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Abstract

The paper contains an analytical solution to the title problem by means of the semi-

membrane theory of cylindrical shells. Results include the crack opening displacements as a

function of circumferential angle, the fracture parameter J, and the effects of the crack on the

compliance of the pipe.

INTRODUCTION

Ideally the failure load of a cracked pipe could be calculated from theory and the results of a

small number of tests on simple specimens. Unfortunately this is not the case nor is it likely to be

any time in the near future. A good idea of the "state of the art" can be gained from reading recent

reports on research projects conducted by General Electric [I], Battelle 12], and the Proceedings of

an A.S.M.E. Symposium [3]. The fundamental theory of nonlinear fracture mechanics is still

being developed. How it applies to real structures, pipes in particular, is not a routine matter.-

*Engineering procedures based on available knowledge plus a considerable amount of expensive Vf

testing must be used to get information for maintenance or design purposes.

Frequently the practice is to apply experimentally determined factors to results for cracks in

flat plates to correct for curvature effects or to make adjustments to results from elastic solutions

for cracks in cylindrical shells to account for plasticity. Such procedures are not unreasonable but

Data.

. . . . . . . . . . . . . . . . . . . . . .. A-1
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leave unanswered such questions as: can tests on small diameter pipes be trusted to predict what

k ill happen to large diameter pipes? It seems that more effective use could be made of cylindrical

shell theory without resort to finite element methods. The present paper is directed toward that end

in the case of circumferential through-cracks.

The analysis to be presented has some limitations of its own, however. It applies when the

pipe material is such that the Dugdale model for plasticity effects is appropriate. It applies only

when the crack is sufficiently long for the semi-membrane theory of cylindrical shells to be valid.

For short cracks with a Dugdale zone shallow shell theory should be used, and that, strangely

enough, is a more difficult problem. It could be solved but no one has yet done it. Most interest

seems to be in cracks which extend at least an eighth of the circumference and that is long enough

for the present analysis to be valid. For some further discussion see [4]. The analysis here is

limited to the bending case because that seems to be most important technically. Tension, torsion,

-. or combined loading cases can be done by the same methods.

Results of the sort obtained here could be obtained by finite element methods and without

need for the Dugdale model but, of course, at the expense of much more computing. The principal

advantage of the present approach is that the results come out in closed form in terms of elementary

functions. Some numerical root-finding is required, but programming to do parameter studies

would be trivial. The analysis includes linear elastic fracture and plastic collapse as limiting cases.

- -i A theory of tearing based on the present analysis and an additional physical hypothesis has been

constructed and will be the subject of a subsequent paper.

FUNDAMENTAL EQUATIONS

Dimensionless displacements, stress functions, and stress measures are related to

corresponding dimensional quantities (with an overbar) by the relations

-"..-. .
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OF RS.' (_U, V, W) = F (u, v, C- 2 w)

,( z' ' R) = GFR 2 hE 2 (RXz, RX 0 , E- 2 ,)
(kz 9. 9) O

(z N, Nzo)= oFh(Nz, No,Nzo) (1)

~~(]M' z, mo ]Fle/ z0) = YFRh F2( Mz, Mo, Mz0 )

M=nR RharFa

-:Here OF is the flow stress of the material, h is the pipe thickness, R is the pipe radius, and E is

Young's modulus, M is the applied bending moment on the pipe, a is a dimensionless load

parameter and c is a small parameter given by

E 2 = (h/R)[12(1-v 2)1-I12  (2)

The analysis in the present paper is similar to that in [4] where it was found that the most

significant results are obtained by assuming a semi-membrane state of stress in the cylinder and

neglecting the small contribution of edge effects. The solution thus obtained is correct except in

the immediate vicinity of singularities such as the crack tips. Nevertheless quantities such as stress

intensity factors, overall compliance, and so forth, important to fracture mechanics, turn out to be

correct. A semi-membrane state is derived from two complex-valued functions ( and p each of

which satisfy the characteristic equation

(+ q))- iEC-2 " 0 (3)

Here primes and dots refer to differentiation with respect to z or 0 respectively where zR is the

axial distance measured from the cracked section and 0 is the circumferential angle measured

. from the middle of the crack. The functions (D and (p are related by

2" (P (4)

0 Dimensionless displacements and stress functions are given in terms of () by the formulas
"'q""E 2U =6 E 2Xz=-'

E2 v-T (5)

w -6+ i(P W 6(

. .. . . . . .
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Dimensionless membrane and bending stress measures are given in terms of (P by

Nz =(P Mz= -i(P"+vp)

No (P" Me= -i ( vP" ) (6)

Nz0 -P MZO = -i( 1-v )

In these formulas the physical variables, displacements, etc., are to be understood as the real part

of the expressions on the right-hand-side of the equation.

ANALYSIS

Because of symmetry boundary conditions can be applied on the section z 0. In

physical terms the crack edges are free of stress. A Dugdale zone is assumed to exist beyond the

crack tips for an as yet undetermined distance. Within the Dugdale zone the axial membrane stress

equals the flow stress. The axial bending stress is ignored on the basis of the assumption that the

axial stress equals the flow stress throughout the thickness of the pipe. For a sufficiently large

applied bending moment compressive stresses on the side of the pipe far from the crack could

exceed the flow stress and so a compressive Dugdale zone (of unknown extent) is admitted to

prevent it. All remaining boundary conditions on z = 0 follow directly from the symmetry of the

problem. In the analysis the pipe is assumed to be infinitely long and subjected to a bending

moment at infinity in such a way that the crack is symmetrically located on the tension side.

According to the semi-membrane theory only two boundary conditions apply on any segment of

the section z = 0. In other words two of the possible four conditions are redundant. Boundary

conditions on stress measures are more conveniently expressed in terms of conditions on stress

functions obtained in accordance to procedures in [5]. Because of symmetry the boundary

conditions need only be stated in the range 0 < 0 < it In terms of dimensionless quantities they

are

Xz=O all 0 (7)

[.t., . .
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,2'_ =0 (0 <0 < (c )

=sin (0 -a) - (0 -a) (a< 0 <f3) (8)

=sin0-(It-0)+-(cos0-G sinO (y< 0 <n)

u = 0 (P < 0 < Y) (9)

G1 is a constant of integration. For positive values of 0 the crack extends from 0 = 0 to 0 = (X

the tension Dugdale zone lies in x < 0 < , the compressive Dugdale zone (if any) lies in

y < 0 < t , and similarly for negative values of 0. By means of equation (5) the boundary

conditions (on z = 0) can be restated in terms of (5

R {iD'c}=0 all 0

V,' = 0 <0< y

R {ic}=0 0<0<a (10)

=-(0 -a )2- cos(0-) (<0< 3
1 2 Itt '. =~~~- (l+cos0)+ (0t-0) +-asin +G os G2 ,<0-t

G2 is a constant of integration. The subscript c has been introduced to indicate that these
[ il iconditions apply to the complete solution. The complete solution 4)c is a superposition of a

oueafunction 6 which can be assumed to vanish at infinity, a beam solution (which accounts for

bending by moments at infinity) given by
-- = 1 [ 2 z2 cos0+i(2cos0-0sin6Oo (11)

and a collection of four elementary solutions given by

(DE= ia-Ebz+iccos0+Edzcos0 (12)K;-" which in physical terms mean a null solution (does nothing), a real axial translation, an imaginary

lateral translation, and a real rotation. The constants a , b , c , and d are real, and as yet

undetermined. In case there is no compressive Dugdale zone then y = n and the third of equations

(8) becomes inoperative. The boundary conditions for the reduced problem read

R {iV 'I= 0 all 0 (13)

9A
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(D=-(b -d Cos 0) 3< 0<Y (14)

R {i'DVI!(2cos0-Osin0)oY+a+ccos6
2

1 (2cosO00sin O)Y+ a+ ccoso
2

+ 1--!((-a ) 2-cos(o -a) a < 0 < (15)

1[2cos0-(0-i0 sin Oa+ a+ ccos0

-(1+ COS0) + 1(n _0) 2 +-GICOSO+ G2  < 7

According to [6] the necessary and sufficient conditions for ()to vanish at infinity are

f cIic=o , cIcosOde=O (16)

and in such a case 6i' is accurately approximated by

(17)
2

Now put

6 )i 1 12 H(0) , on z=O (18)

then by (17)

4 6+H) on z=O (19)

Equation (13) will be satisfied if H is real. Equation (14) becomes a simple differential equation

for H in the range j3< 0 < y ,while (15) gives H explicitly over the rest of the range of 0 .

Complete results for H are as follows

H= -*F2(a+ccos0)-'f2(cos0-i~sinO)aY 0 50 cc (20)2

H= -'F2(a +c cos0)- F2(cos0--l10sin O)or
2

2~ [? 1- (0-_a )2 _COS (Xa )1 a0 f3 (21)

H 2(b+ dcosO)+ 4P cos x + 4Qsin x ~ 30(22)
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H= -'-2[a+ G2 + (c+ GI)cos0]

-lr2Icos0+ 1(E-O) sin01 o

2+i +' 2[ 1+ cos0 - (7ct-0) 2 1 Y5<05T (23)

On physical grounds the displacements and stress functions must be continuous at cc 13

and y. This means that H , H, and H must be continuous at J3 and y. Continuity at ot is

automatic. The extent of the Dugdale zones is determined by the condition that z (or H) be

continuous at P and y. Recall that in plane stress applications of the idea an analogous condition

must be imposed to avoid infinite stresses. In the present context a discontinuity in H means

. (mathematically) the presence of a concentrated load but it should be understood that semi-

membrane theory is an asymptotic approximation in which a large stress acting over a short

distance gets replaced by a concentrated load.

To simplify the discussion a bit consider the case in which there is no compressive Dugdale

zone. Then y = 7r and Q = 0. There are six unknown constants namely, a, b , c , d , P , and 13.

There are six equations namely, the four continuity conditions on H and its first three derivatives

and the two conditions (16) which can be written in the equivalent form
¢-. ; g n 7t

f(H+H)dO=0 H fcosO d=0 (24)

As it turns out the continuity conditions involve a, b , c , and d only in the combinations

A= a+-lb , C c + '2 d (25)

As an algebraic system the four continuity conditions are four linear equations for the three

constants A, C, and P. The condition that the equations be compatible is

a= {[sin 3-sin a+ (3-a)cos 3]sin y + 2 (3-a)sin 3cos y}

+ [!(P+ 3sin 13 cos 1)sin y + "2 sin 2 13cos y] (26)

*where

! -I
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y =(-13)Nf2

This is a transcendental equation for the determination of 13 given the load parameter (Y and the

crack length (x. Only A, C, and P are required to determine the crack opening displacements

u(O,O) , and (according to the Dugdale model) the fracture parameter J = 2 (TFc(O,). However,

b and d are needed to calculate the extension and rotation of the pipe (over and above beam

theory) at sections remote from the crack. These deformations relate to the increased flexibility of

the pipe due to the presence of the crack. The constants in question are determined by use of (24).

Results for A , C , P, Q , and a are listed here for the case y< n . If no compressive

Dugdale zone is present replace y by n .

Q= a sin y-(-y) (27)

P sin x =Qcos x - a sin3 + a3-c (28)

x = (y _ [1)/4F2 (29)

A =a cos + P (3-W2_ f2 (Pcos x+ Qsin x) (30)

C sin 13 =- !(7sin 13+[3cos 3)o+ 13-a + sin(13-a) (31)

N 1 = [sin 13-sin + (13-t)cos13]sin x-2[n -y-(13-a)cos x] sin 13 (32)

, =(13 +3sin 13 cos 3) sin x - 1 (sin y - sin P cos x) sin 13 (33)

N [sin y - (n - y) cos y] sin x + 4 2 [( - y) cos x- (P - a sin y (34)

D2 =F2 (sin ycos x -sin 1)sin y- 2[3 sin ycos y- (n - y)] sin x (35)

.7= N1 /D1 = N2 /D2  (36)

In case y= 7 the formula a = Nj/D 1 reduces to (26). The value of a for which the axial

membrane stress at 0 7t first reaches the flow stress is given by

ay= (NF2 sin y -3+ x)/(F-2 sin y-sin 13) (37)

where y = (7 - [3)1",F.

e'q
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At the plastic collapse load

y=13((x+ 7r) /2 (38)

and the collapse value of the load parameter is given by

r.LO= 4 (cos -. sin ct)/7C (39)

13For y< 7c the expressions in (36) must be used simultaneously to determine ~3and ;.V

giena ndabysoe uerca ro-finding process. Small values of nt - y are especial]ly

troublesome because the second expression for a in (36) becomes indeterminate at y n .A

polynomial approximation for (sin z)lz given in [7] may be found helpful.

Results for a, b ,c ,d, and G, follow from

7c a =(7r - I3A+ sinPsin y- (n--y)cos yl (+ ~(P -a 3x (7ct -y) 3 3(nt~~

~iE~+[2 sin x+41~ (i[ - y)]P+ 2(1-cosx)Q (40)

b - 2 (A - a)/2 (41)

G, cos y= 1 +cos y- Ccos y- -,r2P_[ 2cos y+-!(n -y) sin y~a (42)

itc = -(P 3 -y+ sin PcosJ-sn ycosy)C - (I-y- snycosy)GI

-2a[P+?Isinp cosI3+.-Icos 2f3 +n - itcs+!7 - y)cos 2y]

-2[sinfD-sin cc--!(f-az)coscx -Icosp3sin (P-a)

+siny- 1 (n- yr- iyosl N2[ sin y- 2 sin Pcos x- F2 cosr sin xl

A general expression for the complete axial displacement (dimensionless) on the cracked

section is given by

EUC(0,0) -+1 H-b +d cosO (45)
Dispaceent onthecrac ar obaind fom 45) y uingexpessonsfor H valid in tile ranzc

0 <O0<cat.Threuti
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"C(0, [(3cos los0 10 sin o'c) - A +Ccos91 (46)
2° 2

,. 1The dimensionless crack opening displacement 8 2Uc(0, cc) is given by

-" ;"~~E 2 -- [(3 cos a - i O sin at) o- A + C cos ot (47)

According to the Dugdale model the fracture parameter J equals the flow stress times the

crack opening displacement. In dimensional form the result is

J = a RB/E (48)

Values of the field variables (stress measures, displacements, etc.) could be calculated for

values of z other than z = 0 by solving the characteristic equation (3) for D with boundary

conditions according to (18) and (20) to (23), possibly by means of Fourier series. At present it

* -1 seems there would not be much interest in such calculations. Disturbances in the stress distribution

due to the crack decay exponentially as z increases, otherwise the pipe behaves as a beam. How

..- rapidly these effects decay depends mostly on the value of c . The smaller c is the slower the

decay. For E =.1 the effects have mostly died out three or four diameters away from the cracked

section. The crack does, however, cause a rotation and an axial displacement which persist.

Dimensionless axial displacements approach

£Uc = EGz cos 0 -b + d cos 0 as z -oo (49)

The term with z corresponds to the pipe bending as a beam fixed at z = 0 . The additional

physical rotation and axial displacement of cross .,-ctions are given by

,= oFd/EE (50)

U= - Rb/EE (51)

Results from the present analysis should reduce to those from linear elastic fracture

* , mechanics in the limit oF - , Since J must remain finite (48) shows that 8 -4 0 in the same

limit, as expected. The extent of the Dugdale zone 3-ox must also become small. Somewhat

- . lengthy calculations show that for small --a

£6a= f-2 2  (52)

- -. "I



0= o (-)I i sin c 3

where

and

au T2 a~L (z O) (55)

These equations imply

E8 [2 2 .L 2 sifl2 ( (56)

It follows then from (48) that

jl R 2 2 12 n2 (X (57)

but from (1) repeated here

M ic R 2 h cFc (58)

it follows that

mtEe~ 2 M 2 sin 2 ( (59)

This agrees with the result in [8] if account is taken of the relation

I = 2h RJ (60)

between the I in [81 and J .Equations (48), (52), and (55) lead to

* which with J =K
2/E yields

K=2 C i/R /E+-c (62)

This last equation shows that according to semi-membrane theory in the elastic case the OpC11in2-

angle at the crack tip is a measure of the stress intensity factor. Why this should be so must remain
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*j~ *%somewhat obscure for the present because an analytical solution to the full shell equations valid in

* the neighborhood of the crack tip is not available. The angle here must be the limit of some

quantity obtained from such a solution.

CONCLUDING REMARKS

Rather complete results have been obtained for the problem of through circumferential

cracks in pipes with use of the Dugdale model and according to thin shell theory. One would

expect the theory to be more accurate for low strain hardening materials and for thin pipes. The

thinness requirement is not too severe as far as shell theory is concerned. Shell theory is

reasonably good for values of R/h as small as ten and not grossly in error for R/h as small as

five or six. See the paper by LeFort et al. in [3]. Errors involved in the use of the Dugdale model

as applied in the present paper are more difficult to assess. The shape of the plastic zone near the

tip of a circumferential crack is probably quite different from what it is in a flat plate. Stresses tend

to decay more slowly in the axial direction and equalize more rapidly in the circumferential

direction than they do in a plate. One might be tempted to argue either way on the matter but

perhaps it would be better to await the results of more refined analyses and/or the results of

experiment. A sort of adaptation of the line-spring model might allow the theory to deal with strain

hardening in a more realistic fashion but there seems not to be much point in pushing the model too

far at present.

With the introduction of an additional hypothesis governing crack growth the present model

can be used as the basis for a theory of tearing. That something about the shape of the crack tip

remains invariant as the crack grows has been suggested as such an hypothesis [9, 10]. An

adaptation of that hypothesis to the circumferential crack problem will be the subject of a

subsequent paper.
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