AD-R178 245 FAULT TOLERANCE IN PRRRLLEL RRCHITECTURES(U) VIRGINIR
POLYTECHNIC INST AND STATE UNIV BLRCKSBU G DEPT OF
ELECTRICAL ENGINEERING F G GRAY 3

UNCLRSSIFIED AR0-18883. 14-EL DAARG29-82-K-08182 F/G 972

NL

i -'.. /- I.I

S ™ hantnns

@
..l,",-.. -."

e « Vx y
Y R A N6 NN NP I YN

45
~
S

MELY o

=
I

Il
O

MICROCOPY RESOLUTION TEST CHARI
SONAL ELE .-

l22

................................

sE iz

g

2

I

I
Il

i e

AN

0,
K
(Shaity
S
e
e
_n\“-
-.
S
L
(it}
.

A if =
. ..I

v ;;N’:’* NN

LA R N s ¥ & 1 ¥
LI P T N TS
5 PR B T [
i :1 R Ry
vl e e et M et

"’. AT I AR e

) R ARy T

NN @ e
A e e

v

>

?-oo
% 2 thk

s’ "4
..::‘

A AN
PR A

.<,,i.<.
E e
P TR N R)

P
Se
L.
.t e
L
.

-

-

AD-A170 245

..............................

FAULT TOLERANCE IN PARALLEL
ARCHITECTURES
FINAL REPORT

May 30, 1986

Dr. F. Gail Gray

Prepared for U.S. Army Research Office
Grant DAAG29-82-K-0102
Prepared by
Department of Electrical Engineering
Virginia Tech
Blacksburg, Virginia 24061
APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

.........................
...
...............

B e L P S
D R I R Y . P T O T IR I SR
’a Py LN R ~ e w o et et e

. « W * e aat et et Satt e et Bal Jadh Sak Sak el SO MA"Sdb A At SAa S te Sl St Alar IS SO AN - - -
A “

.,-,
? s
el

P M

s

T, Ty
B AR ¢

" s

Abstract

This paper describes a proposed automatically reconfigurable cellular architecture. The unique
feature of this architecture is that the reconfiguration control is distributed within the system. There
is no need for global broadcasting of switch settings. This reduces the interconnection complexity
and the length of data paths. The system can reconfigure at the request of the applications software
or in response to detected faults. This architecture supports fault tolerant applications since the
reconfiguration can be self- triggered from within. The complete reconfiguration process can pro-
ceed without external interference.

- -
* H
X i
) '
I
.
!
- T
B - - d
- ——d
R,
1 ’,\'F‘

791/_;', i f

Abstract

-t . e ., . D I A) e . e e, - - . s I PR .~ mT . - - - - - ., .
L "-'h{ N "- ‘.."-“. - -‘ ‘-. L "‘-. ’, ey ':f" - < LR Vg 'T*-' T I \.'- e _'» ,'¢ . ..- PRSI AR -.‘ ..'- e ,." "'J . - »‘ IR} Ty
"."J'I\/‘J"."'.'.'.'J“‘ . . NI A . SIS SR S
A W et e et it

“

Table of Contents

1.0 Statementof the Problem e . I
1.1 Proposed Structure 1
1.2 Theory of Cellular Reconfiguration 2
L3 References o e 6
20 Summary of Results it i e e e 7
2.1 Computation Hyperplane 7
2.2 Control Hyperplane 9
221 Patternsand Growth 10
221.1 Proofof Concept Example 10
2.2.1.2 Alignment of Master Pattern 15
22.1.3 Clearing the Array i 15
222 Fault TOlranceovoi 20
2.22.1 Determining the Size of Fault Free Space 20
2.22.2 Two Dimensional Reconfiguration Algorithm 21
2.2.2.3 One Dimensional Reconfiguration Algorithm 25
223 Input,Output Path Constructiont uernnan., 25
2.3 System ConeCepPtSot e e 27
230 Synchronized CIOCKSottt ettt 27
232 Simulation ... 29
233 Periodic Self Restoration 29
234 Cell Testing Techniques e 30
24 References 30
3.0 Publications and Technical Reports i 31
4.0 Participating Scientific Personnel o e 33
Table of Contents i

1.0 Statement of the Problem

Recent advances in VI.SI technology has made it possible to interconnect many small com-
puters together to achieve high parallelism. There are many topologies for interconnecting
processors. The optimum choice for interconnection strategy is frequently application dependent;
thercfore, most of these architectures can be used only for a small number of applications.

Kung |1] has proposed such a class of architectures known as systolic arrays that can be used
to perform a variety of highly parallel computations such as matnx multiplication, fast Fourier
transformation, etc. Each processor in these arrays performs a simple and short computation and
regularly pumps data in and out. But only a limited number of functions can be performed with
each type of interconnection network. What is needed is a general purpose reconfigurable archi-
tecture that allows many of the special purpose architectures to be embedded in a single structure.

Considerable attention is being given to such a general purpose reconfigurable architecture in
recent literature. Snyder [2] demonstrated the feasibility of such an architecture with the CHIP
computer (Configurable, Hlghly Parallel computer), which provides a programmable intercon-
nection structure integrated with processing elements. It is designed to provide the flexibility needed
to compose general solutions while retaining the benefits of uniformity and locality that the algo-
rithmically specialized processors exploit. It consists of a switch lattice, in which the switches are
set to create the best interconnection network for the function to be executed. An extemnal con-
troller broadcasts a command to all the switches to invoke the appropriate architecture.

This approach has two major disadvantages. First, the setting of the switches is controlled
by an external processor. This necessitates some type of global connection to all switches. Sec-
ondly, the master control circuitry becomes a single point failure site, since it would be necessary
for the master control to work correctly in order for the appropriate switch setting to be invoked.
Thus the existence of the master control will significantly degrade the system reliability. This is
highly undesirable for failure critical applications such as automatic landing of commercial aircraft,
control systems for nuclear reactors, life support systems for medical applications, etc. Even in less
critical applications, system downtime is often very expensive.

In this research project, we investigated a reconfigurable cellular architecture in which the re-
configuration mechanism is distributed throughout the array instead of being a single-point failure

problem. In addition, reconfiguration does not require an external processor to compute the new
interconnection pattern.

1.1 Proposed Structu.e

Qur desire is to be able to implement a set of specific architectures designed to solve a specified
set of parallel computations in a single reconfigurable system. Cellular arrays are a viable compu-
tational architecture for such an implementation. A cellular (iterative) array is a collection of iden-
tical cells that are interconnected in a uniform, or regular, fashion. A cellular array is proposed for
the following reasons. First, they are of highly parallel nature. Secondly, since all the cells in the
array are identical the architecture becomes easily expandable without changing the current hard-
ware in any significant way. Lastly, each processor is connected to other processors according to a
regular interconnection pattern. By using regular local interconnection patterns we can avoid the
use of global connections, so that the interconnection complexity will not increase with the size of
the system. By making the control distributed throughout the array, the “hard core” component

Statement of the Problem |

" .‘lt

S S

will be minimal. Being a planar, regular structure, such a parallel processor is well suited for VI.SI
implementation.

The proposed cellular structure is composed of two cellular arrays that are interconnected as
shown in Figure 1 on page 3. The cellular structure consists of a “control hyperplane” and a
computation hyperplane ', where for each cell in the computation hyperplane there is an associated
- cell in the control hyperplane. ach cell in the computation hyperplane can be cither a switch or
- a processing element, as shown in Figure 2 on page 4. If it is a processing element it must be

s

-4 &ty ': ';.) "' 5,4

,. complex enough to realize the functions required by each of the algorithms, i.e., each processing
L~ element is some type of universal logic module, or microprocessor, that can perform a list of func-
a tions,

v Fach cell in the computation plane is controlled by the state of the corresponding cell in the
Lo control plane. If the cell in the computation plane is a processing element, then the control cell
et specifies a particular algorithm from a set of possible algorithms that the processing element can
.- implement. If the cell in the computation plane is a switching element, then the control cell will
‘oKX specify a particular local interconnection of the switching element to its neighbors. The overall
o function to be performed by the cellular structure is defined by the global pattern of control states.

To create the desired configuration for a particular computation, one cell in the array is ini-
tialized to a "seed” state which defines the global computational task to be performed by the array.
The cellular array will then utilize that information to “grow” the required pattern of states in the
contro! hyperplane. The pattern of states in the control hyperplane invokes the desired intercon-
nection structure in the computation plane.

-
S
R

I
. Y
B .l*. & g 4, 8

l'l‘l
e S N Yy

1.2 Theory of Cellular Reconfiguration

1

The control hyperplane is responsible for assigning proper functions to the cells in the com-
putational hyperplane. Any arbitrary cell in the control hyperplanc will eventually receive infor-
R mation about the global function to be implemented from the “sced” state initially planted at an
e arbitrary location. The way in which the given information is distributed throughout the control
' planc to produce a desired final pattern is explained in this section. This process will be referred
to as ‘growth’.

N ’
RS

. The control hyperplane is an array of identical cells interconnected in a uniform fashion, where
each such cell can receive state information only from its neighbors. The cell which initially receives
information about the global function will communicate with its neighbors and gradually spread the
O information through the array to create the final desired pattern. 'This section cxplains the “growth”
process, the way in which the given information is transmitted throughout the control planc
produce a desired final pattern. Since the control hyperplane is an array of identical cells inter-

“a
(e /

-: connected in a uniform fashion, each cell can receive state information only from its neighbors.
.. This process is illustrated in the following example.

'.\.

\

Cell -7 -6 -5 -4 -3 -2-101234567 time
|, 2 0 00000 0S00000D0O . 0
o 0 0 00 00O AAAOOODOOO. 1
[0 000 0B BCBBOOOOO. 2
-l 0 00 0EE ITEEEO0OO0OO. 3
- 0 00 C OMPUTERSOOO. 4
o

I‘ach row describes the state of the onc-dimensional array at a particular ime. At t = 0, the
“seed” state “S” is planted at an appropriate place in the array with all other cells in the “quiscent”
state 0. At each time step, each cell observes the state of each of its immediate neighbors and s
own state, then decides what 1ts next state will be.

4
o
.

v

3]

P ST Tt S |
LT S o .
St e

T'or example, at time t = 0, cell) observes that the cell to its immediate left 15 1n the 07 state,
cell 015 in the "S” state and the cell to its immediate right is in the "0 state. The local pattern for
cell 0 at time 0 is said to be 0S0. When any cell in the array is in a local pattern of 080 at time t,
it will change its own state to state A at time t+ 1. Similarly, if a cell is in a local pattern of 008

N
.
v

.
A L
. (S

'
.
3 M
N
[

Statement of the Problem 2

LI
f

v
r. .' .' al .I »*

’ 3

ta T me

ER B TN O
: * T. ‘. . - T. RPN ..l ..- Lt hd LI) - et
< PRSP AR SP NP NP SRS 2P SUSP PSR S & .58 P8 V. P

e e RN -t . e -"
E Tttt e - ” " .

LT -"\-'.“4‘.{“.“'.
CURE WU T O T S0 WS W gy .oy

P m o w e e T e T

Soed e o ate ae g f ol

HYPERPLANE

C D)
i g

l- CONTROL /L

A

Y/
I

)
B

1

TTTY \

[N
1t
14
7T
L
"l
T T
[
I
at
T
117
/
'1

I

\

A
b
A
i
X
—
[

L a 11
L IEY)

;lli\ V4
Y

[-

-

)

[}
.

Ly,

.
v e

l"-

COMPUTATIONAL
HYPERPLANE

T e
1 3
.
.

.-
)
A

.
. ., .
g . e
B o -
P

.

O
R |
a

(2R SRR ST AN,
»

PR
.

o 4
.

s Figure 1. Celtular Architecture

W Statement of the Problem

- S N
D T I R . . i :
N e e ST e ST e e . LT A J T T . . L) .
[T P, I, I TS TU VT I U TP Y T P T U T U R I AR o K

oy

LY

. .
ah.oalafatle’

.

.

.
w "
0 o
w d
n wn
v 4
w %
w v
w w
% w
v wn
N w
w w
o w
w w

7 v
n o
——
R n
o 7]
o o
© 7]
o %
o 7]
bl v
7 7
” 0
) v
w n
v o

(%]

o

Sindino

Figure 2. Computational Plane

Statement of the Problem

ORISRt

ol mtat A o el tataX,

“.‘.,a‘:'.,'—

S1NdNI

PSS N A el and il it e AEF Bt it Rat e SR S S 0 'T
:::-:: or SO0 at time t it will also change its own state to state A at time t+ 1. Any cell in local pattern
AR 000 at time t will stay in local state 0 at time t+ 1. Therefore, the result of each cell at time t=10
- observing its local pattern and changing to the appropriate next state will transform the global
patiern
0 0 00 00O 0S O O0OO0OO0CO OO
2t time t=0, into the global pattemn
...0 0 0 0 0O O A A AOOOOO O..,.
at time t=1. In like manner, the global pattern at t = | will be transformed into the global pattem
...0 0 0 0O OB B CB B OO0 O0 O O..,.
at t = 2 by each cell applying the following local transformation
local next
pattern state
0 0 0 0
0 0 A B
0 A A B
A A A c
A A O B
A 0 O B
Eventually, the desired global pattern "COMPUTERS” will be reached and will remain stable if
each cell applies the following local transformation.
0 0 C 0
0 C © C
C 0 M 0
0O M P M
M P U P
P U T U
U T E T
T E R E
In general, any such control hyperplane can be characterized as a tessellation automaton [3].
: The tessellation automaton (TA) is a four tuple
TA=(A,Ed,X,c)
o where,
;{:::'. I. A is a finite non-empty set cai’~d the state alphabet. For our previous cxample, A =
o {0,.5,A,B,C,LE,OM,P,UTR}
g
- 2. Ed s the set of all d-tuples of integers called the tessellation space. Here the tessellation space
. . ! 1s said to be "d” dimensional. In our example, Ed is simply the set of all integers
S
- .. =3, -2, -1, 0, 1, 2, 3, ...
SN
t:j:-: Ed defines the spatial location of each cell in the array.
- 3. X is an n-tuple of distinct d-tuples of integers called the neighborhood index Tach cell is said
on p . g
.= - to have n neighbors and n is called the neighborhood scope. In the example, n=3, and X =
S (-1, 0. 1). X defines the relative coordinates of a cells neighbors. For, example. cell 5 has
.
o Statement of the Problem 5

, .
l‘l'l .

""‘l"' ..

s s ' “- l‘l "‘I"‘\::' i r

PR

o
P

a 8
2
U R
P
cate, e
D

n.(

; AR TR S
y sttt
c"'l.n

L AEARS

R

p .l. ', " l‘ -‘

A ah g g g B Eat g " 2 ah PO S G e e Bai v Sl e Nl St~ s e LW VTR LT .

neighbors (4,5,6) obtained by adding each coordinate of the neighborhood index to the cell
location (§).

4. o is a mapping from An into A called the local transformation.

Fach cell will decide its next state by observing the present state of its neighbors. In the example,
o(BCB)Y = [o(MPL) = P, ete. It 1s destrable from the stability point of view that each cell be
its own neighbor |4

For our work we can conveniently characternize the control hyperplane as a two dimensional
tessellatton automaton, since the computation hyperplane is a two dimensional array of switches
and processing elements. To completely describe the control hyperplane, we need to specify the
neighborhood index and the local transformation 0. The only difference from the example is that
the neighborhood index and the local transformation will be two dimenstonal in nature.

During the course of this research program, this architecture was studied extensively. The-
oretical issues related to automatic reconfiguration in the presence of faults were investigated.
Complexity tssues were addressed. Problems related to the reliable transmission of data into and
out of the system were studied. Simulation facilities were developed to venfy the theoretical results,
and finally, a proot of concept example was created to determine the complexity of control cells (in
terms of memory requirements) and the complexity of switch cells.

The major results of these investigations are summarized in the following sections.

1.3 References

1. Kung, H.T.. "Why Svstolic Architectures?” Computer, January 1982, pp 37-46.

2. Smyder, I “Introduction to the Configurable, Highly Parallel Computer”, Computer, January
1982 pp 47-56.

3. Yamada. H,, and Amoroso, S., “Tesselation Automata”, Information and Control, 1969.

4. Walters, S.M., Pattern Synthesis and Perturbation in Tesselation Automata, Ph.D. Dissertation,
Virginia Tech., Jan 1980.

Statement of the Problem 6
W oLt o s . e o - -
e e T L

W WLV L L W WL, LA Sl Wl Gl Mol - . W Ty . e) A MacfaA A A At N ERAR MR B A LA S RS Ree Rie B\ A4

2.0 Summary of Results

This section describes the most important results of the research. The material presented here
is intended only as a summary of results. For more detailed treatments, see the published papers
or interim reports that are referenced at appropnate points.

2.1 Computation Hyperplane

The computation hyperplane is a cellular array of switches and computing elements as shown
in Figure 2 on page 4 This section describes a systematic means for specifving the system param-
eters needed to implement a set of specific architectures in a single reconfigurable system.

Al
[
Y

The square cells are computing elements, whose design will depend upon the exact computa-
tions to be performed by the system. The computing clements must be capable of performing all
of the system functions in each of the configurations. It must also be possible to select among the

-

‘l

]

" :: various functions in order to provide dynamic reconfiguration. The design of the computing cells
‘_}:-, is not considered in this research effort.

P
:ﬁ N The switches are represented by circles. The switch parameters that are most important in

determining the complexity of the switch nodes are the number of incident data paths, the number
of wires in each data path, and the maximum number of simultaneous data path connections to
- be made by any one switch.

-y

The number of wires in each data path depends upon the needs of the specific computation.
To a limited extent the number of wires can be traded off against the time required to communicate
data to the neighbors. Seral data transmission would require only one wire, while completely
parallel data transmission would require a logarithmic number of wires. Since this decision is
strongly computation dependent, we will not consider it further.

N
]

¥

The number of incident data paths must be chosen to provide sufficient flexibility to imple-

e ment a large number of different configurations. This parameter can be traded off against the
e maximum number of simultancous connections permitted. ‘The tradeoff involves the control planc
::.'_ " complexity as well as the computation plane complexity.

‘@1 ‘The number of states required in the control plane to represent all of the different possible

connections in the computation plane, (where d is the number of data paths in the computation
X planc. g is the maximum number of simultancous connections to be implemented in the compu-
. tation plane. C(x,y) ts the number of combinations of x things taken y at a time, and x! is factonal
i of x) is given by

' C(d,0)+[C(d,2)*C(2,2)] /11 +[C(d,4)*C(4,2)*C(2,2)] /2! +...
' +[C(d,2g)*C(2g,2)*C(2g-2,2)*C(2g-4,2)%...%C(4,2)%C(2,2)]/g!.

- For a proof. see {6] or [15] in the project publications list. The number of states required, and the

o corresponding number of bits required, for various values of d and g are given in Figure 3 on page
e 8.

e

(SN

- Summary of Results -
LN

N

R

. - » . - - - - - - - - .'. -‘ < " :
RO, BRI I R I T SN A R R I

Number of Number of States/Bits Required in Ccontrol Plane

as Neighbors in
O Computation
e Plane

) g=4 g=3 9=2 =1
jﬁ; 10 8551/14 3826/12 676,10 46/6
;ﬁ} 8 869,10 764/10 344/9 29/5

{ 6 - 77/7 61/6 16/4

a - - 10/4 7/3

Figure 3. Number of States/Bits Required in Control Plane

N The number of connections required in the control plane per switch as a function of the
SONE number of states and the number of neighbors is shown in Figure 4 on page 9.

Summary of Results R

- . - P
- AP PTG P DY U SR, P00, U, SO0 ST PSS S S S Sl ST O S S A LY

L:-:.'_-:
b
b
22
P
P -
> w0t
L
L Number of Number Number of
r- States for of Bits Connections
b - Switch Required Required per
Control Cell
- k=5 k=9
4<5<9 3 15 27
8<S<17 4 20 36
16<8<33 5 25 45
32<S<65 6 30 54
64<5<129 7 35 63
128<5<257 8 40 72
256<5<513 9 45 81
512<5<1025 10 50 390
1024<5<2049 11 55 99
2048<5<4097 12 60 108

Figure 4. Number of Control Plane Pins Required ‘

'or a particular technology. the density of connections allowed will restrict the swatch design space. ‘
I'or example, if the maximum number of connections per module were 45, then the switch desien
space would be limited to 512 states for k= 5 (k = number of neighbors in the control planey. This
would restrict the design to (d=10and g=1 or (d=R and g=2) or (d=6 and ¢=3). ctc. In [6]
of the project publications list, it is shown that d =8 with g=2 is a good compromise for current
technology

2.2 Control Hyperplane

Ax shown in the introduction, the control hyperplane can be maodeled s a tessellation
automaton Since the computation plane 1< a two dimensional array, the natural representation tor
the contro! plane will be a two dimensional tessellation automaton. In order 10 reduce the mter-
connoction compleaty as much as possible and to reduce the amount of memory required. s
essential to reduce the number of neighbors 1o a minnmum. Simce the celb must always be s own
neichbor, the smallest possible neighborhood «ze for a two dimensional array is 50 This as called
the Van Neumann neighborhood {10 We will show that this neighborhood is <utheently comples
1o control the processes of automatic reconfiguration

Summary of Results q9

PEVLR VA NP IPSCIPUL W AP WOV R R SPNE AOr G S RPRr Gy S e oy P e

j
L
-';Z;l:l 2.2.1 Patterns and Growth
NG
et
‘OS] It has been established that control patterns in which all subpatterns, equal in size to the

oo neighborhood index, are distinct are needed to support growth in tessellation automata [2]. Walters
i [2] also showed a method for constructing such pattemns in one and two dimensions. The Von
N Neumann neighborhood requires a modification of Walters two dimensional patterns. An (1.3)

a2 al a3 a4 a3
a3 al a4 a2 a4 a5 a4

AN pattern in one dimension is a string of length L in which all subpatterns of size three are distinct.
- If this string is arranged in two dimensions as shown in Figure § on page 11, then all internal Von
- Neumann patterns will also be distinct. To insure distinct pattems at the boundarices, the (1.,3) |
pattern must be modified as follows.
V) A pyramid is constructed as follows.
{o al
. "‘- a2 a3 a2

_~"<. ai al a(i+1) a2 a.(i+1) a3 a(i+1) ... a(i-1) a(i+1) a(i+2) a(i+l)

If the number of symbols to be included in the pattern is j, then the above construction should be
ol performed until 1=3-2. This forms the upper half of the pyramid. The lower half is obtained by
reflecting the upper half about the bottom line. The complete construction for j=6 is shown in
- Figure 6 on page 12.
See {6} and [9] in the publications list for the project for details.

o The two dimensional growth process is illustrated in Figure 7 on page 13. The two dimen-
sional transformation

al
a2 a3 a4 -> aéb

O a5

~:::~<'_, which denotes the situation where a cell in state a3 sees its neighbors in states al,a2,a4,and a$ and
N g goes to the next state of a6, will be represented for conventence in the form
e al a2 a3 a4 a5 -> a6 .

L & |

N The local transformation that produces the growth indicated in Figure 7 on page 13 is shown in
N Figure 8 on page 14.

:::'.-;': At a time t-1 after a seed cell is praced in an initial all-zero configuration, the total number of
PN cells initialized will be 2t2-2t+ 1.

@
P 2.2.1.1 Proof of Concept Example

:::::-' To verify that the complexity of the control hyperplane is reasonable for real architecturcs, a
G proof of concept example was designed. Four recently proposed research architectures were se-
RN lected.

ﬁ 1. Two level banyan network {4].

:::;::: 2. Hyper Tree [9].

Summary of Results 10

. 4-' ..' l.'"l..' - >.. -" L . . - R -, " . . .- - '- 3
B S R S AP Ry WS S SN SO AT SR R TR WL V. DRI . 1. PO YT S PP, PO P

P .
P)

.

N

ta
[P A

[4

Dafr i)
s

'
’

ll " .“u

I

DREOENDS - 0

, Nt iadad

AP

A
v IR
PY "I

B 5 e

e'itate

L)

a0 G,
P

PR

BSOS
¢« 32 4 k2 2 ¥

Pt Sy :
N "
R NIY Y

ey

L5
a8 e,

wy

wsaX,

- e "a % - . - N
T . o IR
PV R P, W, VLW R YR S AP, P

—e - -

el sl el e

(¢t4

Figure 5. An (L,3) String Arranged in Two Dimensions

Summary of Results

R I i e L T TR S 6 28 Sadt 0 0 & wabva At ¢

DAl e B i oie v s il * s AL S g mAe avd mane o

[NCEM LA AR ey

o a4 al a5 a2 a5 a3 a5 a6 a5 o

o o a3 al a4 a2 a4 a5 a4 o o

o

PRI LI P

L,

L

R AN

Figure 6. Two Dimensional Pattern: All Von Neumann Neighborhoods are Distinct

YN

’

R .
e N

LR
LN G NN

PR

Summary of Results

\ ,.' O,

-

Ll - LAl Sal SR A - St e S el caC R Suri e A ie b S e 8 o e M

o 0000000
- 000S000

(0O00VOO0O
j OOENKOO
_ 000AO0O0O
0000000
‘ 0000000
0O0O0OVOOO
!

e e
O O
O (@]
(0] m
O > 'z < (o]
~
(@]
(@]

l.l‘
O
O
O

',
P
.

" Figure 7. Two Dimensional Growth

Summary of Results 13

00000 =»>0
000SsS O0=~>E
C000SsS~»V
00 S 00=>N
0 S 00C0C=~»>K
S0000->A
0O00OO0OV->O0
CO0OO0OVES~>DO
OO0OO0OEO=>O
EooOoOAO=>20
A OOOO0O=~>»>0
KAOOOQOC=+0O0
CKOOO=>»0
OQVOOK=+>O
O O0OVON>UV
VENKA-=>N
OOENOS>»>E
ONKOO=-»>K
NOCAOOS=+A
Figure 8. Local Transformation for Two Dimensional Growth
Summary of Results 14
B L e e e L T

N T . . - . ~ - - ~ . - . . .- . . . - - - - N - . .
o ater, R R e T Y T AL PR T - LT et St At e .
PR RPN VR P S L P W DA W a i ;S LT vk o ST 8 ¥ R S I TR L TU VU TP N, U S0 I o, $r 0. Sy Yt) WP PG SR VIR, o, U0, T P AAA----J

3. A Fault Tolerant Architecture [6].

4. lens Structure [7].

The embeddings of these architectures into the computation plane are shown, respectively, in Fig-
ure 10 on page 16, Figure 11 on page 17, Figure 12 on page 18, and Figure 13 on page 19. The
number of states needed in the control plane cells, along with the number of local transformations
for each architecture is shown in Figure 9.

Network Type Number of Number of
Intermediate Local
States Transformations

Banyan Network 52 978

Hyper Tree 42 794
Fault Tolerant 52 1000
Architecture

Lens Strategy 63 1232

Figure 9. Memory Requirements for Control Cell Implementation

The total number of states is 209 and the total number of transformations is 4004. The control cell
would therefore require an associative memory with 4K 8-bit words. This 1s within current tech-
nology limits.

2.2.1.2 Alignment of Master Pattern

The master pattern may not be aligned properly so that control cells for computations fall over
computation cells and switch states fall over switch cells. Algorithms to solve this problem are in
reference [6] of the project publications list. Of course, if each cell is capable of both computation
and switching, the preferable arrangement, there is no alignment problem.

2.2.1.3 Clearing the Array

The array pattern currently in the system needs to be cleared before a new pattern can be
grown. This is done by placing a clear sced in the cxisting pattern. Any cell that has a neighbor
in the clear state will go 1o the clear state at the next time step. Any cell that 1s in the clear state
will go to the quiscent (or zero) state at the next time period.

Summary of Results 18

. . R -
- P R AL B -

, W W N W W e VL, VLR

o T

m. — B are aie ana AiE e ara aea aoh sre gt e aoh o At aeaarl alil s L AN aRi et b S SR AR AR AR
L. F
[T

L‘v‘ﬂ-.

<

O 0o O o O 0O 0 O 0o 0O 0o O o o o
0O 0O 0 0O OO0 0O 0o 0O 0O 00 OO0
O 0O 0O O O OO0 0O 0O 0O O OO0 o0 O
O O 0O 0O OO0 0O 0O O O O o o
O 0 O O ooo o0 o o o o o o o

SODOODOODOODOOD

& Figure 10. Fmbedded Two Level Banyan Network

Summary of Results 16

Nt .t e e ST e T e e e
R P R T s IR S .) RPN
PR S P R DU V. . ST 0 PR WL | PR PP L. P TS TP PO P AU K U G W W0 Wy Wy vy v

O

o)
, o)

.

y O

f,

P, 0

4

o

p

.

-

.

,

(8]

9]

9]

Q

O

Embedded Hyper Tree

Figure 11.

7

.
-
E]
4
]
-4
o
c
-
Taw
]
E
E
E]
v

L RVEE, ¥ SV

o

A

WY SOV St

o

A

8

S N W

ol

P

alfn A ..t

AR D e S W W

1.
P R

.
4

o o] (o] o o o () [e] (@] o el
.- o) e}

e L

3 o c
- o o

'

t

AN
!
(e}

.

.

_’v
PR
ll‘l- . .

. .

Figure 12. Fmbedded Fault Tolecrant Architecture

o A
TS

Summary of Results 18

7 4
.

< .

-
-
-
.
b~
L T T T T A N Cte . h -
O T S W - S . L. S e T B .
..."‘..-.f AR A R o A T P A T B . . NSRRI N R S
LR N et M T Vol BV),V Rl S0 De¥ W, U 3 F R AN NS AP Sl Nl S0 S el B D PO U UL PR P U UL AP DT D PN SRPY

TR
B 1] . * M ‘.
R . L
PRI IR A

’

N NN
A“-.' oo

A

¥
’

» :./

B

- "
"
- v
-
“ e
1 -

.......

0O O 0o 0o o 0o 0O 06 00 O O

O o 0 o 0o o 0O o o o o 00 0 O

0

O

4

o O oo oo o o 00 o o o o o

@)
@)
o O
O

o O
O O O O

0]

o O 0O 0o o o b o o o o o

O O o o 0 o 0O 0 o 0o o O o O O

e

C

O

]

o 0O g 0O o g 0 o o o o g o0 o

Figure 13. Embedded Lens Network

Summary of Results

W Won oo Mo W 8 a A

e

LA P S WP S U JUN N P T S

R R

.

T .

Dl bl it i s e bl

2.2.2 Fault Tolerance

In addition to having the capability to reconfigure at the request of the user, our system can
reconfigure when a fault is detected. The basic approach is to quarantine faulty cells, rather than
to report their status to a global interpretation mechanism. Each cell periodically performs tests
on its neighbors to determine its opinion of their status. A cell sets its control state to the
quarantine state, Q, if it decides that any of its neighbors are faulty. In addition, the cell ignores
any inputs from the suspected faulty cells. As a consequence, walls of quarantine states will com-
pletely surround regions of faulty cells. Faulty islands will appear in the array that have boundanes
of control cells in the Q state.

2.2.2.1 Determining the Size of Fault Free Space

To reconstruct the pattern that existed prior to the detection of the fault, information about
the nature of the pattern is extracted from the remaining fault-free cells in the pattern. This infor-
mation is gathered into a single state, called the seed state . This state is ejected into the fault free
regions of the array, and searches for an appropriate place to begin growth of the new pattern. Prior
to the ejection of the seed, each fault free cell needs to determine the size of the fault-free region that
surrounds the cell. This determination is done in an iterative manner, by having each cell examine
the condition of its neighbors. After a time, equilibrium will be reached, with each cell knowing
the size of the fault-free region that surrounds it.

Each cell is assigned an s-value according to the following rules.
1. Fach cell in the quarantine state has an s-value of -1.

2. Assuming no wrap-around, each boundary cell of the array that is not part of a quarantine
wall will have s-value 0.

3. S-values of all other cells are updated continuously. The s-value of each cell at ume 1+ | is the
minimum value of the s-values of the set of neighbors of the cell at time i (not including itself).

The s-values are stored in a register called SVR. An example of the s-value computation is shown
in the following example for a VonNeumann neighborhood. The distribution of faulty cclls and
the quarantine wall is shown on the left, with Q indicating a quarantine cell and X indicating a failed
cell. On the right is shown the steady state s-value distnbution, where t=-1.

---QQXQ 000ttXt
--QXXXQ 00tXXXt
---QXQ- 010tXt0
----Q-- 0110t00
------- 0121010
------- 0111110
------- 060000C

In references {R} and [14] of the project publication list, it is shown that the distnibution of s-
values i any configuration will reach equilibrium in at most 21.-1 time periods following the
occurence of a new fault, where I is the maximum dimension of the rectangular array.

[he traveling seced must use the s-value of a cell to determine whether there are enough sur-
rounding fault-free cells in which to grow the desired pattern. In a Moore neighborhood of a d-
dimensional array, if the s-value of a cell is x, then the cell is at the geometric center of a hypercube
of <izc (2x+ 1). In a Von Neumann ncighborhood, if the s-value of a cell is x, then the cell is at
the geometric center of a hyperdiamond of girth (2x+ [). In the example above, the cell with
s-value = 2 15 at the geometric center of a hyperdiamond of girth S.

Summary of Results 20

‘P'.r‘r'."r,rv,r 3
e A B
s e S

T Y

|

oo

Y
I

2.2.2.2 Two Dimensional Reconfiguration Algorithm

The following set of algonthms implement the steps in reconfiguration.

1. Algonithm that coordinates and multiplexes the transmission of information between cells in
the control hyperplane.

)

Algorithm to control a reconfiguration source.
3. Algorithm to reduce the number of reconfiguration sources to one.

4. Algonthm to clear the state registers in the fault-free region prior to pattern growth.

i

Algorithm to transfer the seed state from a reconfiguration source into the fault-free region.

6. Algonthm to steer the seed to an appropriate place in the array to start growth.

~

Algonthm to handle collisions between growing patterns so that only one pattern is eventually
grown in the array.

Multiplexing Algorithm: The multiplexing is accomplished by partitioning the cells of the control
hy perplane into two sets according to a checkerboard pattern. “Red” cells would communicate s-
values during a given time period, while “black” cells would communicate state information. Dur-
ing the next time penod, roles would be reversed.

I'he sequencing through reconfiguration steps is accomplished by a finite-state machine in the
control cell. This machine needs only six states and two timers.

Neutralization is the name given to the algorithm that reduces the number of possible seed
sources to one. An arbitrary unique priority value is assigned to each cell in the array. An example
follows.

1 2 3 4 5 6 7 8 9
18 17 16 15 14 13 12 11 10
19 20 21 22 23 24 25 26 27
59 60 61 62 63 31 30 29 28
64 65 66 67 68 32 44 43 58
79 78 77 72 69 33 45 42 57

0 73 76 71 39 34 40 41 56
80 74 75 70 38 35 46 49 50
55 54 53 52 37 36 47 48 51

The only requirement is that cach priornty value be unique. When a cell goes into the quarantine
state, 1t becomes a possible candidate for becoming the seed source. It sends its priority value to
each of its ncighboring cells. After a time, the potential reconfiguration source with the larpest
priorit: value will become the single seed source. In the following example, after faults are detected.
x indicates a failed cell, W indicates a quarantine state in the quiescent region, V indicates a

antine state 1s the active regon (these are the potential sources), 0 indicates a quiscent cell, and
a lower case letter indicates the other active cells.

Summary of Results 21

N T o T o

™~

Q [\
Hy o}
Q. (@]
o
)] < =
< %
o =
(@] @]
(@] O

o
<
¢}

o)
Hh
]

O
(@)
(@]

After a state change, the global pattern becomes as follows.

6 0 0 0 0 0 0 0 ©
0 0 0 0 0O W 0 0 ©
0 0 0 0 W x W 0 0 !

u u u ueld3 x W 0 0

s 78 s s s s 0 0O O
0 x 76 u u u O 0 0

u74 u u u u O 0O 0

4 U U 1 u u O O o©

The array then goes through the sequence of steps shown in Figure 14 on page 23 and Figure 13
on page 24.

In these figures, + indicates a neutralized cell. In the last step, the only remaining potential source
15 desginated V.,

T'he clearing step is accomplished by allowing all cells with 78 codes to go to the 0 state. The
result is shown in Figure 16 on page 25.

Summary of Results

N taitatanan n . LA Ve -

alalmliala m s aflalaida e aiainalaloatle tatata e <t s At i e T at et e tatat. o

78

74

78

78

74

73

78

78

74

74

78

78

73

Figure 14,

O 0 o0
0 0 0
O 0 Ww
u 63 63
u u 63
78 s s
76 76 u
76 u u
u u u
0O 0 ©
0O 0 o
O 63 W
63 63 63
78 63 63
78 78 63
+ 76 32
76 76 u
76 u u
Steps 1-4

32

32

o -) -afia - mae et S it S
Aot A At A Sl St i S A At e i AN AC S A RN I AL O S i S R
Rt iin Sl el - - v B s - - - ~ - -

32

32

78

78

78

78

74

78

78

78

78

78

78

76

76

78

78

78

78

78

76

63

78

78

78

78

76

63

78

78

78

78

63

63

63

78

78

78

76

76

63

63

63

78

78

78

78

78

76

78

63

76

32

32

76

32

63

32

32

32

32

32

Summary of Results

M

0 0 063 0 0 0 0 O 78 78 78 78 78 78 78 78 78
078636363 W O O O 78 78 78 78 78 W 78 78 78
78 78 78 63 W x W32 O 78 78 78 78 W x W 78 78
78 78 78 78 63 x W 32 O 78 78 78 78 + x W 78 78
78 78 78 78 78 + 63 63 32 78 78 78 78 78 + 78 78 78
78 78 78 78 78 78 63 32 32 78 78 78 78 78 78 78 78 78
+ x + 78 78 63 32 32 O + x + 78 78 78 78 78 78
78 + 78 78 76 76 32 0 O 78 + 78 78 78 78 78 78 78
78 76 78 76 76 32 0 O O 78 78 78 78 78 78 78 78 78
078636363 0 0 0 O 78 78 78 78 78 78 78 78 78
78 78 78 63 63 W 032 0 78 78 78 78 78 W 78 78 78
78 78 78 78 W x W 32 32 78 78 78 78 W x W 78 78
78 78 78 78 + x W 63 32 78 78 78 78 W x W 78 78
78 78 78 78 78 + 63 63 63 78 78 78 78 78 W 78 78 78
78 78 78 78 78 78 78 63 32 78 v 78 78 78 78 78 78 78
+ x + 787878 63 32 32 W x W78 78 78 78 78 78
78 + 78 78 78 76 76 32 O 78 W 78 78 78 78 78 78 78
78 78 78 78 76 76 32 0 O 78 78 78 78 78 78 78 78 78

C o AR [t ARt N
'%':‘,.‘._‘:_‘,. . ‘:‘I‘ ' .I‘.l'.".'. !

AL Ot

Figure 15. Steps 5-8

24
Summary of Results

K \ ‘‘‘ \ . -, R Srtelel ettt [o PRI ..‘. . . " RO s " a ~.‘- - ~‘-'- R -t.'.
‘‘‘ e-' .. Y ot a . '_ a R R A T LS el RPN IR
hl-:- ‘V; P h"\.)\i? Ry WY ﬁ.ﬂ\.\b_&un.\.‘u h‘ RTINS TSN P TS PU V. v v RN . i

10" ol ald 2B et gt gve avi te Brio i S St Sl Sl St Sadh Sodh Ul Gafh S Gl Sl bk Al SendSadhy Sail Sadby o e S A SRS R "Rt SAEA AL ARG AL A AN LA .”-“f‘-"-“"

o 0 0 6o 6 0 0 0 O
0 0 60 0 0 Y 0 O ©
0O 0 0 0 Y x Y O O
0 0O 0 0 Y x Y O O
c 0 0 0o 0OoY O O o
o'y o 0o o 0 0 O O
Y x ¥ 0 0O O 0o O O
O Y 0O o 0 0 o O o
6 0 0O 0o 0O 0O 0 0 O

Figure 16. The array after clearing.

In this figure, Y indicates normal quarantine cells, and 'Y indicates the unique seed source.

The cell indicated by “Y then ejects a seed into the fault-free region. This seed then migrates
to an appropriate place in the fault-free region, indicated by the s-values of cells. This migration
can handle collisions between growing patterns and newly arrived faults. All of these algorithms
are described in detail in references {8] and [13] in the publications list for the project.

To determine the complexity of the control logic, a sample design was constructed. Systolic
arrays were implemented to multiply bandwidth three matrices, and to compute the LU decom-
position of bandwidth three matrices. The design required 35 states with only 30 mapping points
in the local transformation function. Thus, the control memory is very small. In addition, a total
of 94 bits of control status information must be maintained (for s-values, state registers, flags, etc.).
Information is transmitted in two successive four bit nibbles with two control lines for synchroni-
zation. Since the Von Neumann neighborhood is being used, this requires 24 connections to cach
cell (six from each neighbor). The worst case reconfiguration time after fault detection is 4096 clock
periods (about 0.8 milliseconds at a clock frequency of S MHz). With a 3x3 array being embedded

in an 8x8 array, the system could reconfigure a maximum of 25 times before running out of fault-
frec cells.

2.2.2.3 One Dimensional Reconfiguration Algorithm

One-Dimensional arrays are very restrictive in terms of the paths available for control infor-
mation flow. Therefore, special considerations are necessary. The multi-dimensional study applics
to all arrays with dimension greater than one.

Several additional data paths must be added for reconfiguration. Several additional flags and

algorithms must also be added. For a complete description of these additions, sce [S5), (8} and [12]
in the project publications list.

2.2.3 Input/Output Path Construction

»
)

e
‘e,
r’
.'.‘.
»r
L

The active array that is embedded within a larger array must communicate results to the out-
side world, and must receive data from the outside world. In a reconfigurable system, the position
of the active cells will change as a result of reconfiguration. This means that the data paths to the

Summary of Results 25

R A N
SRS S TN S0V SR BN B = WP WP R RS . Vo B

:...L

AL

14

r

A -

aﬁff»»

v

&
~
M+ +O0O++0++0++0++0++0
R E R E R s i
O R R R I T -
M+ +0++0++40+40++40++0 0o
T E E e mm.
O IR I I I T I T T T S S S S S mI
A+ +0++0++0++0++0++0 dwww
N O A I I F JE s MM i
ko S
T R I I I O O T S < X
|
++0+ + 0 +— O cSod g
0> >
——— s + + t;;u N
o~ 4 .4.‘
+ 4+ +++ o+ + TO0OU R
N © d N
+ 4+ 0+ +0 4+ + 4+ O R
0 N K
H Attt + 4 + <\ U
0 ~N .
m R : o
N
ﬂ.++hu+.,0 MVA 1 o) o
T b
o ————————t + + + 1 £ v
04 s .
A Y S S G U GO Y 4 3 H@
L] =
M+ +O0++0++0+ o{4t0 2 4
g .
RS S I T N S s 1 o C .
1} F
R S T S S TS Y } mw =
M+ +0++0++0+ o140 ~u = R
| 20 2 3
R R E R E R EEE,] a.P 5 :
-~
T . 1 £ 0 = Y
"N B 2 A
A+ + 0+ +0++0+ 04 (@] %I‘“ £ lw4
4 o >0, . & 8
g Om ~ - Y
++++++ oOHO - © -
0N v > e
i+ + A4 + M+ + A+ Q, @ 5 2 o
ODHMDH O 7
.n«."
2, ‘)-4 .a. ... JL !n - -..\.h- LI o L I P T N "- -..-. .-..-..-. -..4

WA

e e 2 b |
l' 4
‘oLl

s

N e
. Y

Ve
b
B

Ye

L - S
oA WS

P
B
v
.

LA AV S

o & .

"“’
T

s 1t {

o«
“ll"a

I*
LR

B L T P U B P T TN

outside world must also change. In addition, if a node in the data path fails, a new data path must
be provided.

There are three types of clements in a data path. The first type is the array 1. O port that must
exist on the array boundary and is connected directly to the outside world. This type will be called
an external 1O port and will be designated by the symbol P. The second type. called an internal
IO port and designated by A, is the node in the active array that receives data from the external
I O port or supplies output data for the external 1O port. The third type is an clement in the data
path that connects an external 1 O port to an internal 1O port. These clements are illustrated in
Figure 17 on page 26.

The external 1O ports must be on the boundary of the array. In Figure 17 on page 26 the
external input ports are located along the top edge of the array, and the external output ports are
located along the left edge of the array. The data paths connect these external ports with the
internal 1. O ports. 'The active array is shaded.

Since the location of an external I;0 port may change due to reconfiguration, there must be
some means of identifying the port to the outside world. This is accomplished by adding tag bits
to data that passes through the ports. These tag bits identify the port to the outside world.

Cells in the data path are tagged so that if a faulty cell is identified, only path regrowth is ini-
tiated. It is not gencerally necessary to reconfigure the entire array if a path fault occurs. If a cell
in some data path enters the quarantine state, it either initiates a “find alternate path” message if it
is between the faulty cell and an internal 1/O port, or initiates a clear path function if it is between
the faulty cell and an external I;O port. When the clear message reaches the external IO pon, it
stops sending or recetving data.

The intemal I;O ports must initiate I;0 path growth during system initialization or when ac-
tive array reconfiguration occurs. The system designer should insure that the internal 'O ports are
on active array edges that “face” toward the corresponding external 1;0 ports; otherwise, the growth
of 1O paths will block each other.

The path is grown by passing a pointer tag from an internal I;O port through the intermediate
cells to an external [;O port. The cell with the pointer tag queries its neighbors to determine their
status. Based on the responses, and using a system of priorities, the pointer decides in which di-
rection to pass the pointer tag. If a path becomes blocked, the ccll with the pointer tag enters a
“backtrack” state, and passes the pointer tag back to the predecessor ccll in the path. In references
[10] and [16] in the project publication list, it is proved that the algorithm will find a path if it exists.
and that path collisions will be effectively overcome. An example is shown in Figure 18 on page
28

2.3 System Concepts

In this section, concepts that pertain to the entire array are considered.

2.3.1 Synchronized Clocks

To work correctly, all cells in the array must be clocked in exact synchronism. During this
project, we developed a clocking system that employs 2f+ 2 modules in order to tolerate up to f
module failures. All remaining good clock modules will maintain a synchronized clock as long as
no more than f modules have failed. This work is described in publication |4] of the project pub-
lication list.

FFor systems that are too large to support the number of interconnections required by the
mcthod deseribed above, we have developed an alternative synchronization method described in
publication {17]. This method is based on the concept of overlapping cycles.

Summary of Results 27

e s s . . o e el s
. - . T TP [T IR PAE TR TN
e e e e e . PG

. - - R R PN, B il T R R T
B R T L AL T WL P T, T B VT, T TS PR T RTINS WV S VIR PL TV VW VS

O N W A T T & TN WY P_‘F.'_"':_"_’_"_’_w“._‘".'_'—-','""."-_' -"“--."T

Aamdiad

—
+—r<

START\‘
:_‘-"-?-Z O+ +QXXXOQ Tt 0
PR + + + QX X Q + +Ij
. ++Q+QXQ+ +}
" 0OQXQ3 Qo0+ + 1o
Q.
0

+)10 X0 + + +

&4

<+
e
-+

< <I
T
JJZE

100 O

O+ +10 X X0+ +0
0

01010
+$:00100
1
o+ 1

P N

+ +0O0+ +0

®1O +
ill
LF,({

+
0

i
—
10
O
o

o
0

10 X100 X0 O
+20 X100

+ +0

O +xX00

+10 <0

+ +0

O+ +0

"ot
O+ +0 + +
CI)_U
0
P00 X0

. O processing elements Q cells in quarantine
N X faulty cells -- path

+ switching elements ->- path with backtrack
d * only available I/0 port
25 DIRECTION PRIORITY IS NESW
o1

- Figure 8. FExample of [/O Path Growth

o pe ol

e

® ot Summary of Results 28

P N

CT T T T e T T T e S
AN S G R W U G R i'-.;..;-a-n_L-.-._.‘A“_-".-j

I
1

YL -

A

2.3.2 Simulation

ol
DA AR

e

A complete simulation package was developed in which the reconfiguration algorithms could
be tested. This work will appear in publication [11] which was in progress when this report was
prepared. Using the simulator, several improvements to the growth algorithms were discovered.
-~ These will also be reported at a later date.

2.3.3 Periodic Self Restoration

) This part of the research is directed at possible redundancy techniques that could be used to
. achieve fault tolerance. It is a study of an architecture that might be embedded in the reconfigurable
systemn described in the previous sections. In this sense, the purpose is quite different from that of
earlier sections.

The dynamic redundancy methods that are widely used in fault tolerant systems can be con-
sidered to be event driven. In such systems, it is the detection of an error that triggers the attempt
to restore the system to a correct operation state. In the proposed periodically self restoring re-

- dundancy (PSRR) scheme, an alternative approach is presented in which the system periodically
restores itself (whether or not a fault has occurred) so as to correct any errors before they build up
e to the point of system failure.

The PSRR scheme employs N computing units operating redundantly in tight svnchroniza-
o tion. Each computing element has full functional capabilities and could, if necessary, perform all

ﬁ system functions on its own. System input must be supplied to each computing element, and sys-
e v temn output is computed according to decision rules that are described in publication [2] of the
- project publication list. If the system 1s operational, the consensus output is guaranteed to be error
e free.

. The failures may be due to either permanent or temporary faults. While computing units that
»0 have permanent faults cannot be correctly restored, those that have transient faults can be reliably
Y resynchronized with the rest of the system. To achieve this, N computing elements periodically
A communicate their state information to each other and resynchronize themselves to a mutual con-
: sensus state. If a minimum number of computing elements are operational, this consensus is as-
.. sured of being the correct operational state. The restoration is initiated by a non-maskable interrupt
s from a fault tolerant clock and is executed out of ROM. This ensures that a computing element
- that has failed due to a transient error will execute the restoration algorithm. It is therefore restored
O - to the operational state if enough other computing clements in the system are operational.

SR The PSRR system is particularly effective at handling transient faults. This is an important
- advantage because transient faults are believed to occur much more frequently than permanent

: faults. PSRR systems may also tolerate a limited number of permanent faults due to the consensus
s operation.

A fixed computation-restoration cycle is established. This consists of a computing interval
followed by a restoration interval during which the system is restored. Shorter CR cycle times
imply more frequent restoration and hence more reliable operation. The price is lowered
throughput since the restoration time is fixed.

" 'lll ‘A
»
EAEARA

During this study, this system was modeled using a Markov model. Procedures for deter-
mining the system reliability and the system mean time to failure are developed in terms of the in-
dividual computing clement failure probabilities for permanent and transient faults during a CR
cycle, the CR cycle time, and the mission time. It is found that the reliability can be increased either
by more frequent restoration, which degrades throughput, or by increasing the level of redundancy,
which increases cost. A method is developed that allows evaluation of the level of redundancy
nceded for a given CPU to mecet desired performance and reliability specifications. If the procedure
1s used on all available CPU’s the best choice for given specifications can be determined.

'4
A
L, L,

LI P

»

A,
L

.
€
L)

The PSSR scheme allows design optimization based on paramcters that can be estimated with

- reasonable accuracy at the specification level. This is in contrast to most present day fault tolerant
(o systems in which the coverage factors for test procedures are virtually impossible to predict in ad-

AL

e

‘-_(.: Summary of Results 29
190

S

»
N

)

’
]
Y

-

"
A 3..‘

2
I.I.A.l_‘l
. A

- PSR PR

0
. e .
. . e
L L
, .

(i3
H
1

" 2’

> V2
ety
FE]
voros o

«
atalalalale
LU PN

.
R P R

vance of system implementation. Another advantage is that PSRR systems are realized with off the
shelf components.

‘The details of this system are published in publications [2) and [18] in the project publications
list.

2.3.4 Cell Testing Techniques

Although cell testing was not a primary focus of this research effort, some initial investigation
into this problem was done. The types of test to be performed were determined as well as a pre-
ferred order. Preliminary work on partitioning the test set for sequential passes was done. Sug-
gestions for possible algorithms also were made. This work is only preliminary in nature; much

remains to be done. The results to date can be found in publication [10] in the projects publication
list.

2.4 References

1. J. VonNeumann, Theory of Self-Reproducing Automata, University of 1llinois Press, Urbana,
Ilinois, 1966.

2. S.M. Walters, Pattern Synthesis and Perturbation in Tessellation Autornata, Ph.ID. Dissertation,
Virginia Polytechnic Institute and State University, January 1980, 250 pages.

3. L) Good, "Normal Recurring Decimals”, Journal Londcn Mathematical Society, Vol. 21, 1946,
rp. 167-169.

4. R.1. Goke, Banyan Networks for Partitioning Multiprocessor Systems, Ph.D. Thesis, Univer-
sity of Flonda, 1976.

5. J.R. Goodman and C.H. Sequin, “"Hypertree: A Multiprocessor Interconnection Topology”,
{EEE Transactions on Computers, Vol C-30, December 1981, pp. 923-933.

6. D.K. Pradhan and S.M. Reddy, "A Fault Tolernat Communication Architecture for Distrib-
uted Systems”, JEEFE Transactions on Computers, Vol. C-31, September 1982, pp. 863-869.

7. R.A. Finkle and M.H. Solomon, "The Lens Interconnection Strategy”, hpl.IlFEE Transactions
on Computers, Vol. C-30, December 1981, pp. 960-965.

Summary of Results 30

3.0 Publications and Technical Reports

1.
2.
3
4.
¢
b~
-
-'_. 5
-
‘r. 6
- 7.
o
.- <.
. 9

9
P
9
"
- 10.
d
F .

CEE P -~ o, -t " PR . - . PR t. - Y A A S ".' ‘_‘" »
PP P S0 AL T I P P D P DU A v AT . R W D W W 0. DU WS U0 . U D v

1., Gray, "General Purpose Reconfigurable Architecture”, Proceedings of the 1982 [nterna-
tional Conference on Circuits and Computers, New York, New York, September 28 - October
1, 1982, pp. 122-125.

A.D. Singh and F.G. Gray, The Design of Periodically Self Restoring Redundant Systems, Ph.
D). Dissertation, Virginia Polyvtechnic Institute and State University, Blacksburg, Virginia, De-
cember 1982, 127 pages. Also, Inteim Technical Report No. I, Armmy Research Oftice,
DAAG9-82-K-102, February 1983,

R. Kumar and F.GG. Gray, "Control Pattems in Cellular Arrays”, Proceedings of
SouthfastconS4, Louisville, Kentucky, Apnl 8-11, 1984, pp. 443-448.

N. Gollakota and F.G. Gray, "Tault Tolerant Clocks in Arrays of Processors”, Proceedings of
Scuthfascon84, | ouisville, Kentucky, April 8-11, 1984, pp. 449-452.

R. Kumar and F.G. Gray, “A Fault Tolerant One Dimensional Structure”, The 4th Interna-
tional Conference on Distributed Computing Systems, May 14-18, 1984, San Francisco, CA.
pp. 472-483.

Naga Gollakota, Automatically Reconfigurable Highly Parallel Computer Systems. Masters
Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, June 1954,
102 pages.

R. Kumar and I'.G5. Gray. "Reconfigurable Cellular Arrays™, Proceedings of the 27th Midwest
Svmposiaen on Circuits and Systems, Morgantown, West Virginia, June 11-12, 1984

Rajesh Kumar, 4 Fawdt Tolerant Cellular Architecuoe. PhD. Dissertation, Virginia
Polyvtechnic Institute and State Umiversity, Blacksburg, Virginia, July 1983, 268 pages

N Gollakota and F.G6. Gray, "Reconfigurable Cellular Architecture’, Proceedings of 484
[nternational Conference on Parallel Procesiing, August 21-240 1984 Bellure, Michigan,
pp,\177-379

Kathleen Connell, 1 O Algorithm and a Test Algorithen tor a Reconticuralble Cellular Array,
Master's Thests, Virginia Polytechnic Institute and State Univeraty. Blacksbure, Virgnia, June
1985, 168 pages.

Bryan Brighton, Simudation of a ault Tolerant Parallel 1rchitecnee. Masters Theas Virmng
Polytechnic Institute and State Unaveraty, Blacksburg, Virgima an progress

12. R. Kumar ar F.G. Gray. "A Fault Tolerant One Dimensional Cellular Archatecture . in
preparation.

13. R. Kumar and F.G. Gray. "A Fault Tolerant Multi-Dimensional Cellular Architecture”, in
preparation.

14. R. Kumar &1d V.G, Gray, “The Determination ot Fault-Free Spaces in Celtular Arrays’, in
preparation.

15, N. Gollakota, J C. McKeeman, and F.G Grayv. Data Path Reconfiguration in an Array
Structure”. 1n preparation

Publications and Technical Reports kY

,,"... I~ A -t R PRI -

(A Bt s Sath A e Sl S Sl AuE BB B SR S a8 4 G A N B e e ae ghie AU MAS S e B -8 Ae ey _‘_.ﬁ_vr‘ﬂﬂ

'.:::: 16. 1.C. McKeeman and F.G. Gray, "['O Algonithm for a Reconfigurable Array Architecture”, in
S preparation.

'.»._'!_.

:;{_'_ 17. M. Roumeliotis, “An Improved Synchronized Array Clock”, in preparation.

18. A.D. Singh and I.G. Gray, "Periodically Sclf Restoring Redundant Systems for VI SI Based
Highly Reliable Design”, Proceedings of EUROMICROS84, 11 pages.

b™ -
e -
b
p

NN

ki ¢

Publications and Technical Reports kY

PR Y '.u .-l .‘I - '_. R .'- ". " - e “~ '-
Saatat At Alan s U LAl A Al Rt

B ARS dand Sven 4 4

C

l_. -

TP Tl Y Y Sy e T T

vy e s

4.0 Participating Scientific Personnel

Principal Investigators:

1. Dr. F. Gail Gray -(June 1982 - December 1985)

2. Dr. John C. McKeeman - (June 1984 - December 1985)

Graduate Research Assistants:

1. Adit D. Singh - (June 1982 - December 1982) - Ph.D. awarded December 1982.
2. Rajesh Kumar - (January 1983 - June 1984) - Ph.D. awarded July 1984.

3 Naga Gollakota - (January 1983 - June 1984) - MSEE awarded June 1984,

4. Kathleen Connell - (June 1984 - May 1985) - MSEE awarded July 1985,

5. Bryan Brighton - (September 1984 - May 1985) - MSEE pending

6. Manos Roumeliotis - {(Not supported)

Participating Scientific Personnel n

.. e e
. . o - « . " - .
P RAF AR

R T A AL S SRR
A ST TR TN WY U N U IR B V0w,

L 4
LSS

H

RO SXAZINAER

v,
7’

Rt Aai A e e N S N Ml it Slac AR SR At S SUD SAR St Bl B Rl Sl il Al G 4

sl et Aot et Serohat it s

LNGLASSIELED

SECURITY CLASSIFICATION OF TH!S PAGE When Data Fntered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1 REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
Ay [Pro3./4-€C N/A N/A
4 Y‘?LF [and Subtitle) 5. TYPE OF REPORYT & PERIOD COVERED
Fault Tolerance in Parallel Architectures Final Report
June 1982 - Dec. 1985
€. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Dr. F. Gail Gruay DAAG 29-82-K-0102
} 10. PROGRAM ELEMENT. PROJECT, TASK
9. PERFORMING oncm_nu‘non NA'ME AND ADDRESS ' PROGRAM ELEMENT. PROJEC]
Department of Electrical Engineering
Virginia Polytechnic Inst. and State University
Blacksburg, VA 24061
‘1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
- C M
. S. Army Research Office ay 30, 1986
Post Office Box 12211 13. NUMBER OF PAGES
N P 33
Rescarch Trianegle Park NC 27704
T4, MONITORING AGENCY RAME & ADORESS(!f different from Controlling Office) | 15. SECURITY CLASS. (of this report)
Unclassified
15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of thie Report)
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, {f different from Report)
NA
18. SUPPLEMENTARY NOTES -
The view, opinions, and/or findings contained in this repert are
those of the author(s) and should not be construed as an official
Department of the Army position, policy, or decision, unless so
designated by other documentation N
19. KEY WORDS (Continue on reverse gide if necessary and identily by block number)
Fault Tolerance Distributed Algorithms
Parallel Processing Computer Architecture
Reconfiguration Distributed Control
20,

ABSTRACT (Continue e reverss side i/ neceesary aod identity by block number)

This paper deseribes a proposed antomatically reconfigurable cellular architecture. The unngie
feature of this architecture is that the reconfiguration control is distributed within the ssatem Thore
1s no need for global broadeasting of switch settings. This veduees the interconnecion complowat,
and the Tength of data paths, The system can reconfigure at the request of the appheations softw.ar,
or in response to detected faults. Fhis architecture supports fault tolerant appheations aince the
reconfiguration can be self- triggered from within, ‘The complete reconfiguration process can oo
ceed without external interference.

AR
LI SN PN ":‘ <

F ORM
DD |, ,an 7 1473 ED1TION OF) NOV 8515 OBSOLETE

SR
S e

- ..

L e T e e T hs .
LN A R R R R P I T A Y

UNCTASSTELED

SECURITY CLASSIFICATION OF THIS PAGE ‘When Date Fnterad,

- .J_'.:.‘."_'.. - ' . S ‘:- ’ Lt
Y AU S SR "
PN oW o . AW W R SR W S

AR P R
T L BT <

A B e adh oA ahd a2l _ah e " - ad
SR aN At AN S T A A S Al S AR LA At i s 0 g0t

