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Abstract.

We consider sampling methods for multidimensional random

fields. We study the convergence of a sampler process

generated by the methods stated in Introduction. We can apply

convergence theorem to the restoration of degraded images in

image processing.

Key words. Gibbs distribution, Markov random field,
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1. Introduction.

We imagine a simple processor placed at each site s of

the graph. The state of the machine evolves by discrete chages

and it is therefore convenient to discretize time, say t = 1,2,

3,. At time t, the state of the processor at site s is a

random variable Xs(t) with values in A. = A = {0,l,2,'',L-l1.

The total configuration is X(t) = (X s(t),Xs 2(t),-'',Xs N(t)),

which evolves due to state changes of the individual processors.

The starting configuration, X(0), is arbitrary. At each epoch,

only one site undergoes a change, so that X(t-l) and X(t) can

differ in at most one coordinate. Let nl,n2 ,'" be the sequence

in which the sites are visited for replacement: thus nt E S and

X si(t) = Xsi (t-l), i + nt. Each processor is programmed to

follow the same algorithm: at time t, a sample is drawn from

the local characteristics of not necessarily Gibbs measure Yt

for s = nt and w = X(t-l). In other words, we choose a state

x A n from the conditional distribution of X given the

observed states of the sites Xr (t-l), r + nt. The new

configuration X(t) has Xn(t) = x and X(t) = X(t-l), s + nt.

Given an initial configuration, X(O), we obtain a sequence

X(l), X(2),''" Of configurations which converge to a limit

distribution 7 of wt" The limits obtained do not depend on

X(0). When i1t is Gibbs measure, we can apply our theorems to

the annealing restorations of degraded images.

The author wishes to express his gratitude to Prof. H.

Umegaki and Prof. C. R. Baker for interest in and valuable

comments to the present work.
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2. Preliminaries.

Let S = {SlS2'-'s N } be a set of sites and let G =

{Gs , s G S} be a neighborhood system for S, meaning any

collection of subsets of S for which 1) s 4 G and 2) s e Gs r

4= r 6 G s . Obviously, Gs is the set of neighbors of s and

the pair {S,G} is a graph in the usual way. A subset C C S

is a clique if every pair of distinct sites in C are neighbors;

C denotes the set of cliques. Let X = {Xs , s 6 SI denote any

family of random variables indexed by S. For simplicity, we

can assume a common state space, say A = {0,l,2,',L-lI},

so that Xs e A for all s. Let Q be the set of all possible

configurations:

= {W = (xs ,...,x ) : xsi6 A, 1 < i < NI.
1 N --

As usual, the event {X = xs X = xsNI is abbreviated
s S1 sN SN

{X = W}.

X is a Markov random field (we abbreviate MRF) with respect to

G if

P(X= w) > 0 for all w e Q; (2.1)

P(Xs=XsIXr=Xr rs) = P(Xs=XsIXr=Xr , r Gs ) (2.2)

for every s G S and (xsl,...,xs ) G 0. Technically, what is

meant here is that the pair {X,P} satisfies (2.1) and (2.2)

relative to some probability measure on R. The collection of

functions on the left-hand side of (2.2) is called the local

characteristics of the MRF and it turns out that the joint

probability distribution P(X= w) of any process satisfying

(2.1) is uniquely determined by these conditional probabilities.
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A Gibbs distribution with respect to {S,G) is a probability

measure w on R with the following representation:

-- T M 1 exp (-U (w) /T)

where Z and T are constants and U, called the energy function,

is of the form

U(W) = vc (w).~CEC

Each V is a function on Q with the property that VC(w) depends
C

only on those coordinates x of w for which s e C. Such a

family {Vc, C G C} is called a potential. Z is the normalizing

constant:

Z = exp(-U( )/T)

and is called the partition function. T stands for "temperature";

for our purposes, T controls the degree of "peaking" in the

"density" 7. The following proposition gives the equivalence

between MRF and Gibbs distribution. For a proof see [i],[6].

PROPOSITION 1. Let G be a neighborhood system. Then

X is an MRF with respect to G if and only if ir(w) = P(X= w)

is a Gibbs distribution with respect to G.

We define a sample process {X(t); t = 0,1,2,---} in the

following: Let nln 2 ,--- be the sequence in which the sites

are visited for updating. The initial configuration is X(0).

The evolution X(t-l) X(t) of the system is defined by

(1) X(t-l) and X(t) can differ in at most one coordinate nt;

(2) {X(t); t = 0,i,2,'') is generated by
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P (X (t)=xs , s S) = W t(x n s5, sI nt)P(X s(t-1)=xs, S+nt)

where 7 t is a probability measure on n such that 0 < t(M) < 1

for every w 6 .

ILet iip- Aii denote the L -distance between two distributions

on Q:

W

Obviously pn -" P (n 4 +-) in distribution (i.e., p n(w) p 1)

for every w) if and only if II n - pII - 0 (n - +c).

We assume that 7 t has a limit 7., as t +0.

.



3. Convergence Theorem.

In this section we state the main theorem and give the

proof.

THEOREM 1. Assume that there exists an integer T > N

such that for every t = 0,1,2,'" we have

S C {nt+l nt+2' nt+t}.

Suppose that

6(t) = inf{7t (x iX ji); 1 < i < N, (xs ,.,x

_. .

for some constant C > 0.

Furthermore, suppose that wt(w) is monotone for all t > t'

for some integer t' and for all w E Q. Then for any starting

configuration n E 0 and for every w e 6,

lim P(X(t)=WIX(0)=n) = n0 (W).
t - ) +CO

We need the following two lemmas to prove the above theorem.

LEMMA 1. For every t =0

lim sup IP(X(t)=WIX(to)=n') - P(X(t)=WIX(t 0 )=n")I = 0
t + -+ w, n l 0"

PROOF. Fix t0 = 0,1,2,"" and define Tk = to + kT, k = 0,

1,2,--.. By hypothesis S C {nt+ 1  ,  } for all t.

Now fix k for the moment and define the mi as follows:

m. = sup{t; t < Tk' nt=sil, 1 < i < N.

We assume that m > m2 > - > mN . Then

W~ r*VV*
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PCX (T k)=w jXT Ck i)=')

= P(X s(T k)=Xs ,..X sN(T k)=Xs NIX(T kl=w')

= P(X S(m 1)=X ,,'..X SN(mN)=XS NIX(T kl)=w')

= II P(X s(m.i)=X s
j=1 j

X s 4-1 (m j~ )=X sj+ 1I***IX sN (KN)=Xs N X(T kl)=w')

N N -1
H I 6(m. > C (t + k)

j=1 0

we obtain

inf P(X(T k)=wIX(T k-1)=w') a C N (t0+ kT)' (3.1)

for every t0 = ,1,2,* and k =1,2,*, bearing in mind that

Tk depends on t. For each t > 0, we define K(t) = sup{k;

T k <t} so that K(t) -) +- as t -*+-

For fixed t > T

sup IP(X(t)=wIx(O)=-n') - P(x(t)=wIx(O)=I")I
W, TI Ii

= sup {sup P(X(t)=wjX(O)=n) - inf P(X~t)=wIX(0)=nj)

= sup {sup I P(X(t)=wIX(T 1)=w')P(X(T 1)=w'Jx(o)=n))
W n W

- inf P(X(t)=wIXCT 1 )=w')P(X(T 1 )=w'IX(O).=n))

= sup S t,W).
"3

Certainly, for each w e 0

sup IP(X~t)= CT1) =w' )P (X( CT) =w&'IX ) i)

n .WO 1

<. su P(~ )= l ( 1~%. )= 'I( '
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where the supremum is over all probability measure p on R which,

by (3.1), are subject to u(w') CN(t0+k) for every We E Q.

Suppose W' -e P(X(t)=wIX(TI)=w') is maximized at W' = w* (which

depends on w). Then the last supremum is attained by

11 (w*) 1- (L -)CN (t0 + kT)

P(W') = CN (t 0 +k k)-1 W + w*.

The value so obtained is

(1- (L N-I)cN(t 0 +kT)-I1)p(x(t)=wlX(TI1)=w*)

+ cN (t 0 +k) - l W, P((t)=IX(T l )= -').

Similarly,

inf P(X(t)=wlX(TI)=w')P(X(TI)=W 'IX(O)=n)
. n w '

IiW 'D b".'v> inf I p(x(t)= wlX(Tl)= ')1(')

where the infimum is over all probability measure p on Q which,

by (3.1), are subject to p(wl') > C N(t 0 +kT) - for every W' E R.

Suppose W' - P(X(t)=wlX(T1 )=w') is minimized at W' = w* (which

depends on w). Then the last infimum is attained by

NN -1]I(w,) = 1- (L -)CN (t 0 + kT)

jCl') =N (t 0 + kT) -1, W + w.

The value so obtained is

N N -(1 - (L -l)C (t0 +k) )P(X(t)=wIX(T 1 )=w*)

+ C (t 0 + kT)i P(X(t)=wIX(T1 )w').

It follows that

(1- (LN_ )CN (t0 + k -) ){P(X(t) = w JX(T l ) = w*) P(x(t)I=wX(Tl)=W,))

S.-.. - . ,.t' .;.. ". - -.. -' ." .. -.



= (-LNcN (t 0 +kT) l){PX(t)WX(T )=W*) - P(Xt)=wlXTI)==w)

Hence

sup 1P (X(t)=Ix(0)=j) - P(X (t)=IvX()=") I

< (-LNCN (t 0 + k)

sup {P(X(t)=wIx(O)=w*) -P(X(t)=Ix(O)=W*)}
W

(1-L NcN(t0 + kt) - )

sup IP(X(t)=wlX(T1 )=n') -P(X(t)=wIX(T1)=n")].

Proceeding in this way, we obtain the bound

K(t) NN -
S(1 -L C (t + kT)).

k=l

Hence it will be sufficient to show that

m NCN -1
lim IT (l-L C (t 0 +kT) - ) 0 (3.2)

m - +- k=l

for every tO. However (3.2) is a well-known consequence of the

divergence of the series I (t0 +kT) for all t0 ,t. This
k

completes the proof of Lemma 1.

Q.E.D.

*. It will be convenient to use the following, semistandard

notation for transitions. For nonnegative integers r < t and

w, E , set

P(t,wIr,n) = P(X(t)=wIX(r)=n)

and, for any distribution p on n, set

P(t,wlr,p) = [ P(t,wir,n)p(n).
nl

'S C '*pr
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LEMMA 2. lrn sup 1IIP(tc It0 rro) r 0011 = 0.
t0 -).+00t>

PROOF. The probability measures P(t,*jt 11Tf0) figure

prominently in the proof, and for notational ease we prefer to

write P'0,~* such that for any t> to0 0 we have

P t(W) = ~ (X(t) W IX (t 0 )=n 7 0).
nl

To begin with, we claim that for any t> t > 0,
* -, 0=

V "PtOlt - 'rtl 11 =<IIP f- - TTti (3.3)

Assume for convenience that nt = s 1. Then

flPt ,t - *TtII1

- IT[ (x5 Ix , s~su)Pt ,u(X 5=x5  s+s1)(x "x ) 1 0 ot-
-s s SN

Tr -7t (X5  s F-S) I

= (X x Ix CA 7 xs1 I + l
S 2  s N s1

IP t01t-1(x5=x s, s+si) -7 %(X 5 , 5:1:5) I

I I { P~ tpu1(xs=x , s eS) - 7 (x , s re)I)
*(x 5 s *x ) X5  0's

2 N 1
< I P (Xs=x S 6S)-7T (x, s -SPt lt-l s t s(X s Xs) 0

1 N
= lt r - - Tt"11

Fix t > to.0,

1P - IT0

tort t 1+ IT- Tii
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~jPto't-1 r *i1+ 11 lit- I by (3 3

P. II 2 - iit- 1  II + 1I lit-i - lit ~+ II71t - 7T. j

Proceeding in this way,
N t-1

Pt~~~~~ ~ ~ 't-7.1ilIlr r 1'k -lk+l 11 li't Ji.-11II Pt 0ti0i~ Pt tt 0
Since P ttt0= 7r Coand I ~t-1. 0 as t -+cwe have

lim sup I lt .01

< Yurn SUP 7T.i -ii im sp7k7+
t 0 0- C ot> 0 t 0 -) Cot> k=t 0

t -. 0t

- i sr up 7 I 'k *Tk+ll
to0 + C t > t 0 k 0

0 00

Because by assumption, I 11w -Tll hscmpee h
k=t 0  k k1 .Ti opee h

proof of Lemma 2.

*1 Q.E.D.

PROOF of THEOREM 1. For any n~ 6Il

ThIm IP (X (t) x X(O)0) - 7T. 1

t -+ 0,

0 'm I I 1 P t -I o n ) ~ o n o n r 1



toM ri' ~t01 tn')P(t 01n'IO1,n) -P(t,.1It 1%0 )IjI

+ 1ii 'IM iHiiIP (t, -It 0 7T 0)~ -' 7Ii
t 0 -+O t -+ 0

=0

The last term is zero by Lemma 2. Furthermore, since P(t 01 10,n)

and iODhas total mass 1, we have

11 P(t 1 - Itoi')P It1mn'10, n) -P(t, toi)

= ~ I P(t'WIt,n')P(toFn'IO'n) -P(t'WIto7r,)I
w fl

I sup I I {P(t ,WIt01ri')- P(t,Wlt 1 r")1

su P(tO#w1t0 n)-7rtOD tril

sup I P(tIt 1 ') -P(t1WIt 1 ") I
W rig n I

I jP(tof I 10, n) - 7r., W~')

2 sup IP(t,wIt 01n')- P(t'WItourn")I.
u, T1 ,T1

Finally then

MiT IjI P (X(t)= Jx(0) =n) - T,

2 Ur -m rhi sup IP(twt#'1 PtWtoq)

=0 by Lemma 1.

This completes the proof of Theorem 1.

Q.E.D.
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We obtain the following corollaries.

COROLLARY 1. Suppose that the sampler process {X(t); t =

0,1,2,---} is generated by

P(X s (t)=x s , s4S) = r(x ntx s , sint)P(Xs (t-l)=xs , S+nt)

where w is a probability measure on 2 such that 0 < 7(w) < 1

for every w G Q. Assume that for every s E S, the sequence

int , t> i contains s infinitely often. Then for any starting

configuration n 6 2 and for every w 6 0,

lim P(X(t)=WIX(0)=n) = (W).

Concerning ergodicity, we use the sampler process and

compute a time average of the function Y.

COROLLARY 2. Suppose that the sampler process {X(t); t =

0,1,2,--'} is generated by

P(Xs (t)=xs, seS) = (X ntixs, s+nt)P(Xs(t-l)=xs, S+nt)

where 7 is a probability measure on Q such that 0 < ir(w) < 1

for every w G Q. Assume that there exists an integerT > N such

that for every t = 0,1,2,''" we have

S C(nt+l nt+2''',nt+Tl-

Then for every function Y on Q and for every starting

configuration n 6 Q,

lim n Y(X(t)) = Y(W)n(W)
n - t=l W

holds with probability one.
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4. Applications to Image Processing.

Let S = Z m  {(i,j): l<i,jlm} denote the mXm integer

lattice; then F = {Fi  ), (ij) 6 S, denotes the gray levels1,)

of the original, digitized image. Lowercase letters will denote

the values assumed by these random variables. It is natural to

expect that the image value at a pixel does not depend on the

image data outside its neighborhood, when the image data on its

neighborhood is given. Specially, we model F as an MRF, or,

what is the same (see Proposition 1), we assume that the

probability law of F is a Gibbs distribution with respect to

{S,G} with corresponding energy function U and potentials {V c}.

Let H denote the blurring matrix corresponding to a shift-

invariant point-spread function. The formulation of F gives

rise to a blurred image H(F) which is recorded by a sensor.

The latter often involves a nonlinear transformation of H(F),

denote here by *, in addition to random sensor noise N = {nij1
which we assume to consist of independent, and for definiteness,

Gaussian variables with mean U and standard deviation a.

We also assume that F and N are independent as stochastic

processes. The degraded image is then a function of O(H(F))

and N, say f(l(H(F)),N), for example, addition or multiplication.

To compute the posterior distribution, we only need to assume

that b - f(a,b) is invertible for each a. For notational ease,

we will write

G = *(H(F)) N

At the pixel level, for each (i,j) G S,

Gi' j = 0( 1 H(i-kj-)F k) ni
(k,Z) Fk)

Since the operation j is assumed invertible, we can write
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N - O(G,O(H(F))) = {s s 6 S)

to indicate this inverse.

Let Hs , s G S, denote the pixels which affect the blurred

image H(F) at s. Observe that 0., s e S, depends only on g.

and {ft, t E HSI. By the shift-invariance of H, Hr+s = s + Hr,

where H C S, s+r E S, and s+H is understood to be intersected
rr

with S, if necessary. In addition, we will assume that {H S

is symmetric in that r+s e Hs¢= -r+s CH s. Then the

collection {H s\{s}; s 6 S} is a neighborhood system over S.

Let H2 denote the second-order system, i.e.,

H rw U H, s E S.S r F H s r

2Then it is not hard to see that {H \{sI, s 6 S} is also a

neighborhood system. Finally, set GP = {GP, s 6 S) where

GP = Gs)H2\{sI. Let p E N(N=m 2 ) have all components =

and let lj'Ij denote the usual norm in RN: ixii = N x.

PROPOSITION 2. For each g fixed, P(F=fiG=g) is a Gibbs

distribution over {S,G p } with energy function

UP(f) = U(f) + tl.- %(g,f(H(f)))JJ2 /2a 2 -

For a proof see [3]. The posterior distribution P(Ffig)

is a powerful tool for image analysis; in principle, we can

construct the optimal estimator for the original image, examine

images samples from P(F=flg), estimate parameters, design near-

optimal statistical tests for the presence or absence of special

objects, and so on. Specially, our work here is to find the

value(s) of f which maximize the posterior distribution for a

fixed g, i.e., minimize



Upm (f- Umf +111, - 4'(g,O(H(f))I 2q 2

where 4' is defined by O(~))0 = g.

In other words, we find the value(s) of f with lowest energy.

So far, we have not discussed how these realizations from

this class of Gibbs distributions are generated. Basically

there are two well-known methods of generating realizations

from MRF's or Dibbs distribution's. They are the "exchange"

type and the "spin-flip" type algorithms. In the exchange

type algorithm, also known as the Metropolis' Algorithm [5],

two pixels are chosen at random. Their values are exchanged

if they are different and if the exchange will take the

system to a more probable (lower energy) configuration. If the

new configuration is less probable then the exchange will or

will not take place depending on the comparison of the ratio

of the probabilities of the new and the old configurations with

a random number uniform on (0,1]. The randomization is necessary

to ensure that the system does not get stuck in a local high

probability configuration. The ratio of the probabilities of

the new and the old configurations are calculated easily due to

the Gibbs distribution formulation, without actually determining

either of the probabilities, which would be extremely difficult.

s. It is well known that this algorithm will converge to a

configuration that maximizes the joint probability but the rate

of convergence is a difficult problem of statistical physics

and a completely satisfactory solution to this problem does

not exist. As would be expected, the initial configuration does

not influence the convergence properties of the algorithm.

It might only take a few more iterations to converge for

certain initial configurations as compared to others. The

%~. ':N
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Metropolis' Algorithm has been used by Cross and Jain [2] in

generating textures using MRF models. In a recent paper,

Kirkpatrick, Gelatt and Vecchi [4] proved a stochastic

approximation method for solving combinatorial optimization

problems, which can be used for the minimization problem.

A major drawback of the Metropolis' Algorithm is that the

number of pixels in each gray level does not change during

iterations of the algorithm, due to the fact that new

configurations are generated simply by exchanging two pixel

values. Therefore we choose to use the second method for

generating realizations from a MEF (or Gibbs distribution).

The second set of algorithms for generating realizations

from a MRF (or Gibbs distribution) are known as "spin-flip"

algorithms. Recently a version of this algorithm is presented

by Geman and Geman [3] in an image processing context. This

algorithm, which they called the "Gibbs Sampler", works as

follows. A pixel is chosen at random or in a deterministic

manner. The value of the pixel is renewed by disregarding

its present value, noting the values in its neighborhood

and replacing the pixel value by a random number generated

according to the conditional distribution specified by the

MRF (or Gibbs distribution). Pixel visiting mechanism can

be random or deterministic, such as raser scan, the impotant

point being that each pixel should be visited infinitely often

as the algorithm proceeds ad infinitum. This algorithm has

the characteristics of a relaxation algorithm in image

processing; therefore, it is also call stochastic relaxation.

In this section we use the sampler process stated in

§2 to find the value(s) of f E Q with lowest energy.
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Let us indicate the dependence of i on T by writing lT' and let

T(t) denote the temperature at stage t.

We assume that w T(t) is Gibbs distribution. Let

Q 0 = {wGO : U(w) = min U(n))
n

and let w 0 be the uniform distribution on Q 0"

Finally define

U* = max U(w),

U, = min U(M),

A = U* -U

The sampler process {X(t); t 0,1,2,-'-- is generated by

P(Xs (t)=x s , s r S) = 7rT(t) (x ntXs, s~nt)P(X(t-l)=xs, s~nt).

We obtain the following

THEOREM 2. Assume that there exists an integer - > N such

that for every t = 0,i,2,*" we have

S C{nt+1 int+2 ' ' ' nt+T).

Let T(t) be any decreasing sequence of temperatures for which

a) T(t) 0 as t

b) T(t) > NA/log t for all t> t for some integer to > 2.

Then for any starting configuration n E P and for every w F Q,

lim P(X(t)=WIX(0)=) 0

OUTLINE OF PROOF. We replace w t and Tr, in Theorem 1 for

iTT(t) and 70 in Theorem 2. By assumption, we obtain the

inequality

6(t) > 1 exp(- ) >A exp(- log t) =1
L -~t L N L Nrt



18

It is easy to show the convergence of v T(t) to 10 Because

exp(- U())T (t) (W) =  t
U(w,), U(w,),exp (- yr-r + 't exp(-T-

W.4 ' 0 +W"" Is 0W

ex( Ul M -UAL)
T~U)' exp(- -T(t)"

I1f% 1 + I exp ( -U,)
WIS P~aoT(t)

converges to 7 0 as t-+-.

We obtain Theorem 2 as the result corresponding to Theorem 1.

Q.E.D.

m
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