
AD-A17@ 245 FAULT TOLERANCE IN PARALLEL ARCHITECTURES(U) VIRGINIA i/ ,
POLYTECHNIC INST AND STATE UNIV BLACKSBURG DEPT OF
ELECTRICAL ENGINEERING F G GRAY 38 MAY 86

UNCLASSIFIED ARO-i888314-EL DAG29-82-K-8182 F/G 9/2 NLIIIIIIIIIIoii
EEEEEEEEEEEEEEEEEEEEEEEEEE

4 1111 i .c2 IIII a 2.
32.~I2

36

40

IIIJIL25I.4

MICROCOPY RESOLUT ON I EtI CHART

"FAULT TOLERANCE IN PARALLEL
N ARCHITECTURES

FINAL REPORT

May 30, 1986

Dr. F. Gail Gray

Prepared for U.S. Army Research Office (~ ~ ..

Grant DAAG29-92-K-0 102 '.JUL~8b

L*LJ eparmentPrepared by
Deparmentof Electrical Engineering Ll

Virginia Tech
BlI3ack,;burg, Virginia 24061 "

v APPROVE.! FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

*,

.*

Abstract
This paper describes a proposed automatically reconfigurable cellular architecture. The unique

feature of this architecture is that the reconfiguration control is distributed within the system. There
is no need for global broadcasting of switch settings. This reduces the interconnection complexity
and the length of data paths. The system can reconfigure at the request of the applications software
or in response to detected faults. This architecture supports fault tolerant applications since the
reconfiguration can be self- triggered from within. The complete reconfiguration process can pro-
ceed without external interference.

1% -c

°'" r

Abtrcti

0!'//

Table of Contents
1.0 Statement of the Problem .
1.1 Proposed Structure...I
1.2 Theory of Cellular Reconfiguration... 2
1.3 References...............................6

2.0 Summary of Results... 7
2.1 Computation Ilyperplane... 7
2.2 Control Hyperplane... 9

2.2.1 Patterns and Growth..10
2.2. 1.1 Proof of Concept Example... 10
2.2.1.2 Alignment of Master Pattern....................................... 15
2.2.1.3 Clearing the rav... 15

2.2.2 Fault Tolerance.. 20
4r2.2.2.1 Determining the Size of Fault Free Space...............................20

2.22.2 Two Dimensional Reconfiguration Algorithm...........................21
2.2.2.3 One Dimensional Reconfiguration Algorithm........................... 25

2.2.3 Input, Output Path Construction.................. 25
2.3 System Concepts.. 27

2.3. 1 Synchronized Clocks.. .27
2.3.2 Simulation.. ... 2 9
2.3.3 Periodic Self Restoration... 29
2.3.4 Cell Testing Techniques . 3

2.4 References 3

3.0 Publications and Technical Reports... 31

4.0 Participating Scientific Personnel.. 33

'Table of C~ontents

1.0 Statement of the Problem
Recent advances in VLSI technology has made it possible to interconnect many small com-

puters together to achieve high parallelism. There are many topologies for interconnecting
processors. The optimum choice for interconnection strategy is frequently application dependent;

- . therefore, most of these architectures can be used only for a small number of applications.

Kung I 11I has proposed such a class of architectures known as systolic arrays that can be used
to perform a variety of highly parallel computations such as matrix multiplication, fast Fourier
transformation, etc. Each processor in these arrays performs a simple and short computation and
regularly pumps data in and out. But only a limited number of functions can be performed with
each type of interconnection network. What is needed is a general purpose reconligurable archi-
tecture that allows many of the special purpose architectures to be embedded in a single structure.

Considerable attention is being given to such a general purpose reconfigurable architecture in
4r recent literature. Snyder f 21 demonstrated the feasibility of such an architecture with the CHIP

computer (Configurable, IlIghly Parallel computer), which provides a programmnable intercon-
nection structure integrated with processing elements. It is designed to provide the flexibility needed
to compose general solutions while retaining the benefits of uniformity and locality that the algo-
rithmically specialized processors exploit. It consists of a switch lattice, in which the switches are
set to create the best interconnection network for the function to be executed. An external con-
troller broadcasts a command to all the switches to invoke the appropriate architecture.

Tlhis approach has two major disadvantages. First, the setting of the switches is controlled
by an external processor. This necessitates some type of global connection to all switches. Sec-
ondly, the master control circuitry becomes a single point failure site, since it would be necessary
for the master control to work correctly in order for the appropriate switch setting to be invoked.
Tlhuis the existence of the master control will significantly degrade the system reliability. This is
highly undesirable for failure critical applications such as automatic landing of commercial aircraft,
control systems for nuclear reactors, life support systems for medical applications, etc. Even in less
critical applications, system downtime is often very expensive.

In this research project, we investigated a reconfigurable cellular architecture in which the re-
configuration mechanism is distributed throughout the array instead of being a single-point failure
problem. In addition, reconfiguration does not require an external processor to compute the new
interconnection pattern.

L. I Proposed Structi'e

Our desire is to be able to implement a set of specific architectures designed to solve a specified
stof parallel computations in a single reconfigurable system. Cellular arrays are a viable compu-

tational architecture for such an implementation. A cellular (iterative) array is a collection of iden-
tical cells that are interconnected in a uniform, or regular, fashion. A cellular array is proposed for
the following reasons. First, they are of highly parallel nature. Secondly, since all the cells in the
array are identical the architecture becomes easily expandable without changing the current hardl-
ware in any significant way. Lastly, each processor is connected to other processors according to a
regular interconnection pattern. By using regular local interconnection patterns we can avoid the
use of global connections, so that the interconnection complexity will not increase with the size of
the system. By making the control distributed throughout the array, the "hard core" component

Statement of the ProblemI

.
in.."

.'.....

I"° I

will be minimal. Being a planar, regular structure, such a parallel processor is well suited for VISI
implementation.

'The proposed cellular structure is composed of two cellular arrays that are interconnected as
shown in ligure I on page 3. The cellular structure consists of a "control hyperplane' and a
computation hyperplane', where for each cell in the computation hyperplane there is an associated

cell in the control hyperplane. lach cell in the computation hyperplane can be either a switch or
a processing element, as shown in Figure 2 on page 4. If it is a processing element it must be
complex enough to realize the functions required by each of the algorithms, i.e., each processing

- - element is some type of universal logic module, or microprocessor, that can perform a list of func-
tions.

lach cell in the computation plane is controlled by the state of the corresponding cell in the
,... control plane. If the cell in the computation plane is a processing element, then the control cell

specifies a particular algorithm from a set of possible algorithms that the processing element can
implement. If the cell in the computation plane is a switching element, then the control cell will
specify a particular local interconnection of the switching element to its neighbors. The overall
function to be performed by the cellular structure is defined by the global pattern of control states.

_l'o create the desired configuration for a particular computation, one cell in the array is ini-
w.' tialized to a "seed" state which defines the global computational task to be performed by the array.

The cellular array will then utilize that information to "grow" the required pattern of states in the
control hyperplane. The pattern of states in the control hyperplane invokes the desired intercon-
nection structure in the computation plane.

• 7:71.2 Theoy of Cellular Reconfiguration
The control hyperplane is responsible for assigning proper functions to the cells in the com-

putational hyperplane. Any arbitrary cell in the control hyperplane will eventually receive infor-
mation about the global function to be implemented from the "seed" state Initially planted at an
arbitrary location. The way in which the given information is distributed throughout the control
plane to produce a desired final pattern is explained in this section. This process will be referred

, to as 'growth'.

'[he control hyperplane is an array of identical cells interconnected in a uniform fashion, where
each such cell can receive state information only from its neighbors. The cell which initially receives

-* information about the global function will communicate with its neighbors and gradually spread the
information through the array to create the final desired pattern. This section explains the "growth"
process, the way in which the given information is transmitted throughout the control plane
produce a desired final pattern. Since the control hyperplane is an array of identical cells inter-
connected in a uniform fashion, each cell can receive state information only from its neighbors.

S... 'This process is illustrated in the following example.

Cell -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 time
0 0 0 0 0 0 0 S 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 A A A 0 0 0 0 0 0 ... 1
0 0 0 0 0 B B C B B 0 0 0 0 0 ... 2
0 0 0 0 E E I I E E E 0 0 0 0 ... 3
0 0 0 C 0 M PUTE R S 0 0 0 ... 4

Fach row describes the state of the one-dimensional array at a particular time. At t 0, the
"seed" state "S" is planted at an appropriate place in the array with all other cells in the 'quiscent'
state ')'. ,-\t each time step, each cell observes the state of each of its immediate neighbors and it
own state, then decides what its next state will be.

For example, at time t = 0, cell 0 observes that the cell to its immediate left is in the '0" state,

cell (is in the "S" state and the cell to its immediate right is in the "0" state. '[he local pattern for
cell () at time () is said to be (0. When any cell in the array is in a local pattern of 0St at time t.
it will change its own state to state A at time t + I. Similarly, if a cell is in a local pattern of ((OS

Statement of the Problem 2

-. ,- . . . - - . , . ' -, - , £ ' . ..' - . - ,. ,, . -.. -, ., -.- ,. • --

CONTROL
HYPERPLANE

- CO MPU TATION AL
H YP ERPLANE

Fipure 1. Cellular v.~chitecture

Statement of the Problem

.W'~ W~ W i - ~ ~ J~V ~ 7W . W Y~c

U)(nW(

0W

V0(

0n V)c

-l Ch (Cn(n

00

figtire 2. C omputational Plane

Statcitient of the P~roblem4

V - . .d

or SOO at time t it will also change its own state to state A at time t + I Any cell in local pattern
000 at time t will stay in local state 0 at time t + 1. Therefore, the result of each cell at time t = 0
observing its local pattern and changing to the appropriate next state will transform the global
pattern

- ".-"0 0 0 0 0 0 0 S 0 0 0 0 0 0 0

t time t 0, into the global pattern

.0 0 0 0 0 0 A A A 0 0 0 0 0 0...

at time t = 1. In like manner, the global pattern at t = I will be transformed into the global pattern

.0 0 0 0 0 B B C B B 0 0 0 0 0...

at t = 2 by each cell applying the following local transformation

local next
pattern state

0 0 0 0
0 0 A B
0 A A B
A A A CIA A 0 B

--.. A 0 0 B

Eventuallv, the desired global pattern "COMPUTERS" will be reached and will remain stable if
each cell applies the following local transformation.

0 0 C 0
S0 C 0 C

C 0 M 0
0 M P M
M P U P
P4 PUT U
U T E T
T E R E

In general, any such control hyperplane can be characterized as a tessellation automaton 131.
The tessellation automaton (TA) is a four tuple

TA=(A,Ed,X,c)

where,

1. A is a finite non-empty set ca',d the state alphabet. For our previous example, A =
(0,S,A,B,C,I,E,OM,P,U,T,R}

2. Ed is the set of all d-tuples of integers called the tessellation space. lHcre the tessellation space
* 'is said to be "d" dimensional. In our example, Ed is simply the set of all integers

-3, -2, -1, 0, 1, 2, 3,

.d defines the spatial location of each cell in the array.

3. X is an n-tuple of distinct d-tuples of integers called the neighborhood index 1Each cell is said
to have n neighbors and n is called the neighbophood scope. In the example, n = 3, and X
(-I, 0, 1). X defines the relative coordinates of a cells neighbors. For, example, cell 5 has

Statement of the Problem 5

, . . r..

-~~~~~~~~~~~~~."2. " "' - " "" "....."" "

neighbors (4,5,6) obtained by adding each coordinate of the neighborhood index to the cell

location (5).

- 4. 0 is a mapping from An into A called the local transformation.

Fach cell will decide its next state by observing the present state of its neighbors. In the example.
o(B(1 = 1.) \IPt L) = P, etc. It is desirable from the stability point of view that each cell bc
its own ncighbor 141

IFor our work % e can convcniently characterize the control hyperplane as a two dimensional
tescllation automaiton, since the computation hyperplane is a two dimensional array of swvitchcs
and procs ,ng elments. Io completely describe the control hyperplane. we need to specify the
neclihborhood index and the local transformation a. The only difference from the example is that
the neighborhood index and the local transformation will be two dimensional in nature.

D)uring the course of this research program, this architecture was studied extensively. [he-
oretical issues relatcd to automatic reconfiguration in the presence of faults were investigated.
Complexilt issues %%crc addressed. Problems related to fle reliable transmission of data into and
jut of the s\stem xerc studied. Simulation facilities were developed to verifN the theoretical results,
and tinall\, a proof of concept example was created to determine the complexity of control cells (in
terms of memor rcquircments) and the complexity of switch cells.

The major results of these investigations are summarized in the following sections.

1.3 References
'" -. Kune, 11. F., 'hv Systolic trchitectures?" Computer, January 1982, pp 37-46.

2. Snmder, I .- "Introduction to the Configurable, Ilighly Parallel Computer", Computer, January
192 pp 47-56.

3. Yamada, II., and Unoroso, S., "Tesselation Automata", Information and Control, 1969.

4. Walters. S.M., Pattern Synthesis and Perturbation in Tesselation Automata, Ph.D. Dissertation,
Virginia Tech., Jan 1980.

Statement of the Problem 6

-.: ..

o ."1

2.0 Summary of Results
This section describes the most important results of the research. The material presented here

is intended only as a summary of results. For more detailed treatments, see the published papers
or interim reports that are referenced at appropriate points.

2.1 Computation Hyperplane
The computation hyperplane is a cellular array of switches and computing elements as shown

sin Fiure on page 4 This section describes a systematic means for specifying the system param-
-ters needed to implement a set of specific architectures in a single reconfigurable system.

The square cells are computing elements, whose design will depend upon the exact computa-
tions to be performed by the system. The computing elements must be capable of performing all
of the system functions in each of the configurations. It must also be possible to select among the
various functions in order to provide dynamic reconfiguration. The design of the computing cells
is not considered in this research effort.

The switches are represented by circles. The switch parameters that are most important in
determining the complexity of the switch nodes are the number of incident data paths, the number
of wires in each data path, and the maximum number of simultaneous data path connections to
be made by any one switch.

' lhe number of wires in each data path depends upon the needs of the specific computation.
To a limited extent the number of wires can be traded off against the time required to communicate
data to the neighbors. Serial data transmission would require only one wire, while completely
parallel data transmission would require a logarithmic number of wires. Since this decision is
strongly computation dependent, we will not consider it further.

[he number of incident data paths must be chosen to provide sufficient flexibility to imple-
ment a large number of different configurations. This parameter can be traded off against the
maximum number of simultaneous connections permitted. The tradeoff involves the control plane
complexity as well as the computation plane complexity.

Oe! ihe number of states required in the control plane to represent all of the different possible
connections in the computation plane, (where d is the number of data paths in the computation
plane. g is the maximum number of simultaneous connections to be implemented in the compu-
tation plane, C(x,y) is the number of combinations of x things taken y at a time, and x! is factorial
of x) is given by

C(d,O)4-[C(d,2)*C(2,2)1/1!+[C(d,4)*C(4,2)*C(2,2)]/2!+.
+[C(d,2g)*C(2g,2)*C(2g-2,2)*C(2g-4,2)*... *C(4,2)*C(2,2)] /g!.

F or a proof, see 161 or 1151 in the project publications list. The number of states required. and the
corresponding number of bits required, for various values of d and g are given in Figure 3 on page

Summary of Results

Number of Number of States/Bits Required in Control Plane
Neighbors in
Computation

Plane

Sg=4 g=3 g=2 g=1

10 8551/14 3826/12 676/10 46/6

8 869/10 764/10 344/9 29/5

6 - 77/7 61/6 16/4

4 - 10/4 7/3

Figure 3. Number of States/Bits Required in Control Plane

The number of connections required in the control plane per switch as a function of the
- -number of states and the number of neighbors is shown in Figure 4 on page 9.

.

Stummar% of Results

, . .. ,

Number of Number, Number of
States for of Bits Connections

Switch Required Required per
Control Cell

k=5 k=9

14<S<9 3 15 27

8<S'<17 4 20 36

16<S<33 5 25 45

32<S<65 6 30 54

64<S<129 7 35 63

128<S<257 8 40 72

01256<S<513 9 45 81

512<S<1025 10 50 90

1024<S<2049 11 55 99

2048<S<4097 22 60 108

* - Figure 4. Number of Control Plane Pins Required

I or a particular technology. the density of Connections allowed will restrict the wic dsignl space.
lor exan~rpie, if the mraximumi numbl-er of connections per inodule were 45. then thc swi1tch desILTn

Tace: \% uil be limitedI to 512 states for k 5 (k numurber of neighbors in thc control plane). I IsI,
w ould res trict the designT to (d= 10 and g= 1) or (d = R and g =2) or (d = 6' and e 3). etc. 11n 16

*-of the_ project pubhlicaItions li st, it is shown that d = with g =2 Is a goodl cornpromnise for current
* 4tehnl\

2.2 Control Ilyperplatte
* ~ V Ia III inthe introdiuction, the control h\ perplaneI can be modeC,ld a1 a ee1 a~r

lltoinato) 'Since the- omoputation plane is; a two dinnlonal array, the natuia rcpiesent.)ii- ior
t11', coTrol la 'AII ill bA tc' o dinienlonal Ts~llato alit o na~tonl InI order to reduhic the miter-
orin. tin01 compjlexity\ a1 much asposil andI to rece the aniotit of nicnior\ rcliined,. it

e~'Iito reduIIc the: numbelIr oftwneihbors to a innium. Since the cell musl tal%%as he i ocx n
neiclhor, the mllc po- ble Ticiobb-orhool ']/(' for atw diN esina arrax i, 1 I sCallell

the', Vont \Unumnn neilghbo rhoodI 1! . We sill 1how\ that this neICHb~loihoodis 1u1 mn IlfiITlk LomopLe\
to cntrol Ilhe, proev es, of automatic reconjieriraliomi

Siirvmar of lusultts

Me-

2.2.1 Patterns and Growth

It has been established that control patterns in which all subpatterns, equal in size to the
neighborhood index, are distinct are needed to support growth in tessellation automata 121. Walters
121 also showed a method for constructing such patterns in one and two dimcnsions. The Von
Neumann neighborhood requires a modification of Walters two dimensional patterns. An (1 ,3

. pattern in one dimension is a string of length L in which all subpatterns of size three are distinct.
" If this string is arranged in two dimensions as shown in Figure 5 on page 11, then all internal Von

Neumann patterns will also be distinct. To insure distinct patterns at the boundaries, the (1_3)
pattern must be modified as follows.

A pyramid is constructed as follows.

al
a2 a3 a2

a2 al a3 a4 a3
a3 al a4 a2 a4 a5 a4

ai al a(i+l) a2 a(i+l) a3 a(i+l) ... a(i-1) a(i+l) a(i+2) a(i+l)

.r1

If the number of symbols to be included in the pattern is j, then the above construction should be
performed until i= j-2. This forms the upper half of the pyramid. The lower half is obtained by
reflecting the upper half about the bottom line. The complete construction for j = 6 is shown in
Figure 6 on page 12.
See 161 and 191 in the publications list for the project for details.

The two dimensional growth process is illustrated in Figure 7 on page 13. The two dimen-
sional transformation

al
a2 a3 a4 -> a6

a5

which denotes the situation where a cell in state a3 sees its neighbors in states al,a2,a4,and a5 and
goes to the next state of a6, will be represented for convenience in the form

al a2 a3 a4 a5 -> a6

The local transformation that produces the growth indicated in Figure 7 on page 13 is shown in
Figure 8 on page 14.

At a time t-1 after a seed cell is piaced in an initial all-zero configuration, the total number of
cells initialized will be 2t2-2t + I.

*. I 2.2.1.1 Proof of Concept Example

To verify that the complexity of the control hyperplane is reasonable for real architectures, a
proof of concept example was designed. Four recently proposed research architectures were se-
lected.

I. Two level banyan network 141.

2. Ilyper Tree [51.

Summary of Results 10
*1'.

9," .

d Figure 5. An (1.,3) String Arranged in Two D~imensions

Summary of Results i

- - -7 --

O0 0 0 0 0 0 0 0 0 0

o 0 0 o al1 o o o 0 o

C o o a a2 a3 a2 o o o o

C 0 0 a2 al a3 a4 a3 o o o

o a3 al a4 a2 a4 a5 a4 o o

o a4 al1 a5 a2 a5 a3 aS a6 a5 o

o a a3 alI a4 a2 a4 a5 a4 o o

o 0 0 a2 al a3 a4 a3 o o o

o 0 o 0 a2 a3 a2 o o o o

o 0 a 0 al o o o o o

,:::::o a o a o o o a o a a

Figu~re 6. Two D~imensional Pattern: All Von Neumann Neighborhoods are Distnct

Summary of Results 1
. 12

0000000

0000000

0 0 E N KOO

OOENKOO

* Figure 7. Two Dimensional Grollh

Summary of Results 1

0 0 00 0 0

0r 0 00 SO-V

0 0 SO0O0 N

6- 0 000 V. 0

0 00 V E 0

00 0E 0 0

OV K 0 0

0 0 V 0 N - V

#1V E N K A - N

Figure 8. Local Transformation for Two Dimensional G;rowth[Summary of Results 14

%. . , : c a- , . , .- - ; - - L - 4 - - --. : ,- .. 4 . .,. . . ,, w, r,° r r. ; " - -" "- -.

"a

3. A Faut 'I olerant Architecture 161.

4. lens Structure R7.

'I he embeddings of these architectures into the computation plane are shown, respectively, in Fig-
ure 10 on page 16, Figure II on page 17, Figure 12 on page 18, and Figure 13 on page 19. The
number of states needed in the control plane cells, along with the number of local transformations
for each architecture is shown in Figure 9.

Network Type Number of Number of
Intermediate Local

States Transformations

Banyan Network 52 978

Hyper Tree 42 794

Fault Tolerant 52 1000
Architecture

Lens Strategy 63 1232

p'--

% .Figure 9. Memory Requirements for Control Cell Implementation

The total number of states is 209 and the total number of transformations is 4004. The control cell
S. would therefore require an associative memory with 4K 8-bit words. This is within current tech-

noloy limits.

2.2.1.2 Alignment of Master Pattern

@1 The master pattern may not be aligned properly so that control cells for computations fall over
computation cells and switch states fall over switch cells. Algorithms to solve this problem are in
reference 161 of the project publications list. Of course, if each cell is capable of both computation
and switching, the preferable arrangement, there is no alignment problem.

2.2.1.3 Clearing the Array

[he array pattern currently in the system needs to be cleared beforc a new pattern can be
*"- grown. This is done by placing a clear seed in the existing pattern. Any cell that has a neighbor

in the clear state will go to the clear state at the next time step. Any cell that is in the clear state
will go to the quisccnt (or zero) state at the next time period.

Summary of Results I5

S-;

... ,-

0 0 00 0 00 0 00 0 00 00 0

0 000 000 000 000 000

f~ 0 00000000 00

10 000 00 0

10 000 00 0

0K 00 0 00 0

0 00 0 0 0 0 0 0 00 0

o 000 0 00 00 00 00 0 00

* Figure 10. Embedded Two Level Banyan Network

Summary of Results 16

9.

.

Tv W. v

C 0C

0 '-"0 0 0 0 0 0 0 0 0 0 C

o 0-0 0 0 0 7 0 0

o.. 0 0 C0 ' 0 0 0 0 0 0 C

_* - - -

Figure 11. Embedded Ilyper Trree

Summary of Results 17

,•.-...

0 0 0 0 a a a a 0 c

o 0 a - ~ a c

o 0

o l - "0 0 0 c 0

0 c 0 0 0 0 0 0 0 0

P-igure 12. Emhcdded Fault Tolerant Architecture

Summary of Results 1

00 00 0000 0 00 00 00 0

000 0 0 0 0 0 0 0 0

0 00 0 0 00 0

0 00 0 0 00 0

0 00 0 0 00 00 0 00.

0 000 000 0 00 0 0 0

00 0 000 00 01

000 0 0 0 0 0 0 0

00 0000 0 0 0 00!

0 0 0000000 0 0c000

00 0000 0 0 0 0 0 0 0 0 O

0 0 0 000 0 00 00 0 00 0

* Figure 1.3. FEmheddcd Lens Network

"IMMary of Results 19)

.7.

2.2.2 Fault Tolerance

In addition to having the capability to reconfigure at the request of the user, our system can
reconfigure when a fault is detected. The basic approach is to quarantine faulty cells, rather than
to report their status to a global interpretation mechanism. Each ccll periodically performs te,;ts
on its neighbors to determine its opinion of their status. A cell sets its control state to the
quarantine state, Q, if it decides that any of its neighbors are faulty. In addition, the cell ignores
any inputs from the suspected faulty cells. As a consequence, walls of quarantine states will com-
pletely surround regions of faulty cells. Faulty islands will appear in the array that have boundaries
of control cells in the Q state.

2.2.2.1 Determining the Size of Fault Free Space

To reconstruct the pattern that existed prior to the detection of the fault, information about
the nature of the pattern is extracted from the remaining fault-free cells in the pattern. This infor-
mation is gathered into a single state, called the seed state . This state is ejected into the fault free
regions of the array, and searches for an appropriate place to begin growth of the new pattern. Prior
to the ejection of the seed, each fault free cell needs to determine the size of the fault-free region that
surrounds the cell. This determination is done in an iterative manner, by having each cell examine
the condition of its neighbors. After a time, equilibrium will be reached, with each cell knowing
the size of the fault-free region that surrounds it.

Each cell is assigned an s-value according to the following rules.

1. Fach cell in the quarantine state has an s-value of - I.

2. Assuming no wrap-around, each boundary cell of the array that is not part of a quarantine
wall will have s-value 0.

3. S-values of all other cells are updated continuously. The s-value of each cell at time i + I is the
minimum value of the s-values of the set of neighbors of the cell at time i (not including itself).

The s-values are stored in a register called SVR. An example of the s-value computation is shown
in the following example for a VonNeumann neighborhood. The distribution of faulty cells and
the quarantine wall is shown on the left, with Q indicating a quarantine cell and X indicating a failed
cell. On the right is shown the steady state s-value distribution, where t - I.

--- QQXQ ooottXt
--QXXXQ o0tXXXt
---QXQ- Ol0tXtO
....Q-- 0110too

0121010
0111110
000000c

In references 191 and 1141 of the project publication list, it is shown that the distribution of s-
valucs in any configuration will reach equilibrium in at most 21.-1 time periods following the
occurence of a new fault, where I. is the maximum dimension of the rectangular array.

I he traveling seed must use the s-value of a cell to determine whether there are enough sur-
rounding fault-free cells in which to grow the desired pattern. In a Moore neighborhood of a d-
dimensional array, if the s-value of a cell is x, then the cell is at the geometric center of a h)percube
of I,/e (2x + I). In a Von Neumann neighborhood, if the s-value of a cell is x, then the cell is at
the geometric center of a hy perdiamorid of girth (2x 4- I). In the example above, the cell with
s-value 2 is at the geometric center of a hyperdiamond of girth 5.

Summary of Results 20

I..

2.2.2.2 Two Dimensional Reconfiguration Algorithm

The following set of algorithms implement the steps in reconfiguration.

I. Algorithn that coordinates and multiplexes the transmission of information bet cen cells H]
the control hyperplane.

2. Algorithm to control a reconfiguration source.

3. Algorithm to reduce the number of reconfiguration sources to one.

4. Algorithm to clear the state registers in the fault-free region prior to pattern growth.

5. Agorithm to transfer the seed state from a reconfiguration source into the fault-free region.

6. Algorithm to steer the seed to an appropriate place in the array to start growth.

7. Algorithm to handle collisions between growing patterns so that only one pattern is eventually
grown in the array.

Multiplexing Algorithm: The multiplexing is accomplished by partitioning the cells of the control
h>perplane into two sets according to a checkerboard pattern. "Red" cells would communicate s-
values during a given time period, while "black" cels would communicate state information. Dur-
inc the next time period, roles would be reversed.

. . Ihe sequencing through reconfiguration steps is accomplished by a finite-state machine in the
control cell. [his machine needs only six states and two timers.

- . Ncutralization is the name given to the algorithm that reduces the number of possible seed
sources to one. An arbitrary unique priority value is assigned to each cell in the array. An example
follo ws.

1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10
19 20 21 22 23 24 25 26 27
59 60 61 62 63 31 30 29 28
64 65 66 67 68 32 44 43 58
79 78 77 72 69 33 45 42 57
0 73 76 71 39 34 40 41 56

80 74 75 70 38 35 46 49 50
55 54 53 52 37 36 47 48 51

T'hc only requirement is that each priority value be unique. When a cell goes into the quarantine
." state, it becomes a possible candidate for becoming the seed source. It sends its prioritN value to

V each of its neighboring cells. After a time, the potential reconfiguration source with the larest
priorit value will become the single seed source. In the following example, afler faults are detccled.
x indicates a failed cell, W indicates a quarantine state in the quiescent region, V indicates a

antine state is the active regon (these are the potential sources), 0 indicates a quisccnt cell, and
a lower case letter indicates the other active cells.

Summar, of Results 21

00 00 00 00 0

00a0 0 0 w0a0

00 00 W xWO0

a bc a V xW0 0

d dV c d _1 a 00 0

V x V e d b 00 0

cVedafOOO

e c d f c d600 0

Alter a state change, the global pattern becomes, as follows,

00 00 00 00 0

0 00 00 W 00 0

00 00 W x W 0 0

u u u u 63 x W 0 0

u u u u 32 0 0 0

s 78 s s s s 0 0 0

0 x 76 u u u 0 0 0

u 74 u u u u 0 0 0

U U U U U U 0 0 0

1 ie array then goes through the sequence of steps shown in Figure 14 on page 23 and Figure 1S
on page 24.
In these ficures, + indicates, neutralized cell. In the last step, the only remaining potential source
is dcsgMated V.

he clearing step is accomplished by allowing all cells with 78 codes to g-tlte0stt.ie
result is shown in Figure 16 on page 25.

Summary of Results 2 2

0 00 0 00 00 0 0 000 00 00 0

0 0 0 0 0 W 0 0 0 0 0 0 63 0 W 0 0 0

0 0 0 0 W x W 0 0 0 78 63 63 W x W 0 0

u u u 63 63 x w 0 0 78 78 78 63 63 x W 32 0

u 78 u u 63 32 32 0 0 78 78 78 78 63 + 63 32 32

78 78 78 s s 32 0 0 0 78 78 78 78 78 63 32 32 0

0 x 76 76 u u 0 0 0 + x + 78 63 32 32 0 0

74 74 76 u u u 0 0 0 78 76 78 76 76 32 0 0 0

u74 u u u u 0 0 0 74 76 76 76 u u 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 0

0 0 0 0 0 W 0 0 0 0 78 63 63 63 W 0 0 0

0 0 0 63 W x W 0 0 78 78 78 63 W x W 32 0

u 78 63 63 63 x W 0 0 78 78 78 78 63 x W 32 0

78 78 78 63 63 + 32 32 0 78 78 78 78 78 + 63 63 32

78 73 78 78 63 32 32 0 0 78 78 78 78 78 78 63 32 32

7 76 32 32 0 0 0 + x + 78 78 63 32 32 0

74 76 76 76 u u 0 0 0 78 + 78 78 76 76 32 0 0

"- 74 74 76 u u u 0 0 0 78 76 78 76 76 32 0 0 C

-iS-il:re 14. Steps 1-4

Suminar of Result- 23

.. *.*

8, 7

0 0 63 0 0 0 0 0 78 78 78 78 78 78 78 78

078 63 63 63 w 0 0 0 78 78 78 78 W x 78 7878

78 78 78 63 W x W 32 0 78 78 78 78 W x W 78 78

78 78 78 7 863 x W 32 0 7878 788 7+ x W78 78

78 78 78 78 8 7+ 63 3 32 78 78 78 78 8 7+ 78 78 78

78 78 7878 7878 63 3232 78 7878 78787878 78 78

+ x + 78 78 63 32 32 0 + x + 78 78 78 78 78 78

78 + 78 78 76 76 32 0 0 78 + 78 78 78 78 78 78 78

78 76 78 76 76 32 0 0 0 78 78 78 78 78 78 78 78 78

0 78 63 63 63 0 0 0 0 78 78 78 78 78 78 78 78 78

78 78 78 63 63 W 0 32 0 78 78 78 78 78 W 78 78 78

78787878 W x W3232 78787878 W x W7878

78 78 78 78 + x W 63 32 78 78 78 78 W x W 78 78

78 78 78 78 78 + 63 63 63 78 78 78 78 78 W 78 78 78

78 78 78 78 78 78 78 63 32 78 V 78 78 78 78 78 78 78

+ x + 78 78 78 63 32 32 W x W 78 78 78 78 78 78

78 + 78 78 78 76 76 32 0 78 W 78 78 78 78 78 78 78

78 78 78 78 76 76 32 0 0 78 78 78 78 78 78 78 78 78

.1

* Figure 15. Steps 5-8

24
Summary of Results

............--......

0 0 0 0 Y 0 0 0

0 0 0 0 Y X Y 0 0

0 0 0 0 Y x Y 0 0

0 0 0 0 0 Y 0 0 0

0 'Y 0 0 0 0 0 0 0

Y x Y 0 0 0 0 0 0

0 Y 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Figure 16. The array after clearing.

In this figure, Y indicates normal quarantine cells, and 'Y indicates the unique seed source.

The cell indicated by Y then ejects a seed into the fault-free region. This seed then migrates
to an appropriate place in the fault-free region, indicated by the s-values of cells. This migration
can handle collisions between growing patterns and newly arrived faults. All of these algorithms
are described in detail in references 18j and 1131 in the publications list for the project.

To determine the complexity of the control logic, a sample design was constructed. Systolic
arrays were implemented to multiply bandwidth three matrices, and to compute the LU decom-
position of bandwidth three matrices. The design required 35 states with only 30 mapping points
in the local transformation function. Thus, the control memory is very small. In addition, a total
of 94 bits of control status information must be maintained (for s-values, state registers, flags, etc.).
Information is transmitted in two successive four bit nibbles with two control lines for synchroni-
zation. Since the Von Neumann neighborhood is being used, this requires 24 connections to each
cell (six from each neighbor). The worst case reconfiguration time after fault detection is 4096 clock

- - periods (about 0.8 milliseconds at a clock frequency of 5 Mllz). With a 3x3 array being embedded
in an 8x8 array, the system could reconfigure a maximum of 25 times before running out of fault-
free cells.

2.2.2.3 One Dimensional Reconfiguration Algorithm

One-l)imensional arrays are very restrictive in terms of the paths available for control infor-
mation flow. Therefore, special considerations are necessary. The multi-dimensional study applies
to all arrays with dimension greater than one.

Several additional data paths must be added for reconfiguration. Several additional flags and
algorithms must also be added. For a complete description of these additions, see 151, 181 and 1121

* , in the project publications list.

2.2.3 Input/Output Path Construction

The active array that is embedded within a larger array must communicate results to the out-
side world, and must receive data from the outside world. In a reconfigurablc system, the position
of the active cells will change as a result of reconfiguration. This means that the data paths to the

Summary of Results 25

, ---

INPUT PORTS

,. +.

P+ + +++ + + + + +P+ -+--P+ -F++P+ ++P+ ++

O P+ +O0+ +O0+ +O0+ 0 + - 0 + O 0+ +0+ + 0++O0

T +. + + + + +. .++

P P+ +0 + +0+ +O0+ 0 + 0 + O + +0+ +0++O0
U . ++ .++.+++++. + +

ClT ++ ++.+ + .+ .++
qa p++o0+ +o0+ +o0++ +

*1P +++..+++.+++.++ ..+

0 .+++.+++.+++.+++.

p.R + +0 + +0 + +0+ +++0++0++0
T . + + + + + .+ .+ .+ + +

S +

0 0 0 + + ++ + + + +0

..
-.. °

0 0 0 0 0 0 ++O0+ + 0 ++0

0 processing Elements + switching elements
P array I/O ports A active-array I/O cells

1 /O path //acaive-array

4..

ala

,Fig.re 17.U Inu/uptPahCntut o T

S my'p p + 26

,' ''. ,
-.* + + + + + .. + +

0 ++ + 0 0 . +++. ++
O""U +++++i-+++++ ••+

.-

"* Piur P 7 Input/ Ou Pat ConstructionO +0 ++

Summary: of Reslt 26 + -+ +

U''

a t P+.+0+.+0:+0+t+ + 0+.+0+ +

a. + + + + a + -

- :- - -7 ---. " ; -- - - --

outside world must also change. In addition, if a node in the data path fails, a new data path must
be provided.

'-" "-. [here are three types of elements in a data path. 'he first type is the array I 0 port that mu.t
exist on the array boundary and is connected directly to the outside world. Ihis type will be called
an external 1O port and will be designated by the symbol P. The second type. called an internal
I'0 port and designated by A, is the node in the active array that receives data from the external
I) port or supplies output data for the external I() port. The third type is an element in the data
path that connects an external 1 0 port to an internal !/0 port. These elements are illustrated in
Figure 17 on page 26.

'The external 14) ports must be on the boundary of the array. In Figure 17 on page 26 the
external input ports are located along the top edge of the array, and the externmal output ports are
located alon2 the left edge of the array. The data paths connect these external ports with the
internal O 0 ports. [he active array is shaded.

Since the location of an external 1/0 port may change due to reconfiguration, there must be
some means of identifying the port to the outside world. This is accomplished by adding tag bits
to data that passes through the ports. These tag bits identify the port to the outside world.

Cells in the data path are tagged so that if a faulty cell is identified, only path rcgrowth is ii-

tiated. It is not generally necessary to reconfigure the entire array if a path fault occurs. If a cell
in some data path enters the quarantine state, it either initiates a "Ind alternate path" message if it
is between the faulty cell and an internal 1/O port, or initiates a clear path function if it is between
the faulty cell and an external 1/0 port. When the clear message reaches the external 1 0 port, it
stops sending or receiving data.

I he internal I,O ports must initiate 1/0 path growth during system initialization or "shen ac-
". tive array reconfiguration occurs. The system designer should insure that the internal I) ports are

on active array edges that "face" toward the corresponding external 1,0 ports; otherwise, the growth
of 1 0 paths vill block each other.

The path is grown by passing a pointer tag from an internal i/O port through the intermediate
cells to an external IO port. The cell with the pointer tag queries its neighbors to determine their
status. Based on the responses, and using a system of priorities, the pointer decides in which di-
rection to pass the pointer tag. If a path becomes blocked, the cell with the pointer tag enters a
'backtrack" state, and passes the pointer tag back to the predecessor cell in the path. In references
[101 and 1161 in the project publication list, it is proved that the algorithm will find a path if it exists,

and that path collisions will be effectively overcome. An example is shown in Figure 18 on page

2.3 System Concepts

In this section, concepts that pertain to the entire array are considered.

2.3.1 Synchronized Clocks

I o work correctly, all cells in the array must be clocked in exact synchronism. During this
project, we developed a clocking system that employs 2f+ 2 modules in order to tolerate up to f
module failures. All remaining good clock modules will maintain a synchronied clock as long as
no more than f modules have failed. This work is described in publication 141 of the project pub-
lication list.

For systems that are too large to support the number of interconnections required by the
method described above, we have developed an alternative synchronization method described in

,Q: publication [171. This method is based on the concept of overlapping cycles.

Summary of Results 27

r- -.

6U.. . o , ° o , % x . , + • " • + % • ' " " •- .. ". + ' °.. "

*~~2 07-. * .

START

0 + +QX XQ+ + 0+ 0

+ +Q+ XQ+ + + +

0QxQ 0 Q +Q + 0

0oL 0 0 Q 0

o QQ Q

*1 +Q

++ Q XQ I
0OQ 0 0 0

+ Q
0 Q Q i1

+ QX QQ XQ+
+ QXQ + +Q+ +

o processing elements Q cells in quarantine
X faulty cells -- path
+ switching elements -- path with backtrack

* * only available 1/0 port

DIRECTION PRIORITY IS NESW

Figure 18. Example of 1/0 Path (;rowt-.h

*.Summary of IResults 29

2.3.2 Simulation

A complete simulation package was developed in which the reconfiguration algorithms could
be tested. This work will appear in publication [111 which was in prowess when this report was
prepared. Using the simulator, several improvements to the growih algorithms were discovered.
These will also be reported at a later date.

2.3.3 Periodic Self Restoration

[his part of the research is directed at possible redundancy techniques that could be used to
achieve fault tolerance. It is a study of an architecture that might be embedded in the reconfigurable
system described in the previous sections. In this sense, the purpose is quite different from that of
earlier sections.

The dynamic redundancy methods that are widely used in fault tolerant systems can be con-
sidered to be event driven. In such systems, it is the detection of an error that triggers the attempt
to restore the system to a correct operation state. In the proposed periodically self restoring re-
dundancy (PSRR) scheme, an alternative approach is presented in which the system periodically
restores itself (whether or not a fault has occurred) so as to correct any errors before they build up
to the point of system failure.

The PSRR scheme employs N computing units operating redundantly in tight synchroniza-
tion. Each computing element has full functional capabilities and could, if necessary, perform all
s stem functions on its own. System input must be supplied to each computing element, and sys-
tem output is computed according to decision rules that are described in publication [21 of the
project publication list. If the system is operational, the consensus output is guaranteed to be error
free.

The failures may be due to either permanent or temporary faults. While computing units that
have permanent faults cannot be correctly restored, those that have transient faults can be reliably
resynchronized with the rest of the system. To achieve this, N computing elements periodically

-- communicate their state information to each other and resynchronize themselves to a mutual con-
*" sensus state. If a minimum number of computing elements are operational, this consensus is as-

sured of being the correct operational state. The restoration is initiated by a non-maskable interrupt
from a fault tolerant clock and is executed out of ROM. This ensures that a computing element
that has failed due to a transient error will execute the restoration algorithm. It is therefore restored
to the operational state if enough other computing elements in the system are operational.

[he PSRR system is particularly effective at handling transient faults. This is an important
advantage because transient faults are believed to occur much more frequently than permanent
faults. PSRR systems may also tolerate a limited number of permanent faults due to the consensus
operation.

A fixed computation-restoration cycle is established. This consists of a computing interval
followed by a restoration interval during which the system is restored. Shorter CR cycle times
imply more frequent restoration and hence more reliable operation. The price is lowered
throughput since the restoration time is fixed.

During this study, this system was modeled using a Markov model. Procedures for dcter-
mining the system reliability and the system mean time to failure are developed in terms of the in-
dividual computing element failure probabilities for permanent and transient faults during a CR
cycle, the CR cycle time, and the mission time. It is found that the reliability can be increased either
by more frequent restoration, which degrades throughput, or by increasing the level of redundancy.
which increases cost. A method is developed that allows evaluation of the level of redundancy

-. ,needed for a given CPU to meet desired performance and reliability specifications. If the procedure
-:"-' is used on all available CPU's the best choice for given specifications can be determined.

The PSSR scheme allows design optimization based on parameters that can be estimated with
reasonable accuracy at the specification level. This is in contrast to most present day fault tolerant
systems in which the coverage factors for test procedures are virtually impossible to predict in ad-

Summary of Results 29
r7

eq°"

vance of system implementation. Another advantage is that PSRR systems are realized with off the
shelf components.

-The details of this system are published in publications 121 and 1181 in the project publications
list.

2.3.4 Cell Testing Techniques

Although cell testing was not a primary focus of this research effort, some initial investigation
into this problem was done. The types of test to be performed were determined as well as a pre-
ferred order. Preliminary work on partitioning the test set for sequential passes was done. Sug-
gestions for possible algorithms also were made. This work is only preliminary in nature; much

S-" remains to be done. The results to date can be found in publication I 101 in the projects publication
list.

2.4 References
1. J. VonNeumann, Theory of Self- Reproducing Automata, University of Illinois Press, Urbana,

Illinois, 1966.
2. S.M. Walters, Pattern Synthesis and Perturbation in Tessellation Automata, PhID. Dissertation,

Virginia Polytechnic Institute and State University, January 1980, 250 pages.

.- 3. I.J. Good, "Normal Recurring Decimals", Journal Londjn Mathematical Society, Vol. 21, 1946,
pp. 167-169.

4. R.I .. Goke, Banyan Networks for Partitioning Multiprocessor Systems, Ph.D. Thesis, Univer-
-' sity of Florida, 1976.

5. JR. Goodman and C.1I. Sequin, "lypertree: A Multiprocessor Interconnection Topology",
IEEE Transactions on Computers, Vol C-30, December 1981, pp. 923-933.

6. D.K. Pradhan and S.M. Reddy, "A Fault Tolemat Communication Architecture for Distrib-
uted Systems", IEEE Transactions on Computers, Vol. C-31, September 1982, pp. 863-869.

.7. R.A. Finlde and M . Solomon, "The Lens Interconnection Strategy", hpl.IFYE Transactions

on Computers, Vol. C-30, December 1981, pp. 960-965.

Summary of Results 30

06

.-.....................................

3.0 Publications and Technical Reports
I . (IG (GraN- "General Purpose Reconfigurabke '\rch-tecture" P'roceedings of the /982 Interna-

tional (onference on Circuits and Computers, New York, New~ Yo rk. September 28 - October
1.1982. pp. 122-125.

2. A.D). Sinah and 1KG. Gray, The Design of Periodically Self Restoring Redundant S ystems, Ph.
1). irssertation, Virginia Polytechnic Institute and State Ulversity,, Blacksburg, Virginia, D)e-
cember 1982. 127 pages. Also. Interim Tlechnical Report No. 1, Arm~'y Research Office,
D.NA(i29)-S2-K-102, fe'bruaryl 198..

3. R . Kumnar and F.G. (iraN, 'Control Patterns in Cellular Arrays", Proceedings o1f
S'outhlastconS4, lousille, Kentucky, April 9- 11, 1984, pp. 443-448.

4. N. (ollakota and I:(G.(iraNy 'Fault T1olerant (Clocks in Array-s of' Processors, Proceding s of
Southl:'a wonS4W. I ouisvifle, Kentucky., April 8-lI1, 1984, pp. 449-452.

5.R. Kumar and F.(j. (iray, "A IVault 'lolerant One D~imensional Structure", Thre 41h Interna-
tional Contir-ence on D)istributed Computing Systems, M*vay 14-18. 1984. San Francisco, CA.,
pp. -4U,83

6. NaLca (jollakota. 4utomatirallv Recon/igurable Higlyl Parallel C'omputer Systems. Masters
I hesis, Vireinia lPolytechnic Institute and State 1, *niversity , Bllacksburg, V'irinia, June 1Q4.
102 pavos.

7. R. Kuniar and 1-.G. (iray, 'Reconfigurablc Cellular Arra~ s', Proceedinei oif the 2 tl .tiditi
5v',nponu..n oin Circuits and SI.ms. Iorgarito%%n, W\est V'irginia, Juine H I- 12, 1 N'4

-R ajesh K umar, -I 1 atl 7l/pant Ce/I/uat .1 rchitectupe. Phl 1). I i.eta o.\ireuIT1r1
Polviec n stitute and State I.'niversitv, BlacksbugVr

9. N (ol.akota and 1KG. G;ray, ' Reco nligurable Cellular .\rchitectunc'. Pp , eedipzz oif /,

International Conferenre on Parallel Poein.August 21-24. P)14 lclLuir. \ cir
pp.3 7 9,Q

10. Kathleen Connell, / () .l /orithm andI a I e It A /e1wit/m for a ARe(on1 , a,h, e/u/1ar 1 rr a,
- Nias;tcr s 'Ihesis, V'irginia Pl oltechnilc Institioit arnd 8t ate I ni'1 rst\. HIAL K ireM., \'rinLia 1, 'unc

1985. 16S pages.

1I. IBr~an B~righton, Simulation of a ."Mialt l'ob,tant Pra/l. r.ztui.\lixtc'IIxIx. VillnrI
Polytechnic Institute and State I Yr. ersity, B~lacksburg. Virginia. in p r cxx"

12. R. Kumar at'. F.G. Gia\ 'A F ault 'lolerant One Dimnensionial (eIlrArftetr .i

preparation.

13. R. Kumar and E.G. (iray., A I ault I ok-rant Multi-Dimensional Cellular Architecture", in
preparation.

14. . Kuar a~d C (irv,-1 he IDeterminatiin of I 'ault-Iree Spaces in Cellular ,\rra s , in

preparation.

15. Ns. Ciollakota, .1 C. Mc 1Keceri . and I Gi (iram_ .it Patl 11 ec-i oufitratiln in Mn ,\ri-Tt\
Structure", in preparation

Publications and 'Technical Reports.1

16. I.C. McKeeman and F.G. Gray, TIO Algorithm for a Reconfigurahie Array Architecture", in
preparation.

17. M. Roumneliotis, "An Improved Synchronized Array Clock", in preparation.

18. A.D. Singh and F.G. Gray, "Periodically Self Restoring Redundant Systems for VL SI Based
I Highly Reliable Design" Proceedings of E I.ROM ICRO84, 11 pages.

Publications and Technical Reports 32

4.0 Participating Scientific Personnel
Principal Investigators:

1. IDr. F. Gail Gray -(June 1982 - December 1985)

2. Dr. John C. McKeeman - (June 1984 - December 1985)

(Graduate Research Assistants:

1. Adit 1). Singh - (June 1982 - December 19Q2) - Ph.D. awarded December 1982.

2. Rajesh Kumar - (January 19S3 - June 1984) - Ph.D). awarded July 1984.

3. Naua Gollakota - (January 1983 - June 1984) - NISFE awarded June 1984.

4. Kathleen Connell - (June 1984 - May 1985) - NMSFFT awarded July 1985.

5. lBr~an lBrighton - (September 1984 - May 1985) - MSI1S pending

6. Nlanos Roumnelotis - (Not supported)

Participating Scientific Personnel 3

44 ECURITY CLASSIFICATION OF TH!S PArE !MPen Daeta Fnfered)

REDINSTRUCTIONSREPORT DOCUMENTATION PAGE B3EFORE COMPLETING FORM
I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUJMBER

N/A __ N/A

4 TI F (rta ubtile)5, TYPE OF REPORT & PERIOD COVEREDUFault Trolerance in Parallel Architectures Final Report
June 1982 - Dec. 1985

6. PERFORMING ORG. REPORT NUMBER

7. AUTHiOR(@) 8. CONTRACT OR GRANT NUMBER(&)

Dr. F. Gail Gray DAAG 29-82-K0102

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Department of Electrical Engineering
Virginia Polytechnic Inst. and State University
Blacksburg, VA 24061

'1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

1.S. Army Reseairch Office May 30, 1986

Post Office Box 12211 3NUBROPAE

"o 33
i4. MONITORING &GNCYaME 15D~ESI ifrn ro otrlidOfc)I. SECURITY CLASS. (of this report)

Unclassified

I~a. DECLASSIFICATION/DOWNGRADING
SCH EDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public rudease; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the abstract entered Itn Block 20, If different from Report)

%A

IS. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are

those of the author(s) and shOUld not be construed as an official
Department of the Army position, policy, or decision, unless so

19. KEY WORDS (Continue on revrerse side if necessary, and Identify by block number)

Fault Tolerance Distributed Algorithms
Parallel Processing Computer Architecture
Reconfiguration Distributed Control

20. ABST-RACT ("Carflnuo an rowwres, ejde i ne.ov.wy md Idewt~ly by block number)

I hIs ptj;llCr LIC/crlbes a proposcd atltoinatically reconfihgur:Ihle cell tilar arIA itc t lur ' I hw 11111' It-
fcat tire of I h Is archiitecture is thiat flic reconheturation cotrol iS dri hl tt-d x% 11it I hit -n hm1 ic
v, DIo nricd for u-JtolA bi oad/ast inlu of, Sv% tch 'I~r~~ 1 his rCdluCt-s the ifltlCTC0111-.. lid) (0111111 \1it,
'Mit thlL It-l L't If f(Il, paths". lilt -stin canl recoigurilc at th fte1k'C111 41\.T

F ORMDD , ,, 14n3 EIDIT1ON OF I OV 635 OBSOLETE A!I AS5 I F I !

SECURITY CLASSIFIC ATfoof CF THIS PAC.F 'WWhn Ilefe Fnre-ed

=Now=*--

4r

thI

