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INTERACTION OF DIFFUSION AND BOUNDARY CONDITIONS

by Jack K. Hale and Carlos Rocha

ABSTRACT

For systems of reaction diffusions, the existence and behavior of the

solutions on the compact attractor is discussed for large diffusion coefficients and

boundary conditions which can vary from Neumann to Dirichlet conditions

\I.r

Fr .CL

.t



- --1-

1. Introduction

Consider the system of parabolic partial differential equations (PDE)

(1.1) au/at - Du + f(u), xEfl

(1.2) Dcu/8n+0E(x)u-0, xEafl

where u E RN, C1 C Rn, n 4 3, is a bounded open set with cfl smooth, D =

diag(d1, ... dN), E = diag(e1, ... eN), each dj> 0 is constant, ej: M - R is continuous, e,

> 0, j - 1,2,...,n, and OE [0,i) is constant. The function f: RN - RN is supposed to

be a C1'1-function; that is, continuous and has a Lipschitz continuous first

derivative.

An interesting problem is the following one: for fixed functions (fE), discuss

how the flow defined by (1.1), (1.2) depends upon the parameters (D,S). In a vague

sense, the (D,B)-space should consist of two distinct types of points - those for which

the basic structure of the flow does not change significantly when one makes a small

change in (D,O) (the structurally stable points) and those points for which a small

change leads to a change in the basic structure of the flow (the bifurcation points).

The purpose of this paper is to make a modest contribution to understanding some

parts of this problem. More specifically, we shall give some conditions on (f,E)

which will ensure that there is a do > 0 such that, for any d ) dot d - min(djJ j

1,2,...,N) and any 0 [0,-), there is a compact attractor BDB of (1.1), (1.2) which is

upper semicontinuous in D,e uniformly for d ) do, 9 ; 0. Furthermore, BD, o is a

singleton for B a 00. 0 sufficiently large and converges to an attractor for the

Dirichlet problem for (1.1). These results complement the ones obtained previously in

111Ii 
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the paper of Hale and Rocha [7], in which they proved the existence and upper

semicontinuity of BD,O for d do and 0 in a compact set. The new contribution

is the uniformity in 0 ) 0, which permits one to go from Neumann boundary

conditions to Dirichlet boundary conditions for any d ) do.

For a scalar equation in one-dimension and d do, the types of bifurcations that

occur as one goes from Neumann to Dirichlet conditions is also discussed. There is

some overlap in this example with the work of Conley and Smoller [2 ).

The second aspect of the paper deals with the classification of points in

B(D,)-space as structurally stable or bifurcation points. In this case, we attempt in

Section 3 a classification for a scalar one-dimensional equation with f a cubic.

These results overlap the ones of Gardner [5] in a special case. The proof of the

classification relies heavily upon the transversality theory of Henry [11 ].

To describe the abstract results more precisely, we need some terminology. Let

X = L 2(flR N ) and define the operator A - ADO: D(A) -X by AO - D&O, where

D(A) - (uEW2 .2 (fl,RN): u satisfies the boundary conditions of (1.2)).

Then A is a sectorial operator and one can define the fractional powers Aa of A,

0 a, and the space X- D(Aa) with the graph norm. If n - 2, or 3, n/4 <a < 1,

then XaCWI(2 (flRN) r L'(nRN) with continuous inclusion. If n - 1, a- 1/2, then

X1/ 2 - W1 ,2 (flR) n C(l, R). We assume below that a is always chosen in this way.

One can then show that (1.1), (1.2) defines a local C1 1 semigroup TD,e(t) on X a

(see, for example, Henry [10,p.75]).

For any set B C X* the to-limit set u(B) is defined as w(B) - ro Cl UttT

STDS(t)B. A set B C Xa is said to be invariant if, for any 0 B, one can define

4' - - TD,0(t)B. ~
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TD,(t)o for tER and TD,(t)OEB for tER. A set A C Xa is saidtobea

compact attractor for (1.1), (1.2) if A is compact, invariant and there is a

neighborhood B of A such that w(B) A.

Let Vj(D,A) be the first cigenvalues of -dA with boundary conditions

diau/an + Oe u = 0, let Oj(D,e) be the corresponding unit eigenfunctions, j - 1,2,...,N,

and ij(D,8) be the N-dimensional column vector with O(D,0) in the jth place and

zero otherwise and let

AD,8 = diag(X,(D,e),..., XN(D,)),

OD,0 - (iP (D,O).... ,N(DO).

The following ordinary differential equation (ODE), corresponding to the

Galerkin approximation obtained by projection of (1.1), (1.2) onto the N-dimensional

subspace U spanned by the elements of *,, plays a fundamental role:

(1.3) dv/dt - -ADO V + f%,e f(DeV)

For any set B in RN, we let BU - (qD,v: v E BN). For any sets B, C in

XC, we let

6(BC) - sup dist(x,C)



A function g(X) from X C Rk to subsets of X~t is said to be ul.er

semicontinuous at ko if limk.. 6(g0X),g(Xy) - 0. For any set B C XO', e > 0, let

N(e,B) be the e-neighborhood of B. Let Xa' designate the fractional power space

obtained by taking Dirichiet conditions for (1.1) and N0(e,B) be thee -neighborhood

of aset B C X' Our prinicipal result is

Threml.. L&= d -min(dl, ...d N). Sunoose there is a compact set K C R N and

positive constants do> 0, So > 0 such that the ODE (1.3) has a compact attractor A D '
C K gjd w(N(6oA D.)) C A D 0 for each d ~ d0, B 10. Then. for any 0<r <60D and

any: e >0,theis.a d 0 ~d 0 >0 andacomoactset K' CL4 such that (1.1), (1.2)hu

compact attractor RDA DKD ANEA,)wN6,BC B,B fz d,0~.Ii

atrco B D,9 isuoe icontinuous in D, 0. Als thereisia 00 > 0 suchdithat

8 B . sL ingZleton 0'D9 fu 1j.8000 D9-O' Al U O~,D'.i sofltionAf

of the Dirichiet oroblem for (1. 1) &ad.~ u(N(6,D..)) -(O.)

This theorem is proved in Section 2.

It is worthwhile to discuss the ideas that are needed to verify the hypothesis in

Theorem 1.1I. Suppose firstly that N - 1, 11 - (0, 1), and f(u) is a polynomial of degree

2p+ I with uf (u) - - as Julf - that is,

f(u) -b ,u 2 p+ + buP+... + b 2 p+

with bo < 0. For N - 1, the boundary condition (1.2) is equivalent to

dux - 60 0u -0 at x -0

du, - Ulu -0 at X M

with 10 > 0, 01 > 0. The first cigenvalue X~ of -dd2/dx 2 with these boundary conditions

satisf ies 0 4 X cdit2 and the corresponding cigenf unctionO -(dBG) can be taken to be
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positive. Thus,

I ~ 2p+1I

f(V) (x)f(O(x)v)dx - E b2 p+lj ( J+(x)dx)uJ
0 j=0 0

so that the signs of the coefficients in this polynomial are the same as the ones for f.

Also, there are constants k > 0, 6 > 0 such that fo5O +' ( k, j = 0,1,..., 2p+l and

f1 02 p+ 2 ) 6 for d > 0, 9 )0 . So (1.3) becomes
0

(1.4) dv/dt = -OXv + f(v).

Since Ox, A 0 and f(v)/v- (02P+2)b 0 ( 6b0 < 0, it follows that (1.4) has a

compact attractor for every d > 0, 0 0 0 and these attractors lie in a

compact set. The hypotheses of Theorem 1.1 are satisfied. It is clear that similar

conclusions could be drawn for a more general f if the behavior of f is appropriate.

If N > 1, the hypotheses are not as easy to verify. For 11= (0,1), equations (1.3) in

component form are given as

dvj/dt - -eXjvj + J Oj(x)fj(Ol(x)vl ..... N(X)VN) dx, j - 1,2,...,N
0

Even though all Oj are positive on (0,1), one must assess their relative contributions to

the behavior of the flow near v - ,,. If all diffusion coefficients are equal, then x=

= XN, 01 -... - 0 and the situation is much simpler. Although this topic clearly needs

to be investigated in more detail, it will not be pursued in this paper.

.

.4 r
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2. Proof of Theorem 1.1.

For notational convenience, we take N = 1, pointing out in the appropriate

places the changes that are needed for N > I. Also, let us first assume n = 1, nl = (0,1),

so that (1.1), (1.2) become

(2.1) ut =dUxx + f (u) 0 <x <

(2.2) dux - 0o uf= 0 at x=0

du,+ esui 0 at x= 1

where So, 13 are given positive constants and 0 E [0,-). If H2 f W2 '2(nR),

H ' W1 ,2(f,R),

D(Ade ) f(u EH 2 : u satisfies (2.2))

*O = -du.,

then AdO can be extended as a self adjoint operator in H1

* (AdeU)V = d J ux vx + (O[ou(O)v(O) + Bu(l)v(l)]
00

defined for every u,vE H 1. Now if we consider the fractional power space X1 /2

defined as

X 2 = D(A + I)1/2

q D(
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with the graph norm (see Henry [10, pg. 29]), we have:

i I(Ad,0 + I)I/Iu 1 2 2 = u(Ade + I)u = (AdU)U +  U2

fJi U + J u2 + 8oU2() + .u2(l )]
0 0

Using the Sobolev inequality u 2(x) 4 k I I 1 1, we have

k1 1 'u IHi I l(Ad.e + 1)1/ 2uI IL2 (MI jul IH1

where k1 =min(d,l),M=[d+(013+ 1 )k] 1/2 . Since X=L 2 and

I I(Ad,e + I)1/ 2uI Ix = I lul Ix1/2

we conclude that X 1/ 2 = H 1 independently of B (Henry [10, p. 167, exercise 10]).

Notice though that the constant M in the norm equivalence grows with 6, being

unbounded.

We will now consider the eigenvalues and eigenfunctions of Ade and establish

uniform estimates for the eigenvalues. If we let Ad,0 = X0 and X = d/ 2, then the

*eigenfunctions and eigenvalues are

ki 'd~ 
; Oi (x) - di cos i x + SOsin 7Y x

where 'i  are the positive solutions of

,P -:
l--" 

- l l
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cotg 7 - G(7/z)

G(s) k(s - s'), k - (8 0o 1 )1/ 2(8o+0 1 ) 1, z 0d'(0 0 a 1)1 /2 .

cotg y

G(y/2)

Figure 1

From this, we immediately obtain the estimates

N1 e (O,de2 ); Xj > dn' for j 0 2.

Also, from 7- (X/d) 1/ 2 and lim d'1/2cot(X/d)1 k-1/ 2 , we have
d-Ow

Jim X

4"N

IN- R. -9
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Next, we estimate 172 -v .If z - ft, then

since 2k 4 1.

Cotg Y

G(Y/2)

Tr b 23T/2 r

Figure 2

This implies -1. -/ > b where b - i 2/2(nl) > I when z - i (see Fig. 2). By

continuity, there are e > 0, 5 > 0 such that -12 - -1> 5 for zp-ng.If Jz-71> II then

-/--/ > c. Therefore, there is a constant c > 0 such that 0/7> 1 2 for all z. This

implies I.' X > dc for all d > 0, SE[O,-).
Now, as in Hale [8] or Hale and Rocha [7], we consider the decomposition

X1/2 - Y * Y1, where Y - span #,, and let T(t) denote the semigroup generated

by AdOlY 1 . Equations (2.1), (2.2) can be rewritten as
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V x ) 1v + f (v) + P(v,w)

(2.3)
w(t,)= T t)wo + JT(t-s) Q(V(s),w(s,. ))ds

10

where

P(v,w) 01[f (Vol + w) - f(Vol)]
0

(2.4) Q(v,w) f f(Vol + W) - 01 0 f(vo1 + w)

f(v) = J0 O1f (ov).

For d > Bo 0 0 ,0 the assumptions of the theorem imply that the ODE

(2.5) v-) 1v + F(V)

has a compact attractor Ad,9 and it attracts a So -neighborhood N(6oAd8) of Ade.'

This implies there is a positively invariant open interval V containing AdG and

Adoq attracts V. In the case N > 1, one uses the converse theorems of Liapunov as in

* [8] to obtain a positive invariant open set containing AdS and which is attracted by

Ad,0.

For each fixed S and d d0, it was shown in [7] that equation (2.3) has a local

integral manifold w -h(v,d,O) in a neighborhood of 'dS

From the uniform estimates of the eigenvalue k2,w hvfo E 1



B" -1 1 -

IT(t)wIx 1/2 4 k 't -1/2 e-dct jWjx

4IT (t)W l X /2 4 k e dot Iw l x

where kI is independent of d, 6. The proof in [7] then shows the existence of d

do such that BdO C N(E,A',9), w(N(6 1 ,AUG)) C Bd, for d ) dj, 0 ) 0 provided that

we know 01L- 4 kJOx/2 for any OEX I /2 , where k is independent of 0. Next, we

establish the continuous inclusion X1/ 2 CL* uniformly in 0 following Henry [10].

From the Nirenberg-Gagliardo inequality (Henry [10,pg. 37]),

IuHO, 4C IOulI, 11u1110

for 0> 1/4, and by exercise 11, page 28 of Henry [I0], we have X" CC O (a> 0)

continuously if

Il~ullo 0 C [( d,0 + Dull 211lull •

Thus, we need the following estimate, uniform in 8:

BullH 4 KII(Ad,e+)uIIl 2*

If g - (Ad O + l)u, then we can compute explicitly u as a function of g. In fact,

du,. - u - -g

implies
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u.(x) - u(O) -1= sh - + u1(O) ch -k- -I g(s) ch k ds
,/d Vtd 1fd d 0o V

From the boundary conditions,

we have

U(l) -1U(O)r ch J= + 000-;= sh4 -= J g(s) s &d
L Vd /'d Vd J d 0 d 0

u1 (I)-U(O) -L.1 h -k-+ 0O -1= ch. IL g(s) ch 4- ds.
'd IS d V'd '/dJI dl fo

Hence,

u(O)= ch -L 0(00 0,) + -1-s -L'd +0200, g(s) 1ch 1

+ 0 B9-4:sh 4]Lds

* ~ ~ ~ ~ V Vdw I ~S~ ,.
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and

ch 'L- + o sh - r =r
u(x) • g(s) [h 14 + 681 .L--shl-i-_ds

(d+92 001) 4L sh . + (00+01)ch od 0d /d

.44 0g(s)sh 2-, ds.

So finally we obtain Ijull L R(B) IlIgIt 2 where R(6) is a rational function of 0

such that for some constant K, R(8) 4 K for every 9 ) 0. Also IUduj L2 - IIu-g 11L 2

Hu I2 + 1Ig1 L 2 and we easily obtain:

hIUIIH2 4 K UtgUL2 - KII(Ad,9 + I)uII L2

This gives the embedding of X 1 / 2 into L" uniform in 9.

Our next objective is to show that BdB is a singleton if d 0 d,(r), 0 0(r)

with d1 (r), 00 (r) sufficiently large. To do this, one uses the following fact: for any

r > 0, there are d, > 0, e0 > 0 such that Ys(d,9) > r for all d > d1, 6 > 6. Since

Ado C K, a compact set for all d ) do, 0 ) 0 and Ade attracts N(6oAdB), there are

constants k1 , k2 such that

If(v) 4k, If'(v) 4k 2 for v Udld°eo 7+(N(6o.Ad g))

where /+ designates the positive orbit. If v1 , v2 be two solutions of (2.5), then z =

vI- v. satisfies

(2.6) dz/dt -Xlz + f'(v1 (t) + ;(t))z
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for some t(t) and Tf(vl+ )l 4 k2 . Thus, if )1 (d,O) > r > k2 for d > d(r), I >

0o(r), then z(t) -. 0 as t -. m exponentially. This implies that the solutions of (2.5)

approach an equilibrium vo(d,B) as t - -. By the same type of argument, the

solution vo(d,8) is hyperbolic. Thus, Ad e is a singleton (vo(d,e)) and it is

hyperbolic with exponent 0 r-k2 . This implies that Bde is a singleton (dge) which

is a hyperbolic equilibrium point and attracts N(60d,G).

There is a constant k3 such that If(u) 4 k3, for u E Ud)d (r),90 09 (r)7+N(61 'id,e)"

Since 0'de is an equilibrium point, it follows that O2 1d,e(x)/8x 2  is uniformly

bounded by k3 . Thus, the set ({d,e,d ) dl(r), ) 80(r)) belongs to a compact set Kr.

Let 0. , as j be a sequence so that Od@j'- Od,, as j - -. Then, Od. is an

equilibrium solution of (2.1) satisfying the Dirichlet boundary conditions. This

equilibrium is hyperbolic and therefore attracts a neighborhood of itself

exponentially. This neighborhood can be chosen in such a way as to attract every limit

point of (d,e,d0dl(r), ); 00(r)). But this will imply there is only one limit point Od,-

and completes the proof of the theorem for N - 1, n - I.

For N > 1, n - 1, the last part of the proof follows in essentially the same way

since one can construct a quadratic Liapunov function for (2.6).

The case n - 2,3 and arbitrary N follows along the same lines as before. One

must obtain good estimates on the first and second eigenvalues of -A and the

embedding X a C Lw must be uniform in 9. Because of this last fact, all solutions in

the attractor can be considered in L4. for 6 0 90(r), there will be a compact set Kr C

L which contains the set (0d,9, d 0 d,(r), 6 0 00(r)) and 0d,G - Od,m as e .-. The

function Odw will satisfy the Dirichlet problem and regularity theory implies it is in

X0(fl,RN). Therefore, we only discuss the second eigenvalue and the uniform

embedding of X a into L'. We also only give the proof for n - 3 since obvious



changes will give a proof for n - 2.

First, we establish uniform bounds in 0 for the eigenvalues of -da(+BC)

where the boundary conditions (BC) arc 8u/On + Oeu - 0 in &It As in Hale and

Rocha [7], we consider the minimum characterization of the first cigenvalue

(2.7) X -mintdtLIVUl2 + 8 Ja Cu 2: JnU 2m

from which we obtain that 0 4 XIB IC4' Ce.

if X1 = 0 l., then

Mil= I(d / 6 -IC4-1 Ja~e as d/9'-

ifk dv 1, then

vI Mv1 (S/d) - vl0 >O as ONd'-

where v10 is the first cigenvalue of -A with Dirichiet boundary conditions. Thus,

for any r>0, there are d - d0 (r)> 0,Bom 90(r)>O such that Xl(d,OD)> rfor d>do

0 > 80.

To estimate 1 2' let X2 - dg and obtain

where 01 is the eigenfunction corresponding to 11. Then there exist positive

constants do, g independent of 8 such that IL2 > IL for every d > d. To see this,

consider IL2 - J2(d,B) and assume the existence of sequences d,, 0. such that

1, L~
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dj do and g2(d, O) -0. Since 0 4Jfn I17112 492' we have f IV,1i2 -0. Moreover,

denoting by 02 the eigenf unction corresponding to X 2, we also have that J IV02 -0.
Then, from F J- 1, j- 1,2, we have that .j-. IL"1/ 21 contradicting 0102-o.

Jn fn~1

Hence for d>d o we have the estimate X2>dg uniformly in e.

We now prove the following.

Lemma 2.1. Suonose n -f 3, a > 3/4, X - L2f  and Xa .f Xa O,d) is the

fractional power snace associated with -DA with boundary conditions (1.2). For any

do > 0, there is a constant k(d o) such that for any d ) do, e E[0,,) and any u E

Xa(O,d)

lul LOD k(d o ) lu *(G,d )

Proof: As for the case n = 1, the essential step is to consider the following problem:

Au=g for xEf CR a

Bqu=O for xEOf8C

def
where Bu 1 8u/8n + Bu, 0 E [0,-) and to prove the following uniform

regularity estimate:

(2.8) PuIIH 2 4 M(lg[L + Pul 2)L

where M is a constant independent of 0, and then use the fact that, for 0 > 0,

Pul L2 4 c UPgIIL2, (Friedman [4, pg. 76]).

Since regularity is a local property, we let -pi - I be a partition of unity

-4.
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subordinate to a neighborhood covering of £1. Then

(2.9) [lul 2l2 - 11 £ piU2 2 4 k 1[ Ijp u[[ 2
H H H

If piu has support in the interior of 0. then (N. Schechter [13], Lemma 7)

l1i ul 2 4 C(IpiU112 2+ Il&piu112 2)
Hu L L

Since Apiu - piAu + derivatives of u of order ( 1, we have

11Api 11l22 ( 211p 1Aujj 2 2 + 2 c, Hull 2
L L H

and from the inequality (L. Nirenberg [12], appendix):

(2.10) ,1uI2 1  ,4 ,1uII2 + k I( ,)IIuI12 2

valid for every c 0, we finally obtain

1lpiulI12 2 C(11piU112 
2 + 211Pi&ul122 + 2c (,'IIU11 2,+2c,~ JuII22

I2 L 21

(2.11) IjpjuII2 4 K(jjg1122 + ljuI2 2 +,EllUIj 2 )

L

SZ: K ~ S
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Now, if the support of pi u contains a piece of 8(, we consider a transformation of

variables straightening up the boundary. We let 8a, denote the piece of an

contained in the support of v = piu and assume without loss of generality that arfl is

connected. Let 0 : R' -. Rn be a smooth local change of coordinates mapping the
support of v into a ball Bi centered at the origin, and an into Bi rn T, where

T denotes the hyperplane T - (y - (yj,...,y.) E Rn ly , - 0). Under this local change

of coordinates, the initial problem is transformed into the following:

Lu=g for y C Bi r (yn > O)

Bou=0 for y E Bi ¢ rT,

where Bqu = (1-0) au/8'yn - Ou, and L is a linear second order strongly elliptic

operator with variable coefficients. Let us denote by Lo  the homogeneous

operator with constant coefficients which equals the principal part of L at the

origin. Then, as in N Schechter [14], (proof of Lemma 12), we may assume that the
-a

change of coordinates 1 (after a rotation) has the form yj = xj, j = 1,...,n-1, Yn =

(x ..... xd) such that, at the point xo - 01(0), we have O(xo) - 0 and also 80/axn =

1, hence preserving Lebesgue measure. For this change of coordinates, we have Lo =

A. Then we consider the problem:

a (2.12) Aw - f for y E E.- R x R+

B~w - 0 for y E Rn- I x (0).

Here, for simplicity, we assume that n , 3 and introduce the notations y* =

)~forA
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(Yit ..... Yn-'Yn) and wn the volume of the unit ball in R n. Then, from Gilbarg and

Trudinger ([6], Chapter 6.7), we can solve (12) in terms of the Green's function:

w(x) f JEf. G(x,y)f(y)dy

where G(x,y) - r(x-y) - r(x-ys) + E(x-y*) with r(z) i tz2"n/n(2-n)wn the

fundamental solution of Laplace's equation (n > 2), and

E(z) = -2 e-0(1"O)'is-0 r(z + ens)ds, en (O,...,0, 1.
fo

- Since e E (0,1), we have, for z EE.n

Ir(z) 2 Jo - r(z + ens)l ds 2r(z),

Iw(x)I 4 I f(y)l dy,
k' E+

where H(x,y) - r(x-y) + 3r(x-y*). Then, as in Agnon, Douglis and Nirenberg [1], we
t'

'- can extend these kernels to R n as odd in x., and apply the Calderon-Zygmund

theorem, obtaining

IIwII2 4 N1 lufII2

One can do the same after differentiating w twice and passing the derivatives to

the kernei G, obtaining then

*i

'p.I
-S , " . " . " , " , , . " . -,'. ' ". .". - . ' " - .- # a - " #
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(2.13) IHw 2 4 N IIflL2

where the constants Ni do not depend upon e. Then, since Lov = Lv + (Lo-L)v,

we have

'IIL V11 2 2 ( 2 , ILvII' 2 + 2 JI(Lo-L)v,12

and again, by (10),

ILV112 ( IV112 + S6 NV1 2 + NI1V 2 .

Thus, from (2.13), considering a partition of unity sufficiently small so that

6 1 (2N 2 )-1, we obtain

IIL V11 2 4 2 IIL V11 2 +SI 6 NIL VI1 2 + N' IIvj 2 2'

IILO V1122 ( k2(IILVII2 
2 + I"'I122)

So, again by (2.13), we see that

llpiul 2
2  C Qlopull 2 . + IlLpull2 .).

H L

As before, we can now obtain

I1pi 11II 2  ( K(111f 2
2 +11u 2 + IE1Iu1122)

H L0% L, H,%
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and, from (2.9), we have

III22  ( K(1gl122 + IIUl12 2 + E11U1 2 
2).

Then, choosing e sufficiently small, we finally obtain the desired estimate (2.8).

9e,. This completes the proof of the lemma.

.14U

'i

S' m'qi' **,.~** J
Lbll 'S
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3. An example.

In this section, we discuss the situation in which u in (l.1), (1.2) is a scalar,

(I = (0,1) and f(u) is a cubic. It is convenient in the computations to replace the

parameters (d,0) by (d2,8/(l-0)d). The example to be considered is

ut W d2uxx + fs(U) x E(Ol)

(3.1). (l-e)du. - Bu at x - 0

(l-O)du x = -Su at x - I

where d E (0,-) and OE [0,1] and

(3.2) f,(u) = u(l-u)(u-a), a E [-1,11

Since (3.1) is a gradient system every solution approaches an equilibrium

solution. In the rescaled variables x = dy, these solutions satisfy

(3.3). u. + f,(u) - 0, y E (0,d"1)

and boundary conditions:

(1-O)uy M Ou at y - 0

(3.4)
(l-0)u7 = -Ou at y - d 1.

Since the set of equilibrium solutions is bounded, there is a compact attractor

Bd,9 for every d > 0, BE [0,1] (see, for example Henry [10] or Hale [9]).

If WU(O), WS(O) are the stable and unstable sets for an equilibrium solution

then a recent result of Henry [11] shows that W"(#) is transversal to WS(0) for all

equilibrium solutions 0,0. This implies that the flow defined by (3.1) is

-*%
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structurally stable if and only if the equilibrium solutions are hyperbolic; that is,

if and only if each equilibrium solution has the property that its linear variational

equation has nonzero eigenvalues. This implies that the curves in the (d,e)-plane

which correspond to bifurcation points of the flow must be either primary

bifurcations from an equilibrium or saddle-node bifurcations of equilibria. The

purpose of this section is to discuss these curves for (3 .3 )a for values of a E [-1,1]. For

a = -I we prove the following result for the case a -- 1; that is f(u) = u - u.

Theorem 3.1. L&I s, C (0,-) x [0,I] be the structurally stable regions for (3.1)_,

which consists of exactly 2j+l hverbolic eouilibrium points. Then the following

relations hold:

1) S, has only one connected comoonent.

2) So, SI are unbounded S. is bounded for j ; 2,

3) So ( 0 =o)=, SonSO =l)u
4) Sj r )O ,,0) ago, Sjir(8 . 1) 00, Vj ;0I,

and. for each integer k,

(CI Ujlk+l Sj) n (8 - 0) - (C' Uj)k Sj) r () - 1) - [O,dkl,

where dk - (kn) "1 .

5) 8S, a. smot, C1-curves nonincreasina in B. These curves are

nonintersecting in (0,") x (0,11.

Before proving this result, we make the following remarks.

Remark 3.2. Suppose d, is as in property 4) and do > di is fixed. From

properties 2) and 5), if one studies the attractor Bd,S as a function of B for a fixed

7
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d > do, then one must go from a situation of three equilibrium points at 8 - 0 to

one equilibrium point at B - 1. Furthermore, according to property 5), there is

only one point 0 at which a bifurcation occurs. This do provides a good estimate

of the do occurring in Theorem 1.1.

Remark 3.3. Properties 1) and 4) imply that one can find a homotopy from

any structurally stable system with Neumann conditions to a structurally stable

one with Dirichlet conditions. The case with a E (0,1/2) was considered by

Gardner [5] where he shows the existence of such a homotopy for the case with

three equilibria. We will see later that for a [1/2,1] no such homotopy exists.

Proof of Theorem 3.1. Let L* be the lines in the (u,u7 )-plane defined by Lk

= ((u,uY) : (i-e)uy M *=u). Let u = u(y,u o) be a solution of (3.3)_, where uo

corresponds to the maximum value of u. If this maximum occurs at y - T,

then u(r,uo) - uo and uy(T,u o) - 0. We define the "time map" T to be T(u o) =

1T. From this time map, the existence of solutions of (3.3)_, can be inferred.

Such a solution exists if and only if there exists a uo E (0,1) for which T(uo)

= (2d) "t . Introducing the polar coordinates u - r cos s, uy W -r sin s in (3.3)_,

one can show that s - s(y,u o) satisfies the differential equation:

s M sin 2s + (1 - r2cos2s)cos2s, y E [O,d-11,

s(O) - -0 0 =- arctg 9/(1-9) (oN/2).

From this equation we determine the following expression for the time map:

(3.5) T(u°) " [sin's + (1 - r'cos's)cos's]'lds

.S• -0
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where r - r(s,uo). Then, as in Hale and Rocha [7], we can prove that the time map

is a monotone increasing function of uo  (0,1). In fact, differentiating (3.5), we

have:

(3.6) T'(uo) - 2 [sin2 s + (I - r2 cos2s)cos s]-2 r cos4 s ds
10 0u

and 8r/&uo > 0 and 0 (0,n/2) imply that T'(uo) > 0 for uo  (0,1). Thus, as in

Chafee and Infante [3], the bifurcation of equilibrium solutions can only occur at

the origin. This will happen for the values of d - d(S) corresponding to the zero

eigenvalue for the linearized problem:

(3.7) ur, + u - 0, y (0,d-'),

and boundary conditions (3.4). Then, we will have u - A cos y + B sin y, and the

boundary conditions will be satisfied if and only if:

(3.8) d - arc cotg I "

This provides an expression for the curves as, referred to in property 5) of the

Theorem 3.1. Moreover, one also concludes that the dk in property 4) are given by

dk - (kf) 1. This completes the proof of the theorem.

Figure 3.a presents the sets S, and Figure 3.6 the bifurcation diagram for a

fixed value of e (0,1).

d

so

d 2 d
d 2 S 2 d 2 d

d3 dFig 3

0 Fig. 3 a 1 Fig. 3b
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In the following, we consider the time map and its derivatives defined at

uo - 0 by continuity. Then, one can easily check that T(0) - *, T'(0) - 0 and

T"(0) > 0 for 9 E (0,1]. For a 0 -1 the problem becomes much more difficult

because the expressions for the derivatives of the time map are more complicated.

Nevertheless, we can prove the following:

Theorem 3.4. For every D sufficiently lare, let Si C (0,D] x [0,1] denote the

structurally stable reaions for (3.1), consisting of exactly 2j+l hyperbolic

equilibrium ooints. Then there exists a c E (0,1) such that for all a E (-l,-l+c) the

followine hold:

1) Sj has only one connected comonent if j -2k, k ; 0.

2) S, has exactly two connected comn~onents if j - 2k+l, k 0 0.

Moreover, the relations 3) Iq 5) of theorem 3.1 still hold.

To prove this, we introduce in the time map the dependence on a, T T(uoa):

(3.9) T(uoa) - (sin 2s + [-a + (l+a)r cos - r2cos scoss)l'ds
0

From the remark before the statement of the theorem, we know that 8T/8uo(O,-l) -

0 and 82T/8uo(0,-I) > 0 for B E (0,1]. In the same way, one can verify that

82T/8auo(0,-l) < 0 for 9 E (0,1]. Then, for any 5 > 0, we can find an e > 0 such

that, for 0 [5,1], we have 8'T/8uo(0,-I) > I and 82T/&Ouo(0,-l) < -c. Hence, for

B E [5,11, the changes introduced in the time map as a > -1 are very simple, and

we can find a c E (0,1] such that for all a E (-l,-i+c) the time map has a unique

extremum at uo E (0,1), which is a minimum. This gives us the shape of the first

bifurcation curve in Figure 4.a, showing what is usually called a transcritical

bifurcation at the origin. A simple analysis of the phase plane shows that only
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the odd bifurcations at the origin will be transcritical, the even ones being

supercritical. This observation takes care of the curves s in the region [0,D] x

(6,1]. For the region (0,D) x (6,1], we start by observing that if 6 - 6(D) is small

enough this region always contains at least three hyperbolic equilibria, thus, the

first bifurcation of the origin is excluded. Then, one needs only to consider the

solutions arising from the second, third, etc., bifurcations. If we define

UPu0 ,a) J f (sin2s + [-a + (I+a)r cos s - r'cos2 sjcos2s}'lds,
~j 1,2,....

then U, represents the value of y at which the solution of (3.3). satisfying the

initial condition in (3.4) and having at the first maximum the value u., satisfies

the final condition in (3.4) after passing through j extrema. Note the relation

with the time map: Ul(uoa) - 2T(uoa). One can clearly use Ui to determine the

existence of solutions of (3.3). in the same way as the time map was used. As

before, we can verify now that, for all B E [0,11, 8'Uj/8uo(0,-I) > 0 for j 0 2,

8Uj/ 8u0 (0,a) - 0 for j - 2k and all a ) -1, and 82Uj/8a8u0(0,-l) < 0 for j - 2k+l, k

- 1,2..... Hence, the changes introduced in Uj, j ) 2, as a > -1 are very simple and

again we can find a c E (0,1] such that, for all a E (-1,-I+c), U,, j 0 2, has a

unique extremum which is a minimum. This minimum occurs at the origin if j -

. 2k, and at U, E (0,1) if j - 2k+l, for k - 1,2... This justifies the bifurcation

diagram presented in Figure 4.a, and concludes the proof of the theorem. In

Figure 4.b, we present the sets Si as obtained from the theorem. It turns out that,

if we consider the linearized problem u n - au = 0 and compare with (3.7), we

obtain an expression for the curves 8S corresponding to the bifurcations at the

origin if we multiply (3.8) by the factor (-a)1 / 2 for a E [-1,0).
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(-a)- I d _ -

- - - - - - - - - - - - - -

di. Sd

- dS

d2 d2

0 1 e

Figure 4.a Figure 4.b

If one considers the results obtained by Smoller and Wasserman [15] for the cases

of Dirichlet and Neumann boundary conditions, the results of this theorem are not

surprising. Moreover, numerical tests indicate that these results seem to hold for

all a in [-1,0); thus, the maximum value of c in theorem 3.4 being possibly 1.

For a - 0, the problem is degenerate and does not have any structurally

stable regions. It becomes then very interesting to make the same study for aE

(0,1). This problem is as difficult as the previous one for a E [-1.0) for the same

reasons. Therefore, we concentrate on qualitative information. Considering the

phase diagram corresponding to the equation (3.3)., one notices that there is a

qualitative change as a crosses the value 1/2. In fact, for a E (0,1/2), this diagram

contains a homoclinic orbit to the point (u,u,) - (0,0); at a - 1/2, it contains two

heteroclinic orbits to the points (0,0) and (1,0), and, for a E (1/2,1), the diagram
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has an orbit homoclinic to the point (1,0). This qualitatiave change reflects on the

structurally stable regions for (3.1).. Let us define a function 7 - 7(a) in the

following way. For a E (0,1/2], 7(a) is the value of 6 in Lk corresponding to the

angle of the tangents to the separatrices at the origin in the phase diagram. A

simple computation yields y(a) - (I + a'/ 2)"'. For a E (1/2,1) we define 7(a) as

the value of e in L. corresponding to the tangents to the homoclinic orbit passing

through u - 1. This function 7 is a continuous function satisfying 0 < 7(a)

(I "+v2 1 for a E (0,1). Then, if again we let S. denote the structurally stable

regions for (3.1), corresponding to 2j+l equilibria, we have:

Theorem 3.5: Er a E (0,1) the following holds:

1) IL a < 1/2, there exist gositive constants 5 ad D such that

(0,s) x [7(a),l] C S1,

[D,-) x [7(a),lJ C So*

2) If a ), 1/2, we have

(0,-) x [7(a),l] C SO.

To prove this, we consider the effect that the above observation about the

phase diagram for (3.1), has upon the time map as defined by (3.9). If, for a

(0,1/2), we denote by a the smallest positive root of A f,(s)ds - 0, then the point

(aO) of the phase diagram corresponds to the intersection of the homoclinic

orbit through the origin with the positive u-axis. Then, for e 1 7(a), the time map

T(.,a) : (a.1) - (0,,) is continuously differentiable and unbounded as uo -0 a or 1.

Moreover, one can easily check that 8T/8uo(.,a) : (al) - R is positive as uo

approaches I and negative as uo approaches a. This implies the existence of a

minimum value p. > 0 for T(.,a), and also a maximum value p, 0 po for its
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extrema. Then, if we take D > (2po)' 1 , for d 0 D there will be no nonconstant

solutions for (3 .1 )a and taking 6 - (2p,) "1 there will be exactly two nonconstant

hyperbolic solutions for d < 6. Moreover, for a E (0,1] and all a E (0,1), zero is

the only constant solution, being always hyperbolic. This completes the proof of

part 1) in the theorem. Part 2) will follow from the observation that for a

[1/2,1) and 8 0 7(a) there are no nonconstant solutions of (3.1).. In Figures 5.a

and 5.b, we present our conjecture for the shapes of Si in the cases of aE (0,1/2)

and (1/2,1), respectively.

(a-a2)-d (a-a2)-

So so
d 1dl S,

d2 S2 d2S 2

d3 S3d 3  S3

0 y(a) 1 e 0 y(a) 1 e

Figure 5.a Figure 5.b
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Remark 3.6. It is clear that part 2) of the previous theorem presents the

existence of a homotopy from a structurally stable system with Neumann

boundary conditions, which must have at least three solutions, to a structurally

stable system with Dirichlet boundary conidtions, which must have only one

solution. The above example also makes clear what one should do to create such

qualitative phenomena as the alternative in Theorem 3.5, in systems corresponding

to more general functions f. Finally, in this example the curves OS. in theorems

3.1 and 3.4 were constituted only by codimension one bifurcations. It is possible

to create examples in which these lines intersect, presenting higher codimension

bifurcations. For instance, take an example for which the time map at some e0o

has two minima which are equal. Then, for this example there would be a do > 0

such that (do, 0o) would correspond to a codimension two bifurcation.
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