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We consider sampling methods for multidimensional random
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fields. We study the convergence of a sampler process
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generated by the methods stated in Introduction. We can apply
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convergence theorem to the restoration of degraded images in

image processing.
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l. Introduction.

We imagine a simple processor placed at each site s of
the graph. The state of the machine evolves by discrete chages
and it is therefore convenient to discretize time, say t = 1,2,
3,°°°. At time t, the state of the processor at site s is a
random variable xs(t) with values in As =A={0,1,2,°°°,L-1}.

The total configuration is X(t) = (X_ (t),X_ (t),--*.X_ (t)),
51 S2 °N

which evolves due to state changes of the individual processors.
The starting configuration, X(0), is arbitrary. At each epocﬁ,
only one site undergoes a change, so that x(t;l) and X(t) can
differ in at most one coordinate. Let ny/ny, """ be the sequence
in which the sites are visited for replacement: thus n.€ S and

X_ (t) = X_ (t-1), i ¥# n_. Each processor is programmed to

follow the same algorithm: at time t, a sample is drawn from

the local characteristics of not necessarily Gibbs measure Te

for s = n, and w = X(t-1). In other words, we choose a state

X e,An from the conditional distribution of X, given the
t t

observed states of the sites xr(t-l), r * n The new

£
configuration X(t) has Xnt(;) = x and X_(t) = X_(t-1), s $ n,.
Given an initial configuration, X(0), we obtain a sequence
X(1l), X(2),°°* of configurations which converge to a limit
distribution n_ of Moo The limits obtained do not depend on
X(0). When Te is Gibbs measure, we can apply our theorems to
the annealing restorations of degraded images.

The author wishes to express his gratitude to Prof. H.

Umegaki and Prof. C. R. Baker for interest in and valuable

comments to the present work.




V! 2. Preliminaries.

) Let S = {sl,sz,---,sN} be a set of sites and let G =

{65, s € s} be a neighborhood system for S, meaning any

5 collection of subsets of S for which 1) s ¢ 6_ and 2) s € G,

' &S r e Gs. Obviously, Gs is the set of neighbors of s and

: the pair {S,G} is a graph in the usual way. A subset CC S

v}: is a clique if every pair of distinct sites in C are neighbors;

‘:, C denotes the set of cliques. Let X = {xs, s € S} denote any

. family of random variables indexed by S. For simplicity, we |

:' can assume a common state space, say A = {0,1,2,°°*,L-1},

EE so that X; € A for all s. Let Q be the set of all possible ;
configurations: ;
) !
: Q= {w= (xsl,”-,st) : xsie A, 1 < i < N} :
) As usual, the event {xs = Xg oot Xy =X } is abbreviated i
" 1 1 N N -
) E {(X=w}.

:. X is a Markov random field (we abbreviate MRF) with respect to

j‘ G if

A

i P(X=w) > 0 for all w € Q; (2.1)

W

4 P(xs=xs|xr=xr’ r}s) = P(xs=xs|xr=xr' r € G,) (2.2)

é:' for every s € S and (xsl,-",st) € Q. Technically, what is

0

i:‘ meant here is that the pair {X,P} satisfies (2.1) and (2.2)

i relative to some probability measure on Q. The collection of

E functions on the left-hand side of (2.2) is called the local

:: characteristics of the MRF and it turns out that the joint

!. probability distribution P(X=w) of any process satisfying

%ge (2.1) is uniquely determined by these conditional probabilities.

f;:
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A Gibbs distribution with respect to {S,G} is a probability

ﬁ? measure 7 on  with the following representation:

R
. T{w) = % exp (-U(w)/T)

A

KA,

;xé where 2 and T are constants and U, called the energy function,
i is of the form

v Uw) = §  V.(w).

% cec ©

et Each VC is a function on 2 with the property that Vc(w) depends
%ﬁ only on those coordinates xg of w for which s € C. Such a

L}

::,:, family {VC, C € C} is called a potential. 2 is the normalizing
et

o constant:

v

z =) exp(-U(w)/T)
w
K and is called the partition function. T stands for "temperature";
§” for our purposes, T controls the degree of "peaking” in the
:; "density" m. The following proposition gives the equivalence
[ "‘.
?t: between MRF and Gibbs distribution. For a proof see [1],[6].
N ?
TVS PROPOSITION 1. Let G be a neighborhood system. Then
Yoo
i X is an MRF with respect to G if and only if 7(w) = P(X= w)
is a Gibbs distribution with respect to G.

EAN

"i 1 .
3'. We define a sample process {X(t); t = 0,1,2,°+-} in the
AL following: Let ny/Ngy, e be the sequence in which the sites
;?: are visited for updating. The initial configuration is X(0).
A LY
;JE The evolution X(t-1) * X(t) of the system is defined by

U
"

' (1) X(t-1) and X(t) can differ in at most one coordinate n;
;.I'.; .

Ilgﬁ o
A (2) {x(t); £t =0,1,2,°**} is generated by

LT
{

.' M 3 B 'y;
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"i* P(X (t)=x_, 8 € S) = "t(xntlxs’ s=|=nt)1>(xs(t-1)=xs, stn,)

fft;. where Ty is a probability measure on  such that 0 < ﬂt(w) <1

Ly for every w € Q.

_ 't‘- Let Hu - vll denote the Ll-distance between two distributions

on Q:

Ll i

227
:ﬁ-

-
-
-

X Hu=vll = Jlu(w) = viw)].
w

Obviously unv' b (n * +o) in distribution (i.e., un(w) > u(w) -
;?5: for every w) if and only if Ilun- ull > 0 (n » +=).

:'::" We assume that m_ has a limit 7, as t * +w.

(%

o= n - L3 &
e & )
)
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3. Convergence Theorem.

In this section we state the main theorem and give the

proof.

THEOREM 1. Assume that there exists an integer 1 > N

such that for every t = 0,1,2,°** we have

2 S Cing yimy pr iy, e
N
q? Suppose that
i et}
o0 §(t) = inf{m (x_ |x_ , J¥i); 1 2 i < N, (xg , " ",x; ) € 0}
:‘i: 1 J l N
; Q:I
N
.r, > N—C_
L2 vt
.:j; for some constant C > 0.
2
~ Furthermore, suppose that nt(w) is monotone for all t > t'
‘ﬂ L] =
for some integer t' and for all w € Q. Then for any starting
ot
,';: configuration n € Q@ and for every w € Q,
ey
" lim P(X(t)=w|X(0)=n) = 7m_(w).
-t t * 4+
%y
x{ We need the following two lemmas to prove the above theorem.
':‘i'o
Wy
ﬁﬁ LEMMA 1. For every t0 = 0,1,2,*°"°,
30 lim sup |P(X(t)=w|X(ty)=n') - P(X(t)=w|X(tg)=n")| = O
_3; t > +° w,n',n"
2%
s . ,
&#g | PROOF. Fix to = 0,1,2,°** and define Tk = to + kt, k=0,
-;'H e o e 1 . e »
fj& 1,2, - By hypothesis s C{n__,, n, .} for all t.
:*3 Now fix k for the moment and define the m, as follows:
P> -
frf m, = sup{t; t < Ty s nt=si}, 1 <ic<N.
l"l

We assume that m1 > m2 > s > mN. Then

¥ VRN AN AS VLA AT ~ N - SR OEARRTA LA
R ALt S o Tart e

- RN e
a & u.l- s 4% 1 H’h‘lﬁ W,
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6
P(X(Ty )=w|X(T) _;)=u")
= P(xsl(Tk’=xsl'...’st(Tk)=st|x(Tk-1)=“')
= P‘xsl(m1)=xsl""'st(mN)gstlx(Tk-1)=“"
m I
= I P(X_ (m,)=x
=1 %5 ) %y
X (m, )=x rt X ( y=x_ ,X(T )=w')
sj+1 i+l sj+l SN N Sy k-1
N
> I 8m) 2 Mgy +kn 7L
j=1
We obtain
: . N -1
inf P(X(T))=w|X(T, _;)=w') > C (ty + k1) (3.1)

w,w'
for every to =0,1,2,** and k =1,2,°**, bearing in mind that
T, depends on ty- For each t > 0, we define K(t) = sup{k;

T, < t} so that K(t) > +» as t > +o,

For fixed t > Tl’

sup |P(X(t)=w|X(0)=n') - P(X(t)=w|X(0)=n") |
wen',n"

sup {sup P(X(t)=w|X(0)=n) - inf P(X(t)=w|X(0)=n)}
w n n

sup {sup } P(X(t)=le(Tl)=w')P(X(Tl)=w'|x(0)=n)
w n w'

- inf § P(x(t)=w|x(T1)=w')P(x(Tl)=w'|X(0);n)}
n '

sup Q(t,w).
w

Certainly, for each w € Q,

sup ) P(X(t)=le(Tl)=w')P(X(T1)=m'|x(0)=n)
n w'

< sup ) P(X(t)=w|X(T;)=w")u(uw")
boow!

. A
""""
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where the supremum is over all probability measure y on Q which,
by (3.1), are subject to u(w') 2 CN(to+k1)-1 for every w' € Q.
Suppose w' -+ P(X(t)=w|X(Tl)=w') is maximized at w' = w* (which
depends on w). Then the last supremum is attained by

1

wiw*) = 1= (N-1)cN (g, + k1)~

O S T

U(w')
The value so obtained is
(1= @N-1)c" (g + k1) THP (X (£)=0|X (7)) =u%)
N -1 — )
+ € (tgy + k1) ; P(X(t)—le(Tl)=w ).
LR
w (]
Similarly,

inf § P(X(t)=w|X(T;)=w")P(X(T;)=0'|X(0)=n)
n o w'

2 inf ] P(X(t)=0|X(T)=0")u(w")
vow'

where the infimum is over all probability measure p on § which,
by (3.1), are subject to u(w') > CN(t0+kT)-l for every w' € Q.
Suppose w' - P(X(t)=m|X(Tl)=w‘) is minimized at w' = w, (which
depends on w). Then the last infimum is attained by

1

lwy) = 1= @N-1)c" (g + k1) ™

ulw') = CN(to+kT)-1, ' F w,.
The value so obtained is
(1- @Wh-1cM (e, + k) THE () =] X (7)) =0,)
N -1
+ C (t,+kT) ; P(X(t)=w|X(T,)=w").
0 . 1
w w*
It follows that

Q(t,w) <

(1 - @1V ey + k0 TH (e (X () =0 [X(T)) =u%) - P(X(£)=0]X(T))=0,) )
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8
+ ey + k)72 ; P (X (t)=w|X(T))=u") - ; P(X(t)=uw|X(T))=u")}
w'Fu* w'Fw,
(1= NN (g + k) TH (P (X (£) =00 | X (T)) =0#) - P(X(£)=0|X(T)=u,) }.

Hence

sup |P(X(t)=w|X(0)=n") - P(X(t)=w|X(0)=n") |
w,n',n" N

(1 - LNCN(tO + k)t

)

Ia

sup {P(X(t)=w|X(0)=0w*) - P(X(t)=w|X(0)=w,)}
w

(1 -~ LNCN(to + k1)t

)
sup |P(X(t)=w|X(Tl)=n') - P(X(t)=w|X(Tl)=n") |.
w,Mn',n"
Proceeding in this way, we obtain the bound

K(t)
I (1-L
k=1

N_N 1

c (to+kr)' ).

Hence it will be sufficient to show that

m
lim T (l-LNCN(t0+kT)-1) =0 (3.2)
m-~> +o k=1

for every t,. However (3.2) is a well-known consequence of the

divergence of the series ) (to4-k1)-1
k

completes the proof of Lemma 1.

for all to,t. This

Q.E.D.

It will be convenient to use the following, semistandard
notation for transitions. For nonnegative integers r < t and

w, n €9, set
P(t,w|r,n) = P(X(t)=w|X(r)=n)
and, for any distribution y on §, set

P(t,wlr,u) = ] P(t,w|r,nu(n).
n
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o LEMMA 2. lim sup |lp(t,- ltgimg) - 7 ll = o.

::- tpr e t2t,

<5

23

“-} PROOF. The probability measures P(t,* ItO,nw) figure

& prominently in the proof, and for notational ease we prefer to

“.-"': ;
g write P () such that for any t> t, > 0 we have (
.’__- topt - 0_' ‘
L. i
e ,
I = = = |
, Pto,t(“’) = ] P(X(t)=w|X(tg)=n)m_(n). |
i~ n ;
‘::‘_’.: To begin with, we claim that for any t > ty2 0,
& 1Py e = mell é”Pto,t-l w |l (3.3)

~"': Assume for convenience that n, = s,. Then

Cal

S

.\;.:

R " -

i LN

%

& T 2x )lﬂt(xsllxs' $=+sl)Pto,t-l(xs="s' sts;)

'::: Sl SN

o - T (x,, sES)|

o = ) { 1 wm.(x_ |x_, s#s,)

-2 (xg *""x ) x_ €A ts s 1

'_':\ 2 N 1l

Pe . ™

o IPt -1 (Xg=%g, sts,) - T (xg, sts;) |}

J 0

0

1,:0 = - -—

b ) |I:'t ,t—l(xs Xgr s#sl) 1Tt(xs’ s+sl)|

b (xg TeeX ) 0
$a 2 Sy
9.7 - = -
= = Zx )| }X{ { Pto,t-l(xs—xs’ SES) -m (x,, SES)}]

= S2 SN 51 :

.. < ) |p (X,=x_, s€S)-7_(x_, S€ES) |

l’_ = - 14 14

s (XK. eeex ) tyrt-1""s 7s t's

i) 1 N

L]

= = ||P - T, ||

)
(42 ,
o Fix t>t0=>=0,

i P

. 1P e = el

e,

= sllpg cmmll+ flng = m |l

3

-

e
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L I+l nt-nmll by (3.3)
TN P PN R PR

e=1 " T I+l = m I

2|l Pegot-1" Mool + Mg =Te g I+l Ty =me I+l me =7 i

Proceeding in this way,

t-1
1B Tl 2l =mll 4 L - +llme -7 b
tort tyrty tg ket k™ ke | t e
Since PtO'tO = m_ and ||1rt-1r°°||+ 0 as t + +», we have
lim su P -
S A
til
< Iim sup |[n -7 ||+ IIm sup I Ty = Ty Il
typre t2t, to tyr e t2ty k=t,
+ ltm s>up|| nt-nm“.
(-]
ty t2t,
_ t-1
= Iim sup ] || T~ Te I

t,+> t>t, k=t

0 2%ty k=t
= Iim ] |[m- I
Tk+1
ty > k=t
= 0.

Because by assumption, 1} || "k-"k+1” < w. This completes the
k

proof of Lemma 2.

Q-E-Do
PROOF of THEOREM 1. For any n € 9,

Tim |[P(X(t)=- [X(0)=n) - 7 _||

t+ o

= Iim I'iﬁ”ZP(t,

t,.+o0 t+>

0 t>t

to/n')P(t,,n'|0,n) -7 |

0

X ) OO | U 30 P P A P
.. "'55“"3&7»5"!'-.“.&“'i ‘.". 5‘&‘ l'*..t‘ R i's.ﬁ!'!‘bt‘:. 3, '!‘|.t‘l‘-‘l':‘l|», atoab ‘w'l » ¥ ! I' WS ‘.‘&

I‘n‘l‘ i »




R dlie dia fde Ale dba Sle dha-Alniehite Aus Ahe Ahe " ARs g R Sl ‘\-'!'v'\“

W
;
| ' 11
W < Tm T p(t,-|tg,n')B(tg,n'[0,n) - P(t,- |tg,m) ||
% to-bm t+o n!
.. t2t,
A + Tim  TIim||p(t,"|tgem,) = 7l
o t0-§m t+
3 2t
i The last term is zero by Lemma 2. Furthermore, since P(t0,° [0,n)
" and v has total mass 1, we have
;
E I rZ]'P(t,- |t n"IP(tg,n' [0,n) - P(E, " |ty,m) ||
k)
[ |
=1 1 I Preltgneiegn'jo,m - RlEwltgm)] . |
w n |
1 !
N = I sup | ] {P(t,0lty,n®) - P(t,ultg,n"))
Lo ® n" n|
K
. {P(ty,n*]o,n) -7 (n')}]
N
: < I sup J |P(t,ulty,n') -P(t,ulty,n")|
! n oL 0 0
w n" n
s
L)

-

|P(tg,n'[0,n) =7 (n*) ]

hY Z sup |P(t,w|t0,n')-P(t,wlto,n")l
wn',n"

P X o
A

I [P(tyon'[0O,n) -7 (n")]
nl

S

<27 sup !P(t,wlto,n') -P(t,mlto,n")[.
wn'

' M" ‘
4
¢ Finally then ‘
Iim || P(X(t)=-]X(0)=n) - m_]||
t+ o
o — e
F 22] Tim Tim sup |P(t,w|ty,n") -P(t,u|ty,n")|
be wtyr® tren’,n"
A t>t
:: =0
;}' = 0 by Lemma 1.
?‘0
) This completes the proof of Theorem 1.
I"
)
n" Q.E.D.
b

L)
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& We obtain the following corollaries.
k.
: COROLLARY 1. Suppose that the sampler process {X(t); t =
:. 0,1,2,°-+} is generated by
[
P(X_(t)=x_, S€S) = n(xntlxs. s$n )P (X (t-1)=x_, stn,)
: where 7 is a probability measure on { such that 0 < n(w) < 1
for every w € Q2. Assume that for every s € S, the sequence
] {nt, t > 1} contains s infinitely often. Then for any starting
:.. configuration n € @ and for every w € Q,
“ lim P(X(t)=w|X(0)=n) = 7 (w).
tre :
’,‘ Concerning ergodicity, we use the sampler process and
s compute a time average of the function Y.
; COROLLARY 2. Suppose that the sampler process {X(t); t =
2 0,1,2,°°°} is generated by
? P(X_(t)=x,, SE€S) = n(xnt|xs, s¥n, )P (X  (t-1)=x_, s#nt)
.' where 1 is a probability measure on § such that 0 < w(w) < 1
: for every w € Q. Assume that there exists an integer.tT > N such
k) that for every t = 0,1,2,°°° we have
S CinpyyrMeypr iyt
; Then for every function Y on Q and for every start;ing
configuration n € 9,
‘ .1 %
lim = ] ¥Y(X(t)) = § Y(w)7(w)
3 now B ogs] ®
:; holds with probability one.
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4. Applications to Image Processing.

Let S = 2 = {(i,j): 1<i,j <m} denote the mxm integer
lattice; then F = {Fi,j}' (i,j) € s, denotes the gray levels
of the original, digitized image. Lowercase letters will denote
the values assumed by these random variables. It is natural to
expect that the image value at a pixel does not depend on the
image data outside its neighborhood, when the image data on its
neighborhood is given. Specially, we model F as an MRF, or,
what is the same (see Proposition 1), we assume that the
probability law of F is a Gibbs distribution with respect to
{s,G} with corresponding energy function U and potentials {VC}.

Let H denote the blurring matrix corresponding to a shift-
invariant point-spread function. The formulation of F gives
rise to a blurred image H(F) which is recorded by a sensor.
The latter often inQolves a nonlinear transformation of H(F),
denote here by ¢, in addition to random sensor noise N = {ni,j}'
which we assume to consist of independent, and for definiteness,
Gaussian variables with mean y and standard deviation o.
We also assume that F and N are independent as stochastic
processes. The degraded image is then a function of ¢ (H(F))
and N, say V(¢ (H(F)),N), for example, addition or multiplication.
To compute the posterior distribution, we only need to assume
that b + Y(a,b) is invertible for each a. For notational ease,
we will write

G=¢(H(F)) @ N

At the pixel level, for each (i,j) € S,

G, . = 6( H(i-k,j=%)F
13 (k?RJ

Since the operation ® is assumed invertible, we can write

k,2) © Ny, 5

RGN
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N = ¢(G,¢(H(F))) = {¢_, 8 €S}

)
:::?; to indicate this inverse.
t
f?:s- Let H_, s € S, denote the pixels which affect the blurred
. image H(F) at s. Observe that os, s € S, depends only on Jg
b
ALY . -3 . =
y and {ft' t e Hs}. By the shift-invariance of H, H .o S+Hr,

where HrC S, s+r €S, and s+ Hr is understood to be intersected

-{‘; with S, if necessary. In addition, we will assume that {Hs}
H
o
"50 is symmetric in that r+s € Hg & -r+s € H . Then the

!

collection {Hs\{s}; s € S} is a neighborhood system over S.

" Let H2 denote the second-order system, i.e.,

NS

B0

o Hz = U Hr, 8 €S.

> r €H

L . S

o: Then it is not hard to see that {Hi\{s}, s € s} is also a

)
AN
E{{: neighborhood system. Finally, set GP = {Gg, s € S} where

¥

Gg = Gg ) Hg\{s}. Let eRN(N=m2) have all components = y

2 N
and let ||°|| denote the usual norm in R': |x|| = ) xi.
i=1

PROPOSITION 2. For each g fixed, P(F=f|G=g) is a Gibbs

o'- %

distribution over {s,GP} with energy function

AR
4

3 UP(£) = U(E) + [|u- o(g,éme))]2/202.
pay
0y For a proof see [3]. The posterior distribut:.ion P (F=f|g)

is a powerful tool for image analysis; in principle, we can

ey
pEAE N,

-
-

construct the optimal estimator for the original image, examine

images samples from P(F=f|g), estimate parameters, design near-

Cox WA

AR

?: optimal statistical tests for the presence or absence of special
»

-‘:',n objects, and so on. Specially, our work here is to find the

;,,:'::, value(s) of f which maximize the posterior distribution for a

‘:‘,

)

fixed g, i.e., minimize

B LA M LA AN ) TGN Y ML KO N ) ) O DU OO O, 1N
S & Af‘ :"‘ﬂ' ?i*" ""e '?t",;" . ) ‘?y"aril“ L ".f‘ﬂ".:"’E",‘“""’:‘?‘.j‘ “-fl:ﬁl‘\;.‘!‘\g"!?‘»'tﬁ “0"«,‘,1"
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s UR(£) = U(f) +||lu-¢(g,6(H(£)))]|[*/20°, £ €Q
2o
::', where ¢ is defined by ¢ (H(f))@ ¢ = g.
'g‘l
ke In other words, we find the value(s) of f with lowest energy.
‘53 So far, we have not discussed how these realizations from
N
Ere this class of Gibbs distributions are generated. Basically
.
v.} there are two well-known methods of generating realizations
‘W, from MRF'’s or Dibbs distribution’s. They are the "exchange"
h

2 type and the "spin-flip" type algorithms. In the exchange
‘gh type algorithm, also known as the Metropolis’ Algorithm (5],
e two pixels are chosen at random. Their values are exchanged
.r.'J
ig if they are different and if the exchange will take the
"
Lo system to a more probable (lower energy) configuration. If the
L2

new configuration is less probable then the exchange will or

will not take place depending on the comparison of the ratio

LAY,
A S

-
»

of the probabilities of the new and the old configurations with

a random number uniform on (0,1]. The randomization is necessary

i

o~

-
- -

et futut

to ensure that the system does not get stuck in a local high

-

~

-l
-

probability configuration. The ratio of the probabilities of

the new and the old configurations are calculated easily due to

o>

&F
- 4
X

-

E?} the Cibbs distribution formulation, without actually determining
A either of the probabilities, which would be extremely difficult.
f(s It is well known that this algorithm will converge to a i
! ; configuration that maximizes the joint probability but the rate
;ﬁia of convergence is a difficult problem of statistical physics

EEZ énd a completely satisfactory solution to this problem does

ﬁi not exist. As would be expected, the initial configuration does
?!' not influence the convergence properties of the algorithm.

‘gg It might only take a few more iterations to converge for

;J certain initial configurations as compared to others. The

o

i
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Metropolis’ Algorithm has been used by Cross and Jain [2] in

XX
o

- AP R

generating textures using MRF models. 1In a recent paper,

-_-

Kirkpatrick, Gelatt and Vecchi [4] proved a stochastic

approximation method for solving combinatorial optimization

;

JE problems, which can be used for the minimization problem.

R A major drawback of the Metropolis’ Algorithm is that the

, number of pixels in each gray level does not change during

:: iterations of the algorithm, due to the fact that new

by configurations are generated simply by exchanging two pixel
y values. Therefore we choose to use the second method for
i; generating realizations from a MRF (or Gibbs distribution).

f The second set of algorithms for generating realizations
"; from a MRF (or Gibbs distribution) are known as "spin-flip"

é algorithms. Recently a version of this algorithm is presented
:s by Geman and Geman [3] in an image processing context. This
‘% algorithm, which they called the "Gibbs Sampler", works as

ié follows. A pixel is chosen at random or in a deterministic
L manner. The value of the pixel is renewed by disregarding

3 its present value, noting the values in its neighborhood
;E and replacing the pixel value by a random number generated

?: according to the conditional distribution specified by the

. MRF (or Gibbs distribution). Pixel visiting mechanism can

‘: be random or deterministic, such as raser scan, the impotant
;' point being that each pixel should be visited infinitely often
f‘ as the algorithm proceeds ad infinitum. This algorithm has

“ the characteristics of a relaxation algorithm in image

g processing; therefore, it is also call stochastic relaxation.
g‘ In this section we use the sampler process stated in

N

§2 to f£find the value(s) of f € 2 with lowest energy.

e ]

N
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Let us indicate the dependence of 7 on T by writing LB and let
T(t) denote the temperature at stage t.

We assume that is Gibbs distribution. Let

T(t)

= {w € 9: U(w) = min U(n)}
n

and let To be the uniform distribution on Qo.

Finally define

U* = max U(w),
w

U, = min U(w),
w

A = U* - U,
The sampier process {X(t); t = 0,1,2,°°°} is generated by
P(X (t)=x_, s €8) = mp ) (xntlxs, stn )P (X (t-1)=x_, sfn, ).

We obtain the following

THEOREM 2. Assume that there exists an integer 1 2> N such

that for every t = 0,1,2,°°* we have

s C{n }.

t+1'Pe+27 7" 1 Pegr

Let T(t) be any decreasing sequence of temperatures for which
a) T(t) 0 as t + «
b) T(t) > N&/log t for all t>t, for some integer t,2 2.
Then for any starting configuration n € Q and for .every w € Q,

lim P(X(t)=w[X(0)=n) = m,(w).

t>w>

OUTLINE OF PROOF. We replace L and 7 in Theorem 1 for

T (t) and To in Theorem 2. By assumption, we obtain the

inequality

-

1 _ A 1 _lot_l.__l_
§(t) 2 f exp(~ mrey) 2 ¢ exp(- =) = LNz

hac . K v Ui TH A% N ) O
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& It is easy to show the convergence of ﬂT(t) to To* Because

U(w)

;'.:!: n (w) - exp (- th) )
. T(t)
U(w') U(w')

exp (- Frey) * ! - e
(ﬂ'é Qo T(t w'ﬁg. Q\Qoexp( T(t )

o8

i:

-~ -
§ ' exp (- g.%t)l&)

e legl+ 1 exp (- U{w)-Uy,

)
e w'e Mma, T(t)
converges to m, as t .

We obtain Theorem 2 as the result corresponding to Theorem 1.

‘u Q.E.D.
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