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Abstract

Our primary aim is to 'build'/versions of generalised Gaussian pro-

cesses from simple, elementary components in such a way that as many

as possible of the esoteric properties of these elusive objects become in-

tuitive. For generalised Gaussian processes, or fields, indexed by smooth

functions or measures oni", our building blocks will be simple Markov
processes whose state space is !t. Roughly speaking, by summing func-

tions of the local times of the Markov processes we shall, via a central

limit theorem type of result, obtain the Gaussian field.

This central limit result, together with related results indicating

how additive functionals of the Markov processes generate additive func-

tionals of the fields, yield considerable insight into properties of gener-

alised Gaussian processes such as Markovianess, self-similarityjlocality'

of functionals, etc.

Although the paper is comprised primarily of new results, and de-

spite the fact that the subject matter is somewhat esoteric, our aims

are primarily didactic and expository - we want to try to initiate the

uninitiated into some of the mysteries of generalised processes via an ' -

easily understood model."
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1. Introduction.

This paper is about generalised Gaussian processes and ;ome of their properties. or,

to be more precise. it is about a way to think about these things without becoming too

confused. Generalised Gaussian processes can be succinctly defined as isometric mappings

from a Sobolev space to a space of Gaussian variables, and virtually all their interesting

properties can be stated in terms of the associated Fock space. While such definitions and

statements are both neat and precise they do nothing to help the non-expert understand

what these rather esoteric objects are. Our plan is to write for the novice - we shall start

at a point which seems to us to be a natural beginning, and follow a natural sequence of

observations and constructions that will ultimately show Sobolev and Fock spaces, along

with much that goes with them, in a fashion that is intuitive for anyone who knows what

a Markov process and a central limit theorem (CLT) are.

Since generalised Gaussian processes and all that goes with them are actually a part

of Mathematical Physics, !they are "just" Euclidean quantum fields, but we shall take

up this point later) and. as such, are supposed to describe the behaviour of elementary

particles, let us start by watching such a particle. In fact, let us take N > 0 such particles,

each one of which, at some common and fixed point of time, "pops" into existence and

then proceeds to wander about space, which we take to be Rd , d > 2. Assume the

"birthplaces" of these N particles, zi, .. ., z. .are distributed randomly in Rd according

to some law, and that each particle executes a Markov motion through Rd , described by

N independent Marko processes X 1 (t)}...., X.(t). t > 0. To make our story sound more

like Physics, we shall also assume that each of these particles begins its life with a charge

c',, where P(ao, = +1) = Pla, = -1) = 1/2. The charges of different particles are assumed

independent.

To complete the story, suppose that at time I the original unit charge has dissipated by

a factor of e- t, and that as each particles performs its Markov motion through Rd it leaves

each point it hits with a charge equal to its own charge at the time of hitting (i.e. a,').

What we, as amateur physicists, would like to know is what does the charge distribution

3
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throughout Rd look like after all our particles have decayed to inconsequentiality. Clearly.

as prob'ibilists. we shall only be interested in the N - 30 limit of this question!

Considering only one such particle for the moment, it is clear that the key to solving

our problem must lie in the definition of some sort of weighted local time, a random function

L,(X) that would measure the amount of time the path X(t). t > 0, spends at the point

. x E Rd . weighted by its charge when visiting. That is, we would like to make sense of the

equation

(1.1) L,(X) = e-t t5(X(t) - z)dt,

where b is the Dirac delta function. For the moment let us take (1.1) at face value, even

though, as we shall see later, it has no fully rigourous meaning. Then our problem reduces

to studying the behaviour of the sum

0N(x) := y-'/2 EZ kL.(Xk)
k=1

as N - xc. If there are enough moments about (and we shall ensure that there are) then

the independence of the Xk should, with a standard CLT, ensure that the ,'v converge to

a Gaussian random field on R . This would be a first step towards solving our problem.

(But only a first step, since, as amateur physicists, we would also like to know something

about how particles interact. So far, nothing in our model allows for interaction.)

Unfortunately, this simple minded approach has one basic flaw in it - the integral in

(1.1) does not generally exist. Probabilistically this is because most Markov processes (e.g.

Brownian motion) do not hit points in Rd d > 2, with non-zero probability. (In terms of

the physics of the limit random field this turns out to be related to such elegant concepts as

the Heisenberg uncertainty principle!) To get around this difficulty, we note that instead

of asking how much weighted time each particle spends at a given point, we could ask

about the time it spends in some small set A. Writing 1 A for the indicator function of A,

this would lead us to a weighted occupation measure which we could denote by

(1.2) L,(\(X) = L(IA:X)'J eItA(X(t))di.

4
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There is no question that this object exists without anything but the milhest measurability

conditions on X. Of course, if (1.1) were justifiable, then we would have

L(IA:X) zA L,(X)dx f= 14,()L(X)dx.t

Freely generalising these equivalences, let us now take f to be any "nice" (we shall he

more specific later) function on Rd, and consider a time and space weighted local time of

the form

(1.3) L(f;X) J f(x)L(X)dx."-

With f an indicator function we recover the well-defined (1.2). With f a delta function we

recover the ill-defined (1.1). With f belonging to just the right class of functions (Schwartz

,or Sobolev space - but wait for details) (1.3) can be shown to make perfect sense. Another

way to write (1.3) is to notice that if, in fact, L, existed, then we would have

(1.4) L(f;X) = e-f(X(t))dt.

In this formulation L(f: X) is certainly well-defined with only minimal assumptions on f.

Nevertheless, (1.4) is undesirable for two reasons. Firstly. it does not generalise easily to

the measure-indexed local times we shall consider in a moment, and, secondly, it does not

have the intuitive appeal of (1.3).

If, in (1.3), we think of f as being a weighting function for the point indexed local

time, then it is only a small step to think of weighting by measures. That is. if P is a nice

measure on IRd then we can make sense of the weighted local time L(p. X) which we write.

symbolically, as

L(p;X) := L.,X)p(dx).

Again. although L, may not exist, it is possible to make sense out of L(i. X).

Returning now to our CLT. it is clear that the sums we should really he working with

are either
Vq

(1.5! ,(f) '= .y- y/ Lj. Xk)

k=j
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or ~N

': (1.6) 1.-u : - /2  -1, Lk (p..'k ).

k=1

The limits of these sums will be Gaussian variables parameterised, as we vary the weights

f and it. by either a family of functions or a family of measures. The Gaussian processes

thus obtained will be the generalised Gaussian processes that we mentioned in our opening

sentence, and the CLT described will be our tool for studying them. This, however, does

uot represent the end of our task. for we have not yet found a way to describe interactions

between particles.

For the sake of simplicity, let us consider for the moment only a very simple type of

interaction. Recall that as each of our particles passes a point z E IRd it leaves behind a

charge oe - where t is the time at which it hits z. Suppose another particle hits z at time

s. leaving behind its charge, and that charge behaves in a multiplicative fashion (a highly

unrealistic assumption, but we are only amateur physicists). That is, the charge left at x

from the interaction of X, and X, hitting at times t, and t. respectively, is oho',e - (t,+t)

(nsequently, if we are interested in the total interaction charge at z then we must study

a new intersection local time of the form

(1.7) LX(X,.X,) C= 1 e-t6(X,(t) - x)e- 6(X(s) - x)dtds.

Of course, if (1.1) with its single delta function doesn't exist, then a fortiori, neither will

this new intersection local time. Nevertheless, we can proceed much as before, firstly

replacing the delta function in (1.7) with the indicator function of some set, and then with

a general function or measure, to ultimately suggest a weighted intersection local time

which could be symbolically written as

(1.) L(p,:X,,X,) =1 L,(X,.Xj)p(dz).

Working somewhat harder than we have in the above argument, we shall see later that the

lf,t hand side of (1.8) can he given a rigourous meaning.

6
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With a notion of intersection strength (between two particles at a time) now detiued.

we could hope to study a total intersection process by looking at the sum

the sum being over all i < j. i, j = I ..... N. As probabilists we would now like to send

N - c in this expression. It is clear that no simple CLT will work here, since the

summands in (1.9) are dependent. Nevertheless, one could hope that since looking at the

local times of the Markov paths themselves lead us to a generalised Gaussian process. then

looking at a functional of these paths (their intersections) should lead us to a functional

of the Gaussian limit. In fact, this is precisely what happens, and (1.9) converges to what

is known as the Wick square of the basic Gaussian limit. The Wick square lives in the

first interesting part of Fock space, and so we shall now have a way of thinking about

generalised Gaussian processes and their Fock spaces in terms of simple Markov particles. 7

This is precisely what we are after!

Before we can go any further. we are going to have to start making the above picture

somewhat more precise by defining our terms more carefully. In the following section we

shall therefore collect some information on Markov processes and their additive function-

als. (Both the local times L(p;X,) and L(p:.X,,X,) are additive functionals.) In Section

3 we shall do the same for generalised Gaussian processes and their additive functionals.

(e.g. Wick squares) In Section 4 we shall then be able to continue where the introduction

leaves off, by properly formulating general limit theorems that allow us to describe Gaus-

sian processes and their additive functionals via Markov processes and their functionals.

Following this, we consider the insights that these results lead to in Sections 5 and G.

The casual reader can then stop, for the harder work starts in Section 7 with a proof I

of special cases of the main result via the method of moments. (This is not too hard.) In

order to prove the most general form of the main result, we need to know a little more

about the multiple Ito-Wiener integrals that describe Fock space than what is given in

Section 3. Section 8 provides this, and also contains the final proof. which is also n,,t to),

7
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hard. given that everything has been carefully set up for it. Some closing comments are

made in the concluding Section 9.

Before commencing, however, we have some general historic comments and some ac-

knowledgements to make. Our program of viewing Gaussian fields from a Markov outlook

is not new. The fields that we shall consider are known to mathematical physicists as

Euclidean quantum fields, and are imaginary time versions of real quantum fields. As such

thev have been studied extensively. Furthermore, it has long been known that they are

related to Markov processes. the seminal work in this area being due to Symanzik (1969).

This approach has been taken up and developed at length in a program of Dynkin's (1980,

1983, 1984a,b. for example) to relate Gaussian and Markov processes. However, through-

out all these projects there is no attempt to tie in the Gaussian and Markov processes via

a physical model of the kind described above. The only exception to this is in the work of

Wolpert (1978a.b). which builds a model very similar to that we have constructed. In fact,

it was Wolpert's elegant construction that lead us to the results that follow. Our results

differ from his in two ways. Firstly, they cover a much wider field of models, (he deals

only with the so-called "free field" and Brownian motion as the Markov process) and we

(teal in considerable more depth with the consequences of the model. Secondly, our style

(f proof is generally quite different, and, we feel much neater.

' The main contribution of our paper, then, is not so much the introduction of a com-

pletely new idea b," rather, the development of a way of looking at things and an expo-

sition of that way that we hope will be at a level to make it available to a wide audience.

Regarding our audience - since a substantial part of our aim has been didactic we

have not written this paper for the expert quantum field theorist who already has a well-

developed intuition about generalised Gaussian processes. (Although we do hope that even

he may find something of interest here.) Rather we have written with the curious novice

in mind. In particular, we should point out that most readers will find either Section 2

or Section 3 "well known", although we expect that few will feel that way about both.

Fel free to skip the section that you already know. The paper also turned out much

8'
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liulcer than we hadt ever expected it would. After all, our avowed aim has been to produce

*snomething readable, and not a forbidding treatise. However, after a little practice the

reader will learn to separate the interesting and important parts from the clumsy and

space consuming notations that seem to be endemic to this area of Probability, and the

reading of it all should go much faster than one would expect in the beginning.

Finally, the acknowledgements. Our dept to Professor Dynkin's recent work will be

obvious by the citations to it throughout the paper. What is not obvious is the debt we

owe him for an inspiring set of lectures that he gave during a visit to Israel in 1983 which

did much to motivate our work. It is a pleasure to acknowledge that debt now. Haya Kaspi

spent a substantial amount of time answering a lot of questions about Markov processes

in the early stages of this work. We could not have managed without her. Murad Taqqu

helped us to understand parts of Dynkin and Mandelbaum (1983) and Mandelbaum and

Taqqu (1984). Most of this paper was written while both authors were visiting the Center

for Stochastic Processes in Chapel Hill. The hospitality of the Center and its directors

was. as always, gracious and most appreciated.
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2. Markov Processes and their Functionals.

2.a. Markov processes and systemns.

The treatment of Markov processes and their functionals given in this section comes,

essentially, from Dynkin (1981), to which we refer the reader for missing detail.

Let X(t). t > 0, be a Markov process on a probability space (Q), 7, P), taking values

* in I.d > 1. We assume the existence of a stationary, symmetric transition density

(2.1) pt (X, Pt =p(y, Xr)

- satisfying fRd pt (z, y)dy =I for all x. For each "initial point" xr the "probability starting

at z is griven by

* while each (r-firiite initial measure m defines

(2.2) Pm (.D) J P(e) m(dx).

- For 0 > () the function

*(2.3) 9 (r, Y) e- j tpt(x, )dt.

*is called the Green function for X or pt. To obtain a heuristic feel for the Green function,

note that for an arbitrary set A C Rd

l9P g(X, Y) IA(y)dy = J- fePt(z Y)IA(yWdydt

(2.4) = f e-"Pz {Xt E A~dt

= Ex el'A (Xt)dt.

But this, with 0 1, is the expected value, when X starts at the point X, of the weighted

* occupation measure of (1.2). Replacing 1A by a delta function shows that g' (x.y) can

I 0



be interpreted as the expectation of the exponentially weighted local time of (1.1). with

weighting e- t rather than e- .

In what follows we shall generally need to consider the Marko system of k > I* "k
independent copies X 1 ..... Xk of X. which we write as a Rdk -valued function on IR k via+f

(2.5) X (t) := (X I(tI)... X kjt1))."

For notational convenience, we introduce k-dimensional "transition" and "Green" functions

as
k k

.Pt (x. ¥1): Pt, (.r'.-Yt, gO(x.y ) := f g (.X y,). .

with x = (z' ..... k) E Rdk . Note that by (2.1) we always have g0(x.y) = g(y, x).

Throughout the remainder of the paper we shall assume that all processes are right

in the sense of Dynkin (1981).

2.b. Additive functionals.

To start with an easy case, let X be a Markov process in R" and X a system of k

independent copies of it. Let b be a positive, bounded, measurable function on IRk and

0 > 0. Then the path integral

(2.6) F(I) := e-°"t++tkb(X(t))dt

defines a family of random variables, indexed by open intervals I C IR., with the following

properties:

(2.7) For every path, the function FO can be extended to a measure on +,

(2.8) For every I, F'(I) is an element of the minimal a-algebra generated by the X(t). t E I.

(2.9) A shift t - s + t of the path of X induces an analogous shift of the corresponding

measure.

The fact that we have written the exponential term in (2.6) explicitly, and not as part

of the function b, is to recall the exponential weakening of the Introduction. However. in



"7

,One form or another, some damping is necessary for the integral to be finite. (Even the

simple case b = 14 would lead to a divergent integral if X is neighbourhood recurrent.

•inless the exponential is included.) Rather than damping X, we could leave it untampered

until ome exponential killing time. This would lead to a similar theory and, in terms of the

Introduction, would take us closer to Wolpert's model. Purely for reasons of mathematical

convenience, we prefer to dampen in a continuous fashion.

Any family with the properties (2.7)-(2.9) is called a homogeneous additive functional

of X. The class of all such functionals is much larger than that obtained by integrals of

the form (2.6). In fact. what we shall be most interested in will be situations in which

t "k-(XI(t)- X'(t) ..... XXk(t)- _ k(t)), with 6' the Dirac delta function

on IR "'. In such a case. the additive functional F' measures the set of common points of

'. Xk. in a sense to become clearer later.

To extend (2.6). let ". v be measures on Rdk and introduce the inner products

= J ,(dx)g (xy)v(dy)
(2.lf))J

f ddx . k. )g (X I..Y )...g1(xk,yk )v(dy ..... dy )

Let M O8 -k Mk() denote the set of all or-finite for which (,, 4e < 30. Also, for

s.t E 10' write s < t if s' < ' for all i, and if s < t then let (s,t) denote the open

interval{u : s' < it' < t. i = L..., k}. Then the following theorem, linking measures in

.M.k and additive functionals, is a trivial extension of Dynkin (1981). (Dynkin treats the

case 9 _ 1. The extension to general 9 is immediate.) For notational convenience, we write

Itl for ti +... + tk, and 11tll for +.. +

Theorem 2.1. Let the k components of X be independent copies of a symmetric right

process with initial measure ?n = Lebesgue measure. Then to every measure ^, E 'MOk

there corresponds an additive functional F! of X with the following properties:

I: There exists a negligible set Q,) such that for all it, 0 O1o F'(u': (st)) is finite for all

0 < s < t and is continuous in s and t.

12



II: For every positive, Bore) f: R k x IRdk V

I

(211 E f(t, X(t) )F, (dt)I I t )(ydIRk dtfk

Whereas Theorem 2.1 guarantees us an F' for each -t E M"~, one can also go the

other way. That is, given an additive functional F of X, the so-called spectral measure -,F

defined by
"YF(A) :=OE' f IA(Xlt))Fldt)

(A C Rdk) defines a measure satisfying (2.11).

For a measure y E M9, ' the corresponding additivP functional F- can be constructed

in one of two ways. If -y is absolutely continuous with respect to Lebesgue measure on

Rdk , so that j'(dx) = b(x)dx with f b(x)g(x,y)b(y)dxdy < oc, then F6 can be defined as

(2.12) F(I) = eOltIb(X(t))dt, I C ]Rk

so that we return to the form of the simple functional of (2.6). In the general case, F-

is defined as a limit of path integrals of this form, with the function b being densities of

smoothed versions of -f. To be more precise, for 6 := (61. 6 k), let such a density be

given by

(2.13) bE's (x) =/m k eJ Is Ipj(x, y)y(dy)

so that the smoothed versions of -y given by

' (dx) be6 (x)dx

satisfy ( -, . , j)e 0 as 11611 - 0. Then if , is finite (i.e. _,Rdk ) < X) the

functionals %

(2.14) F 86 I) : e-°ltlb°O'6(X(t))dt

13
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converge, in £2 (P), to the functional F' of the theorem. If -1 is not finite, but belongs to

M,k then there exists a finite measure -' and a function h such that

(2.15) y(dx) = h(x)h,'(dx), f' E .

In this case, F" is defined as F'(dt)= h(X(t))F' (dt).

2.c. An example.

To gain some feeling for the above results, and as a precursor to Section 5, we consider

one example. Take k = d = 2, 0 = 1, and Xn and X 2 independent Brownian motions in

IR2 . Then for .ry e

(Y'(,) = f e-'(2;rt)-' exp{- I I - Y1l 2 /t}

= cKo(fli - yj),'

where Ko is a modified Bessel function and c an uninteresting constant. For A C jR2, take

;A to be Lebesgue measure on the two-dimensional set DA in IR' given by

(2.17) D4 (I 2 3 4 (I 2 ,(3 4 ,x 3 2 X

Then, since KO(z) decays exponentially fast for large z, and has only a logarithmic sin-

gularity at = 0, it is easy to check that (', < oc and so _,A E M 12 . Thus an

F' satisfying (2.11) exists, and from the form of -,A and (2.11) it is relatively easy to see

that F 1 charges only those t = (t1, t2 ) for which Xlt) = X 2 (tN) and X, (t,) E A. The

integral f F1 (dt) now gives us a candidate for the weighted intersection local time of Xn

and X 2 while they are in A. Replacing A by 112 and 1A by a measure p living on D2

and satisfying (p,p), < o yields

L(p:X,X 2 ) = J F'(dt)

as a properly defined version of (1.8).

Thus, we now have the basic components for the limit theorem discussed in the In-

troduction. and so we turn to a discussion of what will ultimately yield the limit process.

14



3. Gaussian Fields and their Functionals.

3.a. Gaussian random fields.

Let g(x. y) be a positive definite function on Rd x iRd. Then. in its simplest form.

the Gaussian random field with covariance function g is the family of Gaussian random

variables $(x), x E R' with zero mean and covariances

(3.1) E, Ixz),(y)} = g(zg).

(Note the sequence of ideas - for us the covariance function comes first and the random

field second.) The random fields that arise in quantum field theory. and the interesting

ones that arise as the limit processes mentioned in the Introduction, correspond to positive

definite g with g(z, .r) = oc for all z E Rd , giving the point indexed field t(z) of (3.1)

infinite variance and so leaving it poorly defined. The usual way around this is to change

the parameter space of t to a space of functions. There are two natural choices. One is Sd,

the Schwartz space of C' functions that decrease at infinity faster than any polynomial.

Given a rich enough probability space (0, .7, P) the Gaussian field on Sd with covariance

kernel g is defined as the continuous linear mapping from Sd to the zero mean Gaussian

variables in V 0(P), (with the topology on the latter space being that of convergence in

probability), such that the covariance between two values of the field is given via the

bilinear functional

(3.2) B9 (f, h) = E{ (f)(h)} = Jf (z)z, y)h(ldzdy.

(If Sd, is the topological dual of Sd - i.e. the space of generalised functions of temper-

ate growth, or, tempered distributions - '(e) can be considered as a S-valued random

variable. Hence the now almost archaic term "generalised Gaussian process" used in the

* Introduction. a term which we now drop in favour of "random field".)

Clearly. if (3.2) is to make sense. we require B,(f. f) < oc for all f E S,j, so we are

limited in our choice of covariance kernels g to those for which this is true. In order to

allow the definition of fields for arbitrary g. we restrict the parameter space to the Soholet.v

15|

'," -2 "_ ......................................-............... ".'"......-.' , -,'',-'', "''. '' ,"". "' ," '',"-..-" .". ."-,..-
i n nmnu .nnn . I -.. h.. . . . _



.space S(g) of C' functions of finite norm. where the inner product in S(g) is given by

(f. h), = f f f(z)g(x. y)h(y)dxdy. A Gaussian field on S(g) is defined as for one on Sd.

with covariance functional (3.2).

(Note that here Bg(f.h) = (f.h)g, leading to our opening comments about Gaussian

fields being isometric mappings.)

If a point indexed field satisfying (3.1) exists, then we can always create a Sd or $(g)

indexed version of it by setting

(3.3) Cf) f (x),(x)dx,

and (3.2) will be satisfied. However, function indexed fields satisfying (3.2) often exist,

even when they cannot be represented in the above form.

Another way to index random fields is by the family of measures introduced in the

previous section, i.e. M l = MI'(g) = (p'(p,p), < xc}, where we had

(3.4) (p,+ :=! p (d.-)g(.y)v(dy),

for any two Borel measures it. v. The corresponding Gaussian field maps 41 (g) to zero

mean (;aussian variables with E{$(pi)4(t')} = (,v),. As above, if 4(z) exists, we have

@(pJ)= f f(.)lt(dar). This index set seems to have been initially considered, in the context

of the problems that will interest us, by Albeverio and Hoegh-Krohn (1979), and was then

taken up by Dynkin (1980). Since it turns out to be the most natural parameter space

over which to study the Markov property of random fields we shall concentrate on it in the

future. However it is important to note that since measures in M'(g) can be approximated

by elements of Sd or S(g), and vice versa, the theories associated with all three parameter

spaces are essentially the same, (except for their Markov properties - for details on this,

see Albeverio and Hoegh-Krohn (1984) and references therein).

Oue example of particular interest is the so-called free field of mass m > 0, for which

the ovariance kernel is given by

I2rd fR etk:

(3.5) g, , ,(z g ( - y) et-k1z)dk.

• I6
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Since g(x. xr) :)c for d > 2. the free field does not exist pointwise, but Since the singular-

ities of g are then at worst polynomial. free fields on Sdj. Sig) or Wi'g) can he defined.

The kernel (3.5) cant be looked upon in a number of ways. It is the kernel of t he

operator (-A+ m 2 ) in Rd a fact important in Euclidean field theory. More importantly

for us, however, is that it is also the Green function go of Brownian motion in Rd with 0=

"0. This fact provides the link between Gaussian fields and Markov processes discussed

in the Introduction.

In fact, if go is the Green function of a symmetric Markov process AX. then it is trivial

that go is positive definite, so there exists a S(g~) or M'(g8 ) indexed Gaussian field with

covariance kernel 9'. These fields are called the fields associated with A?. Although not

every covariance kernel is also a symmetric Green function. this is so often the case that

it is worthwhile to study Gasinfed rmtevepito arkov processes.

3b. The spectrum and Wiener-Ito integrals.

For the purposes of tis sub-section we shall restrict ourselves to the parameter space

S,j. We call a random field stationary on Sd if t(f)='t(Tf) for all f E Sd and xz E IRd

where Tf(y) = f(y -+ xr). In this case the covariance kernel g of t~ must have the form

g(x. y) =g(x - y), and so we write it as a function on IRd only. Furthermore, (see. e.g.

Major (1981) for details) g has inverse Fourier transform G, which is a a-finite measure on

]Rd satisfying G(A) =G(-A) for all A E B and

(3.6) J(1+ ± Af G(dA) < x

for some a > 0, (i.e. G is tempered). We also have

E~tf~th) J (A)h'(A)G(dA). f, h E Sa.

where 'denotes Fourier transformation and * complex conjugation. The measure i~ s

called the spectral measure of C. and there corresponds to it a random. complex va lued.

spectral process Z =ZG. defined on the same space as ot. such that

(3.7) $(Mf) =J fZ(dA). f E S,.

17
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The importance of this representation for us is that not only does it give a simple rep-

resentation of stationary Gaussian fields on Sd. but it also leads to a neat characterisation

of all their £2 functionals.

To develop this, we define the Fock space r, (or rG) of the field 0 as the Hilbert space

of "Fock columns" f = (fo. fi. f2, .... where fo is a complex number. f, = f, (A,. An).

n > 1, complex functions of A,.... A, E Rd, satisfying

(3.8a) fM(A1.... ,A ) = fA. (-A,...,-A),

and such that the norm lfl admits the expansion

* (3.8b) f I iH2 =foI2 + Zfar ] .]JfA .  )IG(dAfl .. .G(dA,) <00o.

It is well known (e.g. Major (1981)) that there exists a natural unitary mapping

(of Hilbert spaces) from r. to £ 2 (P) defineable via multiple Wiener-Ito integrals, taking

f E F, to gi' via

(3.9) l +0

with Ij1'rII2 = IIfIll. The integrals here are with respect to the spectral measure of (3.7).

and do not charge the diagonal AI = A2 = -. = An.

This mapping distinguishes itself from all other unitary mappings r, -_ C2 (p) by

the fact that the Fock columns with fm = 0 for m > n correspond to polynomials

p(0(hi),.....0(h,,),h, E Sd, of degree n in the values of the field. Other important

properties of this representation will become clearer later.

3c. Wick powers.

One way to get away from a purely Gaussian theory of random processes while at

the same time retaining as much as possible of the inherent analytic simplicity of this

case is to work with simple functions, such as powers, of them. In dealing with fields, the

c orresponding notion is that of a Wick power. For example, if I is defined on Sd or 5(g)

18



as (f) = f f (x)O(x)dx. then we would like to define a k-th power t k that would act

like a pointwise k-th power of ', i.e.

(3.10) k(f) f

Of cour.d, if (3.3) is ill-defined then so, a fortiori, is the above. Nevertheless, there are a

number of ways of making mathematics out of (3.10).

The most straightforward would be to consider

(3.11) liJ f (X)¢Ok (6 )dX

as a candidate for 0k(f) :. where ,. is a sequence of functions in Sd or S(g)

converging in some sense to the delta function at z. Note that this approach also works

for measure indexed fields. Details of this approach are implicit in Dynkin (1984).

As opposed to the ill-defined (3.10) and the somewhat awkward (3.11), a very neat

definition of Wick powers comes by identifying k! • k(f) with the coefficient of tk in the

formal power series expansion of expt (f) - Lt2 Bq(f,f)]. That is
2

(3.12) e [*

o~ I,k=0

Note that we can replace f here with p to get measure indexed Wick powers.

Although (3.121 is neat (and useful) it sheds little light on what a Wick power really

is.

Since Wick powers belong to £2 (P) tLey also have. in the stationary case, a Fock

space representation in terms of multiple Wiener-Ito integrals. In fact

(3.13) :~~)=..f (A +.+ Ak)ZG(dA ..Z(;(dAk).

This representation does not carry over easily to either the non-stationary or the measure-

indexed case. Furthermore, although it is tidy, in no way is it obvious why a spectral

integral of this form should correspond to the pointwise power (3.10).

It turns out that Wick powers have a veiy natural representation in terms of the

Markov path intersections mentioned in the Introduction, and this sheds light both on

their structure and their uses. some of which we shall see in Section 5 below.

19
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3d. Additive functionals.

* The last concept that we shall need for the moment relating to Gaussian fields is that

of additive functionals. To define these, let , denote set of all closed intervals in iR"

of the form [a. b] x a, < z, < b, }. (a < b). Let A denote the ring of finite unions

A lu ... U .4, of elements of A, with pairwise disjoint interiors, i.e. .,, n - 1 = 0. i i j.

Write B, for the o-algebra generated by 0. i.e. B, = a{0(f)} if the field is S4 or S(g)

indexed, or B, = a {0p)} if the field is .M'(g) indexed. Also, for open 0 c Rd define B,,,

to be the or-algebra generated by -(f) with suppf g 0, or $t() with suppp C 0, as the

case may be. Then if to every A E A there corresponds a random variable "A E C2(p).

measurable with respect to Bt, we call 'A - V(P) a square integrable functional of 0.

Now, for closed .4 C Rd , set B,,,A = n,> 0 B,,A', where A' is the t-neighbourhood of

A. Then there are three properties of square integrable functionals that will be of interest

to us:

I. Locality. For each A E A the random variable *A is measurable with respect to

II. Additivity. %.AuB = *A + %PB, P-a.s for all A, B E A with *0A n = 0.

III. Stationarity. *A+x = U.ZA, where U..,Z E Rd, are the unitary translation

operators on 0(p) corresponding to the translations Uzf(y) = f(y- x) if f E Sd or S(g),

or to the translations Ujp(A) = I(A - z) if p E M'(g).

The central interest in these three properties lies in the fact that local, additive,

stationary functionals can be applied, in a relatively simple fashion, to stationary, Markov,

Gaussian fields to yield stationary, Markov non-Gaussian fields. The prescription is merely

to change from the Gaussian measure P to a new measure exp{I*R,} P. For details see,

for example, Rozanov (1982).

To study these three properties in the case of stationary Gaussian fields, Dobrushin

and Kel'bert (1983a,b), noted that since each *A E 0(P), it must have a Wiener-Ito

integral representation of the form (3.9). If we assume, for no loss of generality, that

E{F } 0. then we call the Fock column {*, * ... ) in this representation the spectral
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representation of %.. Dobrushin and Kel'hert showed that it is possible to read off the

above properties from the spectral representation of T. We shall investigate their result in

Section 5, via completely different methods. and give it an intuitive explanation not linked

to the stationary situation.

We now have (somewhat more than) enough background to look at our first new

result.

21
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4. The Limit Theorem and its Consequences.

We now return to the setting of the Introduction, with one small change. Let (Q, 7. P)

bh a probability space rich enough to support the following:

(a) a Poisson random variable N = NA with mean A > 0.

(b) an infinite sequence of independent right Markov processes X 1 (t),X 2 ). t > 0.

taking values in JRd and with common stationary; symmetric transition density. pf (. y).

(c) an infinite sequence of independent variables 0%.1 2 .... , with P(a, = +1) =

P = =-1)-

The two infinite sequences and N are all independent of one another.

FIx0 > 0, and let g°(,r, q be the Green function of the X,. Fix A > 0, take f E S(g'),

and define

(4.1) V(f) 0/ A) f (-tfX, At))dt.

t=1

This is the type of sum we looked at in (1.5) as being equivalent, in that case. to the

ill-defined sum of integrals of local time. Note that, by varying f in (4.1), ° becomes a

random field on Sobolev space. This field has. as A - xc, a Gaussian limit.

Theorem 4.1. As A - x the random field V converges, in the sense of convergence of

finite dimensional distributions, to the zero mean Gaussian field on S(go) with covariance

kernel g8.

This result is actually a special case of the more general Theorem 4.2 below, but it is

worthwhile to state it separately because of its simplicity. (Both will be proven in Sections

7 and 8.) The result is also true if. throughout, we replace the Sobolev space S(g0) by the

Schwartz space Sd, and impose the extra condition, on g, that

f ff(,)g°(z.y)f(y)dxdy < oc, for all f E Sd.

The extension to fields defined on the space of measures M1 (g') is not so easy to formulate,

,;iuee we need to work a little harder defining what we mean by V'(p). (The (auian
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limit process is easy to identify, however.) To treat the measure case we now move to a

far more general formulation, although. for reasons that we shall note later. we do not yet

want to treat the most general formulation. Both allow us to consider not just CLT's for

the Markov X,, themselves but also for the interaction of k such processes.

Fix k > 1, 0 > 0, and consider the set of measures = "y(dz1 ..... dZk) on FRdk that

belong to MsI.k Mk(gO) and satisfy the symmetry condition

(4.2) (4A1 ...... 
4k) = ,(A, ...... 4,k)

for each permutation (i1 . .. ik) of (1 .. k), and A, E Bd. We denote this collection by
W,k M

M,;mm or .,,ymm(g).

By Theorem 2.1. there exists an additive functional F' corresponding to each f E
mO,k

,Mm. defined on k of the X, at a time. Consider firstly the case k = 1, and define

(4.3) 0 )12FO (
Il

=,1

Then V can be considered to be a random field on Moymm and an analogue of Theorem

4.1 holds for it.

Theorem 4.2. As A - x the random field 01 of (4.3) converges, in the sense of conver-

gence of finite dimensional distributions, to the zero mean Gaussian field on Mon with

covariance kernel gO.

Thus, between Theorems 4.1 and 4.2 we now know how to approximate both function
and measure indexed fields via Markov paths. (Note that for a p E M' m with density

f E S(g), we have 'p6 (p) = 'a,(f), and both theorems identify the same limit random

variable.)

We would now like to approximate elements in the £ space of a Gaussian field. Since

our discussion in the previous section relied on the Fock space representation of the £2

space. and this required stationarity of the field, we shall assume for the moment that

p(r y) pt(. - y), or. equivalently, g(.z, y) = go(z - y). This implies (Blumenthal and

23
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Getoor (1968), p. 17) that the X, have independent increments. We shall lift this condition

later, as we shall also do with the following conditions:

(a) f f f(x)gV(x - y)f(y)dxdy < c for all f E Sd,

(b) g' = G , for some o-finite, symmetric, tempered measure Go on Rd,
"" #,k

(c) -, E M k has a Fourier transform , which exists as a regular (i.e. non-generalised)

complex valued function.

We write the set of -f satisfying (c) as *M '

It follows from (a)-(c), and a generalised Parseval-type equality (c.f. the generalised

Poisson summation formula of Argbright and Gil de Lamadrid (1972)) that j E ) k,, where

{G f f f(AI, . .. A A, E Rd; I1f 112X ... XG <cc and

f(A,... ,Ak) = ,(-XA ....- Ak) =f(A,,,..., X,*)}

where

IIf, ,Gx ... GJ...Jf(A,..., A )dG(Ad,)...G(dAk).

Consequently, if we write fo for the stationary zero mean Gaussian field on Sd with spectral

distribution function Go, then the functional

(4.4) .8jA,.,kZ#d1 . G(~

7Z2

is, according to Section 3b, well defined as an element of the 1 space of 0. Furthermore,

there corresponds to -y a functional F of k independent X,. The link between , *1 and

Fo is via the sum

0 , N(A) < k,
(4.5) *"(f):= / a,,... , , .. ,X,,) ,N(A) > k,

X ... ffik_<(X < <..k)<N(A) k

for which we have

Theorem 4.3. Under the above conditions, the pair (to(f), 'I' h)) converges in distri-

bution, as A - oo, to the pair (08(f),i08(7)).

Remark. Note that, although we have not stated Theorem 4.3 in such terms, by varying f

,. over Sd and -t over Me 'k we could write the theorem as being about convergence of the
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r

vector processes (4O(.). €(-) on S,, x *-M.k to the vector process ( IFH). 0(• ). with.

as before, convergence being in terms of finite dimensional distributions. This extended

form of the theorem is an immediate consequence of the linearity of all the fields on their

respective parameter spaces.

Thus, modulo the present technical restrictions on go and -. we have found a way to

represent Gaussian fields via Markov processes, and functionals of the former by functionals

of the latter. The technical conditions will all be lifted in Section 8. but their imposition

at this stage makes the didactic discussions of the following section somewhat easier to

follow. These discussions hinge on using Theorem 4.3 to think of Gaussian fields and their

functionals in terms of approximating sums of functionals of Markov processes. However,

because of the restrictions we have placed on %, we cannot consider all functionals of either

type. Nevertheless, the next two lemmas show that we can, via these restricted classes of

functionals, get arbitrarily close to any functional of interest (in the stationary case). The

lemmas and the discussion following them can be skipped on the first reading.

Lemma 4.1. *mk is everywhere dense in js'rmm.- yrnSmM

Lemma 4.2. The set of linear combinations of f E )1k. with inverse Fourier transform in
2G

m (g) is everywhere dense in Ilk.
"G.

The consequences of these lemmas, which we shall establish in a moment, are immedi-

ate, for, together with Theorem 4.3, they tell us that any Gaussian field on S (gO), together

with any of its functionals, has an approximation via Markov processes, (assuming. of

course, that the covariance kernel is also the Green function of a right Markov profess).
O~k •We shl ul eune"6

Proof of Lemma 4.1. Consider -; E snm W shall build a sequence b =

(61. 6 k). With E *Mjkm such that - as 161 - 0. Convergence is in termi ,,f

the metric defined by (2.10). i.e. via the inner product (.,.)o.

Firstly note that by a standard truncation argument the finite E M'-k,,,,, are tnW

in MI~k,,,,,., and so we may assume to be finite. Now consider the absolutely continullo
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approximation to used in constructing additive functionals in §2b and given by

-$(dx) b°,6(x)dx

= f e-ailp6 (x. y)-(dy)dx.

But b E sL(dk' Since

f b",5(x)Idx f Jdxf -jdy)e9I861p&xy~

.16i J y(dy) p(xy)dx

<_e-'j61,(W~k )
<+

<00.

Thus b , has a Fourier transform which is a continuous, non-generalised, function and so

*Syk Furthermore, it is trivial to check that - -Y8, 6 - y)o - 0 as 161 - 0, so

we are done.

Proof of Lemma 4.2.

Let S denote complex Schwartz space, so that f E S' is of the form f = f, + if 2 ,

fi. f2 E Sd. Assume, for the moment, that k = 1, and note that M'e c £2 (G8 ). Then

since S,' is dense in C2(G") it is easy to see that

Sdmr S -- {f E S'" f*(x) f(-X)

is also dense in I,. Thus, for the case k = 1, it will suffice to show that an f E S SYmm

can be written as the sum of the Fourier transforms of two measures in mn 9)

To see this, note that the mapping f -+ f is an invertible, bicontinuous transformation

from S' to itself. Thus if f E Sm,sYm, then F-'f = E S where F represents inverse

Fourier transform. Furthermore, f is real, since

](A) 2.) J--x)d

- {2w)" 4Af(..-.zdz (f*(.z) = f(-z)
(2)d f e f d

= ((A))'.26
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Writing h+ = max(h, 0), h = - min(h. 0). we have, for f E $ ,y~nm-

(F-f)(A) = (f(A)) + - (f(A)-

with both f+ and f- real. To obtain measures, write ->(dA) = f+(A)dA. -#J(dX) .

f (A)dA. Note that by the generalised Poisson summation formula,

00> If12 GldA)

f J (xr) g'(xr - y)f(y) dxdy

f J P(x)g(.r - y)f+(y)dxdy + J f(z)g(r - y)f (y)dxdy

-2 f+(x)g'(x - y)f() dxdy.

Since f E Sd, and so is arbitrarily small outside large compacts. each of the last three

integrals must be finite. Consequently both j+ and -7 have finite (',')0 norm since,

for example, ( 6, = f f+ Ix)go(.r - y)f +(y)dxdy. Thus both -1+ and are in

,,ymm(g 0 ) and we are done.

The proof for general k > I follows by noting that the elements of W', x ... x

are dense in )4 , and that for f E mwL of the form f(x .... ,Zk) = f1(xt)... fk(zk) with

f,(x,,) E M, we have f = . . The result for k = I can then be applied to write f as

a linear combination of measures in Mkymm (g8 ).

27
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-' 5. Applications, I.

In this, and the following section, we return to what originally motivated us -obtain-

ing insight into random fields via approximating sums of Markov processes. The results

range from intuitive, non-rigorous arguments as in our discussion of the Markov property

of random fields. (which generate no new results) to rigorous arguments, such as the dis-

cussion of renormalisation in the following section where the results are essentially new.

We start with what is basically an example for Theorem 4.3, the construction of Wick

powers.

5a. Wick powers.

In !j3c we gave a sequence of equivalent definitions of Wick powers (see also §8a),

including (3.13) which, for f E Sd. set

(5.1) =1... f f(A, +...+ Ak)ZGI(dAI) ... ZG(dAk).

for 4) with covariance kernel go. Consider the measure

(5.2) ;(dx 1 ..... (,k) := f(-IO (XI - X2)... . (XkI - Xk)dxl ... dxk.

where b is the Dirac delta function. (Formally , is merely the measure concentrated on

the diagonal x , ... = Xk in (Rd)k, with density f(xl).) The Fourier transform of Iy is

given by

A .. Ak) = f e'Z'\.f{.t,)(zi -£2)... 6 (£ k._ - xk)dxl ... dxk

= J e"'f(x)dx

= (A, + ... + Ak).

Thus. comparing with (5.1), we have

tkf ... Ak)Z(;I(dA,) ... Z,;o(d A k

which is precisely k! times the To of (4.4) and Theorem 4.3.
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Consequently, recalling the properties of measures like , discussed in Fj2c. we have a

representation of Wick powers based on intersections of paths of Markov particles the

k-th power coming from intersections of k particle paths.

This representation will work as long as - E gy° m* Clearly, it is only the integra-

bility of ,, that is of importance here. If our particles execute Brownian motion, so that

the limit Gaussian process is the free field of §3a. it is easy to check that

(5.3) d=2 => EM'm for allk,

(5.4) d ,3 *M.k only for k 1, 2,

(5.5) d > 4 = E gym only for k = 1.

That is, this technique would seem to work only in very restricted cases. These are

precisely the cases in which k independent Brownian motions in Rd have intersecting paths

(c.f. Dvoretsky et. al. (1954).)

Nevertheless, if we recall that Gaussian fields also go, in Physics, under the name of

Euclidean quantum fields, then we can verify (e.g. Glimm and Jaffe (1982)) that Euclidean

field theory turns out to be interesting only in the cases in which our limit theorem applies

to Wick powers, so we have not done too badly.

Before leaving this example, we note that it is essentially this problem with d = 2 and

X = Brownian motion that the two papers of Wolpert (1978a, b) are dedicated to. For

more information on the functionals related to F" with r given by (5.2) with f = 1A, see

the papers on intersection local time by Geman, Horowitz and Rosen (1984) and Rosen

(1985). For more serious applications of this to Physics, see Aizenmann (1982). The

original idea of using intersection local time to study Wick powers comes from the seminal

paper of Symanzik (1969).

5b. Functionals of Gaussian fields.

In §3d we introduced the notion of functionals of Gaussian fields, along with three pos-

sible properties: additivity, locality, and stationarity. Dobrushin and Kel'bert (1983a.b)

studied these from the point of view of Fock space, which they used to write a general
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* functional via its spectral representation. Consider the k-th term in such a representation.

%P' defined by*

*To study, the properties of %P- as A varies over unions of rectangles. A. let rk be the

* natural embedding of the space N.into the space Slk of generalised functions and define

-the inapping- Yk A - S' by

k

Then Dobrushin and Kel'bert have shown the following:

1 : %P is additive iff 2rk is additive, in the sense that

(5.7) fk(A UA 2  (AI) +" ""k (A2

* for disjoint A,, -A2 E A.

11: %P is local and additive iff Tfk is additive and diagonal, in the sense that

*(5.8) supp F-'(.,k (A)) C diag.4k 1:= {x....tk) : Zr1  Xk . E A),

where F-'. as before, represents inverse Fourier transform.

*III: ilk is stationary iff F'~ is invariant in the sense that

*(5.9) ()4+,(f) = O(4(Ud).

-where 0O4 E S'k is given by F-'k(A). f E Sdk. x E diag(]Rd)k. and ( 1, is the shift

operator of §3d.

* Note two things. Firstly, since everything is based on the Fock space representation,

the above results are valid only when the underlying Gaussian field is itself stationary.

* Secondly. although these results are precise. they have little intuitive appeal. In particular.

-W1e ask. why should the inver-6e Fourier transform of the kernel uk- figure so prominently

in the condlitions" The answer to this is clear once we approach the problem from the

viewpoint of approximating fields and functionals by Markov paths.
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We now need to assume that the underlying field has covariance kernel gO. which, as

usual is a Green function. Consider the sum ' (,) of (4.5) with -. A. where L=C

(Note, to ensure that ' has an inverse Fourier transform in *MO
'
k as must he. we

ksynm'

really need to assume this. However, since Lemma 4.2 implies that such are dense in )1/k.

we lose no real loss of generality by tacitly doing so.) By Theorem 4.3. IV(A):= P'0 Vk)

converges in distribution to the V' of (5.6). and, indeed, does so as a process over -4 E A.

The first thing we note is that the measures - now become the natural parameters

of the problem, and so one can see where the inverse Fourier transforms of (5.8) and

(5.9) might come from. In fact, even (5.7) could be written in terms of inverse Fourier

transforms, since it is clearly equivalent to

(5.10) F-fk(Ai U A 2 ) = F-i'F(Al) + F-Fk(A 2 ).

Secondly, since F-fk(A) - 7j+ , and the -
A and F", are easy to understand, some

intuition may now be forthcoming. We develop this intuition by studying additivity. local-

ity. and stationarity not for the functional T' of the Gaussian field, but for the functional

(_A) of the Markov processes which ultimately converges to *'. Note that we cannot

rederive the results of Dobrushin and Kel'bert this way, but can only provide a way of

understanding them.

a. Additivity. It is immediate from the definition of %P'9 (y') and P 4 , that the former

is additive. In fact, our construction has always been such that we can build only additive

functionals, since ',k is required, a priori, to be a measure. Condition (5.7) (or (5.10))

simply allows our construction to be started.

b. Locality. Here we shall have to define a slightly amended definition of locality more

suited to the Markov path setting. For any open 0 C Rd , we let BO denote the a-algebra

* generated by the X, while they take values in 0. This notion, which we shall call the

ezcursion a.field, can be made precise. (See, for example Jacobs (1978), Kaspi (1985)).

We now define locality as in §3d, but with respect to these a-algebras.

Assume (5.8), i.e. supp Ik' c diag.4. It is then clear from the definition of the F'

that they. and so , are local in the new sense. Furthermore, it is easy to see that
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this follows from supp A C A'. the additional restriction to the diagonal being seemingly

superfluous. This restriction arises in a natural fashion from the additivity of TO as in .

Dobrushin and Kel'bert (1983a). Using, then. what we know about functionals of Markov

processes, we see that the diagonality condition implies that the k-th order functional of

the Gaussian field is approximated by a functional built on the intersections of k particles

at a time. This is the full import of (5.8).

Thus, with sufficient motivation, we could build an approximation to the whole of

Fock space. the k-th part of this based on functionals of k particles. The reader familiar

with quantum field theory will see an extremely pleasant semantic coincidence here, for

the quantum theory of k interacting particles is also the theory of the k-th part of Fock

space. Needless to say, our particles and those of quantum field theory have no physical

link semantically however, the coincidence is intriguing.

c. Statioarity. From their construction the functionals h-'i) are stationary in the

sense that

whpereuouis the unitary translation operator on the space of the Markov processes

corresponding to shifting all starting points of the paths by -x. and uT is defined by

lBr-(x dzk) =(dzi .  dik).

Consequently. if we want them to be stationary in the sense of Dobrushin and Kel'bert

viz.

(cf. §3d) then we require that --4+-' UT But this is precisely condition (5.9). Thus

we see that this condition, too, arises as a condition oxu the paths of our Markov particles.

5c. The Marko- property for Gaussein fields.

One of the most interesting, and moist deeply studied properte- of Gaussian field is

that of their iarkovianess. Unlike the rcase for reiar pr e,,ses in anivariate time. the
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Mfarkov property for measure of function indexed fields is not particularly useful, Nev-

ertheless, it is prohahilistically intrig-uing. Furthermore, it is of considerable importance

in Physics, since in the transformation of regular field theory- to Euclidean hield th4'~ry

(i.e. to Gaussian fields) one of the axioms of the former transforms to an assumption of

Markovianess. (cf. Nelson (1973)). Consequently. it is only, the Markov Gaussian fields

that are of interest to phNysicists.

There are many different definitions of Markovianess, and they are not all equivalent.

Alheverio and floeg-h-Krohn (1984) give a detailed discussion. but we shall follow the treat-

mnent of Dynkin (1980). Firstly. we restrict our attention to measure-indexed ( ')fields.

We say that a field ob is Markov with respect to two sets A, B C R" if the or-algebras 4

and .4 .,H are conditionally independent given 74,ArB where 7
4$,A := (p suppW :S PP

A4}. (Note that -
7
0A is not the same as the BOA, of §3d.) One easily extends this to a

general Markov property by demanding that for all B c ]Rd. with smooth enough bound-

ary 0~B and complement B', 0 is Markov with respect to B and BC. It is clear therefore

why- it is more natural to work with measure indexed fields - 4,,jg would be empty in

the function indexed case, for we could generally. find no f C= Sd with support in OB. (A

way- aroundl thih is to Ibase the Markov property- on Bt,A instead of Y,.This leads to

a different the(ny which. when specialised to simple processes on IR' for example. is not

the ivoual Nfarkov theory. rcf. Rlozanov (1982). W~ong and Zakai (1986).)

If we limit iilir attention, as usual. to Gaussian fields with roN-ariance kernel the (i reen2

function of a Markov process, then Dvnkin ( 1980) has a very elegant characterisation of

Mark iv ianess.

Characterivktion. 0 has the Markov property on all sets A4. B for which it to impossiblc

fir tht is*,wtated Meirknv p roctqs to rrovh .4 from B without crossingi A r~ B. (This result

a ;,ba t m- r-" pre, i, Ntatonment Ne ht U Dyukin J IDO) and ktkiuson 95)

Ve w* ul1( like t,) u ndertani tIIs r,-ol t fri inn ioir view p ut. inI fact, it will siifficv if

%kf' "an 'efe w4hv the .4iio the c'' lnectlire implies the V' are Markovian. Thi, will

nl t 4 cloire iniply the Mfark iv, (nf 4 it-1ef.n ur can it ever hi 11Wto (the ci uverzence
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,,f ti t is in distributiou ,,ly. :itil the Markv )ro )erty i, in essence an a.s. statement)

hut it ,t,,es provide insight.

Fix A. and. for the .ake o)f intuition. fix N(A= A = n in the sum (4.3) defining to (p).

which now iec(elles

n

t (5.12) = (/,,) 1 2 Vo F (X'

Nw we :irgue more or less heuristically. If the X, have regular enough sample paths.

then we claim that T( A.4) is identical to the excursion o-algebra generated by X =

iX... X,) while the X, are in A. Then. from rigorous results of Jacobs (1978) and
Ka.pi (1985) one can see that. again, requiring regular paths. i(t.A) and F(V ,A')

will be conditionally independent given 7( . .4). But to apply these results the balance

between regularity ()f the sample paths of the X, and 0.4 must be such that, at very

least. )ne i"an define an additive functional of (Xi .  Xn) living on (94. Given the other

assumptions that we have placed on the X,. this means that we require the X, to be

continu,us, and so we have a heuristic version of Dynkin's characterisation result.

Actually. all of this is easiest to see when d = 2. n = 1, and we draw a picture.

-.

-oo,

Figure 5.1. Markov paths.

In the leftmost case example o)f Figure 5.1 the Markov path is continuous, and it is

clear that. given all the hitting points o)f the path on OB. each excursion, between hitting

, pi,,ints, i, independent o)f all the others. (G)nseiluently, all the excursions contained in B
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are conditionally iudepeo(tent (,f thoe in B' and from this follow, the Markov property

of $0. In the rightmost case. the path may never hit OB. and so there is no information

in -4.0B to even attempt to start conditioning.

Finally, we note that it is t-nipting to try to push these arguments further, to obtain

an expression for ElO'(1 ) 4 <} with supp p E BC. as Dynkin (1980) has done, in

terms of the first hitting time of X, on O9B, conditioning on starting X, according to pi. It

is clear how the excursion processes associated with X,. along with time reversibility, need

to he used here, but the calculations involved seem so complex that nothing is gained via

this approach.

5d. The free field again.

It is instructive to close this section with an almost trivial comment on the free field

of (3.5), which holds a uniquely central role in both Euclidean field theory and Gaussian

fields, as the only ;tarionar)y Markov field. Our question is - what. from our point of view.

makes this process so special? We know that to build a Gaussian field we need Markov

paths. If we require the field to be stationary then. as we have already noted. the Green

function must satisf" g'(.x. y) = g'(x - y). This, however, forces the Markov processes to

have stationary, independent increments. If we furthermore demand Markovianess for the

field, then we demand continuity for the paths of the Markov particles. There is only one

continuous process with stationary, independent increments Brownian motion. Thus we

have only one way to build the field from Markov paths. The resulting field. as we have

already seen, is the free field.
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6. Applications II: Renormalisation

In the previous section we used the limit theorems of Section 4 primarily at a heuristic

level to explain a number of existing results. In this section we shall use these theorems

in a fully rigourous fashion to motivate, and then prove, new results. The central theme

of this section comes from the idea of renormalisation techniques. which we shall define

formally soon.

6a. Self-similarity for fields.

In Probability Theory. renorInialisation is generally (but incorrectly) considered to be

sV.non.mous with the notion of self-similarity. To make our lives notationally easier. we

shall restrict our attention in this section to random fields on Sd, in which case we call a

field 4 self-Rimilar of order a iff for every rj > 0 and f E Sd

(6.1) ¢hlf)£ ¢f) :-((f

where
(6.2

This is clearly a scaling phenomenon. and in the Gaussian situation Dobrushin (1979) has

h)wn

Theorem 6.1. Let 't be a stationar; zero mean, Gaussian random field with spectral

measure G. Then 0 is self-similar of order a iff

(6.3) G(A) = -2 (;(9.4), A E B(I"\{O}, > 0.

As neat as this result is. there are two problems with it. Firstly, it applies only to

stationary fields. Since both the statement and proof rely on spectral methods, there is

no clear extension to the non-stationary case. More importantly, however, is that it deals

with far too narrow a notion of self-similarity. For example, if we take V0 to be the free

field with mass 0 = i 2 . and d > 2. then by (3.5) we have that

0 -'(;(0. 1 2"-',(27r)-" .

IIAU 2 +o

S -2(+' -2(27r-' JIAI12 + 0/ 2
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after the obvious change of variable. If this is to be equal to (;(A). so that by Theorem 6.1

¢O will be self-similar, we require a = 1d- 1. and 0 = 0. The condition on 0 is unpleasant.

for it implies that only the massless free field is self-similar.

From the point of view of Physics this is undesirable. since it is well known that all

free fields are renormalisable (self-similar) as long as one renormalises mass at the same

time as renormalising space. That is. we must be allowed to change 0 in some fashion.

In order to see how to do this, it is most natural to leave the spectral setting. and think

of Gaussian fields as arising from sums of Markov paths. Thus for the remainder of this

section, we treat only Gaussian fields whose covariance function is also an appropriate

Green function. We start by looking at the structure of the Markov paths themselves.

6b. Self-similarity for Markov processes.

Let X, as usual, be a Markov process with initial measure m(dx) = Lebesgue measure

on Rd. We call AT self-simlar with indez 3 if for every q > 0. X and the process

(6.4) \( i-

are identical in distribution, where is a process (on another probability space) which

has the same transition probabilities as X but initial nelesur, j'lm(odx).

Note how we have had to change the initial distribution in order to preserve the

distribution of starting points after scaling X by the factor q. If we were, for example. to

start all our processes from zero no such condition would arise. (See Lamperti (1972) for

a theory of self-similar Markov processes under such a condition.)

Lemma 6.1. X has transition density p(t: .. y) satisf.'ing

(6.5) p(-t:, x, y) = j"p(t: rz. qy) for all rl > 0. t > 0.

iff it is self-similar of index 3.

Proof.

(i) Sufficiency: For A C Bd.
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..

= 1 "'dx ! dyp(j-'t:.x, y)

= f d q~dx dy , l p(t;r x. qy) by (6.5)

= JRd duL drp(t; uc)

= P m (X(t) e A).

(ii) Necessity: By self-similarity

PjiqX(q-t) e Al rjk(i-3t,,) z} = P{X(t) E A X(to)= x4.

i~e.

P7-o(t t)(zr - , i-'A) = Pt-t 0 (x, A),

where Pt(z,A) is the obvious transition probability function. Setting t - to = s and

transforming the last equality to a statement about densities gives

p(o- s; z y) - qdp(s; , fly)

as required.

Lemma 6.2. Let go be the Green function of X (and so also of X). If X is self-similar

with parameter 3 then for all q > 0

(6.6) g°(z,y) = qd-iog6  z 'w).

Proof.

g"'( (qz, rny) = p(t: qx, ry) exp(-tOrv-)dt

q e- J c-p(sqj: riz , qy)d8

-
-  e p(s: x, .y)ds by (6.5)JO

- 9g°(x, y),

from which (6.6) follows trivially.
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As an example is probably in order at this point, the reader might like to check for

himself that Brownian motion is self-similar with 3 = 2. Relation J6.6) is most easily

verified from the Fourier transform representation (3.5) of the Green function.
I*

Note that whereas Lemma 6.1 gives a necessary and sufficient condition for self-

similarity, (6.6) is. as it stands, only necessary. If. however, we assume (6.6) for all 9 > 0,

then it is easy to see that is also sufficient.

6c. A prologue to renormallsation.

The above shows us that many Markov processes are self similar. It thus seems

reasonable that if we sum appropriate functionals of these processes then the limiting

sums - that is, the Gaussian fields and their functionals - should somehow inherit this self-

similarity. There is. however, one more parameter in this picture that requires normalising.

Inherent in our construction of Markov functionals was an exponential damping factor. In

constructing 'X from X. the time change is compensated for via a change of initial measure

and a scaling factor. In building functionals on X that will be distributionally equivalent

to those on X, we shall also have to compensate in the damping factor for the different

time rates.

Another way to think of this is to recall, as we noted in §2b., that the exponential

damping is essentially equivalent to exponential killing. From this viewpoint it is clear

that when we change the time scale to obtain \ from X, we must also change the rate

at which we kill qx.

We need one more result before we can continue, that relates the distributions of

functionals of X to those of ,X. As one would expect, for the right sort of functionals,

self-similarity is available.

Theorem 6.2. Take X a right Marko process with symmetric Green function go. Let

SE M"k, k > 1, and define -(ot. q) by

(671 ),4) =
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I

Then, if X is self-similar with index 3,

F'(IXi. F (-kVI+)/2F,1?3 , Xk), n k(d + 3)/2.. . .. -1-- x (a , ) I- 1. . .

'

Proof. For notational convenience, we assume that , is absolutely continuous with density

q(x) on Rdk . The general case is handled, as usual, by passage to the limit. Then (6.7)

becomes, with a = k(d + 3)/2.

(6.8) ,q(x) = -kcd+ )/2 q(x/q)

The first thing we must check is that 'q E M°-O',k: i.e. ( q,7q)o1 -8 < oo. But, by

(2.10),

('q, ,, = J q(x)g9O' - (x, y)-q(y)dy

= 17-k(d+3) f qx/q)g"-'(x'y)q(y/q)dxdy by (6.8)

(6.9) = 1 k(d-) J q(u) gO'- (q u. qv) q(v)dudv

r
q ]q(u)g'(uv)q(v)dudv by (6.6)

= (q,q)o,

which is finite by assumption. Thus F_' , is certainly well-defined.

The next thing we shall need to know is what happens to F,(X... Xk) when we

change the initial distribution of the X, from m(dz) to qdm(dz). But this is clear, for the

characterisation 12.11) between F' and -, gives us that

* (6.10) {F"(X . . . . . Xk), with initial distribution m(dz)}

..... ............ Xk) with initial distribution q, tn(dz)}.

This is all the background we need. Now note

F I.... ............. .\-)= J e- alitI q(\i(1i), .... .\'X(tb))dti . ..

07-1 'a'h e0? Xitq)q-I.V(tki)dt . diktk)I.

q-k(.*)/2 J _7 -1 8 It q(?fI'XI (i).qTI' (t))dti . .. dtk.
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where the X, have initial measure r- dm (dr), and we have applied (6.10). Map t, -

in the last integral to obtain

1.4 (X. Xk)-? /J e -Olq (r-k.Y1y(ri) -vI'k(1 rk))drl dr k
, ~F (X... • • o

by self-similarity via (6.4). This proves the theorem.

We are now in a position to return to the study of Gaussian fields.

6d. Renormallsing Gaussian fields.

The basic renormalisation of a function indexed field 0 is the ,4Z given by (6.1). As

we noted earlier, if I * is called self-similar. We wish to extend the notion of self-

similarity, by starting with a family of covariance kernels g#(z. y), 0 > 0, which are the

Green functions of a Markov process. For each 0, 0' will be the corresponding Gaussian

field. We call the family {0, 0 > 0} renormalisable with renormalisation parameters (a, r)

if

(6.11) -- - ",

If the t o are measure indexed, set

(6.12) h)

where , is defined at (6.7), in order to define the renormalisation parameters.

This notion extends that of self-similarity in two directions. Firstly, the two fields

need not be defined on the same probability space. Secondly. there is an extra parameter

available in the renormalisation in order to match the fields. This corresponds to mass

renormalisation in quantum field theory (c.f. Glimm and Jaffe (1982)), and is completely

missing in the usual theory of self-similarity. We have

Theorem 6.3. Let g. 0 > 0. be a Green function of a self similar Markov process. with%

index 3, and let {0 , 9 > 0} be a family of Gaussian fields with covariance kernels q9. 0 >

(J}. Then the • o are renormalisable with parameters ((d + 3)/2. -).
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Proof. For this result we do not need to explicitly consider the Markov process corre-

sponding to g9. In fact, since all fields are mean zero and Gaussian. we need only check

that covariances match. Thus. take f.h E Si. set a = (3 + d)/2 and note

E{ ".0 (f)."-O (h)}

=El 0 (,''f). 0 r:"'h)}

= J/~,f(x)'gr' (x,y)'h(y)dxdy

= J2a+-" Jf(/rI7,)8(xTrj,.//)h(y/1?)dzdy by (6.2), (6.6)

= J f(u)g(u, ')h(i')dudr

= E(~r(f).,&(h)}.

Thus the covariances do, in fact, match, and the theorem is proven.

In the final result of this section we consider the renormalisability of additive function-

als of Gaussian fields. In essence, we have already done this, for we know via the specific

results of §4 and the more general results of §8 that all additive functionals of Gaussian

fields can be approximated by sums of additive functionals (c.f. (4.5)) and Theorem 6.2

tells us when the latter are renormalisable.

For completeness, however, let us state the following result for the stationary case, for
I.

which the reader does not yet have to know the results of §8.

Theorem 6.4. Under the assumptions of Theorem 6.3. take a -y E -,smm Define for

'1 > 0. y as in (6.7). Let 'o(,y) and Ve"-(_y) be as in (4.4). Then

(6.13) 1P )=--T - ( N 1  a = k (d + 3)/2.

Proof. The result follows trivially from Theorems 4.3 and 6.2. We need only check that

E *M"n 
' . But since -j is symmetric with inverse Fourier transform of the right kind,

it is automatically in ,,. Thus only integrability needs to be checked. This, however, is

the calculation at (6.9), so we are done.

In the terminology of normalisation parameters, we have
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Corollary. 'I~-)is renormalisable for the pair (k(d + .1)/2,,1).

Proof. Compare the definition (6.12), with the result (6.13) and the definition (6.7) of

the renormialised
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7. Moment Proofs

In this section we shall give a proof of the limit theorems of Section 4 via the method

of moments. For reasons we shall outline below, this methodology works perfectly for

Theorems 4.1 and 4.2, which treat only convergence to the Gaussian limit, but breaks

down in Theorem 4.3 if the integral (4.4) defining the functional TO, is more than two-

dimensional. (Or. equivalently, if the F' of (4.5) is defined on more than two X, at a

time.)

In essence, the proofs of this section are redundant, for more powerful techniques,
which work in more general situations. will be used in the following section. Nevertheless,

we include them for two reasons: firstly, they are conceptually easier and considerably more

concrete than those of Section 8, and, secondly, we find it both interesting and illuminating

to calculate the moments of the limiting distribution per se.

To make life a little easier. we note the obvious fact (e.g. Reed and Simon (1972), p.

51) that linear combinations of functions of the form

(7.1) f/(rl. Xk) = f(.1)... f( () f E )X'.

are dense in )Li., and linear combinations of measures of the form

(7.2) ^t,(dx,... ,dxk) = ,(dx)... (dxk) ,E M"-'s "

are dense in gym*m. Consequently, since the functionals §0(.), V' .V,(.)and ' (-)are

all continuous in probability, it clearly suffices to prove the Theorems of Section 4 for f,

and - of the form (7.1) and (7.2) respectively.

In this section we shall limit our discussion even further, to the case of k = 2, because

of the following result.

Lemma 7. 1. For f E Sd and -y E *M1  , the moments ofoa°(f) + 3 eV( ), a, 3 E IR.

determine the joint distribution of o (f) and V1 (-J.

Proof. By Feller (1979), Problem 30.3, for example, the joint distribution is determined
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by the mixed moments if, for some a > 0.

(7.3) -. _ -'E{ } < 0C,

with X = 1o(f) or '0(,1. But standard results on multiple Wiener-Ito integrals (e.g.

Major (1981), p. 119) tell us that the n-th moment of a k-fold integral is of order

* exp[(k/2)nlogn + O(n)] . Since V9 and 'IP correspond to k = I and k = 2, condition

(7.3) is satisfied. Note, however, that for k > 2 this condition is not satisfied. and, indeed,

moment methods do not work in this situation.

We now turn to calculating the mixed moments of the lemma, for which we shall

need certain Feynman diagrams. The diagrams that will suffice for our purposes consist

of a set of vertices, labelled 1-..., m, and legs labelled (i, j), = I. k,, which belong

to the i-th vertex. We shall require only the cases ki = I or 2. A diagram, denoted by

(kl,.. ., kin) is formed by pairing all the legs in such a way that the legs in each pair

belong to different vertices. Figure 7.1 shows the two unique (up to permutations of legs

belonging to a given vertex, or of like vertices among themselves) diagrams for (L. 1, 2, 2).

*. (Note, that in the notation of Major (1981) and Dobrushin (1979) we consider only what

*' they call the complete diagrams.) Note that in general there are K = kl + ... +km legs,

and so K/2 pairs.

I S.

"2

Figure 7.1. The two diagrams for (1, 1.2,2).

The broken lines represent bonds, the heavy lines represent legs.
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We can now turn to the moments of ao + 3*P. Clearly. it will suffice to find an

expression for
E {[$9 (lf)]rn[if (')]l -m }

(7.4) =E{[J . IA) Z~o(dA) l['f(A A2 )ZG(dA )ZGdA2 )n-m}.I

for n = 1,2..... m = 0,1.... n. But this is now easy, for prepared formulae for the

expectation of moments of Wiener-Ito integrals already exist. To present them, let r(n. m)

be the collection of all n-vertex Feynman diagrams for which the first m vertices have only

one leg, and the remaining n - m vertices two legs each. Since there are m + 2(n - m) =

2n - m legs, and so n - -m bonds, in must be even.

We number the legs by an index a. a = 1, ... 2n - m, and denote a bond by a pair

(a . 2). (Clearly, not all 2-tuples are possible.) Let A be the set of a for which the a-th

leg comes from a 2-leg vertex. Define

f j(A)12G0 (dA) a, 3 E Ac,

(7.5) r.,= f 1(A)I2G8(dA) a, 3 E A,
f (A) f *(A) Go(dA) a E A, 3 EAC

or o E Ac, 8 E A.

Note that in the third case the various symmetry requirements give us that r"' is also

given by

* (7.6) f) j(~(AG(d\ ( ) ~G"(dX).

We can now state

Lemma 7.2. For f E Sd and E * m n > 1. m = 0,2,..., 2tn/21,

(7.7) f } = 2 ...

where the sum is taken over all diagrams in t'(n.m). and q n - Im. Form odd, the

mixed moment is zero.

Proof. All the hard work has already been done, in setting up the notation. The Lemma

is a straightforward special case of Corollary 5.4 of Major (1981).

Before we can finally turn to the proof of Theorem 4.3. we need some information on

the moments of functionals of Markov processes.
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Lemma 7.3. Let X be a .farkov process as in Section 2, and -l, -' E Mo'. Then

E{F, (X) F X)' -'(/) I(dx)go(. 2 (dy)
(7.8)

In particular,

E {F-j(X)I2 } = o-i , j).

Lemma 7.4. Let X be a M{arkov process as in Section 2. and y E MftO' 1 Then, for n > 1.

E{1F'iX))'} 0 (ni) Jf n ) (I, 2 ) ... I6(n.i-zn)-dxi)...(dxn)

(7.9) 0(n 1)! f .g(i, X2 ) ... gO(.n-i,tn)t(dx). .. dn).

Both of these lemmas are of the same form as Theorem 5.2 of Dynkin (1984), where

similar moments are calculated. albeit for a slightly different class of processes and func-

tionals. It is a straightforward, although tedious, exercise to follow through Dynkin's

calculations to obtain the lemmas.

We shall also require

Lemma 7.5. Let X be a Markov process as in Section 2, and Y2 E M ''2 such that

Y2{dxl,dX2) = '-y(dz1 )' 1(dz 2 ) with -7 e .M°". If F' and F' are the corresponding

.. additive functionals, then

F8 F" ..)' X)
F~(XI, X 2 ) =1

Proof. In the notation of (2.13)-(2.14), we have

h 2 (zI,z 2 )y 21' ( dz 1 ) , '2 (dz i, dz 2 )

= 1 1(dxz)-yj(dX 2 )

= h, lx,)h,{X2)-,',(dx,)-,'dX2).

for some finite " . Thus, with 6 = ( 6 1. 62).

h2 (z1 . 2bJ(Xz, 2 ) = h(zj)hi(X2 )f e 6 dlP 61 (z-I~t)p6 2 (X2 .Y2 ),'Idil)Y (dX2 )

-h b-l, (1 ).hI ("2)b-. (X2
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Applying the above equivalences to the defining form for the F , establishes the Lemma.

We can now finally turn the

- Proof of Theorem 4.3 for the case k = 2

Firstly. we shall need to add one more assumption to those surrounding Theorem 4.3.

viz. the integrals

(7.10) go (X1-.X2)...g'(x , x,,)-.ldxl)... ,ldx,)

are finite for all n > 1. Since by Lemma 7.4 these integrals bound the n-th moment of the

limit variable 's(',) of the theorem, their finiteness is a natural ingredient of any moment

proof.

* .We commence by noting that by Lemma 7.1 we need only prove convergence of mixed

. moments to obtain the convergence in distribution of the Theorem. By (7.1), (7.2) and

the comments there we can restrict ourselves to 'Y2 E "syr'm which are of the form - x ",

with -E " 'smm

To make life notationally easier, let us write the field Vo(f) of (4.1) in the form (-yl)

of (4.3). where yj - 1(f) is defined by - 1(A) = fAf(x)dz, and we have ",i E "..

Consequently. we are interested in studying the mixed moments of (0(- , (, 2 )), with

NlEM ° I and , E*M 2  n and of product form. We have, for n > 1, rn < n. A > 0.

M {[an. d)m [12( E ) -m }

E I

N=<(<k<(X)

- {[9/)n 1 / 2 ruF 1 (,I.(9A e G(ffF~ 2 XkI

=2m -n (6/A I r// ' (E{(j,)k}.E (1F(lj,k)}Y, N.
N =2

where i = (i. . im), j = ji..... jn-,), k = (k1,.... k,,-m),

(ij, k = a,, .. . .. 9k, 1k.

7 (Lij.k)= F9 (X,,) ... Fe(X,,,)F . .. F (X=Y 1F., 7 (.' -Xk.) (X- . Xkn-)

-Fe. (.\, .).. E9. , (X.,,F" (X ) ...V (.- ,)F (.\ l) ...FV (.-,_,, ).
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(the last equality following from Lemma 7.5). and the sum E' in (7.11) is over all i.j. k

with components in (1 ...... } such that j, X k 0 ,a = I. n - m.

Consider the expectation of the product r'(i.j,k). This is clearly zero, unless each

0. appears an even number of times among the 2n - m ar's. Thus, if m is odd, the mixed

moment is zero, as is, by Lemma 7.2, is the mixed moment of to and OV. Henceforth,

therefore, we assume m is even.

We now consider those configurations (i.j, k) composed only of q = n - m/2 different

indices, (a .a), each a, appearing precisely twice. Then. clearly.

(7.12)r(,,k) = f , = 1.

Consider the corresponding ,rF(I,j, k), appearing in (7.12). To each ,2, in (7.12) we can

associate a term r(, coming from the expectation of the product of two functionals of X,,.

according to the following rules: (c.f. Lemma 7.3). If a = i,= jb. or a i= kb, then

(7.13) r, E{Fo (XA, )F.(X,)} =0- ,

If 0 = ib= , then

(7.14) = E{F, (X,. )F,(X0 )} = -' ( -1 8)o.

If a =j = jb, or a = ja = kb, or a = ka = kb, then

(7.15) r = E{F~(Xa )F~(X v)} = o-'(. >oe.
7 '1

Consequently, still in the case of precisely q different indices, the expectations of the

7r terms in (7.11) depend only on the patterns formed among the indices, and not on

the indices themselves. Now note that we could choose ....... , aq) from (1 ..... V) in

(N!)/(N - q)!) different ways. so that we have

(7.16) E A
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4.A
'  N ! 1WvW W . . -

= X- I ' A- EI 'Oq97E{rF (I j, k) I + other terms
= ! N (N

= 2"' -n 'OqE{ F(Ij, k)} + other terms,

where the sum is over all the (ij, k) of (7.11) of the paired form discussed above. The

"other terms" come from choosing q' < q different indices (a 1 . aq). so that some of

the a', appear 2 p times, p > 1. These terms are asymptotically negligible, since under

(7.10) boundedness of the moments of F', and F' (Lemma 7.4) guarantee that the (q -1)

"other terms" are of order

eo-e'AN  N!""
A N A-q =A - (q - q')  0 as A -,N =q' (Nv qlj!" '

Thus it remains for us to consider the A-independent expression

(7.17) 2m" 'I9{ (ij,k)}.

This is clearly expressible in terms of the r, of (7.13)-(7.15). Now recall the initial defini-

tion of - in terms of f. to note that if G o is the Fourier transform of g0 then:

6 =1 08 f(A)1G(dA),

o G(dA),

b I, l)o (A G9 ()* (~ dA).

That is, the r,'s of (7.13)-(7.15) correspond to the r,'s of (7.5), modulo a factor of 0.

Furthermore, we can write the sum in (7.17) as a sum over Feynman diagrams F(n, m), in

which the rn single-leg vertices correspond to indices in 1. and the n - m double-leg vertices

correspond to indices in j and k. Thus, since the factors of 0 cancel nicely, we have that

(7.17) is precisely (7.7). That is, the mixed moments of $01(f) and ('-12 ) converge to

those of V,(f) and *o(, 2 ). This completes the proof.
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A remark on k > 2. It is possible to sihow that even if k > 2 the moment sequence of the

approximating sums converge to those of the Gaussian limit. The only essential difference

* . in the proof is that more complicated Feynman diagrams are required. Wolpert (1978b)

has actually done this for the special case of X Brownian Motion in IR2 , and the additive

functional of the limiting field a Wick power. Note, however, that for k > 2 the moments

of Gaussian functionals do not determine their distributions, and so no convergence in

distribution result can be obtained this way.

We conclude this section with some brief comments on the

Proofs of Theorems 4.1 and 4.2. It is clear that both of these results are virtually

standard central limit theorems, so that all we need check is that the summands satisfy

appropriate moment conditions and the mean and variance of the limit are correct. Both

of these, however, follow from Lemma 7.3, and so the proofs are trivial.
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8. The General Limit Theorem

.In this, essentially final, section we shall state and prove a more general result than

those of Sections 4 and 7. The motivation for. and intuitive appeal of this result is as

for the earlier ones. Having seen how the arguments of Sections 5 and 6 apply to the

Theorems of Section 4, the reader who has got this far will see how they also apply in the

° most general situation.

In order to set up this general result, we shall need a theory of multiple Wiener inte-

grals far more general than that of Section 3. We thus recall such a theory, due to Dynkin

and Mandelbaum (1983). that has its roots in Neveu (1968). We follow Mandelbaum and

Taqqu (1984) most closely.

8a. Wiener integrals on an arbitrary space.

Let (X, B, v) be an arbitrary measure space, and define a Gaussian process It on

* '2 (v) with zero mean and covariance

(8.1) E{Il(fl)Ij(f2)} = v(flf2) : f (x

If we consider the subfamily

{(B)=I(B E B,v(B) oc

as a Wiener process on X, then I can be written symbolically as

II(f) = (x f()(dx)

Now write )?k= Mymr (vx ... xv) for the space of symmetric functions hk(X. Xk)

for which

"k(hk)= hz. Xk)t(dx) ...v(dXk) < .

The multiple Wiener integral of order k is a linear mapping Ik from )(k into the space

f random variables which are functionals of the Gaussian family II(f). The mapping is

defined uniquely by conditions .4 and B following:
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(A) For functions of the form

(8.2) h (.x .  Xk) f(i)... f(zkt f E 2(tV)

we have

(8.3) 4(h1 ) = (V(f2)k/2H( Ii).

where Hk is the Hermite polynomial of degree k with leading coefficent 1.

(B) For hk E )k,

E[I (hk)I = k!Vk(h').

Again, symbolically, it makes sense to write

Ik(hk- J .f/hk(X, k)W'(dxl...W'(dXk).

It is important to note for later use that the linear combinations of functions satisfying

(8.2) are dense in )k, and so their integrals are dense in the space of all integrals.

8b. A general limit theorem.

The following theorem follows from Theorem 2 and the discussion of Section 1.5 of

Dynkin and Mandelbaum (1983).

Theorem 8.1. Let X,X 2 .... be independent and identically distributed random vari-

ables taking values in (X, B), and with distribution v. For A > 0 let N\ be a Poisson

variable with mean A, independent of the X,. Let 9 1 , '2 . .. be an i.i.d. sequence of

variables with P{o, = +1} = P{, = -1} = -, and independent of both the Nx and X,.

Finally, for k = 1,2,..., take hk E )lk and let Ik(hk) be its multiple Wiener integral as in

the previous subsection. Then the random variables
00

(8.4) Z\(hlh 2 ... ) : Z A-k/2 Y r,7 ... yhk(X,, .... X,).

k=I

with the inner sum over I < it < i2 < < ik < NA, converge in distribution, as A - 30,

to

. (8.5) Z(h 1 ,h 2 ... Ik(hk

k=1

53



As noted, an elegant proof of this powerful result can be found in Dynkin and Man-

delbaum (1983). In Mandelbaum and Taqqu (1984) the result is extended to an invariance

principle.

Now let us consider a special case of Theorem 8.1. Let X be a right Markov process

with symmetric Green function g0 . Let X = (Rd)R+ be the path space of X, and v the

measure the process induces on X. For k > 1, and ,k E . let F9k be the corresponding

functional (as in §2.b) of k independent copies of X. Then, in the above notation, F9 E )k

and so the multiple Wiener integral Ik(F" ) is well defined. Since there is a one-one

correspondence between functionals Ik(F ,) and the pair (fk,O0), we save on notation by

setting

(8.6) Ik(Yk, 0) Ik (F').

Let N and Ol. 02, be as in Theorem 8.1, and X 1 , X2, . i.i.d. copies of X. We have,

as an immediate consequence of Theorem 8.1,

Theorem 8.2. For 'Yk E A.k
r

(o/Ak/2ET ,,.,h Fk (X, X,,X )
k=1

converges in distribution, as A -- oo, to

00 ok/2

k=1

This result completely incorporates the results of Section 4. and is, in fact, far more

general, since far fewer restrictions are placed on the '7k. The restrictions there, that
*'4O,k

'7k E o,symm, were placed primarily to permit easy identification of the limit as a simple

Wiener-Ito integral. In the more general result above, it is not quite as clear what the

Ik(,k, 0) are.

To relate Theorem 8.2 with what has gone before, let us use it to obtain a new
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Proof of Theorem 4.3.

We have to prove convergence of the pair/( ((f), 'T'{j-)) of (4.1) and (4.5) to the pair

(V(f), *o(-)) of Section 3 and (4.4). The restrictions of Theorem 4.3 placed f in S(go).

and 7 in *MO.k

Firstly, to make comparisons easier, affix a suffix k to "': i.e. 7k = Now use

-y = " t(f) to denote the measure in .M' with density f. Then, comparing (4.1) and

(4.5) with the definition of an additive functional in Section 2, it is immediate that we

have

,(f) - f I x3 (f))

Consequently, by Theorem 8.2 and the Cram~r-Wold device, we have that (X (f), A,({k))

converge in distribution to some pair (01/2I (,, )',1 kfk, 0)) We need only check that

this is, distributionally, the right pair.

We know that I(.) is Gaussian, with zero mean. Its covariance function is given, for

P 1,p 2 E Me", by

Et(1j,,j)11(P2 }= E{F" P }

- 9'J /A(d)g'(ZxY)Iz(d1/).
=o'f f.

(c.f. Lemma 7.3). Since -y has density f, the last integral leads to var(Ii('Y1 )) =
0-' ff f(.)go(.,y)f(y)dzdy, and so l(y)O-)2/2 $(f). To complete the proof. we con-

sider yk E *Mo 'k of the form

Ilk (d x l, . d k ) - (d l ) . (d zk ), E, *M o"I

The linear combinations of such -yk are dense in *M"mm, and so it will suffice to consider

them. We have

k(1k,O) = Ik(F'.f~) It,(FO)
(8.7) = [E((F')2flk/2 Hk
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by (8.3). But. since the equivalence between 11 and ° has already been established, and
*O. we have

-symrn

(8.8) i1 F") = j ;(A)ZG, (dX),

via the Wiener-Ito integrals of Section 3. Now apply Ito's lemma (e.g. Major (1981), p.

30) to (8.7) via (8.8) to obtain

Hk(

Thus
9 k/2k---- Ik (h k, 0)= f .. j(AL) ... j (.X; Z., (dA .. Za,#(dlk)

= € (Yk)."

by (4.4). Furthermore, the above argument also establishes that the joint distribution of

the limit variables is the correct one, so we are done.
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9. Concluding Comments.

Some comments on what we have not done:

1. The connection with Physics. Throughout the paper we have made numerous

references to Euclidean quantum field theory, without ever being really precise. This was

to avoid trebling (at least) the length of an already overlong paper. The reader now

interested enough to find out more about this could start with Glimm and Jaffe (1982).

2. The discrete case. We have not considered lattice indexed Gaussian fields. It is clear

that this could be done by representing them as the sum of random walks on the lattice.

rather than the more general Markov processes we have considered. Some of these results

could be obtained from ours by using the "discretization" trick of Dobrushin (1979). This.

however, would be like using a sledgehammer to kill the proverbial ant, since a direct

approach would be very simple. For an idea of how this might go, see Williams (1973),

Spitzer (1974). or Dynkin (1983).

3. No transition density. Not every Markov process has a transition density, nor does

every Gaussian field have a covariance functional that can be written via a kernel. In

the more general case, Dynkin's theory of additive functionals (§2) based on the Green

function and symmetry could be replaced by a theory based on the resolvent operator and

duality (c.f. Dynkin (1982) and Getoor and Sharpe (1985)), and so a more general class

of Gaussian fields considered. Since no new insight would be forthcoming. while a lot of

very difficult Mathematics would, we shall leave this to our betters.
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