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Abstract. Consider: a statistical decision problem in which nature

has a finite number of states. The elementary theorems of decision

theory, namely the Minimax theorem, the Complete class theorem, and

theorems on the structure of admissible rules, are proved in most

texts under the assumptions that the risk set is closed from below and

bounded from below . The condition that the risk set is bounded from

below is sufficient for the existence of the lower boundary points;

however, that it is not necessary can be seen from simple examples. The

purpose of this paper is to extend the elementary theorems of decision

theory to include the case in which the risk set is not ounded from

below and the set of Iower boundary points is nonempty. 44v also shows

that if the risk set is bounded from above then it is necessary for the

risk set to be bounded from below for the set of lower boundary points

to be nonempty. We present examples to illustrate or theorems. (

1. Introduction and Definitions. A statistical decision problem

consists of a triplet (Q,D,R) where 0 is the set of all possible states

of nature, also known as the parameter space. The set D is the class of

all randomized decision rules available to the statistician. When the

statistician chooses the randomized decision rule a a D and the state

of nature is 0 G Q, the risk of the statistician is given by the real

valued function R(ea). For a complete discussion of randomized

decision rules, risk functions, the reader is referred to

*Ferguson(1967) and Berger(1985). Throughout this paper we shall

assume that theparameter spaceDl is a finite set, say C01.,2, .* 9 ,

where k k I is fixed.

~2
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Given any decision rule be D, the risk vector of 6 is defined

as the vector x- (R(Bsi6)....,tR(Bk,6))t. The collection

(1.1) S ( (x - (R(G),....,R(Bg,,))t :6 e D}

of all risk vectors is known as the risk set. It is well known that S is

a convex subset of R ; that is, if x, y 6 S and S X - 1 then

Xx + (1-N)y is also in S. We adopt the following definitions from

Ferguson(1967).

Definition 1.1. The subset S is said to be bounded from below if there

exists a finite positive number A, such that for every x -

(XIL ... qXk=) t  S

(1.2) x i > -A for i-1,.... ,k.

* We say that S is bounded from above if for every x - (x 'I.... ,Xg)t E S,

(1.3) x i < A for i-1,....,k.

The set S is said to be bounded if it is bounded from above and below.

De-Finiion 1.2. Let x be a point of R . The lower quantant at x, denoted

by Qx, is defined as the set

(1.4) 0g - { y (Y 1 9 .... lyk) 21 Yj - x,, J-l,...k

In the following definitions 9 denotes the closure of the set

S, that is, 9 is the smallest closed set containing S.

3
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.Definition 1.3. A point x is said to be a lower boundary point of a

convex set S C Rk if QXA = {x>. The set of lower boundary points of a

convex set S is denoted by LB(S).

The following lemma can be found in Ferguson(1967).

Lemma 1.4. Let S be a convex subset of Rm. Then S is convex and the set

of lower boundary points of S and S is the same, that is, LB(S)= LB(S).

Def i ni t ion 1.5. A convex set S C R" is said to be closed from below if

LB(S) C S. We say that S is closed if S = 9.

Let x = (x1 . . . . . . xk) t and y= (Y 1 .... yk) t be two elements of

R". We write x :S y if x i S y- for i=1 ..... k, and x < y if x Sy and

x < y, for atleast one j. The relationsS , < induce a partial ordering

of the elements of R k. The next few defini tions are concerned with the

class D of randomized decision rules available to the statistician.

Definition 1.6. Let 51 and 62 be two decision rules in D with risk

vectors x1 and x 2 respectively. We say that aI is as good as the rule 62

if x 1 Sx 2 . Therules, is said tobebetter than 62 if xI < x 2 and 6 1 is

said to be equivalent to 6.2 if x, - x 2 .

Definition 1.7. A rule 6 is said to be admissible if there exists no

rule that is better than 6. A rule s is said tobe inadmissible if it is

not admissible.

4
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It is clear that inadmissible rules are undesirable. Thus in

looking for a best rule, the statistician usually restricts his search

*to the class of admissible rules, provided the class is nonempty.

Definition I.8. A class C of decision rules, C C D, is said to be

complete. if given any decision rule 6 e D. not in C. there exists a

rule a6. C that is better than 5. The class C of decision rules is said

to be minimal complete if C is complete and if no proper subclass of C

is complete.

We note that a complete class C always exists for a

statistical decision problem (take C=D), but a minimal complete class

need not exist. However, if a minimal complete class exists then it

consists exactly of the admissible rules. This result and several

". other results which demonstrate the relationship between minimal

.| complete class and admissible rules can be found in Ferguson(1967)

- (also see Berger (1985)). We state below one important theorem that is

" relevant to the main theorems of this paper.

. Theorem 1.9. If C is the class of admissible rules and C is a complete

class then C is minimal complete.

We now proceed and develop the notion of Bayes rule and Bayes

risk. Any probability distributionv- (v- ,w 2 ,... , 1) on the parameter

space is known as a prior distribution. We shall denote the class of

all prior distributions by P.

5



Given any prior distribution v 6 P and a decision rule a e D,

the Bayes risk of 6 with respect to w is defined as

(1.5) BR(w,b) - E [R(Z,)

where Z is a random variable having distribution w. The Bayes

principle requires the statistician to look for a rule which minimizes

the Bayes risk. This rule if it exists is known as the Bayes rule.

Formally we have

Definition 1. 1. A decision rule 6b is said to be Bayes with respect to

the prior distribution v a P if

(1.6) BR(ir,6 b ) - inf BR(w,6)

66D

In searching for a best rule the statistician is also guided

by another notion of best rule, known as the Minimax principle. A rule

61 is preferred to a rule G2 if

(1.7) sup R(9,61 ) < sup R(,B 2 ).
OG0 Gao

This relation "is preferred to" also defines a linear ordering on the

class of decision rules D. If the statistician decides to adopt the

IMinimax principle then he should look for a smallest element in this

Jordering. A rule that is most preferred in this ordering is called a

minimax decision rule. This discussion leads us to the following

6

" ' " '"" " ' " "" " "'"' ' " ". "* " . . .. " " .'".L. ., - , , °, * . .. ,. .'... 4 . ." ." . ". " .



Definition 1.11. A decision rule 6. is said to be minimax if

(1.9) sup R(ub) - inf sup R(8,6).
00 66D eGQ

We can also define similarly, a minimax rule for nature. This

will be an element of the class P. The minimax rule of the nature wr, eP

is also known as a least favorable distribution. The probability

distribution v, m P satisfies the equality

(1.9) inf BR(wf,6) = sup inf BR(wi,6).
BEI_ weP 6aD

2. Main Theorems. In this section we present the main results of this

paper. The theorems presented in this section are analogous to the

theorems in Chapter 2 of Ferguson(1967). However, Ferguson(1967)

assumes that the risk set S is bounded from below. We replace this

condition by the weaker condition that the set of lower boundary

points of Si LB(S), is nonempty. We also present applications of our

theorems which are not covered by the theorems of Ferguson (1967). The

-following lemma plays an important role in the proofs of our theorems.

Lemma 2.1. Let Cy iwn 1 , ...... ,{y,,,,n > 1) be k sequences which

are bounded above. Assume that there exists j, I S j :S k, such that yjn

-9-rf asn n - . Then thereexists anr, 1_Sr-Sk, and asubsequence

(m such that

111Yis y re Mi

for all ii IS i Ski where 10 S Mi < * and y - as m -- - .
re

7
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Proof. We shall1 prove the l emma by the method of i nduct ion. The l emma

trivially holds for k - 1. Assume that the lemma is true for k - (1-1),

that is . there exists an r. I :S r :S1-) and a subsequence tm) such

that M~. 1) hol ds for 1 : i :S 1-I) . Let Cy,, , m 2: 1) be another sequence.

Note that

0 :S limin-f (v,, / y1.. ) : ,

* since Cy, al is bounded above and Yr - -ft as m - *We consider the

following two cases.

*Case 1: 0 :S liminf (Y.,/ Yru < m.In this case wse can find a

subsequence Cmll of (m3 such that

* (2.2) lim (Yza'' Ye. )= ii

where 0 :5 MI < .. The subsequence Win) satisfies (2.1) for all

Case ?.z liininf (y,, /Yrs) qw* In this case we can find a sub-

sequence (m*3 of (ml) such that

(2.3) lii, (yW.''y~e') 0.

Combining (2.3) with the induction hypothesis we get that for

* I Si 5 1-1)



(2.4) lir (Yis.oyi, ) lir (yi,/ y,.,) lira (yr,/ Yza')

a U = M i (say).

Therefore the subsequence (m') and r = I satisfies (2.1) for 1 _< i 5 1.

This completes the proof of Lemma 2.1.

As an application of Lemma 2. 1 we have the following result.

Lemma 2.2. Let S be a convex subset of RM. Assume that S is bounded

above. If the set of lower boundary points LB(S) is nonempty then S is

bounded from below.

Proof. Suppose S is not bounded from below. Then there exists a

sequence y, = (y, ...... ,ykn) a S such that Y~n -j for some J,

lSjSk as n - m. Since the Y n 's are bounded above, using Lemma 2.1 we

can find an 1_< r S k and a subsequence Cm) such that y,, - a and

(2.5) (yi, - Yr* M i as m-

where U _<M < w, for 1 5 i - k. Let z-=(z 1 . . . . . ,z.) be an element of

LB(S). Let a > 0 be given. Define

(2.6) a M E (Zr--) - Yr. 3 1 Zr-Yr 3, for m k 1.

Note that 0 < XM < I for sufficiently large m. Since S is convex,

X4z- (1-)m)y* a . Using (2.5) and (2.6) we can easily verify that

(2.7) ) ., -'1
9



(2.8) + (1-XM)y M  z - M M

as m----,where M = (M I . ,Mk)t . Since M..=1., the limit point z-E M

, which belongs to S, is less than z and this contradicts the fact

*" that z e LB(S). The proof of Lemma 2.2 is now complete.

The above lemma shows that if a conve, subset S aF R k is

bounded above. then either S is bounded below or LB(S) is empty. The

following example shows that we cannot relax the hypothesis that S is

bounded above in Lemma 2.2.

Examole 2.3. Let k=2 and S2= {(x 1 ,x 2 ) : x1 > - x 2). In this example

LB(S2 ) = {(xix 2 ) t : xi=-x 2 }, but S2 is neither- bounded from above nor

bounded from below.

The converse of Lemma 2.2 is well known and is stated in the

* Lemma 2.4. The proof of Lemma 2.4 can be found an page 69,

Ferguson (1967).

Lemma 2.4. Let S be a convex subset of Rk. If S is bounded from below,

then LB(S) is nonempty.

The next lemma is crucial to the proofs of our elementary

theorems of decision theory. The proof follows easily from Lemma 2.2.

10



Lem.ma 2.5. Let S be a convex subset of Rk with nonempty lower boundary

°t
points LB(S). Let x = (x,....xk) ES and let S, = QOXS. Then S. is

bounded from below.

Proof. Suppose S. is not bounded from below. Then we can find a

sequence Yn = (Yln, .... ,ykn)tU S1 such that for some j, Yj-n - as

n w. Let z = (zV±,.,zk) tLB(S). Since y, is bounded from above,

imitating theproof of Lemma 2.2 we can findze cSsuch that z"< z. This

contradicts the fact that z e LB(S). The proof of Lemma 2.5 is

complete.

(X 1 ,x 2 )t Lemma 2.5 is best understood when k=2 and S

2
- (z 1 Z )t isaconvex subset of R . Let (x,,x 2 )t Sand

let SI=Q1 AS. Let (z,z1 2 ) tLB(S). It is easy

to verify that either xi > zior x2 > z2. Let

us assume that x 2 >z 2 and x 1 
-Sz 1 , the other

Figure 1 cases can be handled similarly. If S,

is not bounded from below then there exists a sequence y, =(Yin sY2n t

S. such that Yin - - a and z2 < Y2n -S x 2 . Since S is convex, the line

Ln joining z and yn is contained in 9. Letting n converge to a, we can

check that Ln coincides with the line Y- z 2 (see Figure 1) and

therefore we can find points of 9 which are less than z. This is a

contradiction because z a LBCS).

* 11
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The next theorem is the first of our elementary theorems of

decision theory. It is well known that if the risk set S is bounded from

, below and closed from below then the risk vector of every admissible

rule is contained in LB(S). Theorem 2.6 shows that we can eXtend this

result to the case where the risk set S, is not bounded below but is

"" assumed to have nonempty lower boundary points.

Theorem 2.6. Assume that the set of lower boundary points, LB(S), of

the risk set S is not empty and S is closed from below. Then a rule 6 5 D

is admissible if and only if the risk vector x= (W1,...,Xk)t of 6 is

contained in LB(S).

Proof. If x = (x1 ,... ,.k)t 6 LB(S) then it follows trivially that the

decision rule 6 corresponding to x is admissible. We shall prove the

converse by the method of contradiction. Let a be an admissible rule

and assume that therisk vector x of 6 isnot in LB(S). Let S, = Qxn. By

Lemma 2.5, the set S. is bounded from below. It is easy to verify that

S1 is convex and closed. Therefore by Lemma 2.4, LB(S1 ) is not empty.

If y e LB(S.) then

(2.9) (y = Gyns, a gynxn = Qng.

Thus y a LB(S) and since S is closed from below, y a S. Since y < x, B is

not admissible, which is a contradiction. This completes the proof of

. the theorem.

12

4



The conclusion of Theorem 2.6 need not be true if we rela:' the

hypothesis that LB(S) is nonemoty, as shown in the ne:t example.

Ex aio 2.7. Let k='and S= {{UIx 2) t : x 1 >8,1 2 :0 ) U {(( ,e)). In this

example we can easily verify that S is convex and LB(S) is empty and

hence S is closed from below. The risk vector (0,0 ) corresponds to an

admissible rule but it is not in LB(S).

The next theorem is the second of our elementary theorems of

decision theory. It provides sufficient conditions on the risk set S

for the existence of a minimal complete class.

Theorem 2.8. Assume that the set of lower boundary points LB(S) of ths

* risk set S is not empty and S is closed from below. Then the class of

decision rules

(2.10) C = (8 E D : x = (R(9 1 ,), .... ,R(ek'1)) U LB(S))

is a minimal complete class.

Proof. It suffices to show that C is complete, because then we can

conclude that C is minimal complete from Theorem 1.9 and Theorem 2. 6.

Let 6 be a rule not in C, x be the risk vector of 6, and S x n. The set

S1 is bounded from below by Lemma 2.5 and hence LB(S 1 ) is nonempty. The

rest of the proof i s simi lar to the proof of Theorem 2.6.1 of Ferguson

(1967) and hence is omitted.

13
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Example2.9. Consider the risk set S;. ((10)) U C(xIy) : -x-1 -Sy SO'

x > 0). The convex set S, is not Closed from below since (0,-l) is a

lower boundary point and it is not contained in S 3 . It is easy to verify

that the minimal complete class is given by the set of all decision

rules whose risk vectors belong to the subset S. =-C (3,D)} U ( (x,y) : y=

-x-1, x > 0). Thus this example shows that the condition that the risk

set is closed from below in not necessary for the existence of a

minimal complete class.

One should note that Theorem 2.6. 1 of Ferguson (1967) follows

from Lemma 2.4 and Theorem 2.9. Combining Theorem 2.5 and Theorem 2.8,

we have the following corollary.

Corollary 2.10. Let C be defined by (2.10). Under the hypothesis of

Theorem 2.8 the class of all admissible rules C is minimal complete.

As an application of Theorems 2.6 and 2.8 consioer the risk

set S2 of Example2.3. The class of all decision rules corresponding to

the points x a LB(S.) forms an admissible, minimal complete class of

decision rules.

We now take a look at the question of existence of Bayes rules

in the decision problem (MD,R), where i0 - {91,...,Of}. The next

theorem provides sufficient conditions for the existence of Bayes

rules.

14
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Theorem 2.11. Let the risk set S be bounded from above. Assume that

LB(S) is nonempty and S is closed from below. Then for every prior

distribution i - (v±,...,.Wf) a Bayes rule with respect to w exists.

Proof. Under the hypothesis of the theorem, Lemma 2.2 shows that S is

bounded. Theorem 2.11 now follows from the remark on page 69 of

Ferguson (1967).

The next example shows that we cannot relax the condition that

S is bounded from above in Theorem 2.11.

Example 2.12. Consider the risk set S 2 of Example 2.3. Let the prior

distribution be (1/4, 3/4). It is easy to verify that the Bayes risk is

-a and therefore a Bayes rule does not exist with respect to the prior

distribution (1/4, 3/4).

Our next concern is to find sufficient conditions which

guarantee the existence of minimax strategies for both nature and the

statistician. The fundamental theorem of game theory, namely the

Mini max theorem, states that i f the risk set is closed and bounded from

below, then the decision problem viewed as a two-person game, has a

value and both the players have minimax strategies. We show below that

the Minimax theorem holds under the weaker conditions that the risk

set has nonempty lower boundary points and is closed from below.

15
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Theorem 2. 13. Minimax Theorem. Consider the decision problem (QD,R),

where Q - (3, ....,I ek. Assume that the lower boundary points, LB(S),

of the risk set S constitute a nonempty set. Then

(2.11) inf sup BR(w,s) - sup inf BR(w,6) -

GaD weP i-P 8ED

and there exists a least favorable distribution w.. Moreover, if S is

closed from below, then there exists an admissible minimax decision

rule 5. and 6. is Bayes with respect to wv.

Proof. Let =sup Cm : QAS - ),where (m.... ,m)t . SinceLB(S) is

nonempty, i) is finite. For each n we can find a rule n r D such that

(2.12) Yjf - R(e.,sn) S q + 1/n for all jl,...,k.

Let Yn = (Ynv.... ,Ykn) t . Clearl'y Yn is bounded above. Since LB(S) is

nonempty, imitating the proof of Lemma 2.2 we can show that Yn is

bounded from below. Let y be the limit polnt of y,. Clearly y E S and

Lemma 2.5 shows that Gy n is bounded from below. The rest of the proof

Si s si mi lar to the proof of Theorem 2.9.1 of Ferguson (1967) and hence i s

omitted.

lim2I& 2.14. Consider the risk set S 2 -C(x 1 ,x 2 )t X X1 - x2 1 of

Example 2.3. Since the risk set S2 is not bounded from below, Theorem

2.9.1 of Frguson(1967) is not applicable. However Theorem 2.13 is

applicable since S2 actually has lower boundary points. In this

example we can easily verify that the value 1) -0 and the least
16



favorable distribution wir (1/2, 1/2).

There is an interesting relationship between admissible

rules and Bayes rules when the parameter space £Q is finite. The theorem

below does not assume any conditions on the risk set S. It is an easy

consequence of the separating hyperplane theorem (see page 86,

Ferguson (1967)).

Theorem 2.15. Let the parameter space Q be finite. If 6 is an

admissible rule, then there exists a prior distribution v such that a

*. is Bayes with respect to r.

We are now in a position to state and prove the fundamental

theorem of decision theory under the weaker hypothesis that the risk

set has nonesty lower boundary points.

Theorem 2.16. Comlete Class Theorem. Consider the decision problem

(.0,D,R) where 9 is a finite set. Assume that the risk set S is closed

from below and LB(S) is nonempty. Then the class of Bayes rules is

complete and the admissible Bayes rules form a minimal complete class.

Proof. The theorem is immediate from Corollary 2.10 and Theorem

2.15.

17
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