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Abstract

This paper combines recent developments in the area of generation of dependent random
variables with the advantages of the use of common and antithetic random numbers. This
combination yields new efficient methods for estimating complicated stochastic quantities by
simulation. Some theoretical and practical aspects of use of antithetic and common random
numbers for variance reduction while using the total hazard construction are given. A proof
of their optimality in estimating the expected value of the response sum or the response
difference of functions of vector arguments with dependent components is presented. Some
numerical examples illustrate the theory.
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1. Introduction

Methods of variance reduction in simulation analysis are useful for the purpose of improving

accuracy of estimates of output parameters of complex stochastic systems. The development

of such methods is important because they yield estimators which are superior in accuracy

to the crude Monte Carlo estimator.

One of the most successful variance reduction techniques is the use of common and antithctic

random numbers (see the bibliography of Rubinstein, Samorodnitsky and Shaked (1985)).

This paper presents new ways of application of common and antithetic random variables. It

combines recent developments in the area of generation of dependent random variables with

the advantages of the use of common and antithetic random variates. This combination yields

new efficient methods for estimating complicated probabilistic quantities by simulation (see

Section 4).

More explicitly, in the present paper these methods are used in order to minimize the variance

of g(X) - h(_Y) where g and h are real measurable functions which are monotonic in the same

(or the opposite) direction and the joint cdf (-=cumulative distribution function) of X and Y

is restricted to belonging to some set E of cdf's. To see an instance of such a set E, suppose,

for example, that X= (XI ...,X) and Y= (YI,..., Y,) are both n-dimensional random vectors

with respective cdf's Fx and Fy. Then E can be taken to be the set of all cdf's on R 2n with

marginals FX and Fy or (see, e.g., Rubinstein, Samorodnitsky and Shaked (1985)) the set of

all cdf's on R2n with marginals Fx and Fy such that dependence is permitted only between

like components of X and Y (components with the same indices).

I. Introduction



Usually X and Y are generated by constructing them from independent uniform random

variables. In this respect, three alternative constructions have been used. They are (i) standard

construction (e.g., Arjas and Lehtonen (1978)), (ii) dynamic construction (e.g., Shaked and

Shanthikumar (1985b)), and (iii) total hazard construction (e.g., Norros (1984), Shaked and

Shanthikumar (1985a)). Each of these constructions determine vector functions TX and Ty

depending, respectively, on the cdf's of X and Y such that X 4 Tx(_U) and YdTy(_P) where U

and V are vectors of independent uniform [0,1] random variables (here d denotes equality

in law).

When X and Y are both n-dimensional (as will be assumed throughout the paper), then the

standard and the total hazard constructions (to be described below in detail) require U and

V to be n-dimensional. The dynamic construction requires U and V to be of (the same)

dimension n? > n.

We say that VCRN (vector of common random numbers) is used if V= U. We say that

VARN (vector of antithetic random numbers) is used if V= 1 - U where 1 (1,..., 1)'.

Let g and h be real measurable functions and suppose we are interested in reducing or

minimizing Var(g(X) - h(_1)) subject to FXy E 0 where E is some set of 2n-dimensional cdf's.
Assume we construct X and Y by x(_) and .fy(_) where U and V are not necessarily

independent vectors of independent uniform [0,1] random variables. Then

(1.1) Var(g(X) - h(Y)) = Var(g *(_U) - h *(_)

where

(1.2) g *(u) =g(TX(u)) ,

(1.3) h * () = h(.Ty(v)).

1. Introduction 2



Representation (1.1) together with the following result (Lemma 1.1 below) of Rubinstein and

Samorodnitsky (1982) [see also Rubinstein, Samorodnitsky and Shaked (1985)] will be used

to find optimal variance reduction techniques in Sections 2 and 3. First we need to define

the following:

Let (D be the set of 2n-dimensional cdf's corresponding to random vectors (_U, V) of uniform

[0,11 random variables with n-dimensional marginals F(u) - I'[n= Ilui and

Fy(v) = IIIl7jv,0 _5 % _ 1, 0 < vi f_ 1, i= 1,...,n, with dependence permitted only between like

components of u and v.

Lemma 1.1. Let g and h be real measureable functions on [0, 1 n. (a) If g and h are

monotonic in the same direction with respect to the i-th component, i = 1,..., n, then

(1.4) min Var('(U) - h(_)) = Var(' (_U) - /(U)).
Fuve 

D-

(b) If Z and h are monotonic in the opposite direction with respect to the i-th component,

S1.n, then

(1.5) min Var(g(U) - h(.) ) = Var((_U) - h ( - _).
(1.5) FUv E 4

That is, use of VCRN is optimal for problem (1.4) and use of VARN is optimal for problem

(1.5).

In the following sections we will use (1.1) and Lemma 1.1 as follows. For a given construction

.Tx(_U) and TY(_;I we will find conditions under which g* of (1.2) and h* of (1.3) are

monotone in the same [respectively, opposite] direction and then from Lemma 1.1 it will

follow that use of VCRN [respectively, VARN] is optimal.

1. Introduction 3



In Section 2 we deal with variance reduction while using the standard construction. We

briefly describe the main results of Rubinstein, Samorodnitsky and Shaked (1985) and their

underlying ideas, and in doing this we motivate the developments of the following section.

Section 3 deals with variance reduction while using the total hazard construction. We follow

the lines of Section 2, thus obtaining new results which are the main contributions of this

paper. Finally, in Section 4, we present some simulation results involving dependent stochastic

variables.

1. Ir.:roduction 4
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2. The standard construction and variance
reduction

First the standard construction is described in detail. The following notation is used. For

any random vector Z = (Z1 ..., Z.), let

Fz, I ...._(zil =Pjzj! <z, I Z, =z ..... Z_ I =z,_ I

and let

F ],,.i ._ Cui) - inffzi:Fziz,... _ (zi) >_ ujI,i= l .,n.

*~a  According to the standard construction, _X= (X1,...,X,) and Y= (Y1,-.., Yn) are generated as

' follows:

(2.1) X 1 =Fj'(U) - (U 1 ),

(2.2) .. F xi (U) = (UI,... , Ul, i 2,..., n,

(2.3) Y1 = F, (V1 ) b- (V1 ),

2. The standard construction and variance reduction 5
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(2.4) y, =F-(2.4 Y. F -'-(, ... , (v... _ (Vi) _b i(V1,..... V), i =2,..... n,

where U and V are vectors of independent uniform [0,1] random variables. If we define

a (_ -a 1 (UI,..., Ui) and bi(__b(V 1 ,..., Vi) then (2.1) - (2.4) can be rewritten as

(2.5) X- ai (U),i-,...,n,

(2.6) Y=b(V,i= 1,...,n.

Thus, the transformation Tx and Ty, mentioned in Section 1, which corresponds to the

standard construction is described in (2.5)-(2.6).

A random vector Z = (Zl,..., Zn) is said to be CIS (conditionally increasing in sequence) if

P(Zi > zi I Z1 = zl,..., Zi-1 I = zi-1) is nondecreasing in zl,..., zi- 1 for every zi, i =2,...,n. Rubinstein,

Samorodnitsky and Shaked (1985) proved:

Lemma 2.1. If X and Y are CIS then ai(u) and bi(v) [of (2.5)-(2.6)] are nondecreasing

functions of u and v,i= 1,...,n.

That is, if X and Y are CIS then the transformations Tx and Ty defined by (2.5)-(2.6) are

monotone nondecreasing.

Let - be the set of all cdf's on R 2n with marginals Fx and Fy such that dependence is

permitted only between like components of U and V of (2.5) and (2.6). Consider the problem

(2.7) minimize Var(g(,_) - h( 1)) subject to F y E

From Lemmas 1.1 and 2.1 one easily obtains (see, e.g., Rubinstein, Samorodnitsky and Shaked

(1985)):

2. The standard construction and variance reduction 6
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Theorem 2.1. If X and Y are CIS and g and h are monotone in the same (the opposite)

direction then use of VARN (VCRN) yields an optimal solution for problem (2.7).

Note that the cdf FXy, which corresponds to the choice of independent U and V in (2.5)-(2.6),

belongs to -. Thus, by Theorem 2.1, the use of VCRN (VARN) is preferable to the use of

independent U and V. That is, use of VCRN (VARN) is superior to the crude Monte Carlo

method. Furthermore, use of VCRN or VARN requires generation of only half as many

uniform [0,11 random variables.

2. The standard construction and variance reduction 7
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3. The total hazard construction and
variance reduction.

The total hazard construction can be used to generate absolutely continuous nonnegative

random vectors (see, e.g., Norros (1984) and Shaked and Shanthikumar (1985a)). It is

particularly useful 'when the numerical inversion of the conditional distributions, described in

(2.1)-(2.4), is too involved and time consuming, and on the other side, inversion of the

multivariate hazard functions, to be defined below, is simple. An example of such an instance

is given in Section 4.

Let X= (X1,...,X) be an absolutely continuous nonnegative random vector to be generated.

We will use the following notation.

r'Pr J= {Jl ... ,Jk} c {1,...,n} let xj denote (xj,....,xjk). If J= {i, ... n-k} then xj denotes

(xil ... ,xik). Let 1 = (1.... 1)'. The length of 1 will vary from one formula to another, but

it will be always possible to determine it from the expression in which 1 appears.

For Jc 11,...,nh and i J let Xi(xIX=.j,Xj>xl) denote the conditional hazard rate of Xi

at time x given that Xj = _j and that Xj > xl, where x V -jmaxlxj.jEc}. If J= then

V x O. Formally, for iE, j m

3. The total hazard construction and variance reduction. 8
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(3.1) Xi(x I= , 1>, xl)

~lin LPx<xi<X+AxIl=,x i X} X!. V X.

(J may be empty.) The absolute continuity of X ensures that limit exists. To save space

we sometimes supress the condition _j > xI and just write Xi(x I Xj = :j, .) but the reader

should keep in mind that "o" means Xj > xl with x being the same as the first argument of

X Xi. Note that Xi(x I X= Lj,.) is well defined for all x > Vx-. -j

For i e J the total hazard accumulated by X during the time interval V x1 , .xT +X x0,

is defined by

A i XXJ: )fJ i (u X~j=_ ,.)du, x >O, i E.

JIi

When J= 0, Ai(x I X = xyj) will be simply denoted by Ai (x).

*We will introduce now a notation for the total hazard accumulated by X by time x. Fix

, x>0 and suppose that it is given that X, ....,Xjk (k > 1) failed at times xj, ...,Xjk_ , respectively

.. (xk <... <X~ii _~ x) and that all other X1's are alive at time x. For ilU,..... .- 1] denote

x~tilj ,...,j _ (x I xj,..... xj _)=Aix )

"" k-I

j,+ Ix,,. j =X
1-2

i(x- Xjk_,I , = X, 4..., 1= Jk,).

3. The total hazard construction and variance reduction. 9
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Also denote (corresponding to the case k=l)

•I(x) = A,(x),x > 0.

The total hazard accumulated by X by the time it failed, given that Xi was the k-th to fail and

that Xjl,...,Xj,_ failed before Xi, is t i.._(Xi ] . ).

Define the inverse functions

A7"l ( t)=inf{x > 0:Ai (x) t}, =l_ ... ,n,t>0,

and for nonempty Jc { ,...n},_j> 01 and iE J,

AIJ(t I ;j) = infix >_ 0:Ai(x I A,= . - t},z >0.

Let U1,..., Q, be independent uniform [0,1] random variables. They generate independent

standard (i.e., mean one) exponential random variables as follows:

(3.3) E - log(1- U), i=-,...,n.

The total hazard construction consists of transforming El,...,E n into X 1,...,Xn as follows:

Step I. Let jl be the (random) index (which, by absolute continuity, is unique with probability

one) such that A;1(E) = minIAT (Ei):i 1...nj and define

(3.4) Xj - A7t (Ej .

3. The total hazard construction and variance reduction. 10
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Step k (k=2,...,n). Given that steps 1,2,...,k-1 resulted in Xj, Xik l let J={, ... ,Jk-1}. Let

be the (random) index (which, by absolute continuity, is unique with probability one) such

that

I m if[ k- IkEh,k...j_,(X i,,_ I Xj , ., Xjk_ ) I jl..., j,_,]

=min A -[E,- ,I,,.... _ ikI _,l- ,X --j,, ., ,,d "' ,- , ] I ".1
i'j

It is easy to verify, by induction, that the arguments of A7 1 and A7 1  in the above expression,

are nonnegative. Having chosen the (random) index Jk as described above, define (here

J = {Jil,.,Jk-1})

-(3.s) Xjk Xj_,I

+AIj[E.-"I ... (X IX , ,...,Xjk_, k=2,...,n
JkL k JkI ..jk - I XJk -I IJXil Jk - I Xi'Jk1

Notice that (3.4)-(3.5) describe explicitly how to obtain X from E= (El, ..., E,). However

(3.4)-(3.5) together with (3.3) define a transformation of U into X. This is the transformation

_TX, mentioned in Section 1, which corresponds to the total hazard construction. Shaked and

Shanthikumar (1985a) proved that indeed (3.4)-(3.5) yields a random vector with the desired

cdf. Analogously, starting from independent uniform [0,1] random variables V,..., Vn one

can generate a nonnegative absolutely continuous random vector (Y1, ..., Y) with a desired

cdf. That is, the transformation Ty, mentioned in Section 1, which corresponds to the total

hazard construction, is described in (3.3)-(3.5) with obvious modification of notation.

In order to give conditions under which TV and Ty are nondecreasing, we need the following

definition. For 2 __ k < n we use the notation

3. The total hazard construction and variance reduction. 11
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Ck(tk, Xl,...,Xk-l)

which describes, according to (3.5), how X is determined, given thatj 1  1, ...,k- 1 = k - 1,.& = k

and that Ek = tk, X, = xx,...Xk 1 = xk- 1.

Definition 3.1. The absolutely continuous nonnegative random vector X= (X1,...,Xn) is said

to have CDTH (conditionally decreasing total hazard) if

il 1[....i-lxi X1,.....Xk,Ck+l(tk+lXl,."',Xk)

k+2(tk+2Xl1,.""Xk'k+l1),-",cj-l(ti-lXl,.....XkCk+l,...,c-2)]

(the arguments of some of the Cm'S are omitted) nonincreases in

xkC jxk:xk>xk.1,k+1txk; cl+1>_cC, =k+l,...,i-2} for all I 1_k+l <_i<n,

tk+1 ! 0,...,.i_ 1 1> 0, 0 :x xl :< ... _<xk-l, and if the above condition holds for all permutations

of the indices 1,2,...,n.
-. 4

.. Definition 3.1 is essentially the same as the definition of supportive system of Norros (1984).

An easy to check condition which implies the CDTH property is given in (3.7) below.

. From the proof of Theorem 4.4 of Shaked and Shanthikumar (1985a) the following result

follows:

4., Lemma 3.1. If the absolutely continuous nonnegative random vectors X= (X, ..., X) and

WY, -Y= (YI,..., Y.) have CDTH then the transformations TX and Ty defined by (3.3)-(3.5) are

monotone nondecreasing.

4

3. The total hazard construction and variance reduction. 12
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Let N' be the set of all cdf's on R2' with marginals FX and Fy such that dependence is

permitted only between like components of U and V of the transformations TX(U) and TYI

defined by (3.3)-(3.5). Consider the problem

(3.6) minimize Var(g(X) - h(Y)) subject to FXYE '

* From Lemmas 1.1 and 3.1 one easily obtains

Theorem 3.1. If X and Y have CDTH and g and h are monotone in the same (the opposite)

direction then use of VCRN (VARN) yields an optimal solution for problem (3.6).

Note that the cdf FXy, which corresponds to the choice of independent U and V in the

transformation defined by (3.3)-(3.5), belongs to -'. Thus, by Theorem 3.1, the use of

VCRN (or VARN) is preferable to the use of crude Monte Carlo method (i.e., independent

U and I).

Shaked and Shanthikumar (1985a) showed that if, for a random vector X, the multivariate
S'

conditional hazard rates (defined in (3.1)) nondecrease as functions of the number of past

failures and nonincrease as functions of the failure times of these past failures, then X has

CDTH. That is, X has CDTH if more and earlier failures cause a higher risk for the surviving

-" components than fewer and later failures.

More explicitly Shaked and Shanthikumar (1985a) showed that if for disjoint sets I, J c { 1 . n}
A

and fixed a_,al,2 (such that 2j 5 A 1) and k U (I or J may be empty),

* (3.7) Xk((- I-P

., 3. The total hazard construction and variance reduction. 13
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then (X1 ,...,Xn) has CDTH. Thus, from Theorem 3.1 we get

Corollary 3.1. If the multivariate hazard rates of X satisfy (3.7) and the multivariate hazard

rates of Y satisfy the same condition with proper notational modifications, and if g and h

are monotone in the same (the opposite) direction then use of VCRN (VARN) yields an

optimal solution for problem (3.6).

Norros (1984) has obtained another condition which implies that the transformation defined

by (3.4)-(3.5) is monotone nondecreasing. Thus, if Norros' condition holds for X and Y and

if g and h are monotone in the same (the opposite) direction then use of VCRN (VARN)

yields an optimal solution for problem (3.6).

3. The total hazard construction and variance reduction. 14
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4. Some applications and examples

In this section we illustrate the use of the results of Section 3 for simulation purposes.

Suppose we want to estimate 0(1) = E[g(X)] where X has CDTH and g is a real valued

measurable monotonic function. An unbiased estimator for 0( 1) is the crude Monte Carlo

estimator which can be written as

(4.1) k k

rn-i

Here X1 ) , ,X (k ) is a sample from the cdf FX which is generated by the total hazard

construction (3.3)-(3.5).

Another unbiased estimator for 0() is

k

- (4.2) O(1) E [g(X(m))+g(X( (kiseven)

where X(m) is generated by (3.3)-(3.5) using the vector U(m) of independent uniform [0,1]-(1)

random variables, and Xm) is generated by (3.3)-(3.5) using 1 - (m) . We call a  the

antithetic estimator of 0(1).

* 4. Some applications and examples 15



Since g(X) + g(a) is a special case of g(X) - h(_l [with h(11 replaced by -g(Xa)] we obtain

from Theorem 3.1 that Var[al ] :ar[V']. That is, the antithetic estimator is more

accurate than the crude Monte Carlo estimator 6(1).

Assume now that we seek to estimate 0(2) -E[g(X) - h(Y)], X, YE R", i.e., the expected value

of response difference of a pair of functions g(X) and h(Y). Assume that both X and Y have

CDTH and that both g and h are monotone functions. The crude Monte Carlo estimator of
0(2) is

.9 k

()1 k~ rm
(4.3) (2 - h,~ [g~m)) h~r'))

rn-1

where X(m ) and 14m) are generated independently by the transformation described by (3.3)-(3.5).

The antithetic estimator for 0(2) is

(4.4) (2) [g(X(m)) - h

rn-1

where X and Y are generated using VCRN, i.e., X(m) is generated by (3.3)-(3.5) using _in)

and _ m ) is generated similarly also using _/m).

It follows from Theorem 3.1 that Var[1, 2)] _ Var[t!2)] i.e., the antithetic estimator is more

accurate than the crude Monte Carlo estimator.

The monotonicity assumption in Theorem 3.1 actually holds for a broad class of complex

stochastic systems (see, e.g., Rubinstein, Samorodnitsky and Shaked (1985)). Here we take

g(x1,...,x5) =max(min(x,x2), min(x,x 3,x5),min(x4,x)),

4. Some applications and examples 16
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h(y1, ...,y5) = max(min(yp,)), min(y1,y3,y5), min(y4,y5)).

These represent the lives of coherent systems described by a Wheatstone Bridge.

Suppose X= (X,,...,Xs) has hazard rates which increase with the number of failed components.

For example, for a> >0, t > 0, let

where I J I denotes the number of elements of J. Then the X,'s satisfy (3.7) and thus X has

CDTH.

* Let Y=(Y1 ,...,Y 5) have hazard rates of the form (4.5), that is, for P>O,iq>O, let (using

obvious notation)

*(4.6) AIXY I Y-j P( JI + 71), iE JJc l .51

* Then also Y has CDTH.

* For the choice of the cdf which corresponds to (4.5) it is easy to see that

Ai A(x) = ax, x >0, i=1..5,

* A(xIX-,= )=a(IJI +t)x, .X>0,iEJjcl1...,5}

Thus,

A1 [a]-,11,5
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These were used in (3.4)-(3.5) to generate X(0 . The vectors were generated similarly.

The parameters 01) = E[g(X)] and 0(2)= E[g(X) - h(Y)] were estimated for various choices-(1) (2) (2)
of a, and 71 using, respectively, 6(1), O(a) ,(2) and Oa . The estimators 0 and 0a were

calculated according to (4.1) and (4.2) while estimating 0(1) and according to (4.3) and (4.4)

while estimating 0(2).

A sensible performance measure is (tiVar(O) / taVar(Oa)) where t and tio are the CPU times ,
for the crude Monte Carlo and the antithetic estimators respectively. Comparing (4.1) and

(4.2) [or (4.3) and (4.4)] we see that tj <_ tj because the antithetic estimator Oa needs only

half as many random numbers as it is needed by its counterpart 0. In the following we shall

neglect this advantage of 0a and take the performance measure to be

(4.7) e = Var(O) / Var(Oa).

4n

'
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Table 1

The efficiency e of the antithetic estimator

0(1) as a function of a and

1 2 3 4 5

1 2.05 2.83 2.63 2.59 2.27

2 1.90 2.45 1.88 2.31 2.40

3 2.21 2.41 2.16 1.67 1.58

4 2.10 1.83 1.93 1.65 2.05

5 1.81 1.71 1.79 1.53 2.18

Table 1 gives the values of E while estimating 0(") for various choices of a and . Here, in

order to compute 0(1) we used k = 1000 replications of X. For the computation of 6(1) we

used k/2 = 500 replications of the pair _X, X3 ). Since

k

Var(O( ) a +

from (4.7) one sees that : = Var(g(X ( 1 )) +g( 2')))/ Var(g(Xl)) +g(_a))). Hence E is esti-

mated by E _=s2 /s 2 , where s2 is the sample variance of the 500 observations

(g(_S ( 2m- l)) + g(x(2m))), m = 1,2, ..., 500 and s2 is the sample variance of the 500 observations

(g( m)) + g(ym))), m = 1, 2, ..., 500.

4. Some applications and examples 19
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Table 2

The efficiency of e of the antithetic estimator

0(2) as a function of a,,,3 and 71

(2,1) (3,2) (4,3) (5,4) (6,5)

(1,1) 4.71 14.73 22.80 38.63 69.94

(2,2) 4.91 15.08 21.00 37.28 62.86

(3,3) 4.98 14.88 23.93 39.53 62.47

(4,4) 5.13 11.51 25.00 43.01 66.10

(5,5) 4.89 11.00 19.83 36.20 58.87

Table 2 gives the values of E while estimating 0(2) with various choices of a, ,f3 and 7. For

the computation of #2) we used k = 500 replications of (X,Y), where X and Y are independent.

-(2)For the computation of Oa we used k = 500 replications of (X, Ya). Similar to the earlier

case e is estimated by = s2 /s a , where s2 is the sample variance of the 500 observations
g((m)) - h(y(m)),m = 1,2,..., 500 and s2 is the sample variance of the 500 observations

g(em)) - h(Y(am)), m = 1,2, .. , 500.

These numerical results clearly indicate the benefits of using antithetic and common random

numbers for variance reduction.

'.

,..
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