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Abstract

This paper combines recent developments in the area of generation of dependent random
variables with the advantages of the use of common and antithetic random numbers. This
combination yields new efficient methods for estimating complicated stochastic quantities by
simulation. Some theoretical and practical aspects of use of antithetic and common random
numbers for variance reduction while using the total hazard construction are given. A proof
of their optimality in estimating the expected value of the response sum or the response

difference of functions of vector arguments with dependent components is presented. Some
numerical examples illustrate the theory.

Key words and phrases. Antithetic variates, multivariate dependence, Monte Carlo methods,

simulation, generation of dependent variables, total hazard construction, coherent life functions,
reliability theory. '
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1. Introduction

Methods of variance reduction in simulation analysis are useful for the purpose of improving
accuracy of estimates of output parameters of complex stochastic systems. The development
of such methods is important because they yield estimators which are superior in accuracy

to the crude Monte Carlo estimator.

One of the most successful variance reduction techniques is the use of common and antithetic

random numbers (see the bibliography of Rubinstein, Samorodnitsky and Shaked (1985)).

This paper presents new ways of application of common and antithetic random variables. It
combines recent developments in the area of generation of dependent random variables with
the advantages of the use of common and antithetic random variates. This combination yields

new efficient methods for estimating complicated probabilistic quantities by simulation (see
Section 4).

More explicitly, in the present paper these methods are used in order to minimize the variance
of g(X) — h(Y) where g and h are real measurable functions which are monotonic in the same
(or the opposite) direction and the joint cdf (=cumulative distribution function) of X and Y
is restricted to belonging to some set O of cdf’s. To see an instance of such a set @, suppose,
for example, that X = (X,...,X;) and Y= (Yy,..., Y,) are both n-dimensional random vectors
with respective cdf’s Fy and Fy. Then O can be taken to be the sct of all cdf’s on R2" with
marginals Fy and Fy or (see, e.g., Rubinstein, Samorodnitsky and Shaked (1985)) the set of
all cdf’s on R?" with marginals Fy and Fy such that dependence is permitted only between

like components of X and Y (components with the same indices).

1. Introduction 1
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Usually X and Y are generated by constructing them from independent uniform random
variables. In this respect, three alternative constructions have been used. They are (i) standard
construction (e.g., Arjas and Lehtonen (1978)), (ii) dynamic construction (e.g., Shaked and
Shanthikumar (1985b)), and (iii) total hazard construction (e.g., Norros (1984), Shaked and
Shanthikumar (1985a)). Each of these constructions determine vector functions Ty and Ty
depending, respectively, on the cdf’s of X and Y such that XQZ‘_X( U) and l’gl‘z(_l_/) where U
and ¥V are vectors of independent uniform {[0,1] random variables (here 4 denotes equality

in law).

When X and Y are both n-dimensional (as will be assumed throughout the paper), then the
standard and the total hazard constructions (to be described below in detail) require U and
¥V to be n-dimensional. The dynamic construction requires U and ¥V to be of (the same)

. . ’
dimension n > n.

We say that VCRN (vector of common random numbers) is used if ¥= U. We say that

VARN (vector of antithetic random numbers) is used if ¥=1— U where 1=(1,...,1)".
Let g and h be real measurable functions and suppose we are interested in reducing or
minimizing Var(g(X) — h(Y)) subject to Fxy e © where O is some set of 2n-dimensional cdf’s.

Assume we construct X and Y by Ty(l) and Ty(¥) where U and ¥ are not necessarily

independent vectors of independent uniform [0,1] random variables. Then

(1.1} Var(®@(X) — k(D)) = Var(g* (V) - h* (1))

where
(1.2)  g*(u) =g(Ty(w),

(13)  h* () = h(IW).

1. Introduction 2
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Representation (1.1) together with the following result (Lemma 1.1 below) of Rubinstein and
Samorodnitsky (1982) (see also Rubinstein, Samorodnitsky and Shaked (1985)] will be used
to find optimal variance reduction techniques in Sections 2 and 3. First we need to define

the following:

Let ® be the sct of 2n-dimensional cdf’s corresponding to random vectors (U, ¥) of uniform
[0,1] random  variables with  n-dimensional marginals Fy(u)=II_;% and
Fz(v_z) =TIyv,0<4 <1, 0<v;<1, i=1,..,n, with dependence permitted only between like

components of ¥ and v.

Lemma 1.1. Let g and h be real measureable functions on [0,1]". (a) If g and l'; are

monotonic in the same direction with respect to the i-th component, i=1,...,n, then

(14) _min_Var(§(L) - h(M) = Var(F (L) - h (L))
Fg!-}€ q)

(b) If g and A are monotonic in the opposite direction with respect to the i-th component,

i= 1, ey Ny then

(1.5) _min_ Var(F(L) - h(M) = Var(F (L) — h (L — )).
nge (01}

That is, use of VCRN is optimal for problem (1.4) and use of VARN is optimal for problem
(1.5).

In the following sections we will use (1.1) and Lemma 1.1 as follow.s. For a given construction
I,x(_l_}) and Ty(¥) we will find conditions under which g* of (1.2) and h* of (1.3) are
monotone in the same [respectively, opposite] direction and then from Lemma 1.1 it will
follow that use of VCRN [respectively, VARN] is optimal.

1. Introduction 3




We
briefly describe the main results of Rubinstein, Samorodnitsky and Shaked (1985) and their

In Section 2 we deal with variance reduction while using the standard construction.

underlying ideas, and in doing this we motivate the developments of the following section.
Section 3 deals with variance reduction while using the total hazard construction. We follow
the lines of Section 2, thus obtaining new results which are the main contributions of this
paper. Finally, in Section 4, we present some simulation results involving dependent stochastic

variables.

1. Ir.roduction



2. The standard construction and variance
reduction

First the standard construction is described in detail. The following notation is used. For
X any random vector Z = (24, ..., Z,), let

. Fzlpe @ =P{Zis312) =2, Z_1=53_,}
5
and let
v
, -1 . .
/ inllx---~-z._1(ui) = mf{z,-:FZi |21'----z:—1(z") > ui},l= 1,...,n.
: According to the standard construction, X = (Xy,...,X;) and Y= (Yy,...,¥,) are generated as
.
' follows:
Q@1 X =Fgl(Uy) =3y,
: -1 - .
v (2-2) X‘=FA/'IE"(U1) ''''' E,‘_l(Ul.-~~ytj'_l)(l]i) = a‘.(Ul,..., (]"),1—2, ...,n,
: (2.3) Y1=F;ll(V1)Eb,(Vl),
g
,
0
4
; 2. The standard construction and variance reduction 5
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where U and V are vectors of independent uniform [0,1] random variables. If we define
g (W) = 3;(Uy, ..., U) and b;(¥) = b;(V},.... V) then (2.1) - (2.4) can be rewritten as

2.5) X=a(l),i=1,.,n,
(2.6) Y=b(),i=1,..,n

Thus, the transformation Iy and Ty, mentioned in Section 1, which corresponds to the

standard construction is described in (2.5)-(2.8).
A random vector Z=(2y,...,2Z,) is said to be CIS (conditionally increasing in sequence) if
P(Zi>z|Zy =1,...,Z;_1 = z;1) is nondecreasing in zy, ..., z_1 for every z,i=2,...,n. Rubinstein,

Samorodnitsky and Shaked (1985) proved:

Lemma 2.1. If X and Y are CIS then 4;(u) and b;(v) [of (2.5)-(2.6)] are nondecreasing

functions of ¥ and v,i=1,...,n.

That is, if X and Y are CIS then the transformations Tx and Ty defined by (2.5)-(2.6) are

monotone nondecreasing.

Let = be the set of all cdf's on R with marginals Fy and Fy such that dependence is
permitted only between like components of Uand ¥ of (2.5) and (2.6). Consider the problem

2.7 minimize Var(g(X) — h(Y)) subject to Fyye =,

From Lemmas 1.1 and 2.1 one casily obtains (see, e.g., Rubinstein, Samorodnitsky and Shaked
(1985)):

2. The standard construction and variance reduction 6
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Theorem 2.1. If X and Y are CIS and g and h are monotone in the same (the opposite)
direction then use of VARN (VCRN) yields an optimal solution for problem (2.7).

Note that the cdf F xy> Which corresponds to the choice of independent U and ¥V in (2.5)-(2.6),
belongs to =. Thus, by Theorem 2.1, the use of VCRN (VARN) is preferable to the use of
independent U and V. That is, use of VCRN (VARN) is superior to the crude Monte Carlo
method. Furthermore, use of VCRN or VARN requires generation of only half as many

uniform [0,1] random variables.

2. The standard construction and variance reduction 7




3. The total hazard construction and
variance reduction.

The total hazard construction can be used to generate absolutely continuous nonnegative
random vectors (sce, e.g., Norros (1984) and Shaked and Shanthikumar (1985a)). It is
particularly useful when the numerical inversion of the conditional distributions, described in
(2.1)-(2.4), is too involved and time consuming, and on the other side, inversion of the

multivariate hazard functions, to be defined below, is simple. An example of such an instance

is given in Section 4.

Let X=(Xy,...,X;) be an absolutely continuous nonnegative random vector to be generated.

We will use the following notation.

For J={j1,...Jk} € {1,..,n} let x; denote (x;,...,x;). If J={i1,....inoi} then x; denotes
(Xiys X ). Let 1=(1,..., 1)". The length of 1 will vary from one formula to another, but

it will be always possible to determine it from the expression in which 1 appears.

For Je{l,..,n} and ieJ let X\;(x| X;= x7, X5 > x1) denote the conditional hazard rate of X;
at time x given that Xy = x; and that X; > x1, where x> ij»E max{x;:;j e J}. If J=¢ then

- Je€
V xj=0. Formally, for i e J, '
JjeJ
3. The total hazard construction and variance reduction. 8
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:
4
4
W
! G.1)  AN&lIX=x,X%>x1)
A .
1 .
= lim —P X < A1 Xy=x;, X:>x18, x2 V x;
Ay R <K x e el K= >l 52 Y
N
N (J/ may be empty.) The absolute continuity of X ensures that limit exists. To save space
Y
. we sometimes supress the condition Xj>x1 and just write A;(x| X;= xy,+) but the reader
should keep in mind that "." means X;>x1 with x being the same as the first argument of
:: A;. Note that A;(x| X;= xj, «) is well defined for all x _>_j eVij.
: For i e J the total hazard accumulated by X; during the time interval [ 1 4 xj, l xj + x] x>0,
j€
: is defined by
.:. i:’xj+x
K A’-(Xl_/_YJ=£,)Efj( Al Xy = J,-)du,x>OzeJ
j:J"'
2 When J=¢, A; (x| Xj = x;) will be simply denoted by A;(x).
We will introduce now a notation for the total hazard accumulated by X; by time x. Fix
: x> 0 and suppose that it is given that X iy +oes jk l(k > 1) failed at times x Xjis s X _ps respectively
:'_ (x, < ... <X, <x) and that all other X;’s arc alive at time x. For if{1, ..., ju—1} denote
‘ \PiUl.--J}(_](X |le X 1) = A (‘ )
- +122Ai(le_)€fl—x I)Gl =xf;.’""){f1-1 =XJ'1-1)
w
y +A;(x ~ X1 | le =X ""Xl}z—l = xjk—l) )
'-: 3. The total hazard construction and variance reduction. 9
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' Also denote (corresponding to the case k=1)
v ¥, (x) = A;(x),x 2 0.

The total hazard accumulated by X; by the time it failed, given that X; was the k-th to fail and
that X;,...,X; , failed before X, is Wil oy (Ki Xy eeon X))

Define the inverse functions

AN =inf{x20:0,0) 24}, i=1,..,n,020,

NP

and for nonempty J< {1,...,n},x,>01 and i€ J,

s
.

A7 S xp) = inffx 2 0:A,(x| Xy = x)) 21},120.

Let U4,..., U, be independent uniform [0,1] random variables. They generate independent

standard (i.e., mean one) exponential random variables as follows:
. (33) E=-log1-U), i=1,.,n.
The total hazard construction consists of transforming Ej,..., E, into Xi,...,X, as follows:

Step 1. Let jj be the (random) index (which, by absolute continuity, is unique with probability
one) such that Aﬂl(b}l) =min{A,~'1(E,~):i= 1,...,n} and define

-1
(3.4) X, = Ajl (Efl)'

3. The total hazard construction and variance reduction. 10
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Step k (k=2,...,n). Given that steps 1,2,...,k-1 resulted in Xj,..., X}, , let J= {jl,...,jk_l}. Let
Ji be the (random) index (which, by absolute continuity, is unique with probability one) such
that

PRI

-1
2 AJ): “[EJ): - \ij |.f1----Jk—1(XJ}¢-| IXJ]’ '"’ka—l) IXJ]' ""X.I'k-1]

: -1
=in;"}{A”J[E}_‘Piljlv---Jk—l(l‘;k—l 1Ko o X, 1’1"“”‘?&-1]} ’

It is easy to verify, by induction, that the arguments of A,-"1 and Ajk'l , in the above expression,

are nonncgative. Having chosen the (random) index j as described above, define (here

J= {jl,...,jk_l})

S (3.5) Xjk = Xl'k—l

-1
+Ajk “[Efk - ‘Pfklflv-wfk-l(xjk—l ,le’ ."’Afik—l) IXJ'I’ ""Xjk—x]’ k=2,..n.
Notice that (3.4)-(3.5) describe explicitly how to obtain X from E = (Ey,...,E;). However
. (3.4)-(3.5) together with (3.3) define a transformation of U into X. This is the transformation
1‘3_{, mentioned in Section 1, which corresponds to the total hazard construction. Shaked and

Shanthikumar (1985a) proved that indeed (3.4)-(3.5) yields a random vector with the desired

¥

cdf. Analogously, starting from independent uniform [0,1] random variables Vj,..., ¥, one

3 can generate a nonnegative absolutely continuous random vector (Yj,...,Y,) with a desired

N

2 cdf. That is, the transformation Ty, mentioned in Section 1, which corresponds to the total
hazard construction, is described in (3.3)-(3.5) with obvious modification of notation.

”

- . - . . .

- In order to give conditions under which Ty and Ty are nondecrcasing, we need the following

. & X

;‘, definition. For 2 < k € n we use the notation

>

<

Py

. 3. The total hazard construction and variance reduction. 11
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Ck (lk, X1y ...,Xk_l)

_ -1
=X AL e[l = Yrr 1 e 1 Ot 1 X s X ) L X s X2 1]

N which describes, according to (3.5), how X is determined, giventhat jy = 1,..., 1=k - 1, jx =k
¥ and that Ep =, X] =x1,..., X4 1 = Xg—1.
X Definition 3.1. The absolutely continuous nonnegative random vector X = (Xj,...,X,) is said
y to have CDTH (conditionally decreasing total hazard) if
o Y1, im 1[5 1% X G 1 Ui 15 X100 -0 %8)
- Ck+2(’k+2' X1» ""Xk’ck-!—l)’ veey C~_1(1-_1,Xl, oo Xp s g 19 oe0s C‘-_z)]
(the arguments of some of the «¢,’s are omitted) nonincreases in
. Xy € {xk:kaxk_l,ck+12xk; C[+12C[,[=k+l,...,i—2} for all 1<k+1<ign,
.
e %4120,...,4-.120, 0<x; ... <xx_1, and if the above condition holds for all permutations
> of the indices 1,2,...,n.
s‘

Definition 3.1 is essentially the same as the definition of supportive system of Norros (1984).

An easy to check condition which implies the CDTH property is given in (3.7) below.

From the proof of Theorem 4.4 of Shaked and Shanthikumar (1985a) the following result
.. follows:

',' Lemma 3.1. 1If the absolutely continuous nonnegative random vectors X = (Xj,...,X,;) and
__: Y=(",..., Y;) have CDTH then the transformations IX and IX defined by (3.3)-(3.5) are
*';' monotone nondecreasing.

"

e

e

\' .'

N 3. The total hazard construction and variance reduction. 12
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" Let =’ be the set of all cdf’s on R.2,," with marginals Fy and Fy such that dependence is
» permitted only between like components of U and ¥ of the transformations Tx(U) and Ty(¥)
': defined by (3.3)-(3.5). Consider the problem

\ (3.6) minimize Var(g(X) — h(Y)) subject to Fyye =

From Lemmas 1.1 and 3.1 one easily obtains

Theorem 3.1. If X and Y have CDTH and g and h are monotone in the same (the opposite)

« direction then use of VCRN (VARN) yields an optimal solution for problem (3.6).
. Note that the cdf Fyy, which corresponds to the choice of independent U and V in the
- transformation defined by (3.3)-(3.5), belongs to Z'. Thus, by Theorem 3.1, the use of
'S VCRN (or VARN) is preferable to the use of crude Monte Carlo method (i.e., independent
= U and V).
E Shaked and Shanthikumar (1985a) showed that if, for a random vector X, the multivariate
3 conditional hazard rates (defined in (3.1)) nondecrease as functions of the number of past
failures and nonincrease as functions of the failure times of these past failures, then X has
= CDTH. That is, X has CDTH if more and earlier failures cause a higher risk for the surviving
:: components than fewer and later failures.
) More explicitly Shaked and Shanthikumar (1985a) showed that if for disjoint sets /,J < {1, ..., n}
N and fixed x7,%7,xs (such that x; < £ and k e JUJ (I or J may be empty),
" 3.7 A v 2V Vx)+ulXp=x,Xr=x;,0
BN N YRV Y x) +ul Xy = . X5= x7,)
)
»
N 2A VXIV Vx)+ulX;=X;,)u>0,
W B k((iel ) (jer =<1

PSS ;'.

3. The total hazard construction and variance reduction. 13




! then (X,...,X,) has CDTH. Thus, from Theorem 3.1 we get
b
Corollary 3.1. If the multivariate hazard rates of X satisfy (3.7) and the multivariate hazard

rates of Y satisfy the same condition with proper notational modifications, and if g and A

are monotone in the same (the opposite) direction then use of VCRN (VARN) yields an

optimal solution for problem (3.6).

.

. Norros (1984) has obtained another condition which implies that the transformation defined
3 by (3.4)-(3.5) is monotone nondecreasing. Thus, if Norros’ condition holds for X and Y and
3 if g and h are monotone in the same (the opposite) direction then use of VCRN (VARN)
' yields an optimal solution for problem (3.6).

2

N

=

B

~

~

>

>

: 3. The total hazard construction and variance reduction. 14
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4. Some applications and examples

s e € a s &

~ In this section we illustrate the use of the results of Section 3 for simulation purposes.
N
N Suppose we want to estimate 0(1)=E[g(g()] where X has CDTH and g is a real valued
measurable monotonic function. An unbiased estimator for 81 is the crude Monte Carlo
estimator which can be written as
‘ W _1%, ytm)
4, == ™.
41 8 kzg(_ )
2,
i3
5 Here X,.., X% is a sample from the cdf Fy which is generated by the total hazard
- construction (3.3)-(3.5).
‘ >
-fj Another unbiased estimator for 8 is
k
¢ M_1< ) (m)
: it m m .
& 42 B =32, [ +8E™] (s even)
22
‘~ m) . . m) . .
A3 where _X( is generated by (3.3)-(3.5) using the vector U™ of independent uniform [0,1)
b/ random variables, and gf{") is gehcratcd by (3.3)-(3.5) using 1 - g""). We call i)'f,l) the
o
5 antithetic estimator of 81,
'l
4

Sy
. » 8
LA
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Since g(X) + g(X,) is a special case of g(X) — #A(Y) [with A(Y) replaced by —g(X,;)] we obtain
from Theorem 3.1 that Var[f.)‘(,l)] < Var[ﬁ(l)]. That is, the antithetic estimator is more

. 1
accurate than the crude Monte Carlo estimator 8.

Assume now that we seek to estimate ) = E[g(X) — h(1], X, Y € RY, i.e., the expected value
of response difference of a pair of functions g(X) and h(Y). Assume that both X and Y have

CDTH and that both g and 4 are monotone functions. The crude Monte Carlo estimator of
0 js

(2)

k
@3) 87 =2 [ -nx™)]
me=]

1
k
where ,_\’(’") and X("’) are gencrated independently by the transformation described by (3.3)-(3.5).

The antithetic estimator for 0¢® is

k
@9 =2 [s@™) - ™)
m=1

where X and Y are generated using VCRN, i.e., g{"") is generated by (3.3)-(3.5) using _(_}(”')

and Y{™ is generated similarly also using U(™.

It follows from Theorem 3.1 that Var[géz)] < Var[E(z)] i.e., the antithetic estimator is more

accurate than the crude Monte Carlo estimator.

The monotonicity assumption in Theorem 3.1 actually holds for a broad class of complex

stochastic systems (see, e.g., Rubinstein, Samorodnitsky and Shaked (1985)). Here we take

g(xq, ..., xs) = max(min(x;,x,), min(x;,x;,x5), min(xy, x5)),

4. Some applications and examples 16
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h(yy, ..., y5) = max(min(y, ), min(yy, 3, 5), min(y, y5)).

These represent the lives of coherent systems described by a Wheatstone Bridge.

Suppose X = (Xj, ..., X5) has hazard rates which increase with the number of failed components.

For example, for a>0,£>0, let
(4.5) MN&x1X=x,9)=a(lJ] +§),ie],Jc{1,..,5},

where |J| denotes the number of elements of J. Then the A;’s satisfy (3.7) and thus X has
CDTH.

Let Y= (Y1,..., ¥s) have hazard rates of the form (4.5), that is, for 8> 0,7 >0, let (using

obvious notation)

(4.6)  pOlYy=y,)=BJ| +n),ie],Jc{1,..,5} .

Then also Y has CDTH.

For the choice of the cdf which corresponds to (4.5) it is easy to see that

A(x)=aéx, x20,i=1,..,5,

Al Xy =xp=a(lJ] +8x, x20,ie],Jc{1,..,5} .

Thus,

A::-I(l) = [aE]-llo 120,i=1,..,5,

4. Some applications and examples 17




ANl x) =[e(17] +9] 4 120,ieT,Jc1,..,5} .
These were used in (3.4)-(3.5) to generate _)_((’7. The vectors l’(‘) were generated similarly.

The parameters 6(1) = E[g(X)] and 6 - E[g(X) — h(Y)] were estimated for various choices
of a,B,£ and 71 using, respectively, 9(1),5‘(11),-6'(2) and (7‘(,2). The estimators 8 and 5‘, were
calculated according to (4.1) and (4.2) while estimating 0D and according to (4.3) and (4.4)
while estimating §().

A sensible performance measure is (lEVar(a) / IaaVar(ga)) where 4 and ’5, are the CPU times
for the crude Monte Carlo and the antithetic estimators respectively. Comparing (4.1) and
(4.2) [or (4.3) and (4.4)] we see that s, <4 because the antithetic estimator #, needs only
half as many random numbers as it is necded by its counterpart 8. In the following we shall

neglect this advantage of 8, and take the performance measure to be

(4.7)  e=Var(®) / Var(@,).

4. Some applications and examples 18
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Table 1

The efficiency & of the antithetic estimator

0‘(,1) as a function of a and ¢

. § & 1 2 3 4 5
1 2.05 2.83 2.63 2.59 221

: 2 1.90 2.45 1.88 2.31 2.40

3 2.21 2.41 2.16 1.67 1.58
4 2.10 1.83 1.93 1.65 2.05
5 1.81 1.7 179 1.53 2.18

Table 1 gives the values of &€ while estimating 0D for various choices of a and & Here, in

5(1) we used k = 1000 replications of X. For the computation of (7‘(,1) we

used k/2 = 500 replications of the pair (X, X;). Since

order to compute

k

H
Var(b(”) _ ,,a,(%z 2(X2m=D) 4 o(x 2y,

ma=}

from (4.7) one sees that ¢ = Var(g(_)_{“)) +g(_)_((2)))/ Var(g(g((”) +g(_X§1))). Hence ¢ is esti-

mated by £ =s2/ 53‘, where s2 is the sample variance of the 500 observations
X (g(ZQ’"'”) + g(_X(z”’))), m=1,2,...,500 and sg is the sample variance of the 500 observations
2 @X™) + g(X4™)), m=1,2,...,500.

4. Some applications and examples 19




Table 2

The efficiency of & of the antithetic estimator

022) as a function of a,£,8 and g

(B,a)

. 8) (2,1) (3,2) 4,3) (5,4) (6,5)
(1,1) 4.71 14.73 22.80 38.63 69.94
(2,2) 491 15.08 21.00 37.28 62.86
(3,3) 4.98 14.88 23.93 39.53 62.47
(4,4) 5.13 11.51 25.00 43.01 66.10
(5.5) 4.89 11.00 19.83 36.20 58.87

Table 2 gives the values of £ while estimating 6® with various choices of a,§,B8 and . For
the computation of 5(2) we used k = 500 replications of (X,Y), where X and Y are independent.
For the computation of 522) we used k = 500 replications of (X, Y,). Similar to the earlier

2

case ¢ is estimated by £ =s2/ s}, where s is the sample variance of the S00 observations

g(X) — n(¥'™), m=1,2,...,500 and s2 is the sample variance of the 500 observations

g(X™) — n(Ye™), m=1,2,..,500.

These numerical results clearly indicate the benefits of using antithetic and common random

numbers for variance reduction.
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