex subset of 8%; that is, if x, vy € S and 8@ £ \ £ 1 then
A\x + (1-\)y is also in S. We adopt the following definitions from

Ferguson(1967).

Definition 1.1. The subset S is said to be bounded from below if there
exists a finite positive number A, such that for every x =
(x‘,....,x,,)t & S

(1.2) x; > —-A for i=f,.... k.

We say that S is bounded from above if fOr @very x = (X 4.0..04%,) " €85,

(1.3) xi ( “ iﬁf‘ i'l,-.-.,k-

The set S is said to be bounded if it is bounded from above and below.

Definition 1.2, Let x be a point of Rf%. The lower gquantant at x, denoted

by @,, is defined as the set
(1.8 Qe = {y = (Yygeeaosydt 2 y; € x;,y J=lyuce,sk 2.

In the following definitions S denotes the closure of the set

S, that is, 8§ is the smallest closed set containing S.




Definition 1.3. A point x is said .to be a lower boundary point of a

convex set S C R® if @,NS = {x}. The set of lower boundary points of a

convex set S is denoted by LB(S).

The following lemma can be found in Ferguson(1967).

Lemma 1.4. Let S be a convex subset of 8%, Then § is convex and the set
of lower boundary points of S and S is the same, that is, LB(S)=LBR(5).
Dafinition 1.5, Aconvex set S C R* is said to he closed from below i€

LB(S) C S. We say that S is closed if § = §.

Let X = (Xgyecae gk ?  AND Y = (Y, 4000047, " be two elements of
R*. We write x Sy if x; Sy; for i=l,c... k, and x < y if x £y and
X; < Y; for atleast one j. Therelations £ , { induce a partial ordering
of the elements of 8%, The next few definitions are concerned with the

class D of randomized decision rules available to the statistician.

Definition 1.6. Let 6, and 6, be two decision rules in D with risk
vectors x, and x, respectively. We say that §, is as good as the rules,
if x, £x5. Therule s, is said to be better than 6, if x;, < x, and &5, is

said to be equivalent to 6, if x, = x,.

Definition 1.7. Arule 6 is said to be admissible if there exists no

rule that is better than 6. Arule s is said tobe inadmissibleif itis

not admissible.




It is clear that inadmissible rules are undesirable. Thus in
looking for a best rule, the statistician usually restricts his search

to the class of admissible rules, provided the class is nonempty.

Definition 1.8. A class C of decision rules, C C D, is said to be

complete, if given any decision rule 8 € D, not in C, there exists a
rule &y € C that is better than 6. Theclass C of decisionrules is said
to be minimal complete if C is complete and if no proper subclass of C

is complete.

We note that a complete class C always exists for a
statistical decision problem (take Cc=D) ,.but aminimal complete class
need not exist. However, if a minimal complete class exists then it
consists exactly of the admissible rules. This result and several
other results which demonstrate the relationship between minimal
complete class and admissible rules can be found in Ferguson(1967)
(also see Berger (1985)). We state below one important theorem that is

relevant to the main theorems of this paper.

Theorem 1.9. IfCis the class of admissible rules and C is a complete

class then C is minimal compleate.

We now proceed and develop the notion of Bayes rule and Bayes
risk. Any probability distribution wv= (v, ,7,,...,7,) On the parameter
space Q is known as a prior distribution. We shall denote the class of

all prior distributions by P.
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Given any prior distribution v € P and a decision rule 6 €D,

the Bayes risk of 6 with respect to v is defined as

(1.5) BR{w,5) = E {R(Z,&)J’

where Z is a random variable having distribution w. The Bayes
principle requires the statistician to look for arule which minimizes
the Bayes risk. This rule if it exists is known as the Bayes rule.

Formally we have

Definition 1.18. Adecision rule 6§, is said to be Bayes with respect to

the prior distribution w € P i¥f
(1.6) BR(w,6y) = inf BR(w,6)
6€D

In searching for a best rule the statistician is also guided
by another notion of best rule, known as the Minimax principle. A rule
6, is preferred to a rule 6, if
(1.7) sup R(8,6,) < sup R(8,6,).

f&Q -1

This relation “is preferred to" also defines a linear ordering on the
class of decision rules D. If the statistician decides to adopt the
Minimax principle then he should look for a smallest element in this
ordering. A rule that is most preferred in this ordering is called a

minimax decision rule. This discussion leads us to the following

. e
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Definition 1.11. A decision rule 6, is said to be minimax if

(1.8) sup R(8,6,) = inf sup R(8,56).

geQ 6€D fAeQ

We can also defing similarly, a minimax rule for nature. This

will be an element of the class P. The minimax rule of the naturew, €P
is also known as a least favorable distributicm. The probability
distribution v, € P satisfies the equality
(1.9 inf BR(n.,6) = sup inf BR(m,5).

6€D nweP 6&D
2. Main Theorems. In this section we present the main results of this
paper. The theorems presented in this section are analogous to the
theorems in Chapter 2 of Ferguson(19467). However, Ferguson(1967)
assumes that the risk set S is bounded from below. We replace this
condition by the weaker condition that the set of lower boundary
points of S, LB(S), is nonempty. We also present applications of our
theorems which are not covered by the theorems of Ferguson(19467). The

following lemma plays an important role in the proofs of our theorems.

Lemma 2.1. Let {y,.,n 2 1J,ccccceylynsn 2 13 be k sequences which
are bounded above. Assume that there exists j, 1 £ j £ k, such that Yin

—t-® asn— e, Then thereexistsanr, 1 £r £k, and a subsequence

{m} such that

(2.1) [y /'y ] — M;
in re

for all i, 1S i <k, where @ < M, < = and'y'_-.—-O-- as m — o,




Proof. We shall prove the l1emma by the method of induction. The lemma
trivially holds for k = 1. Assume that the lemma is true for k = (I-1),
that is , there exists anr, 1 £ r £ (1I-1), and a subsequence {m} such
that (2.1) holds for 1 £i £ (I-1). Let {y,,, m2 1} be another sequence.

Note that
@ 2 liminf (v;,, / Y.g ) £ =,

since {y,,J is bounded above and y., —— —® as m —* ®. We consider the

following two cases.

Case 1: @ 2 liminf (y,, / Y.u } < ®. In this case we can find a

subsequence {®°> of {m3 such that
- (2.2) lim (Y, 4¢7 Ypg® ) = My,
g where @ < M, < . The subsequence {(m’} satisfies (2.1) for all
1 21 21,
Case 2: liminf (y,, /y,.u) = . In this case we can find a sub-

sequence {m°’} of {(m} such that

(2.3 lim (y.p¢/y,;a¢) = O.

M
"
‘.
S
A

Combining (2.3) with the induction hypothesis we get that for

1 €£i € -1y,

e €a --‘. n.-~‘ -------- 'A.h‘.'--.-'..'-‘-‘ '.'-' """"""
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(2.4) lim (yi.'/yl-’ ) = lim (YL"/ yr-l) lim (Y'..o/ yx.l)

=08 =M, (say).

Therefore the subsequence {m’ and r = ] satisfies (2.1) for 1 £i € 1.
This completes the proof of Lemma 2.1.

As an application of Lemma 2.1 we have the following result.

Lemma 2.2. Let S be a convex subset of R¥. Assume that S is bounded

above. I1f the set of lower boundary points LB(S) is nonempty then S is

bounded from below.

Froof. Suppose S is not bounded from below. Then there exists a
sequence y, = (yxn,....,y.")t € S such that Yjn —* — = for some j,
1£jfk as n — @, Since the Yin ‘s are bounded above, using Lemma 2.1 we
can find an 1< r £ k and a subsequence {m) such that y., — - ® and

(2.5 (Yia ? Yra ) — M; as m —i=,

where @ £M; { m, for 1 £i £ k. Let z-—-(z,_,.....,z,,)t be an element of

LB(S). Let ¢ > B be given. Define
(2.6) Ag =L (2.-€) = yoaq J /L 2,~Yoq 31, for m 2 1.

Note that @ < A, < 1 for sufficiently large m. Since § is convex,

AgZ + (1=-\ )y, = 8. Using (2.5) and (2.6) we can eaéily verify that

(2.7) - —_1
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(2.8) AgZ + (U2 )y, —r z — ¢ M

asm—t @, where ¥ = (M, ,....,M ) . Since M. =1, the limit point z—¢ ¥
s which belongs to S, is less than z and this contradicts the fact

that z € LB(S). The proof of Lemma 2.2 is now complete.

The above lemma shows that if a convex subset S of R¥ is
bounded above, then either S is bounded below or LB(S) is empty. The
following example shows that we cannot relax the hypothesis that Sis

bounded abave in Lemma 2.2.

Example 2.3. Let k=2 and S,= {(x,,x,)° : Xy 2 =xm 2. In this example
LB(S,) = {(x,,x) %z Xy= =%}, but S, is neither bounded from above nor

bounded from below.

The converse of Lemma 2.2 is well known and is stated in the
lemma 2.4. The proof of Lemma 2.4 can be found on page 69,

Fergquson (1967).

Lemma 2.4. Let S be a convex subset of R*. 1+ S is bounded from below,

then LB(S) is nonempty.

The next lemma is crucial to the proofs of our elementary

theorems of decision theory. The proof follows easily from Lemma 2.2.
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Lemma 2.5, Let S be a convex subset of R* with nonempty lower boundary

points LB(S). Let x = (X 4.00-9%,) €5 and let S, = @,N5S. Then S, is

bounded from below.

Proof. Suppose S, is not bounded from below. Then we can find a
sequence'y,, = (Yypnsese- ,Y.,..)tE S, such that for some j, y;, — - ®as
n—wm Llet r= (z,,... ,zk)tE LB(S). Since y, is bounded from above,
imitating the proof of Lemma 2.2 we can find z’ & 8§ such that z°< z. This
contradicts the fact that z € LB(S). The' praof of Lemma 2.5 is

complete.

(x“xz, t Lemma 2.5 is best understood when k=2 and S

(z“z;) t is a convex subset of R®. Let (xu”‘z’te § and
let S,=Q,NS. Let (zi,zz)te LB(S). It is easy

to verify that either x, > z,0r x,; > 2,. Let

us assume that x, >z, and x, £z,, the other

Figure 1 cases can be handled similarly. If S,

is not bounded from below then there exists a sequence vy, =(y,,5Y2n! te
S, such that y,, —* - ®mand z, < yp, £x,. Since § is convex, the line
L, joining z and v, is contained in §. Letting n converge to @, we can
check that L, coincides with the line Y= z, (see Figure 1) and

therefore we can find points of § which are less than z. This is a

contradiction because z € LB(S).
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The next theorem is the first of our elementary theorems of
decision theory. It is well known that if therisk set S is bounded from
below and closed from below then the risk vector of every admissible
rule is contained in LB(5). Theorem 2.6 shows that we can extend this
result to the case where the risk set S, is not bounded below but is

assumed to have nonempty lower boundary points.

Theorem 2.6. Assume that the set of lower boundary points, LB(5), of
therisk set S is not empty and S is closed from below. Then a rules €D

yv¢

ic admissible if and only if the risk vector x= (X ,...,%,) oOf 6 is

contained in LB(S).

Proct, If x = (X 4e.. ,xk)‘ € | B(S) then it follows trivially that the
decision rule 5 corresponding to x is admissible. We shall prove the
converse by the method of contradiction. Let 6 be an admissible rule
and assume that the risk vector x of 6 isnot inLB(S). Let S, =@,nN5 . By
Lemma 2.5, the set S, is bounded from below. It is easy to verify that

S, is convex and closed. Therefore by Lemma 2.4, LB(S,) is not empty.
If y € LB(S,) then

(2.9 vy = @ N8, = @, NaNS = @ n5.

Thus ¥ € {LB(5) and since S is closed frombelow, y € 5. Sincey { x , 56 is

not admissible, which is a contradiction. This completes the proof of

the theorem.
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The conclusion of Theorem 2.6 need not be true i § we rala the

hypothesis that LB(S) is nonempty, as shown in the next example.

Example 2.7. Let k=2 and S= {(x,_,::z)t 1,28, 2,202U(@,2. In this
example we can easily verify that S is convex and LB(S) is empty and
hence S is closed from below. The risk vector (8,0) corresponds to an

admissible rule but it is not in LB(S).

The next theorem is the second of our elementary theorems of
decisicn theory. It provides sufficient conditions on the risk set S

for the existence of a minimal complete class.

Theorem 2.8. Assume that the set of lower boundary points LB(S) of the
risk set S is not empty and S is closed from below. Then the class of

decision rules

(2.1@) C=46€ Dz x = (R(B;,68)4000.,R(8,,6))F &€ LB(S)?

is a minimal complete class.

Proof. It suffices to show that C is complete, because then we can
conclude that C is minimal complete from Theorem 1.9 and Theorem 2. 6.
Let § be arulenot inC, x be the risk vector of 8, and S,=Q,N5. The set
S, is bounded from below by Lemma 2.5 and hence LB(S,) is nonempty. The
rest of the proof is similar to the proof of Theorem 2.46.1 of Ferguson

(1967) and hence is omitted.

13
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Exadzgle 2.9. Consider the risk set S = {(0,8)2 U {(x,y) : -x—-1 £y £@,
x > @). The convex set S; is not closed from below since (@,-1) is a
lower boundary point and it is not contained in S3. It is easy to verify
fhat the minimal complete class is given by the set of all decision
rules whose risk vectors belong to the subset S, = {(83,8)> ULix,y) 2 y=
-x—1, x > 0. Thus this example shows that the condition that the risk
set is closed from below in not necessary for the existence of a

minimal complete class.

One should note that Theorem 2.4.1 of Ferguson (1967) follows
from Lemma 2.4 and Theorem 2.8. Combining Theorem 2.5 and Theorem 2.8,

we have the following corollary.

Corollary 2.18. Let C be defined by (2.18). Under the hypothesis of

Theorem 2.8 the class of all admissible rules C is minimal complete.

As an application of Theorems 2.6 and 2.8 consicer the risk
set S, of Example 2.3. The class of all decision rules corresponding to
the points x & LB(S,) forms an admissible, minimal complete class of

decision rules.

We now take a look at the question of existence of Bayes rules
in the decision problem (Q,D,R), where @ = {0,,...,8,). The next
theorem provides sufficient conditions for the existence of Bayes

rules.

14
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Theorem 2.11. Let_ the risk set S be bounded from above. Assume that
s LB(S) is nonempty and S is closed from below. Then for every prior

distribution v = (7,,...,¥,) a Bayes rule with respect to n exists.
Proof. Under the hypothesis of the theorem, Lemma 2.2 shows that S is
bounded. Theorem 2.11 now follows from the remark on page 69 of

Ferguson (1967).

: The next example shows that we cannot relax the condition that

S is bounded from above in Theorem 2.11.

Example 2.12. Consider the risk set S, of Example 2.3. Let the prior

3 distributionbe (174, 3/4). It is easy to verify that the Baves risk is
~a and therefore a Bayes rule does not exist with respect to the prior

distribution (1/4, 3/4).

Our next concern is to find sufficient conditions which
guarantee the existence of minimax strategies for both nature and the
statistician. The fundamsental theorem of game theory, namely the
Minimax theorem, states that i f the risk set is closed and bounded from
below, then the decision problem viewed as a two—person game, has a
value and both the players have minimax strategies. We show below that

the Minimax theorem holds under the weaker conditions that the risk

[ O W O N

set has nonempty lower boundary points and is closed from below.

1S




Theorem 2. 13. Minimax Theorem. Consider the decision problem (Q,D,R),

) where Q = (0,,....,0,}. Assume that the lower boundary points, LB(S),

of the risk set S conatitute a nonempty set. Then

(2.11) inf sup BR(w,8) = sup inf BR(m,6) = 19

6€D nepP weP s€D
and there exists a least favorable distribution v,. Moreover, if Sis
closed from below, then there exists an admissible minimax decision

rule 64 and 6, is Bayes with respect to w,.

Proof. Llet P =sup {« : QNS =0 )}, where « = (u,....,a)'. Since LB(S) is

nonempty, 7 is finite. For each n we can find a rule 6, & D such that
(2.12) Yin = R(9;,6,) = 9 + 1/n for all j=1,...,k.

tet ¥o = (Yinveeeo ,y,m)t. Clearly ¥Yn is bounded above. Since LB(S) is
nonempty, imitating the proof of Lemma 2.2 we can show that y, is
bounded from belaow. Let y be the limit point of y,. Clearly y & S and
Lemma 2.5 shows that Qyn§ is bounded from below. The rest of the proof

issimilar to the proof of Theoren 2.9.1 of Ferguson(1967) and hence is

omitted.
Example 2.14. Consider the risk set ‘82-{(:(“:(,)' :t X, 2 - %) of

Example 2.3. Since the risk set S, is not bounded from below, Theorem
2.9.1 of Ferguson(1967) is not applicable. However Theorem 2.13 is
applicable since S, actually has lower boundary points. In this

example we can easily verify that the value 9 =0 and the least
16
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favorable distribution w, = (1/2, 1/2).

There is an interesting relationship between admissible
rules and Bayes rules when the parameter spaceQis finite. The theorem
below does not assume any conditions on the risk set S. It is an easy
consequence of the separating hyperplane theorem (see page 86,

Ferguson (1967)).

Theorem 2.15. Let the parameter space Q be finite. If 6 is an
admissible rule, then there exists a prior distribution w such that s

is Bayes with respect to w.

We are now in a position to state and prove the fundamental
theorem of decision theory under the weaker hypothesis that the ri sk

set has nonemty lower boundary points.

Theorem 2.16. Complete Class Theorem. Consider the decision problem
(Q,D,R) where Q is a finite set. Assume that the risk set S is closed
from below and LB(S) is nonempty. Then the class of Bayes rules is

complete and the admissible Bayes rules form a minimal complete class.

Proof. The theorem is immediate ¥from Corollary 2.10 and Theorem
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