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‘(build'/versions of generalised Gaussian pro- -

Our primary aim is to
cesses from simple, elementary components in such a way that as many
as possible of the esoteric properties of these elusive objects become in-
tuitive. For generalised Qaussian processes, or fields. indexed by smooth
functions or measures oxik"’, vour building blocks will be simple Markov

2 soe 4
processes whose state space i;/R‘. Roughly speaking, by summing func-
tions of the local times of the Markov processes we shall, via a central
limit theorem type of result, obtain the Gaussian field.

This central limit result, together with related results indicating
how additive functionals of the Markov processes generate additive func-
tionals of the fields, yield considerable insight into properties of gener-

.

alised Gaussian processes such as Markovianess, self-similarity:.

I

locality” )"
. of functionals, etc. :
Although the paper is comprised primarily of new results. and de- .

spite the fact that the subject matter is somewhat esoteric. our aims

are primarily didactic and expository - we want to try to initiate the >

uninitiated into some of the mysteries of generalised processes via an -

easily understood model. / "
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1. Introduction.

This paper is about generalised Gaussian processes and <ome of their properties, or,
to be more precise. it is about a way to think about these things without becoming too
confused. Generalised Gaussian processes can be succinctly defined as isometric mappings
from a Sobolev space to a space of Gaussian variables. and virtually all their interesting
properties can be stated in terms of the associated Fock space. While such definitions and
statements are both neat and precise they do nothing to help the non-expert understand
what these rather esoteric objects are. Our plan is to write for the novice — we shall start
at a point which seems to us to be a natural beginning, and follow a natural sequence of
observations and constructions that will ultimately show Sobolev and Fock spaces, along

with much that goes with them, in a fashion that is intuitive for anyone who knows what

a Markov process and a central limit theorem (CLT) are.

Since generalised Gaussian processes and all that goes with them are actually a part
of Mathematical Physics, (they are “just” Euclidean quantum fields, but we shall take
up this point later) and. as such, are supposed to describe the behaviour of elementary
particles, let us start by watching such a particle. In fact, let us take N > 0 such particles,
each one of which, at some common and fixed point of time, “pops” into existence and
then proceeds to wander about space, which we take to be R%, d > 2. Assume the
“birthplaces™ of these NV particles, z,,...,zn are distributed randomly in R according
to some law, and that each particle executes a Markov motion through R?, described by
¥ independent Markov processes X, (¢),..., Xn(¢). ¢ > 0. To make our story sound more
like Physics, we shall also assume that each of these particles begins its life with a charge
0., where P(a, = +1) = P(g, = —1) = 1/2. The charges of different particles are assumed

independent.

To complete the story, suppose that at time ¢ the original unit charge has dissipated by

a factorof e~ ¢

. and that as each particles performs its Markov motion through R? it leaves
each point it hits with a charge equal to its own charge at the time of hitting (i.e. ge~?).

What we, as amateur physicists. would like to know is what does the charge distribution

3
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throughout R? look like after all our particles have decayed to inconsequentiality. Clearly.
as probbilists. we shall only be interested in the N — oc limit of this question'

Considering only one such particle for the moment, it is clear that the key to solving

445

our problem must lie in the definition of some sort of weighted local time, a random function
L.(XX) that would measure the amount of time the path X(¢t).¢ > 0. spends at the point
S z € R, weighted by its charge when visiting. That is, we would like to make sense of the

equation
(1.1) L,(.\'):/ e~'5(X(t) - z)dt,
0

where 6 is the Dirac delta function. For the moment let us take (1.1) at face value, even

RN

though, as we shall see later, it has no fully rigourous meaning. Then our problem reduces

to studying the behaviour of the sum e

N

®n(z):= N2 Y oxLa(X)

k=1

LA N Yy

as N — oxc. If there are enough moments about (and we shall ensure that there are) then
the independence of the X should. with a standard CLT, ensure that the ®y converge to
a Gaussian random field on R?. This would be a first step towards solving our problem.
(But only a first step, since, as amateur physicists, we would also like to know something
about how particles interact. So far, nothing in our model allows for interaction.)
Unfortunately, this simple minded approach has one basic flaw in it - the integral in
(1.1) does not generally exist. Probabilistically this is because most Markov processes (e.g.
Brownian motion) do not hit points in R? d > 2, with non-zero probability. (In terms of
the physics of the limit random fleld this turns out to be related to such elegant concepts as
the Heisenberg uncertainty principle!) To get around this difficulty, we note that instead v
of asking how much weighted time each particle spends at a given point, we could ask

about the time it spends in some small set A. Writing 14 for the indicator function of A,

TeTm A s ¥ B

LSRN AR R

this would lead us to a weighted occupation measure which we could denote by

x

. (1.2) LA(.\’):L(IA:X)::/ e~ (X (1))dL.

0
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There is no question that this object exists without anything but the mildest measurability

conditions on .X. Of course, if (1.1) were justifiable, then we would have

L(IA:.\')::/ L,(X)d.r::/ La(2)L (X)de.
A R¢

Freely generalising these equivalences, let us now take f to be any “nice” (we shall be
more specific later) function on R?, and consider a time and space weighted local time of

the form
(1.3) L({f. X) :=/ flz)L (X)dz.
Rd

With f an indicator function we recover the well-defined (1.2). With f a delta function we
recover the ill-defined (1.1). With f belonging to just the right class of functions {Schwartz
or Sobolev space - but wait for details) (1.3} can be shown to make perfect sense. Another

way to write (1.3) is to notice that if, in fact, L, existed, then we would have

e

(1.4) L(/: X) =/ et f(X{t))dL.

0

In this formulation L{f: X) is certainly well-defined with only minimal assumptions on f.
Nevertheless, (1.4) is undesirable for two reasons. Firstly. it does not generalise easily to
the measure-indexed local times we shall consider in a moment, and. secondly. it does not
have the intuitive appeal of (1.3).

If. in (1.3), we think of f as being a weighting function for the point indexed local
time, then it is only a small step to think of weighting by measures. That is. if g is a pice
measure on R? then we can make sense of the weighted local time L(u. .X) which we write,
symbolically, as

L{pX):= /R‘L,(-\')u(dr)-

Again. although L, may not exist. it is possible to make sense out of L{u. X).
Returning now to our CLT. it is clear that the sums we should really be working with

are either

N
(1.5) ®u(f):= NTVEY ol LS. X

k=)

Tt e -
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Oor

N
(1.6) Ox(p) = N7V o L{p Xe).

k=1
The limits of these sums will be Gaussian variables parameterised, as we vary the weights
[ and p. by either a family of functions or a family of measures. The Gaussian processes
thus obtained will be the generalised Gaussian processes that we mentioned in our opening
sentence. and the CLT described will be our tool for studying them. This, however, does
not represent the end of our task. for we have not yet found a way to describe interactions
between particles.

For the sake of simplicity. let us consider for the moment only a very simple type of
interaction. Recall that as each of our particles passes a point z € R it leaves behind a
charge oe~!. where ¢ is the time at which it hits z. Suppose another particle hits z at time
s. leaving behind its charge, and that charge behaves in a multiplicative fashion {a highly
unrealistic assumption, but we are only amateur physicists). That is, the charge left at r
from the interaction of X, and XX, hitting at times ¢, and ¢;. respectively, is o,0,e~(t+0),
Consequently, if we are interested in the total interaction charge at - then we must study

a new sntersection local time of the form

~ OC

(1.7) LX, X,):= / /"x e 16X\ (t) — £)e™*6(X,(8) — z)dtds.
o Jo

Of course, if (1.1) with its single delta function doesn't exist, then a fortiors, neither will
this new intersection local time. Nevertheless, we can proceed much as before, firstly
replacing the delta function in (1.7) with the indicator function of some set, and then with
a general function or measure, to ultimately suggest a weighted intersection local time

which could be symbolically written as
(1.8) Ln:X,. X)) :=/ L:(X,. X, )u(dz).
Rd

Working somewhat harder than we have in the above argument, we shall see later that the

left hand side of (1.8) can be given a rigourous meaning.

6
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With a notion of intersection strength {between two particles at a time) now defined.

we could hope to study a total intersection process by looking at the sum
(1.9) Wy (u):= N"'To,0, L(p X.. X)),

the sum being over all i < j. 4. j = 1....,N. As probabilists we would now like to send
N — x in this expression. It is clear that no simple CLT will work here. since the
summands in (1.9) are dependent. Nevertheless, one could hope that since looking at the
local times of the Markov paths themselves lead us to a generalised Gaussian process. then
looking at a functional of these paths (their intersections) should lead us to a functional
of the Gaussian limit. In fact, this is precisely what happens, and (1.9} converges to what
i1s known as the Wick square of the basic Gaussian limit. The Wick square lives in the
first interesting part of Fock space, and so we shall now have a way of thinking about
generalised Gaussian processes and their Fock spaces in terms of simple Markov particles.
This is precisely what we are after’

Before we can go any further. we are going to have to start making the above picture
somewhat more precise by defining our terms more carefully. In the following section we
shall therefore collect some information on Markov processes and their additive function-
als. (Both the local times L(p; X,) and L{u:.X,,X;) are additive functionals.) In Section
3 we shall do the same for generalised Gaussian processes and thesr additive functionals.
(e.g. Wick squares) In Section 4 we shall then be able to continue where the introduction
leaves off, by properly formulating general limit theorems that allow us to describe Gaus-
sian processes and their additive functionals via Markov processes and their functionals.
Following this, we consider the insights that these results lead to in Sections 5 and 6.

The casual reader can then stop, for the harder work starts in Section 7 with a proof
of special cases of the main result via the method of moments. (This is not too hard.) In
order to prove the most general form of the main result, we need to know a little more
about the multiple Ito-Wiener integrals that describe Fock space than what is given in

Section 3. Section 8 provides this, and also contains the final proof. which is also not too
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hard. given that everything has been carefully set up for it. Some closing comments are

made in the concluding Section 9.

Before commencing, however, we have some general historic comments and some ac-
knowledgements to make. Our program of viewing Gaussian fields from a Markov outlook
is not new. The fields that we shall consider are known to mathematical physicists as
Euclidean quantum fields. and are imaginary time versions of real quantum fields. As such
they have been studied extemsively. Furthermore, it has long been known that they are
related to Markov processes. the seminal work in this area being due to Symanzik (1969).
This approach has been taken up and developed at length in a program of Dynkin's {1980,
1983, 1984a.b. for example) to relate Gaussian and Markov processes. However, through-
out all these projects there is no attempt to tie in the Gaussian and Markov processes via
a physical model of the kind described above. The only exception to this is in the work of
Wolpert (1978a.b), which builds a model very similar to that we have constructed. In fact,
it was Wolpert's elegant construction that lead us to the results that follow. Our results
differ from his in two ways. Firstly, they cover a much wider field of models, (he deals
only with the so-called “free field” and Brownian motion as the Markov process) and we
deal in considerable more depth with the consequences of the model. Secondly, our style

of proof is generally quite different, and, we feel much neater.

The main contribution of our paper, then, is not so much the introduction of a com-
pletely new idea br* rather, the development of a way of looking at things and an expo-

sition of that way that we hope will be at a level to make it available to a wide audience.

Regarding our audience - since a substantial part of our aim has been didactic we
have not written this paper for the expert quantum field theorist who already has a well-
developed intuition about generalised Gaussian processes. (Although we do hope that even
be may find something of interest here.) Rather we have written with the curious novice
in mind. In particular, we should point out that most readers will find either Section 2
or Section 3 “well known". although we expect that few will feel that way about both.

Feel free to skip the <ection that you already know. The paper also turned out much

8
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longer than we had ever expected it would. After all, our avowed aim has been to produce
something readable, and not a forbidding treatise. However, after a little practice the
reader will learn to separate the interesting and important parts from the clumsy and
space consuming notations that seem to be endemic to this area of Probability, and the
reading of it all should go much faster than one would expect in the beginning.

Finally, the acknowledgements. Our dept to Professor Dynkin's recent work will be
obvious by the citations to it throughout the paper. What is not obvious is the debt we
owe him for an inspiring set of lectures that he gave during a visit to Israel in 1983 which
did much to motivate our work. It is a pleasure to acknowledge that debt now. Haya Kaspi
spent a substantial amount of time answering a lot of questions about Markov processes
in the early stages of this work. We could not have managed without her. Murad Taqqu
helped us to understand parts of Dynkin and Mandelbaum (1983) and Mandelbaum and
Taqqu {1984). Most of this paper was written while both authors were visiting the Center
for Stochastic Processes in Chapel Hill. The hospitality of the Center and its directors

was. as always, gracious and most appreciated.
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2. Markov Processes and their Functionals. :
2.a. Markov processes and systems.
The treatment of Markov processes and their functionals given in this section comes, o,
essentially, from Dynkin (1981), to which we refer the reader for missing detail. y
Let X(t).t > 0, be a Markov process on a probability space ({2, 7. P). taking values

in R%.d > 1. We assume the existence of a stationary, symmetric transition density

(2.1) pel(z,y) = pely, 2)

satisfying fR“ pelr.y)dy = 1 for all x. For each “initial point” r the “probability starting

at x" is given by

P*{X,, € Bu..... X,y € By} =/ / po, (2.dy1 )Pts—c, (Y1 d¥2) - - Peatn -, W1+ dk)
B, B

while each o-finite initial measure m defines

(2.2) P™(e):= / P*(e)m(dz).
Rd

For # > 0 the function

(2.3) # )= [ el 2
0

BRI

is called the Green function for X or p;. To obtain a heuristic feel for the Green function,

note that for an arbitrary set A C R

/ a"(t.y)lA(y)dy=/ / e~ pi(z.y)1aly)dydt N
RY R{ 0 ~
(2.4) =/ e ' P*{X, € A}dt —
N v ]

=E1/ e—et.lA(‘\'g)dt. -.

0 5

But this, with # = 1, is the expected value, when X starts at the point z, of the weighted

occupation measure of {(1.2). Replacing 14 by a delta function shows that g®(r.y) can =

10 v
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be interpreted as the expectation of the exponentially weighted local time of (1.1). with :

t

¢ rather than e~f.

weighting e°

In what follows we shall generally need to consider the Markov system of k > 1

Dy e

independent copies X!, ... .. \* of X. which we write as a R%-valued function on R‘j_ via

; (2.5) X{t) ;= (X'(h). ..., Xk (R)).

For notational convenience. we introduce k-dimensional “transition™ and “Green” functions

as

k k
peix.y) = [[ et yt). Plxy) = [[ o' (20"

t=1 =1

with x = (z!,....2¥) € R%. Note that by (2.1) we always have g?(x.y) = ¢®(y.x).

Throughout the remainder of the paper we shall assume that all processes are right

in the sense of Dynkin (1981).

Yyt e Ty

2.b. Additive functionals. 5

To start with an easy case, let X' be a Markov process in R? and X a system of &
independent copies of it. Let b be a positive, bounded, measurable function on R% and ~

8 > 0. Then the path integral
(2.6) F(I) :=/e“’“‘"’"'“"‘b(X(t))dt
4

defines a family of random variables, indexed by open intervals I C Ri. with the following

2

properties:

e

{2.7) For every path, the function F? can be extended to a measure on Ri,
(2.8) For every I. F?(I) is an element of the minimal ¢-algebra generated by the X(t}.t € [.
(2.9) A shift t — 8 + t of the path of X induces an analogous shift of the corresponding
measure.
The fact that we have written the exponential term in {2.6) explicitly. and not as part

A of the function b, is to recall the exponential weakening of the Introduction. However. in

11




one form or another, some damping is necessary for the integral to be finite. (Even the
simple case b = 14 would lead to a divergent integral if X is neighbourhood recurrent,
nnless the exponential is included.) Rather than damping X, we could leave it untampered
until some exponential killing time. This would lead to a similar theory and. in terms of the
Introduction. would take us closer to Wolpert’'s model. Purely for reasons of mathematical
convenience, we prefer to dampen in a continuous fashion.

Any family with the properties (2.7)-(2.9) is called a homogeneous addstive functional
of X. The class of all such functionals is much larger than that obtained by integrals of
the form {2.6). In fact. what we shall be most interested in will be situations in which
hX(t)) =" o5 "X (t) — X2(¢)...... X*-1(t) - X*(t)). with 6™ the Dirac delta function

on R, Iu such a case. the additive functional F® measures the set of common points of

To extend (2.6). let ~. v be measures on RY*, and introduce the inner products

(+ 1o =/~;(dx)g"(x.y)u<dy)
(2.10)

Let M%* = MX(g°) denote the set of all o-finite » for which (v, 7)s < o0. Also, for
s.t € R* write s < t if 8* < (' for all i, and if 8 < t then let (s.t) denote the open
interval{u : s < u' <t'.i=1,..., k}. Then the following theorem, linking measures in
M?* and additive functionals, is a trivial extension of Dynkin (1981). (Dynkin treats the
case § = 1. The extension to general 8 is immediate.) For notational convenience, we write

|t| for ¢, + ...+ t, and ||t]|® for 3 + ... + 2.

Theorem 2.1. Let the k components of X be independent copies of a symmetric right
process with initial measure m = Lebesgue measure. Then to every measure v € M%k

there corresponds an additive functional Ff' of X with the following properties:

I: There exists a negligible set ), such that for all w ¢ (1, F‘;(u-: (s.t)) is finite for all

0 < s <t and is continuous in 8 and t.

12
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II: For every positive, Borel f : R‘j_ x R* - R o
euy & [ pexenRa = [ [ ey 3
RK R: JRU* .
Y
Whereas Theorem 2.1 guarantees us an F9 for each v € M**, one can also go the
other way. That is, given an additive functional F of X, the so-called spectral measure v p "’
defined by e
ve(4) = 0E™ [ 1a(X(e)Fld)
(AC R‘“‘) defines a measure satisfying (2.11). -
For a measure 7 € M®* the corresponding additive functional F? can be constructed
c'
in one of two ways. If ¥ is absolutely continuous with respect to Lebesgue measure on -~
R%, so that v(dx) = b(x)dx with [ b(x)g’(x, y)b(y)dxdy < oo, then F can be defined as
o — -8 k
(2.12) Fi(I) = /le tlp(X(t))dt, I C RE,
so that we return to the form of the simple functional of (2.6). In the general case, Ff:
is defined as a limit of path integrals of this form, with the function b being densities of ,:;-
Y
smoothed versions of v. To be more precise, for § := (8,,....6), let such a deunsity be u
given by
(2.13) b 5(x) = /‘W e~*¥lps(x, y)¥(dy)
so that the smoothed versions of v given by
g 75(dx) = b7 5(x)dx
satisfy (v - 72.7 - 73)9 — 0 as ||§]] — 0. Then if v is finite (i.e. 3(R¥%) < x) the A
functionals .
\ (2.14) Fjﬁu) ‘= -/le"""b':'s()((t))dt

13
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. converge, in £L2{P). to the functional Ff of the theorem. If v is not finite, but belongs to 2
MF-% then there exists a finite measure ~' and a function h such that 3.

:\_;

(2.15) ~(dx) = h{x)~'(dx), v e MOk, A

|8

In this case, F9 is defined as F§(dt) = h(X(t))F2(dt). .‘:

2.c. An example.

To gain some feeling for the above results. and as a precursor to Section 5, we consider

one example. Take k =d = 2, § = 1, and X, and .X; independent Brownian motions in ..

R2. Then for r.y € R? :

. :

; 216, ew = [ et (2n0 ™ exn{=Hlle - ulP 1) :
= cKof(lz - ol ;

where K, is a modified Bessel function and ¢ an uninteresting constant. For A ¢ R?, take

~ 4 to be Lebesgue measure on the two-dimensional set D4 in R* given by "

(2.17) Dy ={(r).2g.25.24) : (21.22) € A, (3. 24) € A 2y = 23. 22 = 24}, .

Then, since Ky(z) decays exponentially fast for large 2, and has only a logarithmic sin-

gularity at = = 0, it is easy to check that {74.74)) < oc and so v, € M'2. Thus an o

F., satisfying (2.11) exists, and from the form of 7. and (2.11) it is relatively easy to see f

that F)  charges only those t = (¢,.t2) for which X,(¢,) = Xq(tz) and X {¢,) € A. The ;

integral fFj‘A (dt) now gives us a candidate for the weighted intersection local time of X,

and .X; while they are in A. Replacing 4 by R? and v, by a measnre u living on Dy ]

and satisfying {u, u);, < o0 yields R

AN

Lip: X\, X3) = -/n" F,(dt) han

as a properly defined version of (1.8).
Thus. we now have the basic components for the limit theorem discussed in the In-

troduction, and so we turn to a discussion of what will ultimately yield the limit process.

14
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3. Gaussian Fields and their Functionals.

i

3.a. Gaussian random flelds.
Let g(r. y) be a positive definite function on R? x R®. Then. in its simplest form,
the Gaussian random field with covariance function g is the family of Gaussian random

variables ®(z), r € R? with zero mean and covariances

(3.1) E{®(2)2(y)} = gl2.y).

{Note the sequence of ideas - for us the covariance function comes first and the random
field second.)] The random fields that arise in quantum field theory. and the interesting
ones that arise as the limit processes mentioned in the Introduction, correspond to positive
definite g with g(x,r) = oc for all £ € R, giving the point indexed field ®(z) of (3.1)
infinite variance and so leaving it poorly defined. The usual way around this is to change
the parameter space of ® to a space of functions. There are two natural choices. One is §;,
the Schwartz space of C™ functions that decrease at infinity faster than any polynomial.
Given a rich enough probability space (2, ¥, P) the Gaussian field on §; with covariance

kernel g is defined as the continuous linear mapping from §4 to the zero mean Gaussian

A

variables in L°(P), (with the topology on the latter space being that of convergence in

“y

probability), such that the covariance between two values of the field is given via the

bilinear functional

N 2V ¥ v,

(3.2) B,(f,h) = E{®(/)®(h)} = / / £(£)g(. y)h(y)dzdy.

(If §; is the topological dual of $§; - i.e. the space of generalised functions of temper-
ate growth, or, tempered distributions - ®{e) can be considered as a §j-valued random
variable. Hence the now almost archaic term “generalised Gaussian process” used in the
Introduction. a term which we now drop in favour of “random field".)

Clearly. if (3.2) is to make sense. we require B,(f. f) < x for all f € §;. so we are
limited in our choice of covariance kernels g to those for which this is true. In order to

allow the definition of fields for arbitrary g. we restrict the parameter space to the Sobolev

15
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: space S(g) of C™ functions of finite norm. where the inner product in §(g) is given by
k. (f.h), = [ [ flr)g(z.y)h(y)dzdy. A Gaussian field on $(g) is defined as for one on $,.
‘-E with covariance functional (3.2).
: (Note that here B,(f.h) = (f.h),, leading to our opening comments about Gaussian
- fields being isometric mappings.)
j If a point indexed field satisfying (3.1) exists, then we can always create a §; or §{g)
| indexed version of it by setting
(3.3) @) = [ ria1@iaiz
and (3.2) will be satisfied. However, function indexed fields satisfying (3.2) often exist,
even when they cannot be represented in the above form.
'_: Another way to index random fields is by the family of measures introduced in the
: previous section. i.e. M!' = MY (g) = {p: (u.u)y; < x}, where we had
: 3.4) avhy = [ [ tdaigta. pividy),
- for any two Borel measures pu.v. The corresponding Gaussian field maps M!(g) to zero
mean Gaussian variables with E{®(u)®{v)} = (u.v),. As above. if ®(z) exists. we have
. ®(u) = [ ®(z)u(dr). This index set seems to have been initially considered, in the context
of the problems that will interest us, by Albeverio and Heegh-Krohn (1979), and was then
taken up by Dynkin (1980). Since it turns out to be the most natural parameter space
: over which to study the Markov property of random fields we shall concentrate on it in the
_L; future. However it is important to note that since measures in M'{g) can be approximated
by elements of §; or §(g). and vice versa, the theories associated with all three parameter
spaces are essentially the same, (except for their Markov properties - for details on this,
N see Albeverio and Hoegh-Krohn (1984) and references therein).
2 One example of particular interest is the so-called free field of mass m > 0, for which
the covariance kernel is given by
. 1 etk(z-y)
; 35 o) = ol =) = oy [tk
2 16
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Since g(r.z) = ¢ for d > 2. the free field does not exist pointwise, but since the singular-
ities of g are then at worst polynomial. free fields on §;. S{g) or M'{g) can be defined.

The kernel (3.5) can be looked upon in a number of ways. It is the kernel of the
operator (-A+m?)" ! in R?. a fact important in Euclidean field theory. More importantly
for us, however, is that it is also the Green function ¢g° of Brownian motion in R with 0 =
m?2. This fact provides the link between Gaussian fields and Markov processes discussed
in the Introduction.

In fact, if ¢° is the Green function of a symmetric Markov process .X. then it is trivial
that g° is positive definite, so there exists a §(g?) or M'(g®) indexed Gaussian field with
covariance kernel g°. These fields are called the fields associated with X. Although not
every covariance kernel is also a symmetric Green function, this is so often the case that

it is worthwhile to study (Gaussian fields from the viewpoint of Markov processes.

8b. The spectrum and Wiener-Ito integrals.

For the purposes of this sub-section we shall restrict ourselves to the parameter space
S;. We call a random field statsonaryon S, if <I>(f)‘-'i-<I>(T,f) for all f € S4 and r € RY,
where T, f(y) = fly + r). In this case the covariance kernel g of ¢ must have the form
glz.y) = g(z — y). and so we write it as a function on R only. Furthermore, (see. e.g.
Major (1981) for details) g has inverse Fourier transform . which is a o-finite measure on

R* satisfying G(A) = G(-A4) for all A € B? and

(3.6) /(H (A} "¢ G(dA) < x

for some a > 0, (i.e. G is tempered). We also have
E@(nah} = [ ke, fhe s,

where ~ denotes Fourier transformation and * complex conjugation. The measure ¢+ is
called the spectral measure of ®. and there corresponds to it a random. complex valued.

spectral process Z = Zg. defined on the same space as ®, such that

(3.7) <bm=/fwza<dn. Je S

17
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The importance of this representation for us is that not only does it give a simple rep-
resentation of stationary (Gaussian fields on §;. but it also leads to a neat characterisation

. of all their £? functionals.

R & N % % % T xi

To develop this, we define the Fock spaceT ¢ (or ') of the field ® as the Hilbert space
of *Fock columns” £ = (fo. f). f2....). where f; is a complex number, f, = fo(A1,.... An). -

n > 1, complex functions of A,...., A, € R?, satisfying
(38(1) fn(’\l----a/\n)_—-I,:(_Ala'--v_’\n)a
and such that the norm ||f|| admits the expansion

(3.86)  |IfIIP =1f)? + Z(n!)"/.../|fn(,\l,...,,\,,)Pc(d,\l)...c(d,\n) < 00.
n=1

It is well known {e.g. Major (1981)) that there exists a natural unitary mapping
{of Hilbert spaces) from I'g to £2({P) defineable via multiple Wiener-Ito integrals, taking

felg to ¥e via

X

(3.9) Ve = fo +Z(n!)“/.../fn(/\,,...,,\n)ZG(d/\l)...Zc(d,\n).

n=1

L X Y

with ||®¢||2 = ||f||?>. The integrals here are with respect to the spectral measure of (3.7),
and do not charge the diagonal A\, = Ay =... = A,,.

This mapping distinguishes itself from all other unitary mappings I'e — L2(P) by

YR

the fact that the Fock columns with f,, = 0 for m > n correspond to polynomials
pl®(hy)...., ®(hn)), hi € S4, of degree n in the values of the field. Other important

properties of this representation will become clearer later.

3c. Wick powers.

Ope way to get away from a purely Gaussian theory of random processes while at

U XA

>

the same time retaining as much as possible of the inherent analytic simplicity of this

K

case is to work with simple functions, such as powers, of them. In dealing with flelds. the

corresponding notion is that of a Wick power. For example, if ® is defined on §4 or $(g)

18
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as ®(f) = [ f{z)®(z)dr. then we would like to define a k-th power : ®* : that would act

like a pointwise k-th power of ®. i.e.
(3.10) % (f) = / (2)®*(z)de.
Of cour.., if (3.3) is ill-defined then so, e fortsors, is the above. Nevertheless, there are a

* number of ways of making mathematics out of (3.10).

The most straightforward would be to consider
(3.11) nlig;/f(z)@"(b;‘)dz
as a candidate for : ®*(f) :. where 6},62..... is a sequence of functions in S§; or S(g)
converging in some sense to the delta function at z. Note that this approach also works
for measure indexed fields. Details of this approach are implicit in Dynkin {1984).

As opposed to the ill-defined (3.10) and the somewhat awkward (3.11), a very neat
definition of Wick powers comes by identifying k! : ®*(f) : with the coeficient of t* in the _

; formal power series expansion of exp(t®(f) — 3t*B,(f. f})]. That is c

win-Les,rn _ = 4 n
(3.12) e 2t Ball, =E;¢~,:<b(fl:.
k=0

Note that we can replace f here with g to get measure indexed Wick powers.

'I.l".’«. "

Although (3.12) is neat {(and useful) it sheds little light on what a Wick power really
is.
Since Wick powers belong to £L2(P) wuey also have. in the stationary case. a Fock

space representation in terms of multiple Wiener-Ito integrals. In fact
(3.13) :Ok(f) :=/.../f(/\l+...+/\k)ZG(d/\l)...Z(.‘(dAk). 3

This representation does not carry over easily to either the non-stationary or the measure-
indexed case. Furthermore, although it is tidy. in no way is it obvious why a spectral
integral of this form should correspond to the pointwise power (3.10).

A It turns out that Wick powers have a very natural representation in terms of the
Markov path intersections mentioned in the Introduction, and this sheds light both on

their structure and their uses. some of which we shall see in Section 5 below.
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3d. Additive functionals.

A The last concept that we shall need for the moment relating to GGaussian fields is that
of additive functionals. To define these. let A, denote set of all closed intervals in R*
of the form [a.b] = {r:a, < £, < h}. (a < b). Let 4 denote the ring of finite unions
AL U...U A, of elements of A, with pairwise disjoint interiors, i.e. 4, N AJ =0.i# .

\ Write By for the o-algebra generated by ®. i.e. Bg = o{®(f)} if the field is §; or S{g)
indexed. or By = o {®/u)} if the field is M'(g) indexed. Also, for open 0 C R? define Bg.,
to be the o-algebra generated by ®(f) with suppf C 0, or ®(u) with suppu C 0. as the
case may be. Then if to every A4 € A there corresponds a random variable ¥, € L%(P).
measurable with respect to Bg. we call ¥ : 4 — L2(P) a square integrable functional of $.

Now, for closed A C R?, set Bg 4 = {),5 Bo.a<, where A€ is the e-neighbourhood of
A. Then there are three properties of square integrable functionals that will be of interest
to us:

I. Locality. For each A € A the random variable ¥, is measurable with respect to
Bs 4.

II. Additivity. ¥4 p = ¥4 + ¥g, P-as forall A,B € A with AnB =@

IIl. Stationarity. ¥,,, = ﬁ,\I'A, where (},,z € RY, are the unitary translation
operators on L2{P) corresponding to the translations U, f(y) = f(y—z) if f € §4 or §(g),
or to the translations U, pu{A) = u(A4 — z) if u € M'(g).

The central interest in these three properties lies in the fact that local, additive,
stationary functionals can be applied, in a relatively simple fashion, to stationary, Markov,
(saussian fields to yield stationary, Markov non-Gaussian fields. The prescription is merely
to change from the Gaussian measure P to a new measure exp{¥ga} - P. For details see,
for example, Rozanov (1982).

To study these three properties in the case of stationary Gaussian fields, Dobrushin
and Kel'bert (1983a,b), noted that since each W, € L?(P), it must have a Wiener-Ito

integral representation of the form (3.9). If we assume, for no loss of generality, that

1 E{W¥.} = 0. then we call the Fock column (¥{, ¥, ..) in this representation the spectral

20
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representation of ¥ ,. Dobrushin and Kel'bert showed that it is possible to read off the
above properties from the spectral representation of ¥. We shall investigate their result in
Section 5, via completely different methods. and give it an intuitive explanation not linked
to the stationary situation.

We now have (somewhat more than) enough background to look at our first new

result.
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4. The Limit Theorem and its Consequences.

We now return to the setting of the Introduction, with one small change. Let (1. 7. P)
be a probability space rich enough to support the following:
(a) a Poisson random variable .V = .V, with mean A > 0.

(b) an infinite sequence of independent right Markov processes X (t). X(t)..... t > 0.

taking values in R and with common stationary, symmetric transition density. py{r. y).

(c) an infinite sequence of independent variables o,.0,. ..., with Plo, = +1) =
Plo, = ~-1) = %
The two infinite sequences and .V are all independent of one another.
Fix # > 0. and let g°(r, y} be the Green function of the X,. Fix A > 0. take f € §(g°).
and define

N(X\)

(4.1) = O Yo [
Q

11
This is the type of sum we looked at in (1.5) as being equivalent. in that case. to the
ill-defined sum of integrals of local time. Note that, by varying f in (4.1). ® becomes a

random field on Sobolev space. This field has. as A — o>, a Gaussian limit.

Theorem 4.1. As A\ — > the random field Qi converges, in the sense of convergence of
finite dimensional distributions, to the zero mean Gaussian field on S(g°) with covariance

kernel ¢°.

This result is actually a special case of the more general Theorem 4.2 below. but it is
worthwhile to state it separately because of its simplicity. (Both will be proven in Sections
7 and 8.) The result is also true if, throughout, we replace the Sobolev space §(g°) by the

Schwartz space §;. and impose the extra condition. on ¢°, that

//f(.r)g"(z.y)f(y)d.rdy <x., forall fe€S$,.

The extension to fields defined on the space of measures M!(g?) is not so easy to formulate.

since we need to work a little harder defining what we mean by @ (y). {The Gaussian

22

e

4

LA

P A Y

LR

e




. SRV el Ml Gl AR L A ot i d b L oS d e ond

limit process is easy to identify. however.}) To treat the measure case we now move to a
far more general formulation. although. for reasons that we shall note later. we do not yet
want to treat the most general formulation. Both allow us to consider not just CLT's for
the Markov .X,, themselves but also for the interaction of k such processes.

Fix £ > 1. 8 > 0, and consider the set of measures v = v(dzy.....dzy) on R** that

belong to M?* = M*(¢%) and satisfy the symmetry condition

(4.2) WAl Ak) = 2 (A A
for each permutation (1,...., i) of (L..... k). and A, € B%. We denote this collection by
M3y mm OF Mgy mm(6°).

By Theorem 2.1. there exists an additive functional Fi’ corresponding to each v €

MOk defined on k of the X, at a time. Consider firstly the case k = 1, and define

symm:*

N(N)

L .
(4.3) ®(7) = (8/A)2 Y o Fi(X,).
=1
Then ®% can be considered to be a random field on M&:1 and an analogue of Theorem

symm

4.1 holds for it.

Theorem 4.2. As A — o the random field ® of (4.3) converges, in the sense of conver-
geuce of finite dimensional distributions, to the zero mean Gaussian field on Mglfmm with

covariance kernel g°.

Thus, between Theorems 4.1 and 4.2 we now know how to approximate both function
and measure indexed fields via Markov paths. (Note that for a p € M5!, with density
f € S(g°), we have ®(u) = ®4(f), and both theorems identify the same limit random
variable.)

We would now like to approximate elements in the £? space of a Gaussian field. Since
our discussion in the previous section relied on the Fock space representation of the £?
space. and this required stationarity of the field. we shall assume for the moment that

plz.y) = pelz — y). or. equivalently, g7 (2. y) = ¢°(x — y). This implies (Blumenthal and
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Getoor {1968), p. 17) that the X have independent sncrements. We shall lift this condition

later, as we shall also do with the following conditions:

(a) [ f(2)g’(z ~y)f(y)dedy < oo for all f € Sy,

(b) ¢° = G?, for some o-finite, symmetric, tempered measure G¢ on R?,

(¢) + € M35, has a Fourier transform § which exists as a regular (i.e. non-generalised)
complex valued function.

We write the set of v satisfying (c) as *M%f .

It follows from (a)-(c), and a generalised Parseval-type equality (c.f. the generalised

Poisson summation formula of Argbright and Gil de Lamadrid (1972)) that 5 € ¥£,, where
W o= {f = (A Ae) A € RE[[flfEx. xg < 00 and

v A = LA =2k) = f(Aip -0 A0,))

where _
1B xc = /.../|f(A1,....Ak)l’o(dxl)...c(dxk).

Consequently, if we write ®? for the stationary zero mean Gaussian field on §; with spectral

distribution function G?, then the functional

(44) \I‘e’ = %]/ﬁ('\h,/\k)ZG'(d’\l)ozG’(d’\k)

is, according to Section 3b, well defined as an element of the L£? space of ®°. Furthermore,
there corresponds to v a functional F g of k independent X;. The link between 74, \I'?, and
F? is via the sum

0 . N(A) <k,

(4.5) ¥ (1) :={(a/;\)'=/2 T..T o0 F (X, Xa) L N(A) 2 F,
lSi1<i3<...<thN(/\)

for which we have

Theorem 4.8. Under the above conditions, the pair (®%(f), W5 (7)) converges in distri-
bution. as A — 00, to the pair (®°(f), ¥*(7)).

Remark. Note that, although we have not stated Theorem 4.3 in such terms, by varying f

over §; and y over *M%* . we could write the theorem as being about convergence of the
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vector processes (®4(-). ¥4 (-)) on §; x *M3%,,, to the vector process (®?(-). ¥°(-)). with.
as before. convergence being in terms of finite dimensional distributions. This extended

form of the theorem is an immediate consequence of the linearity of all the fields on their

% 5"

)

respective parameter spaces.

Thus, modulo the present technical restrictions on ¢’ and ~. we have found a way to -3

g represent Gaussian fields via Markov processes, and functionals of the former by functionals
of the latter. The technical conditions will all be lifted in Section 8, but their imposition

at this stage makes the didactic discussions of the following section somewhat easier to

follow. These discussions hinge on using Theorem 4.3 to think of Gaussian fields and their

functionals in terms of approximating sums of functionals of Markov processes. However, -

because of the restrictions we have placed on v, we cannot consider all functionals of either

type. Nevertheless, the next two lemmas show that we can, via these restricted classes of

functionals, get arbitrarily close to any functional of interest (in the stationary case). The .

lemmas and the discussion following them can be skipped on the first reading.

: Lemma 4.1. *M} %, is everywhere dense in M§,,,- -

Lemma 4.2. The set of linear combinations of f € Né, with inverse Fourier transform in

M¥, m(d?) is everywhere dense in X%, .

The consequences of these lemmas, which we shall establish in a moment, are immedi-
ate, for, together with Theorem 4.3, they tell us that any Gaussian field on §(g°), together
with any of its functionals, has an approximation via Markov processes. (assuming. of

X course, that the covariance kernel is also the Green function of a right Markov process). -

Proof of Lemma 4.1. Consider 7 € Mg'y"mm. We shall build a sequence +5.86 =
(. 8k ). with v§ € ‘Mf,fmm such that %§ — 7 8s [6] — 0. Convergence is in terms of

the metric defined by (2.10), i.e. via the inner product (-.-)s.

Firstly note that by a standard truncation argument the finite ~ € M':;f‘,“,,, are dense

. A . B . .
in M'sf,,,,,,. and so we may assume = to be finite. Now consider the absolutely continnous

- 25 .




approximation to 5 used in constructing additive functionals in §2b and given by

15idx) = bi‘a(x)dx
=[e‘0"'ps(X-y)7(d¥)dx.
But b‘: 5 € LY(R™), since

/|bi,6(x)|dx = /dx/v(dy)e“""pg(xw

th = =81 [ s(ay) [ psix.yIax

S e—8|6|,7(de)

< 0.
Thus b‘;.a has a Fourier transform which is a continuous, non-generalised, function and so
75 € *M8.X .- Furthermore. it is trivial to check that (v5 — ¥, 75 - v}y — 0 as |§] — 0, so
we are done.
Proof of Lemma 4.2,
Let $§ denote complex Schwartz space, so that f € §f is of the form f = fi +1fs.
fi. f2 € S4. Assume, for the moment. that k = 1, and note that ¥}, C £3(G?). Then

since 8¢ is dense in £2(G?) it is easy to see that

S symm = {f € 85 : f*(2) = [(-2)}
is also dense 1 ¥%,. Thus, for the case k = 1, it will suffice to show that an f € §§ oymm
: can be written as the sum of the Fourier transforms of two measures in M},vmm(g").
To see this, note that the mapping f — f is an invertible, bicontinuous transformation
from S to itself. Thus if f € 8 ... then F~!f = f € § where F'~! represents inverse

Fourier transform. Furthermore, f is real, since

f(A) = (2;)4 /é‘*‘f(x)dz
- (2;)4/?“1"(-1)& (f*(z) = f(-2))

= (f(A)".
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Writing ht = max(h.O). h~™ = — min(h.0). we have, for f € sj.symm‘

ORIA),

(F7HA) = (FONT = (F()7

with both f* and f~ real. To obtain measures, write '77((11\) = fHA)dA -7 (dA) =

f=(A)dA. Note that by the generalised Poisson summation formula,

o> [Ire(an

= [ a2 = ordady ’

= [ 141210 = i dady + [ 171016 e = 01 W)y
—2/1'*(:)9"(: - y)f (y)dzdy.

(%]

Since f € $4, and so is arbitrarily small outside large compacts. each of the last three

[y "¢ s 2 2

integrals must be finite. Consequently both 77’ and 77 have finite (- -}y norm since,

for example, {~7,v7)e = [ f*(z)g(z — y)f*(y)dzdy. Thus both y; and 7 are in

My mm(g’) and we are done.

The proof for general k > 1 follows by noting that the elements of Xé, X ... X )(éo
are dense in X%, and that for f € X%, of the form f(zy.....2c) = fi(z()... felzk) with .
filr) € )lc‘;, we have f = f, ... f. The result for k = 1 can then be applied to write f as

. . . . k
a linear combination of measures in M5, (¢°).
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5. Applications, 1.

In this. and the following section. we return to what originally motivated us - obtain-
ing insight into random fields via approximating sums of Markov processes. The results
range from intuitive, non-rigorous arguments as in our discussion of the Markov property
of random fields. (which generate no new results) to rigorous arguments, such as the dis-
cussion of renormalisation in the following section where the results are essentially new.
We start with what is basically an example for Theorem 4.3. the construction of Wick

powers.

S5a. Wick powers.

In §3¢ we gave a sequence of equivalent definitions of Wick powers (see also §8a),

including (3.13) which, for f € §,;. set

(5.1) L % ( f) :=/.../f(x, 4.+ Ak)ZgeldAy) ... Zge(dAg).
for ® with covariance kernel g°. Consider the measure

(5.2) ~dry..... deg) = f(e)oley —23) .. 6(2k—y — Zx)dry ... dag.

where 0 is the Dirac delta function. (Formally v is merely the measure concentrated on
the diagonal r, = ... = z; in (R%)*. with density f(z,).) The Fourier transform of v is

given by
S ) = [N = ). e = ni)des . dey
= /a‘“-/(:)d;
= flA 4.+ M)
Thus. comparing with (5.1). we have

Qk(f)sz;(A‘ ..... /\k)Z(;o((i/\l)...Z(;e((i/\k).

which is precisely k! times the ¥¢ of (4.4) and Theorem 4.3.
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Consequently, recalling the properties of measures like 4 discussed in §2¢. we have a
representation of Wick powers based on intersections of paths of Markov particles  the
k-th power coming from intersections of k particle paths.

This representation will work as long as ~ € 'M‘;b"mm. Clearly, it is only the integra-
bility of ~ that is of importance here. If our particles execute Brownian motion. so that
the limit Gaussian process is the free field of §3a. it is easy to check that
(63) d=2 = ~ye°*Mys,, foralk,

(5.4) d=3 = ~e*My),., only for k = 1,2.
(55) d>4 = ~e°'M5),, oounlyfork=1

That is, this technique would seem to work only in very restricted cases. These are
precisely the cases in which k independent Brownian motions in R have intersecting paths
{c.f. Dvoretsky et. al. (1954).)

Nevertheless, if we recall that Gaussian fields also go, in Physics, under the name of
Euclidean quantum fields, then we can verify (e.g. Glimm and Jaffe (1982)) that Euclidean
field theory turns out to be interesting only in the cases in which our limit theorem applies
to Wick powers, so we have not done too badly.

Before leaving this example, we note that it is essentially this problem with d = 2 and
X = Brownian motion that the two papers of Wolpert (1978a, b) are dedicated to. For
more information on the functionals related to Ff‘ with ¥ given by (5.2) with f = 14. see
the papers on intersection local time by Geman, Horowitz and Rosen {1984) and Rosen
(1985). For more serious applications of this to Physics, see Aizenmann (1982). The
original idea of using intersection local time to study Wick powers comes from the seminal

paper of Symanzik (1969).

5b. Functionals of Gaussian fleids.
In §3d we introduced the notion of functionals of Gaussian fields, along with three pos-
sible properties: additivity. locality, and stationarity. Dobrushin and Kel'bert {1983a.b)

studied these from the point of view of Fock space. which they used to write a general
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functional via its spectral representation. Consider the k-th term in such a representation.

¥}, defined by

| .
(5.6) vl = i—// v (AL, Ak ) ZaldAy) - Za(dAk).

To study the properties of W' as A varies over unions of rectangles. A. let m; be the
natural embedding of the space ,l((k,. into the space §;, of generalised functions and define
the mapping T, : 4 — §, by

FulA) = me(ed).

Then Dobrushin and Kel'bert have shown the following:

I: W, is addstive iff T, is addstive. in the sense that
(5.7) Frldl UAdg) = Fuldy) + Ti(As),

for disjoint 4,. 4, € 4.

II: W, is local and addstsve iff 7, is additive and dsagonal, in the sense that
{5.8) supp F ™' (Fx(A)) C diagA® := {(41..... )iz =...=uxx € A},

where F ™!, as before, represents inverse Fourier transform.

III: W, is stationaryiff F~'7, is invariant in the sense that

(5-9) ()A+1(f) :()-\(U.rf)~

where O4 € S, is given by F~'%(A). f € Su. r € diag(R*)*. and U, is the shift
operator of §3d.

Note two things. Firstly. since everything is based on the Fock space representation,
the above results are valid only when the uuderlying Gaussian field is itself stationary.
Secondly. although these results are precise. they have little intuitive appeal. In particular.
we ask. why should the inverse Fourier transform of the kernel ¢! figure <o prominently
in the conditions” The answer to this is clear once we approach the problem from the

viewpoint of approximating fields and functionals by Markov paths.

.........................

...........................................
..........




We now need to assume that the underlying field has covariance kernel ¢°. which. as

A A
k k-

nsnal is a Green function. Consider the sum W§(~) of (4.5) with v = 1. where 33! = ¢

(Note, to ensure that ¢! has an inverse Fourier transform in *M%% . as v must he, we
really need to assume this. However, since Lemma 4.2 implies that such ' are dense in ¥, .
we lose no real loss of generality by tacitly doing so.) By Theorem 4.3, ¥4 (4) := ¥%(~}})
converges in distribution to the ¥ of (5.6). and, indeed, does so as a process over 4 € 4.

The first thing we note is that the measures 7,’: now become the natural parameters
of the problem, and so one can see where the inverse Fourier transforms of (5.8) and

(5.9) might come from. In fact, even (5.7) could be written in terms of inverse Fourier

transforms. since it is clearly equivalent to

(5.10) F7'7 (A1 U Ag) = F7'%(Ay) + F~' 7k (Ag).

Secondly. since F~'7(4) = v, and the v and Ff:A are easy to understand. some
k

intuition may now be forthcoming. We develop this intuition by studying additivity. local-
ity. and stationarity not for the functional ¥ of the Gaussian field, but for the functional
\I'f’\(j«"?) of the Markov processes which ultimately converges to ¥;'. Note that we cannot
rederive the results of Dobrushin and Kel'bert this way, but can only provide a way of
understanding them.

a. Additivity. It is immediate from the definition of ¥§(v{) and Ff;: that the former
is additive. In fact, our construction has always been such that we can build only additive
functionals. since ¥ is required, a priori, to be a measure. Condition (5.7) (or (5.10))
simply allows our counstruction to be started.

b. Locality. Here we shall have to define a slightly amended definition of locality more
suited to the Markov path setting. For any open O C R?, we let Bp denote the g-algebra
generated by the X, while they take values in O. This notion, which we shall call the
ezcursion o-fleld. can be made precise. (See, for example Jacobs (1978}, Kaspi (1985)).

We now define locality as in §3d. but with respect to these o-algebras.

Assume (5.8), i.e. supp v C diag4*. It is then clear from the definition of the F';4
[ ]

that they. and so \Pih;‘). are local in the new sense. Furthermore. it is easy to see that
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this follows from supp +;* C Ak, the additional restriction to the diagonal being seemingly y
superfluous. This restriction arises in a natural fashion from the additivity of \I!?\. as in E}:
Dobrushin and Kel'bert (1983a). Using, then. what we know about functionals of Markov :;:

processes, we see that the diagonality condition implies that the k-th order functional of ,
the Gaussian field is approximated by a functional built on the intersections of k particles s
at a time. This is the full import of (5.8). ‘:
Thus. with sufficient motivation, we could build an approximation to the whole of »

Fock space. the k-th part of this based on functionals of k particles. The reader familiar '
with quantum field theory will see an extremely pleasant semantic coincidence here, for o
the quantum theory of &k interacting particles is also the theory of the k-th part of Fock ,Z"-.;
space. Needless to say, our particles and those of quantum field theory have no physical .\_
link semantically however, the coincidence is intriguing.
c. Stationarity. From their construction the functionals W4 (~;') are stationary in the ::E'.
sense that e
(5.11) 0.9 () = ¥(U,0). o
N

v
A
2 e 24

where 7, is the unitary translation operator on the £? space of the Markov processes

3

‘

corresponding to shifting all starting points of the paths by —r. and U, is defined by

N
/ U, ~(dey.....dey) :/ Sdey ... . -
B B-: e

Consequently. if we want them to be stationary in the sense of Dobrushin and Kel'bert

4 'r 9
.

[~ %
~N
x
M)
0

‘.
EREN

viz. .
T g (A 6. A4
(71‘I’A(7"k)=w,\(‘fk ).
(c.f. §3d) then we require that '** = 7, ~*. But this is precisely condition (5.9). Thus -
we see that this condition. too, arises as a coandition ou the paths of our Markov particles. :::l:
5¢c. The Markov property for Gaussian fields. =

One of the most interesting. and most deeply studied properties of Gaussian fields is

that of their Markovianess. Unlike the case for regular processes in univariate time. the T
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Markov property for measure of function indexed fields is not particularly useful. Nev-
ertheless, it is probabilistically intriguing. Furthermore, it is of considerable importance
in Physics, since in the transformation of regular field theory to Euclidean tield theory
(i.e. to Gaussian fields) one of the axioms of the former transforms to an assumption of
Markovianess. (c.f. Nelson (1973)). Consequently, it is only the Markov Gaussian fields
that are of interest to physicists.

There are many different definitions of Markovianess, and they are not all equivalent.
Albeverio and Hoegh-Krohn (1984) give a detailed discussion. but we shall follow the treat-
ment of Dynkin (1980). Firstly. we restrict our attention to measure-indexed { M?-!) fields.
We say that a field ® is Markov with respect to two sets A, B C R if the o-algebras Fp 4
and Fg g are conditionally independent given Fo snp. where Fp 4 := o{®(p) : supp u C
A}, {Note that Fg 4 is not the same as the Bgp 4 of §3d.) One easily extends this to a
general Markov property by demanding that for all B ¢ R?. with smooth enough bound-
ary dB and complement B¢, ® is Markov with respect to B and B¢. It is clear therefore
why it i3 more natnral to work with measure indexed fields - Fg g would be empty in
the functiou indexed case. for we could generally find no f € §; with support in JB. (A
way around this 1s to base the Markov property on Bg 4 instead of fp 4. This leads to
a different theory which. when specialised to simple processes on R', for example. is not
the nsnal Markov theory. c.f. Rozanov {1982), Wong and Zakai {1986).)

If we linnt onr attention, as usual. to Gaussian fields with covariance kernel the Green
function of a Markov process, then Dyokin (1980) has a very elegant characterisation of

Markovianess.

Characteriention. ® has the Markov property on all sete A. B for which st 18 impossiblc
Jor the wusocrated Markoy process to reach A from B without crosssing A~ B. (This result
alve bias 4 mere precise statement ~ee both Dyokio (1980) and Atkinson (1983).)

We wauld like to upderstand this recult from onr viewpoiut. In fact. it will suffice if
we can see why the coudition of the conjecture unplies the @ are Markovian. This will

not. of course mmply the Markovianess of @ 1tself. nor can it ever hope to (the couvergence
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of & to @ is in distribution only. aud the Markov property is in essence an a.s. statement)
but it does provide insight.
Fix A apd. for the sake of intuition. ix V{A) = A = n in the sum (4.3) defining & (u).

which now hecomes

(5.12) @ (1) = (0/n)' /2 a FlIX,).

=1

Now we argne more or less heuristically. If the .\, have regular enough sample paths,
then we claim that F(®% . 4) is identical to the excursion o-algebra generated by X =
AT X, ) while the X, are in A. Then. from rigorous results of Jacobs (1978) and
Kaspi {1985} one can see that. again. requiring regular paths, 7{®%.4) and F(®¢,A)
will be conditionally independent given 7(®2.9.4). But to apply these results the balance
between regularity of the sample paths of the X, and 4 must be such that, at very
least. one can detine an additive functional of ((X';...., X, ) living on dA4. Given the other
assumptions that we have placed on the .X,. this means that we require the X, to be
continuous, and so we have a heuristic version of Dynkin's characterisation result.

Actually. all of this is easiest to see when d = 2.n = 1, and we draw a picture.

Figure 5.1. Markov paths.
Iu the leftmost case example of Figure 5.1 the Markov path is continuous, and it is
clear that. given all the hitting points of the path on 9B, each excursion, between hitting

points, is independent of all the others. Consequently, all the excursions contained in B
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are conditionally independent of those in B, and from this follows the Markov property
of ®¢. In the rightmost case. the path may never hit ¢ B. and so there is no information
in Fp op to even attempt to start conditioning.

Finally. we note that it is tempting to try to push these arguments further, to obtain
an expression for E{®} (4) | Fp¢r op} with supp 4 € B€. as Dynkin (1980) has done. in
terms of the first hitting time of X, on 9B, conditioning on starting .\, according to u. It
is clear how the excursion processes associated with .\, along with time reversibility. need
to be used here. but the calculations involved seem so complex that nothing is gained via

this approach.

5d. The free fleld again.

It is instructive to close this section with an almost trivial comment on the free field
of (3.5), which holds a uniquely central role in both Euclidean field theory and Gaussian
fields, as the only stationary Markov field. Our question is - what. from our point of view.
makes this process so special? We know that to build a Gaussian field we need Markov
paths. If we require the field to be stationary then. as we have already noted. the Green
function must satisfy ¢%(r.y) = ¢?(r — y). This. however. forces the Markov processes to
have stationary. independent increments. If we furthermore demand Markovianess for the
field. then we demand continuity for the paths of the Markov particles. There is only one
continuous process with stationary. independent increments - Brownian motion. Thus we
have only one way to build the field from Markov paths. The resulting field. as we have

already seen, is the free field.
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6. Applications I[I: Renormalisation

In the previous section we used the limit theorems of Section 4 primarily at a heuristic
level to explain a number of existing results. In this section we shall use these theorems
in a fully rigourous fashion to motivate, and then prove, new results. The central theme
of this section comes from the idea of renormalisation techniques. which we shall define
formally soon.
6a. Self-similarity for flelds.

In Probability Theory. renormalisation is generally (but incorrectly) considered to be
synonymous with the notion of self-similarity. To make our lives notationally easier. we
shall restrict our attention in this section to random fields on §4, in which case we call a

field ® self-ssmilar of order o iff for every n > 0 and f € §4

(6.1) ®(f)200(f) := ®(2f)
where
(6.2} SSle)y =07 fle/n).

This is clearly a scaling phenomenon, and in the Gaussian situation Dobrushin (1979) has
shown
Theorem 8.1. Let & be a stationary, zero mean, Gaussian random field with spectral

measure (;. Then ® is self-similar of order o iff
(6.3) G(4) =n7%°G(n4). A€ B(R)\{0}), n > 0.

As peat as this result is. there are two problems with it. Firstly, it applies only to
stationary fields. Since both the statement and proof rely on spectral methods. there is
no clear extension to the non-stationary case. More importantly. however, i3 that it deals

with far too narrow a notion of self-similarity. For example. if we take ®° to be the free

firld with mass # = m?. and d > 2. then by (3.5) we have that

dA
TG A = 7 (2 _’t/ ——

_ —2a4d-2 —d dA
=" t2) / A + 677
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after the obvious change of variable. If this is to be equal to (+(4). so that by Theorem 6.1

®® will be self-similar. we require a = %d —1.and 8 = 0. The condition on 6 is unpleasant,
for it implies that only the massless free field is self-similar.

From the point of view of Physics this is undesirable. since it 1s well known that all
free fields are renormalisable {self-similar) as long as one renormalises mass at the same
time as renormalising space. That is, we must be allowed to change 6 in some fashion.
In order to see how to do this, it is most natural to leave the spectral setting. and think
of Gaussian fields as arising from sums of Markov paths. Thus for the remainder of this
section, we treat only Gaussian fields whose covariance function is also an appropriate
Green function. We start by looking at the structure of the Markov paths themselves.
6b. Self-similarity for Markov processes.

Let X, as usual. be a Markov process with initial measure m(dz) = Lebesgue measure

on RY. We call X self-simlar with indez 3 if for every 5 > 0. .\ and the process
(6.4) ';‘\'(t):-—-r’.{'(n_’l)

are identical in distribution, where X is a process (on another probability space) which
has the same transition probabilities as .\’ but nitial measure p*m(dr).

Note how we have had to change the initial distribution in order to preserve the
distribution of starting points after scaling X by the factor n. If we were, for example. to
start all our processes from zero no such condition would arise. (See Lamperti (1972) for

a theory of self-similar Markov processes under such a condition.)
Lemma 8.1. X has transition density p(t: r.y) satisfving

(6.5) p(y)‘Bt:.c,y) =nip(t:nr.ny) for all 5 >0.t>0,
iff it is self-similar of index 3.

Proof.
(i) Sufficiency: For A C BY.

P X n=3) € A)
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=/ 7ldd-l'/ dyp(n~7t: 1. y)
R? Afn

= [ niar / dyn'plt:ne.ny) by (6.5)
R .

v

d _“/n
. / du/ dep(t:u. v)
R¢ A

= P™(X(t) € A).

il

{ii) Necessity: By self-similarity

P{nX(n7t) e A|nX(n77t:) = 2z} = P{X(t) € 4| X(t;) = z}.

':7'. Le.
> Py-at—tg) (2071 07 A) = Pioy, (2, A).
i::: where P;(z, A) is the obvious trausition probability function. Setting ¢t — ¢, = s and
~ transforming the last equality to a statement about densities gives
. p(n™%s: 2. y) = n?p(s:nz, ny)
jZE: as required.
[ Lemma 6.2. Let ¢° be the Green function of X (and so also of X). If X is self-similar
=3 with parameter 3 then for alln > 0
2 .
e (6.6) g’ (z,y) = 077" " (nz.ny).
; Proof.
.- -9 e -8
2 g (nz,ny) = / p(t:nz, ny) exp(—tdn~" )dt
5 0 .
B -8
. = 03/ e~ plen?:nz. ny)ds
‘o 0
- o
B =pf-d J[ e %p(s: 2, y)ds by {6.5)
- 0
=74’ (2.y),
.': from which (6.6) follows trivially.
- 38
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As an example is probably in order at this point, the reader might like to check for
himself that Brownian motion is self-similar with 3 = 2. Relation {6.6) is most easily
verified from the Fourier transform representation (3.5) of the Green function.

Note that whereas Lemma 6.1 gives a necessary and sufficient condition for self-
similarity, (6.6) is. as it stands, only necessary. If. however, we assume (6.6) for all § > 0,
then it is easy to see that is also sufficient.
6¢c. A prologue to renormalisation.

The above shows us that many Markov processes are self similar. It thus seems
reasonable that if we sum appropriate functionals of these processes then the limiting
sums - that is, the Gaussian fields and their functionals - should somehow inherit this self-
similarity. There is. however, one more parameter in this picture that requires normalising.
Inherent in our counstruction of Markov functionals was an exponential damping factor. In
constructing ;",X from X. the time change is compensated for via a change of initial measure
and a scaling factor. In building functionals on f,X that will be distributionally equivalent
to those on X, we shall also have to compensate in the damping factor for the different
time rates.

Another way to think of this is to recall. as we noted in §2b, that the exponential
damping is essentially equivalent to exponential killing. From this viewpoint it is clear
that when we change the time scale to obtain g.\' from X, we must also change the rate
at which we kill ;’}.\'.

We need one more result before we can coutinue, that relates the distributions of
functionals of X to those of ,’;X. As one would expect, for the right sort of functionals,

self-similarity is available.

Theorem 6.2. Take X a right Markov process with symmetric Green function g®. Let

5 € M%*%, k > 1, and define 2y =la.n) by

(6.7) Oy(A4) = 7 H Ry (p T A).
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Then, if X is self-similar with index 3,

FOXyp o X )& ROH0RE ™ (X Xe) a = k(d+ 3)/2.

8
(0-'1)(
Proof. For notational convenience, we assume that 4 is absolutely continuous with density
q(x) on R%*. The general case is handled. as usual, by passage to the limit. Then (6.7)
becomes, with a« = k{d + 3)/2.

(6.8) sa(x) = n=*43 2 g(x [n)
The first thing we must check is that g € MEn 7k e (99.3¢)eq-# < 0o. But, by

(2.10).
(2. 09) oy -2 = /‘Jq(X)a""_’(x.y);‘q(ﬂdy
= n“"'“’”’/q(X/n)g"""(X-y)q()f/n)dxdy by (6.8)
(6.9) == [ qlu)g® ™ (pu. pvigtv)dudy

= /q(u)g"(u‘v)q(v)dudv by {6.6)

=(g.9)s.
which is finite by assumption. Thus Fz("ﬂ":) is certainly well-defined.
The next thing we shall need to know is what happens to Fg(Xl,...,Xk) when we
change the initial distribution of the X, from m(dz) to ném(dz). But this is clear, for the

characterisation {2.11) between Ff’, and ~ gives us that

(6.10) {F3(X,,....Xk), with initial distribution m(dz)}
é{f‘:,,.j(.’(l, ..., X)) with initial distribution n?m(dz)}.

This is all the background we need. Now note

Fo 0 (X, X ")=/. e=tn It SqX 1 (ty) o X (te))dty . dey
R‘.

Yam)

~



where the X, have initial measure n~%m(dr). and we have applied (6.10). Map {, — n77r,

in the last integral to obtain

] ~ ~ <~
Fll o X X k)Eflk(Hd)/z/ e~ Mg Xy (n7ry)e o0 ™ Nie(n 1))y . dr
. i

Epka+dI2 PO (X, ... Xy)
by self-similarity via (6.4). This proves the theorem.

We are now in a position to return to the study of Gaussian fields.
6d. Renormalising Gaussian flelds.

The basic renormalisation of a function indexed field ® is the ;® given by (6.1). As
we noted earlier, if Qéﬁ,’Q, ® is called self-similar. We wish to extend the notion of self-
similarity, by starting with a family of covariance kernels ¢g?(z.y).6 > 0, which are the
Green functions of a Markov process. For each 6, &’ will be the corresponding Gaussian
field. We call the family {®°,8 > 0} renormalisable with renormalisation parameters (a, )
if
(6.11) o° Login ™,
If the &’ are measure indexed, set

(6.12) 22(7) = (3v),

where 07 is defined at (6.7), in order to define the renormalisation parameters.

This notion extends that of self-similarity in two directions. Firstly, the two fields
need not be defined on the same probability space. Secondly. there is an extra parameter
available in the renormalisation in order to match the fields. This corresponds to mass
renormalisation in quantum field theory (c.f. Glimm and Jaffe (1982)). and is completely

missing in the usual theory of self-similarity. We have

Theorem 6.3. Let ¢, 8 > 0. be a Green function of a self similar Markov process. with
index 3. and let {®°,8 > 0} be a family of Gaussian fields with covariance kernels {g°. 8 >

0}. Then the ®° are renormalisable with parameters ((d + 3)/2. 3).
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Proof. For this result we do not need to explicitly consider the Markov process corre-
sponding to ¢®. In fact. since all fields are mean zero and Gaussian. we need only check

that covariances match. Thus. take f.h € §;. set a = (3 + d)/2 and note

E{2" 7 (£).20° " (h))
=E{@% "(of).9°" "(SR)}
=//yum”ﬂaw%ma@

= rz‘”"*"‘“’//f(I/rz)a"(r/ﬂ.,y/ﬂ)h(.u/ﬂ)dzdy by (6.2). (6.6)

= [ [ 1tig e eonterdude

= E{°(1).9°(h)}.

Thus the covariances do, in fact. match, and the theorem is proven.

In the final result of this section we consider the renormalisability of additive function-
als of Gaussian fields. In essence, we have already done this. for we know via the specific
results of §4 and the more general results of §8 that all additive functionals of Gaussian
fields can be approximated by sums of additive functionals (c.f. (4.5)) and Theorem 6.2
tells us when the latter are renormalisable.

For completeness, however, let us state the following result for the stationary case, for

which the reader does not yet have to know the results of §8.

Theorem 6.4. Under the assumptions of Theorem 6.3. take a v € *M9)% ... Define for

n > 0.2y asin (6.7). Let ¥°(~) and gon~° ®y) be as in (4.4). Then

(6.13) V(EWT (). a=k(d+d)/2

Proof. The result follows trivially from Theorems 4.3 and 6.2. We need only check that
€ 'M';Zmi,',k. But since - is symmetric with inverse Fourier transform of the right kind,
it is automatically in {y. Thus only integrability needs to be checked. This, however, is

the calculation at (6.9), so we are done.

In the terminology of normalisation parameters, we have




Ter T ey

Corollary. ¥?(4) is renormalisable for the pair (k(d + 3)/2, 3).

Proof. Compare the definition (6.12), with the result (6.13) and the definition (6.7) of

the renormalised -~.
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7. Moment Proofs

In this section we shall give a proof of the limit theorems of Section 4 via the method
of moments. For reasons we shall outline below, this methodology works perfectly for
Theorems 4.1 and 4.2, which treat only convergence to the Gaussian limit, but breaks N

down in Theorem 4.3 if the integral (4.4) defining the functional \Il% is more than two-

‘.
dimensional. (Or. equivalently, if the F§' of {4.5) is defined on more than two X; at a N
time.) =
In essence, the proofs of this section are redundant, for more powerful techniques,
: which work in more general situations. will be used in the following section. Nevertheless, :
L we include them for two reasons: firstly, they are conceptually easier and considerably more :
concrete than those of Section 8, and, secondly, we find it both interesting and illuminating .
j to calculate the moments of the limiting distribution per se.
:_' To make life a little easier. we note the obvious fact (e.g. Reed and Simon (1972), p. _
51) that linear combinations of functions of the form X
(7.1) fol#reo o) = fle).. fles) [ €N -
are dense in ¥5,. and linear combinations of measures of the form -
(7.2) Yoldzy,....dzc) = y{dzy) ... y(dzi) ~ € Mgifmm :
are dense in M%%. . Consequently, since the functionals ®°(-), % (-), ¥°(-) and ¥ (-) are -~
all continuous in probability, it clearly suffices to prove the Theorems of Section 4 for f, B
and ~, of the form (7.1) and (7.2) respectively.
In this section we shall limit our discussion even further, to the case of k = 2, because
of the following result.
Lemma 7.1. For f € §; and v € *M};2, . the moments of a®’(f) + J¥°(+). a. 4 € R,
determine the joint distribution of ®°(f) and ¥¢(+). n

..“
..'
N
~
R

Proof. By Feller {1979). Problem 30.3, for example. the joint distribution is determined
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by the mixed moments if, for some o > 0. 8

_ E{lX|?
’ tT"n. ~

with X' = ®°(f) or ¥(~). But standard results on multiple Wiener-Ito integrals (e.g. “
Major (1981), p. 119) tell us that the n-th moment of a k-fold integral is of order
exp((k/2)nlogn + O(n)]. Since ®° and ¥° correspond to k = 1 and k = 2. condition N
(7.3) is satisfied. Note, however, that for k > 2 this condition is not satisfied. and, indeed, :
moment methods do not work in this situation.

We now turn to calculating the mixed moments of the lemma, for which we shall

need certain Feynman diagrams. The diagrams that will suffice for our purposes consist

L\

of a set of vertices, labelled 1,..., m, and legs labelled (i,j), j = 1,....k;, which belong
to the i-th vertex. We shall require only the cases k; = 1 or 2. A diagram, denoted by
(ky....,kn) is formed by pairing all the legs in such a way that the legs in each pair
belong to different vertices. Figure 7.1 shows the two unique (up to permutations of legs
belonging to a given vertex, or of like vertices among themselves) diagrams for (1.1,2.2).
(Note, that in the notation of Major (1981) and Dobrushin (1979) we consider only what -
they call the complete diagrams.) Note that in general there are K = k) + ... + ky, legs, ’

and so K/2 pairs.

1 e---- -

Qo
2‘ w.
|
1

T >

Figure 7.1. The two diagrams for (1.1.2,2).

O € e

The broken lines represent bonds, the heavy lines represent legs.
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We can now turn to the moments of a®® + 3%, Clearly. it will suffice to find an

expression for

E{[®° ()™ [¥°(2)]" ™™}
=E{L[ FNZaotdn ™13 [ [ 3000300 Zao (@11 Zos (a1,

forn = 1.2..... m=01..... n. But this is now easy, for prepared formulae for the

(7.4)

expectation of moments of Wiener-Ito integrals already exist. To present them, let I'(n.m)
be the collection of all n-vertex Feynman diagrams for which the first m vertices have only
one leg, and the remaining n — m vertices two legs each. Since there are m + 2{(n — m} =
2n — m legs, and so n — ,i;m bonds, m must be even.

We number the legs by an index a. a = 1,...,2n — m, and denote a bond by a pair
{(ay.az). (Clearly, not all 2-tuples are possible.) Let A be the set of a for which the a-th

leg comes from a 2-leg vertex. Define
FIF PG (dx) 0,4 € A°,

(7.5) rog = 4 JIHAPG(dY) a3 € 4,

J3(N*(A)GP(dA) a€ A Be A
ora € A%, 9 € A.
Note that in the third case the various symmetry requirements give us that r, 4 is also

given by

(7.6) [ami-nean = [a-nine @,

We can now state

Lemma 7.2. For f € S; and ¥ € ‘Mﬂi,’mm, n>1l. m=0,2,...,2[n/2|,

(1.7) E{[0°(£)|" (¥ ()"~} = 27" Tro s, . Tars,

where the sum is taken over all diagrams in T'(n.m). and ¢ = n — {m. For m odd. the
mixed moment is zero.

Proof. All the hard work has already been done, in setting up the notation. The Lemma
is a straightforward special case of Corollary 5.4 of Major (1981).
Before we can finally turn to the proof of Theorem 4.3. we need some information on

the moments of functionals of Markov processes.
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Lemma 7.8. Let X be a Markov process as in Section 2, and =,.~, € M?'. Then

E{FS (PN} =67 [ 1(de)g’ (2 o) valdy)

=87 {v1, 7)o

(7.8)

In particular,

E{F(X)*} =67"(v.7)e-
Lemma 7.4. Let X be a Markov process as in Section 2. and v € M%'!. Then, forn > 1.

(n—1)
0
(n—-1)!
0

E{{Fﬁ?(.‘()}"} = /.../g("_”e(:r,.zg)...gw(.vn_l..rn)',v(d.n)...'y(d:n)

(19) < /.../g"(n.m...g"(zn_l.zn)vtdm...w(dx,.).

Both of these lemmas are of the same form as Theorem 5.2 of Dynkin (1984}, where
similar moments are calculated, albeit for a slightly different class of processes and func-
tionals. It is a straightforward, although tedious, exercise to follow through Dyunkin's
calculations to obtain the lemmas.

We shall also require

Lemma 7.5. Let X be a Markov process as in Section 2, and y; € M?? such that
Yo(dzy,dz2) = vi(dey)vi(dzy) with v, € M®. If FS, and F® are the corresponding

additive functionals, then
F2, (X1, Xa) = F4, (X0)F2, (Xa).
Proof. In the pnotation of (2.13)-(2.14), we have
ha(zy,22)75(dz,,dz3) = Y2(dzy,dzq)
= ~i{dzy)v (dzg)

= hl(ll)hl(12)‘7'1(d11)‘7'1(d12)-

for some finite v}. Thus. with § = (4,.6;).

h'z(!l-lz)bq,,,a(ll-fc) = hl(‘tl)hl('t?)/e—d(6l+6“p6;(ll~yl)p67(1‘2-y2)7'l(drl)7'1((1’2)

= hye )b 5 (20 ) hi (2288 4(2g).
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’

N

.E::

Applying the above equivalences to the defining form for the Ff’" establishes the Lemma.
" We can now finally turn the

\ ,-::.

o Proof of Theorem 4.3 for the case k = 2
e
- Firstly, we shall need to add one more assumption to those surrounding Theorem 4.3.

viz. the integrals

(7.10) /.../ga(.cl..rg)...gﬂ(.r,l_l,.t")*;(d.rl)...-;(d.r,l)
= are finite for all n > 1. Since by Lemma 7.4 these integrals bound the n-th moment of the

- limit variable W?(~) of the theorem, their finiteness is a natural ingredient of any moment

proof.

We commence by noting that by Lemma 7.1 we need only prove convergence of mixed
moments to obtain the convergence in distribution of the Theorem. By (7.1). (7.2) and
the comments there we can restrict ourselves to y9 € ‘Mgﬁnm which are of the form v x v,
g with ~ € 'M:ylmm
. To make life notationally easier, let us write the field ®° 2(f) of (4.1) in the form & (7, )

, of (4.3). where v, = v,(f) is defined by v,(4) = fA f(z)dz, and we have v, € MY
Consequently, we are interested in studying the mixed moments of (39 (7,), ¥4 (+2)), with
\l

y1 € M®! and v, € *M%2 . and of product form. We have. forn > 1, m < n. A >0,
E{[@(n)]"[¥4(3))" "™}

' NN
= E{[(6/0 Y o, FI (X" {6/0) YY) o0k F (X, Xe)" ™)

:-.'« (7.11) i=1 1<)<k<N(N)

: =27 " (g/A)" 1/ Z N B (10, k) ) E (1K),

e N=2

? where i = (i}..... im)ed =0 dnem) k= (k1. knem).

::_'_; rij k=0, ...00.0, . ..0,, Ok ...0k, .

. (k) =FS (X)) F(XFS (N, Xey) . FoX,, Xk, ) h
»::. = Fgl(‘\.ll ) s 'F'?l(‘\-lm)Fg(‘\’]l) e F:(‘Y]n -m)F:(‘\-kl) v Fg(‘\’kn~m)‘
L 1
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(the last equality following from Lemma 7.5). and the sum T’ in (7.11) is over all i.j. k

with components in {1....,:V} such that j, # ko.a =1..... n-—m. .
| Consider the expectation of the product n?(i.j, k). This is clearly zero. uunless each
; 0, appears an even number of times among the 2n — m ¢'s. Thus, if m is odd. the mixed -

moment is zero, as is, by Lemma 7.2, is the mixed moment of & and ¥°. Henceforth.

therefore, we assume m is even.

We now consider those configurations (i.j, k) composed only of ¢ = n — m/2 different

indices, (ay,...,a,), each a, appearing precisely twice. Then. clearly.
: ;
(7.12) : (1,5, k) = [[ 02, = 1. :
v=1 -

Consider the corresponding =¥ (1.j, k), appearing in (7.12). To each ogy in (7.12) we can
associate a term r,,, coming from the expectation of the product of two functionals of X, ..

according to the following rules: (c.f. Lemma 7.3). If « =i, = j,. or a = §, = k. then g
(7.13) o = E{F? (X0, ) F)(Xa,)} = 07 {v1. 7).
If «a =i; =i, then

(7.14) ra = E{F3, (X, )F5,(Xa,)} = 67 (1. m)s.
Ha=j,=j,,0ora=j, =k, ora =k, =k, then

(7.15) ro = E{F(Xa,)F5(Xa,)} =07 (7. 7). :

Consequently, still in the case of precisely ¢ different indices. the expectations of the

#F terms in (7.11) depend only on the patterns formed among the indices, and not on

the indices themselves. Now note that we could choose (a;....,a4) from (1,..... V) in
(NN - q)!) different ways. so that we have :
(7.16) E{[@%(v)]™ [ (x2)]" ™) :




.............

. m - e—)\’\N V! ' F i
_ —n -V - q .. .

i =2 \Z;q i (N—q)!/\ IT9TE{x" (i,j,k)} + other terms

: =2"""T'@E{xF (i.j.k)} + other terms, ::

where the sum is over all the (i.j.k) of (7.11) of the paired form discussed above. The
“other terms” come from choosing ¢' < ¢ different indices (aj..... ag). so that some of
the o, appear 2p times, p > 1. These terms are asymptotically negligible, since under

(7.10) boundedness of the moments of F¥ and F?} (Lemma 7.4) guarantee that the (¢ — 1)

“other terms” are of order

e ~AZ\VN h ¥
: A AT =207 L a5 A — x
: NN =¢) :

. N=¢’

Thus it remains for us to consider the A-independent expression
- (7.17) 27 'g 2 (1,j.k)}.

This is clearly expressible in terms of the r, of (7.13)-(7.15). Now recall the initial defini-

tion of ~; in terms of f. to note that if G° is the Fourier transform of g° then:

{71, 71)e =/|f(/\)|2G6(d/\), :
(v 7)o =/|’~,‘(/\)|266(d)\),
(Y. 11)e =f$(x)f*(,\)c"(d,\).

That is, the r,'s of (7.13)-(7.15) correspond to the rqog's of (7.5), modulo a factor of 6.
Furthermore, we can write the sum in (7.17) as a sum over Feynman diagrams I'(n, m), in
which the m single-leg vertices correspond to indices in 1. and the n — m double-leg vertices Y
correspond to indices in J and k. Thus, since the factors of § cancel nicely, we have that .
(7.17) is precisely (7.7). That is, the mixed moments of ®(f) and ¥%(v;) converge to R

those of ®°(f) and ¥?(~,). This completes the proof. .
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A remark on k > 2. It is possible to show that even if & > 2 the moment sequence of the

" approximating sums converge to those of the Gaussian limit. The only essential difference y,
;- in the proof is that more complicated Feynman diagrams are required. Wolpert {1978b) ‘
W has actually done this for the special case of X Brownian motion in R?, and the additive ;
.. functional of the limiting field a Wick power. Note. however, that for k > 2 the moments ,
N of Gaussian functionals do not determine their distributions, and so no convergence in
. distribution result can be obtained this way.
We conclude this section with some brief comments on the X

_ Proofs of Theorems 4.1 and 4.2. It is clear that both of these results are virtually )
: standard central limit theorems, so that all we need check is that the summands satisfy X
appropriate moment conditions and the mean and variance of the limit are correct. Both -

of these, however. follow from Lemma 7.3, and so the proofs are trivial. -
: :
y 1
: :

»
o,
-
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. 8. The General Limit Theorem
\:\: In this, essentially final, section we shall state and prove a more general result than
oY
"3;{ those of Sections 4 and 7. The motivation for. and intuitive appeal of this result is as
‘ )
'.' for the earlier ones. Having seen how the arguments of Sections 5 and 6 apply to the
Theorems of Section 4, the reader who has got this far will see how they also apply in the -
most general situation.

. In order to set up this general result, we shall need a theory of multiple Wiener inte-
- grals far more general than that of Section 3. We thus recall such a theory, due to Dynkin
X and Mandelbaum (1983). that has its roots in Neveu (1968). We follow Mandelbaum and
Taqqu {1984) most closely.
8a. Wiener integrals on an arbitrary space.
Let (X,8.v) be an arbitrary measure space, and define a Gaussian process I, on

L%(v) with zero mean and covariance

(8.1) BN =)= [ fi(a falaids).

: If we consider the subfamily

o {(W(B)=IL(lg), BE€B,v(B)< o}

as a Wiener process on X, then I; can be written symbolically as

; hin) = [ 1w (de)
A X
. Now write N, = Ezymm(ux. ..%v) for the space of symmetric functions hy(zy,.... 2i)
- for which

f‘:',: v (hE) = / hi(zy,.... x5 )v(dey). .. v{dze) < .

5 The multiple Wiener integral of order k is a linear mapping I from X into the space

o of random variables which are functionals of the Gaussian family I,(f). The mapping is
od

j-f defined uniquely by conditions 4 and B following:
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(A) For functions of the form

: (8.2) hl(zy.. ... )= fle) . Sfleer. L€ L3v) :
4 .
b we have !
. I
(8.3) nuiwd) = e UL, |
veif?) N
- where Hy is the Hermite polynomial of degree k with leading coefficent 1. R

(B) For hy € X,.
E[I}(he)] = K'W*(R}).

Again, symbolically. it makes sense to write

Ik(hk) =j / hk(zl ..... Ik)w'(dll)...u"(dlk).
X X

. It is important to note for later use that the linear combinations of functions satisfying
- (8.2) are dense in X, and so their integrals are dense in the space of all integrals.
8b. A general limit theorem.

The following theorem follows from Theorem 2 and the discussion of Section 1.5 of

Dynkin and Mandelbaum (1983).

Theorem 8.1. Let X,..X,.... be independent and identically distributed random vari-
ables taking values in (X,B). and with distribution v. For A > 0 let Ny be a Poisson
variable with mean A, independent of the X,. Let 0,.02,..., be an i.i.d. sequence of
variables with P{o, = +1} = P{o, = ~1} = 1, and independent of both the N, and X;.
Finally, for k = 1,2,..., take hy € X and let I (hy) be its multiple Wiener integral as in

the previous subsection. Then the random variables

oo}

(8.4) Zyi(hyhy. )= D ATKN g o (X X, ).

k=1
with the inper sum over 1 < i) < i3 < ... <, < .N,, converge in distribution, as A — 2o,

. to

(8.5) Z(hi hy.. )= Y %Ik(hk). p




As noted, an elegant proof of this powerful result can be found in Dynkin and Man-
delbaum (1983). In Mandelbaum and Taqqu {1984) the result is extended to an invariance
principle.

Now let us consider a special case of Theorem 8.1. Let X be a right Markov process
with symmetric Green function g°. Let X = (R"I)R+ be the path space of X, and v the
measure the process induces on X. For k > 1, and v € M5, let F%, be the corresponding
functional (as in §2.b) of k independent copies of X. Then, in the above notation, ng € M,
and so the multiple Wiener integral Ik(Ff“) is well defined. Since there is a one-one

correspondence between functionals Ix(F2, ) and the pair (7x.6), we save on notation by

setting
(8.6) Ii(vk, 8) = Ie(F3,).
Let .V and #,.04,.... be as in Theorem 8.1, and X}, X,, ..., i.i.d. copies of X. We have,

as an immediate consequence of Theorem 8.1,

Theorem 8.2. For v, € M%*

o0
Y (8/0)k%%a;, .00, FO, (X, ... Xo,)

k=1

converges in distribution, as A — oo, to

. 9%/2

Z —k—,-Ik(‘nc. 8).

k=1

This result completely incorporates the results of Section 4. and is, in fact, far more

general, since far fewer restrictions are placed on the <,. The restrictions there, that
Yk € "M%} m. were placed primarily to permit easy identification of the limit as a simple
Wiener-Ito integral. In the more general result above, it is not quite as clear what the
Li(7k. 8) are.

To relate Theorem 8.2 with what has gone before, let us use it to obtain a new
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Proof of Theorem 4.3.

We have to prove convergence of the pair (®%(f). ¥8(~)) of (4.1) and (4.5) to the pair
(®°(f). ¥?(~)) of Section 3 and (4.4). The restrictions of Theorem 4.3 placed f in S(¢°).
and v in "M%k .

Firstly, to make comparisons easier, affix a suffix k to v: ie. v = 7. Now use
Y1 = Y1(f) to denote the measure in M?'! with density f. Then, comparing (4.1) and

(4.5) with the definition of an additive functional in Section 2, it is immediate that we

have

(/) = B(n()

Consequently, by Theorem 8.2 and the Cramér-Wold device, we have that (®5(/f), ¥4 (v«))
It(7k,0)). We need only check that

0"/2

converge in distribution to some pair (0‘/211(71 b =

this is, distributionally, the right pair.
We know that I;(-) is Gaussian, with zero mean. Its covariance function is given. for

i, p2 € M1 by

E{I,(m )\ {p2)} = E{F] F® }

H17 42

=0_1//ﬂl(dz)ge(z,y)uz(d!/)-

(cf. Lemma 7.3). Since v, has density f, the last integral leads to var(I,(v,)) =
9= [ [ f(2)¢°{z,y)f(y)dzdy, and so Il('yl)éﬁ“/z(bo(f). To complete the proof. we con-

sider yx € *MS.5 . of the form

Ye(dzy,... . dee) = v(dey) ... v(dzx), ~E€E ‘Mg-y‘mm.

8.k

symm« akd so it will suffice to consider

The linear combinations of such vx are dense in *M

them. We have

Te(ve.8) = Iu(F2,)

1(F%) )

v EFS)?)
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by (8.3). But. since the equivalence between I, and ®° has already been established. and

1€ *M‘;;},,,m we have

(8.8) LiFEe 2 [ 500 Z60(@, R
via the Wiener-Ito integrals of Section 3. Now apply Ito's lemma (e.g. Major (1981}, p. ’ ‘

30) to (8.7) via (8.8) to obtain

Hk<—Il—(£§)——>é(0E((F$)2))“k/2/.../'?(,\l)...?y(/\k)ZGa(d/\l)...ZGo(d,\k).

VEWFS)?)

9%/?
Tt [ (300300 Zar(dh) . Zar(dhe)
—‘I’a(vk)

by (4.4). Furthermore, the above argument also establishes that the joint distribution of

AT ERY
7,

Thus

the limit variables is the correct one, so we are done.

Y
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9. Concluding Comments.

Some comments on what we have not done:

1. The connection with Physics. Throughout the paper we have made numerous
references to Euclidean quantum field theory, without ever being really precise. This was
to avoid trebling (at least) the length of an already overlong paper. The reader now

interested enough to find out more about this could start with Glimm and Jaffe (1982).

2. The discrete case. We have not considered lattice indexed Gaussian fields. It is clear
that this could be done by representing them as the sum of random walks on the lattice,
rather than the more general Markov processes we have considered. Some of these results
could be obtained from ours by using the “discretization” trick of Dobrushin (1979). This,
however, would be like using a sledgehammer to kill the proverbial ant, since a direct
approach would be very simple. For an idea of how this might go. see Williams (1973).
Spitzer (1974). or Dynkin (1983).

3. No transition density. Not every Markov process has a transition density, nor does
every Gaussian field have a covariance functional that can be written via a kernel. In
the more general case, Dynkin's theory of additive functionals (§2) based on the Green
function and symmetry could be replaced by a theory based on the resolvent operator and
duality (c.f. Dynkin (1982) and Getoor and Sharpe (1985)), and so a more general class
of Gaussian fields considered. Since no new insight would be forthcoming. while a lot of

very difficult Mathematics would, we shall leave this to our betters.
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