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ABSTRACT

A summary of recent research results is given. Three problems

are discussed: detection of nonGaussian signals in Gaussian noise,

signal detection in nonGaussian spherically-invariant noise, and

information capacity of communication channels when the constraint

on the transmitted signal is mismatched to the Gaussian channel noise.
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ON NONGAUSSIAN SIGNAL DETECTION AND CHANNEL CAPACITY

Charles R. Baker'
Department of Statistics

University of North Carolina
Chapel Hill, NC 27514

INTRODUCTION

This paper contains a discussion of some recent research in signal detection and

communications. No proofs are included; the emphasis is on motivation and results.

Some precise definitions and results are contained in the Appendix. The paper is

couched in terms of problems in underwater acoustics; as will be seen, the models and

results are of general applicability.

SIGNAL DETECTION

Two problems will be discussed. The first, for which the most complete results

were obtained, was that of detecting nonGaussian signals in Gaussian noise. The

second, motivated by examination of noise properties for actual sonar data, was that of

detection in a class of nonGaussian processes, which can be regarded as mixtures of

Gaussian processes.

Both of these problems are important in sonar applications. The detection of

nonGaussian signals in Gaussian noise can be regarded as the canonical problem for

active detection in reverberation-limited noise, especially volume reverberation. The

noise in such situations can frequently be regarded as arising from reflections by many

small scatterers, which can be reasonably assumed to have statistically-independent

behavior. The central limit theorem then gives a Gaussian process. The signal process,

however, will frequently be dominated by reflections from a few large scatterers, such as

.Research supported by ONR Contracts N00014-75-C-0491, N00O14-81-K-0373, mad N00014-84-C-0212.
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the sonar dome. These scatterers each give rise to a nonGaussian random process, which

are summed at the receiver to give a nonGaussian process.

Other applications may also involve detection of nonGaussian signals in Gaussian

noise. For example. an emerging passive sonar detection problem is that of detecting

very quiet submarines, emanating primarily broadband signals. These signals may prove

to be nonGaussian and one will frequently be faced with detecting them in a Gaussian

noise background.

The importance of the problem of detecting signals in nonGaussian noise of a

"spherically-invariant" (Gaussian mixture) type has become apparent by examining the

results of data analysis on acoustic recordings obtained from both under-ice and

shallow-water environments. These noise recordings have exhibited data whose univari-

ate distribution properties appear similar to those of Gaussian random variables (sym-

metric, unimodal, smooth). However, when compared with zero-mean Gaussian random

variables having the same variance, the data often exhibits heavy tails and/or high kur-

tosis. These features, at least in the univariate case, are very appropriate to a Gaussian

mixture model for the noise. If the multivariate data has a Gaussian mixture distribu-

tion, then the modeling problem (in the context of modeling nonGaussian processes) is

greatly simplified, as will be discussed below.

S

DETECTION OF NONGAUSSIAN SIGNALS IN GAUSSIAN NOISE

Our objective here was to give a complete solution of the detection problem. The

0 actual data processes appear as functions of continuous time. The desirable results then

include the following:

(1) Characterization of signal-plus-noise processes for which the detection problem is
4 well defined. By this, we mean a mathematical model which does not promise per-

fect (singular) detection. Such singular models are not considered to be realistic.
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(2) For well-defined problems. determination of the likelihood ratio for the continuous-
time problem.

(3) Approximation of the continuous-time likelihood ratio by a discrete-time form,
preferably in recursive or near-recursive form.

(4) Specification of procedures for estimating parameters appearing in the approxima-
tion to the likelihood ratio.

(5) Performance evaluation of the approximation to the likelihood ratio.

Of course, there are other desirable results, such as development of robust approxi-

mations to the likelihood ratio, and approximations which do not require a full descrip-

tion of data parameters. However, the results listed in (1)-(5) above are already very

ambitious, and obtaining them would be a significant step in any complete solution to

the problem.

Considerable work has been done on detection of Gaussian signals in Gaussian

noise; see for example some of the references given in [5). However, previous work on

-. detection of nonGaussian signals in Gaussian noise has been subject to one or more of

the following limitations:

(a) The noise is assumed to be the Wiener process; see, e.g., [141. The paths of the
Wiener process are far too irregular to reasonably model sonar noise. Other Wiener
process properties, such as independent increments, Markov, etc., are not typically
satisfied. Moreover, determination of likelihood ratio parameters is left as an open
problem.

(b) Detection is based on second-moment criteria, such as the deflection criterion 11],
~[21.

(c) Signal and noise are taken to be independent [31, and expressions for the likelihood

S"ratios are not obtained.

We have obtained a reasonably complete solution to problems (1)-(3) above. The

solutions to (4) and (5) are presently being computationally investigated. Here we give a

rough summary of the results. More precise statements require a substantial mathemati-

" cal machinery; reference is made to 181 for the complete and final statements; partial
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results are contained in the Appendix.

The data is assumed to be observed over a finite interval, which we take as [0,11.

The noise is Gaussian, mean-square continuous, zero-mean, and is assumed to vanish

(almost surely) at t=O.

To solve problem (1) mentioned above, one would wish to consider a general

nonGaussian process (Y,), and determine necessary and sufficient conditions for the

detection problem to be well-defined (non-singular). Such conditions are given in

Theorem I and Theorem 2 of the Appendix. Roughly, they require that the process (Y,)

have a signal-plus-noise representation Y = St - - N, where the sample paths of (S,)

belong almost surely to the reproducing kernel Hilbert space of (N ). This condition

means that the covariance function (resp., sample paths) of the signal process must be

much smoother than the covariance (resp., sample paths) of the noise. The process (S,)

must also satisfy certain measurability conditions with respect to (Y ) and (N,). See the

Appendix for the precise statements. We remark that the necessary conditions and the

sufficient conditions are not identical, although they are very close.

Problem (2) mentioned above is that of determining the continuous-time likelihood

ratio. A general solution has been obtained, and is given in 18J. Actually, two solutions

are given there. One views the observations as being simply real-valued functions; the

other treats them as being elements of L2iO,1J. The latter is summarized in the Appen-

dix. Here we shall give the finite-sample discrete-time approximation to the likelihood

ratio on L2L0,11.

First, the noise is a Gaussian vector N having covariance matrix R. We can

represent IL by R2 EU where E is a lower-triangular matrix, and r is the sampling

interval. We can thus consider the noise process to be a sampled version of

NP4 f F(t ,s )dW,, where (W,) is the standard Wiener process. According to the results
0
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of i81, the signal-plus-noise process will be of the form S, + N, = fF(t, )dZ,, where (Z,)
0

is here taken to be a diffusion with memoryless drift function a: Z f,. (Z.)d8 + W,.
0

* The resulting discrete-time approximation to the log-likelihood ratio is then

As.+L (X + ) n" (KY%) 12a, tIr12(L&'X ), (E;4 K "+),+1

,- 1 ro[rl/2(L_- ), 1, n > 1;

=0

where ,_' denotes the observation vector obtained from the first n samples;

7 jr,' is the noise covariance matrix for the first n sample times;

0. " L is the summation matrix: (LX')i -.i

This formulation of the log-likelihood ratio is partially recursive. Note that

(LF'X)1. = (L.,iX'-')._1 + (.-' ). ,
and that the operation (E.7',) is just a cross-correlation of the data vector with the

n row of

There are three basic considerations in evaluating the usefulness of the above log-

likelihood ratio. One is the validity of the approximation assumption; a second is the

development of procedures for estimating the parameters of the likelihood ratio; finally,

one is interested in whether or not the discrete-time approximation is in fact a likelihood

ratio when our assumptions are satisfied. We discuss these three points below.

(i) Any Gaussian vector can be obtained by passing white Gaussian noise through an
*appropriate lower-triangular matrix. Thus, the noise model is reasonable for the

discrete-time problem, and one can justify the use of multiplicity M=I from this
and from other mathematical considerations. The fact that (Z,) is a process of
diffusion type then follows from well-known results [141; to assume further that it is
of diffusion type with respect to (W.), one reasons that the difficult detection prob-

o. lems are of most interest; such problems are those in which the N and S+N
processes have very similar properties. Since (N,) is modeled as a time-varying
linear operation on the diffusion (W,), it seems reasonable to model (Y) as that

.o



%,'.

-6-

same time-varying linear operation on a process that is of diffusion type with
respect to (We). More detailed physical interpretations of the assumptions can be
given for applications in sonar. However, a basic reason for making the assump-
tions is that they permit one to implement an approximation to the likelihood ratio
without detailed knowledge of the data probability distributions. The validity of
these assumptions and the effectiveness of the finite-sample discrete-time approxi-
mations can be judged in each application by the performance of the detection
algorithm.

ii) The implementation of the sequence of test statistics (Ak) given above, for k < n
requires knowledge of only two parameters: the lower-triangular matrix F. such
that _ is the n Xn noise covariance matrix, and the drift function a*. Typi-
cally (in sonar) these quantities will need to be estimated from experimental data.
We give a procedure for doing this, supposing that one has an ensemble of indepen-
dent sample vectors from the noise process, of sufficient size to give a good estimate
of the covariance matrix, and that one or more sample vectors from the signal-plus-
noise process is available.

First, the noise vector is written as L =f _4,W, where A W is the vector with jA
component (W ~jr-Wr(j-1)ri) for j > 2, and first component W(r). If ir= t, and
the 1j element of E is F(i,j) for all ii, then Ni - N(ir) = N(ti) for large i and
small r. The representation for hY gives noise covariance matrix -rE•
Consistent with this representation and the results of [8], the S+N vector is writ-
ten as X - , where 1, is the vector with j"t component (Z[fj]-Z[(j-1)]) for
y > 2, and first component Z(r). Thus, given an ensemble of sample noise vectors,
one treats the resulting estimate of the noise covariance matrix as &, and obtains

• the factorization B = rE.E. Then, given a 1: sample vector, Z is estimated by
." = E-. and (A.Z ) = Z(r). Given Z, our assumptions yield

Z, =Z(i r) =f a.(Z.)da + W(ir)

Various methods can then be used to estimate the unknown function a. A general
maximum-likelihood estimate is given in [11, which is now being computationally
investigated. The generality of this procedure leads to computational difficulties, so
that it may be necessary to assume a specific form for a, such as a low-order poly-
nomial with unknown coefficients.

(iii) Under our assumptions, A' can be considered a "good" approximation to a likeli-
hood ratio test statistic if r is "small" and n is "large ". These are not exact state-
ments; at present, we have no bounds on performance. Any such bounds would
involve &, r, a, and n. However, if I is Gaussian, a precise statement can be

* made. Suppose that S = EA-W and X = EA as above, and that (a#) and (6k)
are two sequences of real numbers such that

== i Zi + b1J + Wk 2 < k < n,

In this case, it can be shown that exp (A*) is a monotone function of dPx/dP ,
thus a likelihood ratio test statistic. We conjecture that this also holds when " isr5 '
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not Gaussian:

. N = Ef _,j =E A-Z, and
k-I

Z =' E (Zj))+Wk 1<k <n,

with a non-affine.

The above results give a solution to two problems of much interest in the theory of

stochastic processes: determining conditions for a discrimination problem to be non-

singular, and determining the likelihood ratio, when one of the two processes is Gaus-

sian. The scope of these problems can be appreciated by reviewing some of the refer-

ences cited in ,51. The above approximation to the log-likelihood ratio gives some hope

of obtaining useful new detection algorithms for some important sonar detection prob-

4lems. The eventual utility, however, will be apparent only after a great deal of further

work is done, especially computational work involving experimental data.

DETECTION IN NONGAUSSIAN NOISE

Examination of data properties by several investigators has indicated that sonar

data may be spherically-invariant (a Gaussian mixture) in several important applica-

tions. One such application is in under-ice operations. Analysis of such data has shown

that the univariate data typically has high kurtosis and heavy tails as compared to

Gaussian data of the same variance [101.

Another environmental situation which apparently gives rise to univariate

spherically-invariant noise is that of near-shore operations in warm climes (e.g., the Gulf

of Mexico). The nonGaussian noise in this case is attributed to snapping shrimp and

results in very high kurtosis as compared to Gaussian data [151.

These observed data properties motivated us to consider the problem of detection

in spherically-invariant noise. Such a noise process (NI) can be represented as

Nt - AGt, where (G,) is a zero-mean Gaussian process with covariance function R, and

s'%
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S.

A is a random variable independent of (G). Such processes are also said to be

Gaussian-mixture processes.

' Of course, the property of being univariate spherically-invariant does not imply

that a process will be spherically-invariant in the multivariate case, as consideration of

the case A =1 will show. However, if the above representation of the noise is reasonable.

then the problem of characterizing the probability distributions for nonGaussian noise is

reduced to that of determining the covariance function of (G,) and the probability distri-

bution function of the random variable A. Without loss of generality, one can assume

that the second moment EA 2 = 1, so that the covariance of (Ge) is the same as that of

(N). As this function can be estimated, the major problem is that of determining the

distribution function of .4. We are presently carrying out computational work on this

problem, using maximum-likelihood estimation.

The significance of this model, if accurate, is that it would permit one to describe

all the joint distributions of the data through knowledge of the covariance (as in the

Gaussian case) and of the distribution function for a single random variable. It can thus

be viewed as a first step away from the Gaussian noise hypothesis which does not require

that one take independent samples.

We are interested here in obtaining the same results (1)-(5) discussed above for the

Gaussian noise case. So far, partial results have been obtained for (1) and (2). We have

found '91 that the sufficient conditions for a well-defined (non-singular) detection prob-

lem are the same as those obtained for detection in Gaussian noise (which are very close

to being necessary). An expression for the continuous-time likelihood ratio has also been

found. The remaining problems in obtaining (3)-(5) above have yet to be seriously inves-

tigated.

MUTUAL INFORMATION AND CHANNEL CAPACITY

A



Work to be discussed here was again for two types of noise processes: one where thie

channel noise is Gaussian, the other where it is spherically-invariant.

The capacity of a communication channel is here taken to be its information capa-

citv:

C =suplI(m.Y)

where m is the message process, A (m) s is the transmitted signal, N is the channel

noise, Y= A (m) N is the received process, and I(u ,v) is the mutual information

between stochastic processes u and v (as defined in 741 ). The constraint class Q con-

tains all admissible message processes m and coding functions A. It is usually chosen

from considerations involving average power, so typically involves a relation between the

signal process and the noise covariance. In the case of stationary signal and noise

processes, with spectral density functions 4), and (DN, an appropriate constraint is

f (X) d X < P.

This can be related to the reproducing kernel Hilbert space of the noise process, and a

related general constraint is EIA(m )I j < P, where 11u iN is the reproducing kernel Hil-

bert space ( for N ) norm of the function u (t).

-- If one considers this in physical terms for the frequency domain, such a constraint

places a limitation on the expected value of the integrated ratio of signal energy to noise

energy. In non-white noise, this is obviously more realistic than a limitation on total sig-

nal energy alone.

MISMATCHED CHANNELS

With the type of constraint discussed above, a complete solution to the channel

capacity problem for Gaussian channels without feedback is given in 141. However, this

approach will not be valid when the covariance of the channel noise (N) is unknown.

. .
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This can occur from natural causes, as with insufficient knowledge of the environment.

It can also occur because of jamming in the channel. In the latter case, it is well-known

that if the channel noise has a given covariance, then channel capacity is minimized

when the noise is Gaussian. Thus, a jammer seeking to minimize capacity of a channel

*- with ambient Gaussian noise would choose to add Gaussian noise, and the channel capa-

city would then be determined by the relation between the actual channel noise (includ-

ing the jammer's contribution) and the noise covariance assumed by the user of the

channel. Of course, less obvious questions also arise. Channel capacity is only the start-

ing point in analyzing such situations.

These considerations have motivated us to introduce the notion of "mismatched"

channels, wherein the constraint on transmitted signals is taken with respect to a covari-

ance which is different from that of the channel noise.

An analysis of this problem is contained in [61 for a large class of Gaussian noise

processes. Additional results are forthcoming [71. Striking differences appear between

the results for the mismatched channel and those for the matched channel (when the

channel noise is also the constraint noise). For example, in the matched continuous-time

channel with the above generalized power constraint (E 11A (m )11' < P), the capacity of

the channel is equal to P/2 and cannot be actually attained. In the mismatched chan-

nel, the capacity can be either greater or smaller than the capacity for the matched

channel and it can be attained in some situations. The value of the capacity depends on

the relation between the two covariances. We give one result from [6].

., Let the constraint covariance operator in L2[O,T] be denoted by Rw (consider W as

the noise assumed by the channel user) and let RN be the covariance operator for the

channel noise process N. Suppose that RN = R*/ 2 (I +S)RP where I is the identity in

L2 10,1] and S is a compact operator. This relation will be satisfied, for example, when

---*j 4S .
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W and N are two Gaussian processes for which the discrimination (detection) problem is

well-defined. Let

Cw(P) -supl[A(m),Y
Q

when Q contains all coding operations A and stochastic processes m (including

nonGaussian processes) on O,TJ such that ElIA(m) < P. Finally, let [.\,n > 1}

denote the strictly negative eigenvalues of the operator S defined above. Of course, this

set may be empty, as when N can be written as N = W+V, with V independent of W.

Let {e.,n > 1} be associated o.n. - eigenvectors. Then [6]:

(a) If {X,,n > i} is not empty and E. JX. 1 _< P, then C.(P)=--__ ",1log[(1+X,) - 1] +

(b) If {X,, n > 1} is not empty, and ", JX. I > P, then there exists a largest integer K

such that E,,K,\, +p > KXK, and

K ~7 +P+K].. :..CW(P ) j - log
2 %_I K(I+X,)

(c) If {N., N > 1) is empty, Cw(P) - P12.

(d) In (a) and (b), the capacity is strictly greater than when RN Rw; in (c) these

capacities are equal.

• ."b (e) In (a), the capacity can be attained if and only if E.* IX, - P. It is then attained

by a Gaussian signal with covariance operator R --- '= - Oi ni v., where

. = Ue., U unitary, and

= -X--.(I+),) ' for n > 1. In (b), the capacity can be attained by a Gaussian

' signal process with covariance operator as above, with v, . Ue. and
e".

/,%
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3, = (IX-XY)- + P4-KI/K for n < K;

3. = 0 for n >K. In (c), the capacity cannot be attained.

A more general model is considered in [7]. That model is for the case where S is

not necessarily compact, but has a pure point spectrum. The capacity for the

mismatched Gaussian channel can then be either smaller or larger than that of the

matched channel, depending on the spectral properties of the operator S.

CAPACITY OF SPHERICALLY-INVARIANT CHANNELS

The apparent usefulness of a spherically-invariant process to model noise in under-

ice and shallow-water applications has motivated us to examine the channel capacity

r problem for communicating in such noise. This work has been aided by the work on sig-

nal detection described above; in fact, the likelihood ratio plays a key role in channel

capacity problems.

We have examined the problem for the matched channel, where the constraint on

transmitted signal is EhA (m)II < P, with N the channel noise. As shown in [41 and

'131, the capacity for the matched Gaussian channel with this constraint is P/2, with or

without feedback. For the spherically-invariant channel with noise model Nt = AG,, A

a random variable independent of the Gaussian process (G,),EA 2 
- 1, we have found the

capacity to be equal to -f- E(A- 2). E(A - 2) will typically be quite large for some underwa-
2

ter acoustics applications. Thus, this result holds forth the possibility that one may be

able to communicate at much higher rates than for the Gaussian channel with the same

covariance.

. o
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APPENDIX

Absolute Continuity and Likelihood Ratio

'p%

Definitions and Notation

All stochastic processes are defined on the probability space (0,0,P), with parame-

ter set '0.1. RK is the Borel a-field for R K , K <3o, C0 [0,11 m Co is the set of all real-

valued continuous functions on 0,11 that vanish at zero. C is the Borel a-field on Co

defined by the sup norm. CK is the Borel a-field of CoK under the product topology;

CK can be identified with the set of all K-component real-valued vector functions hav-

ing each component in C0.

Suppose that (V,) is a vector stochastic process such that V(w,.)E CoK a.e. dP(w).

V will denote the corresponding path map from fl into CK, and Pv the induced meas-

ure on C K :Pv = P 0 V- 1 .

(N,) will denote the noise; it is m.s.-continuous, Gaussian, zero-mean, and vanishes

at t=0 w.p. 1. (N,) is thus purely deterministic, so has a proper canonical Cramer-Hida

representation [121:

..-. ,M t

N, = E f F,(t,a)dB,() (1)
i-I 0

91 where M < oo is the multiplicity of (N), each F is a deterministic Volterra kernel, and

"" the B's are mutually orthogonal stochastic processes with orthogonal increments. (N,)

is Gaussian; the Bi's are thus mutually independent Gaussian processes with indepen-

dent increments and continuous variances. Each Bi is thereby path-continuous. Since

the representation (1) is proper canonical, and (N) and the family of Bj 's are Gaussian,

*' '" the a-field generated by (N, , < s } is the same as the u-field generated by

{B,(v),v < s,i < M}, for all a in [0,1]. d, will denote the Borel measure on [0,1]
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defined by the continuous non-decreasing variances EB 2, 0 < 8 < 1.

We assume that the multiplicity H of (Nt) is finite. This restriction is due to the

absence of some needed results in infinite-dimensional stochastic calculus. However,

based on a partial investigation, we believe that the results on absolute continuity and

likelihood ratio presented here remain valid for M=oo.

4' Suppose that (V,) is any stochastic process; a(V) is the P-completed filtration gen-

erated by (V,), and q(V) v !z(N) is the smallest filtration containing both !(V) and O(N).

We recall that a process (X) is a(V)-predictable if G :(t ,w) - X (w) is measurable with

respect to the predictable a-field P(V) in R' x n; P(V) is generated by all path-

continuous stochastic processes that are adapted to q(V).

RN will denote the covariance function of (N,), HN its RKHS (reproducing Kernel

Hilbert space) with inner product <','>N, and RN the covariance operator of (N ) in

L_,01 . Range (R4/ 2 ) is a separable Hilbert space, isomorphic to HN, under the inner

product, (u ,g)N = E. <u ,e, ><g,e, >/X, where <','> is the L,[0,1] inner product,

{.,\,n > 1} are the non-zero eigenvalues of RN, and {c,,n > 1} are associated o.n.

eigenvectors.

R'0,1 is the space of real-valued functions on [0,11; R1°'I is the Borel a-field generated

by the cylinder sets {f in Ri0.11 : (f (t1 ),...,! (t,)) E A' ), n <o, A' a Borel set in R*.

For a scalar stochastic process (V), vv is the probability induced on R 10.11 by (V).

If (V,) has paths belonging a.s. to L2 0,11, then puv will denote the probability induced by
the path map on the Bore! u-field of Lf0,ij. If v, and v are two probabilities on the

same a-field, then v, << v2 means that v, is absolutely continuous with respect to t;.

ABSOLUTE CONTINUITY

Theorem 1 [81: Let (VI) be a stochastic process independent of (Nt). Suppose that (Y) is

% :.:, : ,:,:...,:.:,::.,.,.... ...:.......,........-. ... ...., .... , .., . . . . .. . . . . . . .. -
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a process such that vy << VN.

If (1',) is adapted to !(N) v C.(V), then 1, St N a.e. dP for each fixed t in

0,1i, where (N) has the same finite dimensional distributions as (Nt), and is adapted to

M

(Y). NV= E f F,(t, )dBj(a) a.e. dP, each fixed t in 0,1, where the B,'s are mutu-
=L 0

ally independent zero-mean Gaussian processes, (Bt) has the same law as (B1), and

- (N Moreover,

S, , f Fj(t,1s,)O(s )d , (a), (2)
i~- 0

where (Oj(t)),i < M, is a stochastic process that is a(Y)-predictable and has paths a.s.

in L.3 .

If both (Nt) and (Y,) have continuous paths, then Theorem 1 can be strengthened.

In that case, let P and P; be the induced measures on C. Then

.Vy << UN <=> Py << PJ <-=-> AtY << IAN

-heorem 2 [81: Let (V,) be a stochastic process independent of (Nt). Suppose that (.,) is

a stochastic process adapted to eN) v {V) and with paths a.s. in HN.

(1) If X = S, + N, a.e. dP, for each fixed t in 10,11, then x << VN.

(2) If X St + N, a.e. dtdP, then ux << uv.

,,,.. ...

LikelihoodRatio

Suppose that (Y,) satisfies the measurability assumption in Theorem 1, and that

t. Yy << vN. Define a vector process (Ze ) with paths a.s. in Co" by

Z,(t) f F,(t,,)O,(s)dei(s) + B,(t) (3)

'[-'L . 1, ,.u . 3.l . 3 . 6_, * .. . . "-"-4 -'- -* ." .*. ., . -. ". ".**3 .-.- ,.* "_.. : -" * "... . ...-.-.
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where o, is defined in Theorem 1. In this case. Pz P3 14.

Theorem 3 S8: Suppose that (Ye) satisfies the sufficient conditions of Theorem 2. Then

dvy () f dP, dP ;(y dPB , (Y)
,..d VN CM

a.e. d V.V(z), where PBLVff, is the conditional measure of B given N z x. If (S,) is

defined as in Theorem 1. and Y - X - N, then

du - f dPz;,dPB ;(y )p(Z dy

a.e. d.s.j(x), where 15 is a transition probability on LO[0.1] x CM, and P(x,.).LP a.e.

dp,.tz). Moreover, 6(z,-) is a point mass on C', giving probability one to {m(y)},

where

im,(y )M(t ) = ,e,, >.<f ',e' >/X, with

t

f,'j= f F,(s,u)d (u).
0

From Theorem 3, one can obtain dvy/'dvN and djy/'dpN from dPz/dPB. Since

(B,) is a vector process with components that are mutually independent continuous-path

Gaussian martingales w.r.t. t(N), dPz/dPB can be obtained from well-known results j141.
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