AD-A178 217  INTERACTION OF DIFFUSION AND BOUNDARY CONDITIONSCU)
BROMN UNTV PROVIDENCE R1 LEFSCHETZ CENTER FOR DYNAMICAL

SYSTENS J K HALE ET AL. JUL 86 LCDS-85-24
NL

1

UNCLASSIFIED RFOSR-TR-86-8372 DAAGZ29-83-K-8029 F/G 12/1




-

L0 & & =
— 1.8
=

2 s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

o
\J ‘. X
:.‘i-i‘ " LAy ‘ :)“’
ATAGHCEN

P B






Unclassified

SECURITY CLASHPICATION OF THIS PAGE (Wi~ Data Swered) -
REPORT DOCUMENTATION PAGE B"wm‘:’c‘t%}g“:ou
T REPORT NUMBER GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
Uivozr0 97
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Interaction of Diffusion and Boundarv Conditions

6. ar ﬁlﬂ. g@é‘l’ Nubllé 7 2

7. AUTHOR(s) ONTRACT OR GRANT NUMBER(a)
"

J.K. Hale and C. Rocha &‘-AFOSR 84-0376

9. PERFOAMING ORGANIZATION Nmi AND ADDRESS 0. ’loﬂl‘l ELEMENT, ’ROJ!CT TASK

Lefschetz Center for Dynamical Systems REA ‘".g“” NuMBER

Division of Applied Mathematics (eitoA

Brown University, Providence, RI 02912 A0 & \

11. CONTROLLING OFFICE NAME AND Aoonzss 12. REPORT DATE

AFOSR/N —wgust 1985 T Ay

Bolling Air Force Base 13. NUMBER OF PAGES Y4

Washington, DC 20332 32

. MONITORING AGENCY NAME & ADDRESS(/! different from Contrelling Otfice) | 18. SECURITY CLASS. (of thie report)

unclassified

182. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

e ——
16. DISTRIBUTION STATEMENT (of this Repert)

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbetrect enteced in Block 20, If different frem Repert)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and ldentity by block aumber)

20. ABSTRACT (Continue on reverse side If ary and identily by bleck ber)

For systems of reaction diffusions, the existence and behavior of the solutions
on the compact attractor is discussed for large diffusion coefficients and
boundary conditions which can vary from Neumann to Dirichlet conditions

DD .55, 1473  eoimion oF 1 nov 6818 oesoLETE Unclassified

$/N 0102- LF- 014- 660) SECURTTY CCATIFICATION OF THis PAGE (When Dave Bntered)

OO ORI N MM
‘ Ay R
BRI M bt




" INTERACTION OF DIFFUSION
Y AND
N, BOUNDARY CONDITIONS

by Jack K. Hale and Carlos Rocha

e ‘ July 1985 LCDS #85-24

y DTIC

¥ ELECTE
T JUL 281985 ;

v . .B

AIR FORCE OFFICE OF SCIENTIFIC RES
¢ .
o NOTICE OF TRANSMI TTAL TO DTIC FARGH arse)
I . This technical report has been reviewsd and i3
; approved for public release IAW AFR 190-.12
Distribution is unlimited, |
‘ MATTHEW J. KERPER
; Chief, Technical Information Divisien

23 " DISTRIBUTION STATEMENT &
4 Approved for public releasey
Distribution Unlimited

AR R MM AN MM AN NI ' B¢ S0 ot (e A QEACh: sy ‘
O e O D R O 0 O AR AR S A e L 4 .A, L300 ‘!!:’!‘, U YO ha::*'.Y;“,h‘,,!.,!u;.'ﬂﬂ,b‘.a

%

i
4




T A R M N O AN AT O A N R R N MR R AN R LS G N IR ‘. 8va 4 a8 250 R* ath a2 ath ot @t 'a a T T vy

i.‘ INTERACTION OF DIFFUSION AND BOUNDARY CONDITIONS

q’ g . by

O Jack K. Hale and Carlos Rocha

L)

' Lefschetz Center for Dynamical Systems

oy Division of Applied Mathematics
Brown University

':Q* Providence, RI 02912

e July 1985

G

::::‘ - This research was supported by the Air Force Office of Scientific Research under
X0 Grant #AF-AFOSR 84-0376; by the US. Army Research Office under Grant
#DAAG-29-83-K-0029; and by the National Science Foundation under Grant #DMS

8507056.




INTERACTION OF DIFFUSION AND BOUNDARY CONDITIONS

by Jack K. Hale and Carlos Rocha

ABSTRACT

For systems of reaction diffusions, the existence and behavior of the

solutions on the compact attractor is discussed for large diffusion coefficients and

boundary conditions which can vary from Neumann to Dirichlet conditions
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1. Introduction

Consider the system of parabolic partial differential equations (PDE)
(1.1) B8u/8t=DaAu +f(u), x€EN

(1.2) D38u/3n + 6E(x)u=0, x€Ean

3
where u€ RN, 0 C R, n € 3, is a bounded open set with 3R smooth, D =
diag(d,,...dy), E = diag(e,,..,tN), cach dj > 0 isconstant, ¢ 8 -R is continuous, e
>0,j=12,.,nand B8E[0,) isconstant. The function f: RN ~R¥ issupposed to
be a CMlfunction; that is, continuous and has a Lipschitz continuous first
derivative.

An interesting problem is the following one: for fixed functions (f,E), discuss
how the flow defined by (1.1), (1.2) depends upon the parameters (D,8). In a vague
sense, the (D,8)-space should consist of two distinct types of points - those for which
the basic structure of the flow does not change significantly when one makes a small
change in (D,8) (the structurally stable points) and those points for which a small
change leads to a change in the basic structure of the flow (the bifurcation points).

The purpose of this paper is to make a modest contribution to understanding some
parts of this problem. More specifically, we shall give some conditions on (f,E)
which will ensure that there isa d,> 0 such that, forany d 3d, d = min(dj, =
1,2,.,.N} and any 6 [0,®), there is a compact attractor Bn,e of (1.1), (1.2) which is
upper semicontinuous in D,0 uniformly for d 3 d;,, ® » 0. Furthermore, Bpe is a
singleton for © » 6, 6, sufficiently large and converges to an attractor for the

Dirichlet problem for (1.1). These results complement the ones obtained previously in
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3. the paper of Hale and Rocha [7], in which they proved the existence and upper
. semicontinuity of Bpg for d 3d, and 8 ina compactset. The new contribution
: is the uniformity in 6 » 0, which permits one to go from Neumann boundary
%: conditions to Dirichlet boundary conditions forany d »d,

o For a scalar equation in one-dimension and d 3 d,, the types of bifurcations that
§ occur as one goes from Neumann to Dirichlet conditions is also discussed. There is
:"' some overlap in this example with the work of Conley and Smoller [2 }.

v The second aspect of the paper deals with the classification of points in
:‘ . (D,0)-space as structurally stable or bifurcation points. In this case, we attempt in
::E Section 3 a classification for a scalar one-dimensional equation with f a cubic.
i;. These results overlap the ones of Gardner [5] in a special case. The proof of the
;' 3 classification relies heavily upon the transversality theory of Henry [11].

: To describe the abstract results more precisely, we need some terminology. Let

' X =L%0,RY) and define the operator A = Apg: D(A)~X by A¢=Dad, where
3
:‘2‘ . D(A) = (uEW>3QRN): u satisfies the boundary conditions of (1.2))}.

e
"‘ Then A is a sectorial operator and one can define the fractional powers A% of A,
St:.. 0 € « and the space X% = D(A%) with the graphnorm. If n=2, or 3,n/d<a<],
e then X*cwWI3(n,RN)NnL*(O,RY) with continuous inclusion. If n= 1, a=1/2, then
5: XY? = w3 R) N C(Q,R). We assume below that « is always chosen in this way.

One can then show that (1.1), (1.2) defines a local C!! semigroup Tn,e(‘) on X%

L A AP

v e

(see, for example, Henry [10,p.75])).

3
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For any set B C X% the w-limit set w(B) is defined as W(B) = N3, C! U;y¢ !

Tpe(t)B. A set B C X is said to be invariant if, for any ¢ B, onc can define
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Tpe()d for tER and Tpg(t)dEB for tER. Aset 4 CX¥ issaid to bea

compact attractor for (1.1), (1.2) if A is compact, invariant and there is a
neighborhood B of A4 suchthat w(B) 4.

Let xj(D,e) be the first eigenvalues of -de with boundary conditions
djau/an + Geju =0, let oj(D,e) be the corresponding unit eigenfunctions, j = 1,2,...N,
and Gj(D,G) be the N-dimensional column vector with ¢j(D,9) in the j*® place and

zero otherwise and let
Ap g = diag(}(D,8),...,\y(D,8)),
®p.0 = (3,(D,8),...34(D,8).
The following ordinary differential equation (ODE), corresponding to the

Galerkin approximation obtained by projection of (1.1), (1.2) onto the N-dimensional

subspace U spanned by the elements of °D.9’ plays a fundamental role:

(1.3) dv/dt = -AD,B v+ J. °D 0 f(QD av)
n » ’

Foranyset B in RN welet BU= (®p gv: v EBY). For any sets B, C in

X% we let

6(B,C) = squ[.’B dist(x,C)
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A function g()) from ) C RE¥ to subsets of X% is said to be upper
semicontinuous at X, if limx_.)o 8(g(2),8(%y)) = 0. For any set B C X% ¢ > 0, let
N(e,B) be the e-neighborhood of B. Let Xg‘ designate the fractional power space
obtained by taking Dirichlet conditions for (1.1) and N(¢,B) be the e-neighborhood
of aset BCXZ. Our prinicipal result is

Theorem L1. Let d =min(d,,...dy). Subpose there jsa compactset K cRN and
positive constants dg> 0, 8,>0 such that the ODE (1.3) hasa compact attractor 4y g
CK and WN(8,4p9))CApe forcach d>d,, 830 Then forany 0<%, <8, and
any e>0,thereisa d,»d,>0 andacompactset K'CL® gsuch that(l.1),(1.2) has
acompact attractor By, g CK' NN(e, 4] g), N(5,,45 g) CBy g for d 3dg, 630. The
attractor BD,O is upper semicontinuous in D, 6. Also therejsa 6,> 0 such that
Bpg isasingleton ¥pg for d2dy82 0, dpg~V¥pe 25 O~ ¥, isasolution
of the Dirichlet problem for (1.1)and W(Ny(6,,¥p, o) = (¥ o).

This theorem is proved in Section 2.

It is worthwhile to discuss the ideas that are needed to verify the hypothesis in
Theorem 1.1. Suppose firstly that N = 1, @ = (0,1), and f(u) is a polynomial of degree

2p+1 with uf(u) = -=as ju] = «; that is,
f(u) = boou®+ 4+ buP+ ..+ b,

with by < 0. For N = 1, the boundary condition (1.2) is equivalent to
du, -8B,u=0 at x=0

du, -6B,u =0 at x=]

with B, > 0, B, > 0. The first eigenvalue X of -dd?/dx? with these boundary conditions

satisfies 0 € X < dn? and the corresponding eigenfunction ¢ = ¢(d,0) can be taken to be

Ay e Sy e b ey e T SR LS8y «m&&



positive. Thus,

~ _detf! ptl . .
f(v) = I Hx)f(Kx)v)dx= £ b, ., . (I ¢ +l(x)dx)ul
0 j=0 0
so that the signs of the coefficients in this polynomial are the same as the ones for f.
1.
Also, there are constants k > 0, 6 > 0 such that foﬂ ¢k, j = 0,1,., 2p+l and

1
Io ¢?**23 6ford >0, 8 3 0. So (1.3) becomes
(14)  dv/dt=-8)v + (V).

Since 6, » 0 and f(v)/ve - (lez"“)b0 € 8b, < 0, it follows that (1.4) has a
compact attractor for every d > 0, 8 » 0 and these attractors lie in a
compact set. The hypotheses of Theorem 1.1 are satisfied. It is clear that similar
conclusions could be drawn for a more general f if the behavior of f is appropriate.
If N > 1, the hypotheses are not as easy to verify. For Q= (0,1), equations (1.3) in
component form are given as
1
dv,/dt=-8)v, + Io ¢, ($;(X)V s Op(X)Vp) dX, = 1,2, N
Even though all ¢j are positive on (0,1), one must assess their relative contributions to
the behavior of the flow near v = =, If all diffusion coefficients are equal, then A=
= \ys ¢; = ... = ¢ and the situation is much simpler. Although this topic clearly needs

to be investigated in more detail, it will not be pursued in this paper.
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:,_ 2. Proof of Theorem 1.1.
O For notational convenience, we take N = 1, pointing out in the appropriate
[
Z places the changes that are needed for N > 1. Also, let us firstassume n=1, 2=(0,1),
L}
R so that (1.1), (1.2) become

Y

;: 2.1) u, =du_ +f(u) O<x«<l1

'l.

V;i (2.2) du -8Bu=0 at x=0

L)

3 du +6B8,u=0 at x=1

d

b

3 where By, B, are given positive constants and 6 € [0,=). If H? = W>¥QR),
¥ 1 _ wl.2

3 H! = W' ¥QR),

D(Ad'e)=(u€H’: u satisfies (2.2)} ‘

0 Ad,e = 'duxx'

X
J,
A’

then Ay g can be extended as a selfadjoint operator in H!

1 1
e I (Aggu)v = d I u, v, + 8[B,u(0)v(0) + Bu(l)v(1)]
(X ) 0 s 0 x

At
% defined for every u,vE H!. Now if we consider the fractional power space X1/2

’i: defined as

k7 X/2=D(Ay g+ D'V
LE

N
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)
:&, with the graph norm (see Henry [10, pg. 29]), we have:

1 1

(Aggu)u+ I u?
0

1
|[(Agg+ I)llzul IZ2=L u(Agg+Du =I

0

1 1
=dI u? + I u? + 8[B,u%(0) + B,u?(1)]
G Using the Sobolev inequality u?(x) € k v |fl1, we have
1/2
kil [ull o €11(Aq e+ D 0] o €M Juf]
> where k,; =min(d,1),M=[d + 8(8, +B,)k]'/2. Since X=L? and

|(Aag+ D20l | = ]| 12
we conclude that X!/2 = H! independently of @ (Henry [10, p. 167, exercise 10]).
f-:E . Notice though that the constant M in the norm equivalence grows with 8, being
unbounded.

N We will now consider the eigenvalues and eigenfunctions of Ad’e and establish
,::' uniform estimates for the eigenvalues. If we let Ad’e¢ =2¢ and ) =dYy? then the

o eigenfunctions and eigenvalues are

A, =d7%; ¢ (x)=dy, cos ¥, x + 6B;sin 7, x

|
|
where 7, are the positive solutions of ;

s b




et cotg ¥ = G(7/z)

X G(s) = k(s - 57"), k = (B;8,)'/%(B;+8,)"", z = 8d"Y(8, B,)1/2.

~¢'.|' cotg Y

G(y/2)

n/2 z

=

n/2

N
=
<

ﬂl; ‘:.‘- ol -

e
=

Al

e
- D G Sn S S wt wm W D EE ey D Em W s = = -

e ?

4 v Figure 1
From this, we immediately obtain the estimates
) M € (0,dm?); X >dn® for j»2.

;::;e Also, from 7=(3/d)"/? and lim d-Y3cot()/d)!/? = \"1/2 we have
[ .l.‘ d-e

lim A= O(BO'O'BI)

U d=o

N
[l o

M”'\‘

- >’. - ‘U ¥ ~ '~-r‘ 3 L4 ) X ) | “t
l*"ﬂ.‘:’?‘d?‘n".‘r’? bl, A AT AN A L, "' nl’.‘\.’\ iy, I:! OGS R A e

SRR A T A CE SN KRl R TRy Vg SRR L CRUR LR
||! J-'* \) "‘ A \"- L' ;" AN LN .‘1:9‘10.
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Next, we estimate |72 - N If z = n then

= 2k ¢L
dy |7=n n n

since 2k € 1.

bo o0 o o o - -

3n/2

m b A

Figure 2

This implies 7, - 7, > b where b = n*/2(n+1) > 1 when z = n (see Fig. 2). By
continuity, there are € > 0, 6 > 0 such that 73-7,> 8 for zE[n-¢,n+€). If |z-1 > ¢, then

72~ 71 > €. Therefore, there is a constant ¢ > 0 such that 7, - 7, > c1/2 for all z. This

implies )\, - X, > dc for all d > 0, 6€E[0,=).

Now, as in Hale [8] or Hale and Rocha [7}, we consider the decomposition

X/22Y @ Y., where Y =span ¢,,and let T(t) denote the semigroup gencrated

by Ad'le'L. Equations (2.1), (2.2) can be rewritten as




AL ARAAT

V=3V + (V) + P(v,w)

(2.3) R
w(t,-)=T t)w, + I T(t-s) Q(v(s),w(s,-))ds
0

where

1

P(v,w) = I 6,1(vo, + W) - £(véy)]

0

1
24) QW) =f(vo, +w)- ¢,L 6, £(vé, + W)

1

f)=[ 00,
0

For d>d,, 8 3 6, the assumptions of the thecorem imply that the ODE
(2.5) v=-av+E(V)

has a compact attractor 4, g and it attracts a 8o-neighborhood N(8,,4, g) of A,
This implies there is a positively invariant open interval V containing Ad.e and
A4 attracts V. Inthecase N> I,one uses the converse theorems of Liapunov as in
[8] to obtain a positive invariant open set containing Ag9 and which is attracted by
Ad'e.

For each fixed 6 and d » d, it was shown in [7) that equation (2.3) has a local

integral manifold w=h(v,d,8) in a neighborhood of Ag’a.

From the uniform estimates of the cigenvalue ), we have, for weEYL
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T(Owl /€ k't /2 g-det jw),
1 o-det
|T(t)w|x1/2 € k'e |w|x
where k' isindependentof d,6. The proof in[7] then shows the existence of d, 3
dy such that Byg CN(e,AY g), WN(5,,47 ) CByg for d 3d,, 830 provided that
we know |¢f; = € k|¢ly1/2 for any $EX!/2 where k isindependentof 6. Next, we

establish the continuous inclusion XY?cL® uniformly in € following Henry [10].

From the Nirenberg-Gagliardo inequality (Henry [10,pg. 37)),
B 1-8
II11|ICO € C IIuIIH, |IUllL,

for B> 1/4,and by exercise 11, page 28 of Henry [10], we have X%CC° (a> B)

continuously if

ol o € Cyl(A4 g+ Dull®,I1ul 1.

Thus, we need the following estimate, uniform in 6:
lul , € KIAgg+Dull 5.

If g-(Ad'e+I)u, then we can compute explicitly u asa function of g. Infact,
du_-u = -g

implies

e 0,01 Wy W N N Ty W0 VT By A I U R T T LA T A A TN N T BT 0 QAN NORE L I NN AN
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X
- u(0) ch X Fshi L j s g
u(x)=u(0) ¢ y: +u (O)vd s vivl, g(s) sh‘/d 3

- 1 X X .1 *
u_(x) = u(0) i sh 7 +u,(0) ch 5d I

s)ch % ds
0s() v

From the boundary conditions,

du _(0) = 8 B, u(0), du (1) = -6 B,u(1),

we have
u(l)-u(O)[ ch:,l.TT + els(,}ld= sh‘-,lg_] . -5;.[2 g(s) sh]j;s-ds
ux(l)-u(O)-}d_ sh-j-d_--o- 930'3;- ch-jdz] -1 I: g(s)ch%i ds.
Hence,

< len 1 2 1 J‘ [ L
u(0) [ch = 0By B + Lsh ;L_—(d +6 BOB,)I_T i 8(s)| ch 12

+68 -Lsh L= |ds
lyd va

' x - : » : .‘n . —{: & " - '...‘ ”R‘
LR ,;’ifg'&l‘g.9‘«'!‘"9,,?0&‘0,1,‘9‘@ ‘sd“‘t b ADANMSE [g‘l,n‘l" 4 Wy “'l.; ) l‘ Lo Y
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and

.4 L L
ch - +608, =sh = 1
u(x) = vd 0 va 5" vd . I g(s) Eh ls esl.lzshl_-g]ds
(d+6%8,8,) ‘-/15 sh ;l;_+ 8(B,+8,)ch ,'/li' 0 va va v

.4 * x-S
7 L g(s)sh va ds.

So finally we obtain ||u||Lz ¢ R(9) ||g||L, where R(8) is a rational function of 6
such that for some constant l-(-, R(8) ¢ R for every 02 0. Also “d“n“Lz = [lu-g l|Lz

£ ||u||L2 + ||g||L2 and we easily obtain:

¢ K = Kji(A 1 .
lul » € Klgh , = Ki(Agg + Dull ,

This gives the embedding of X!/? into L*® uniformin .

Our next objective is to show that Byo is a singleton if d 3 d(r), 8 3 8,(r)
with d,(r), 8,(r) sufficiently large. To do this, onc uses the following fact: for any
r >0, there are d, >0, 8,> 0 such that 1),(d,8)>r forall d>d, 0> 6, Since
A30C K,acompactsetforall d2d,, 830 and A4, attracts N(By,A, g), there are

constants k,, k, such that
f(vV)I §k,, IE'(V)| 6k, for v Uysa 000 74 (N(844 )

where ¥t designates the positive orbit. If vy, Vg be two solutions of (2.5), then z =

V- Yy satisfies

(26)  dz/dt=-rgz+f'(vy(t) +{(D)z

QOO

i,

\ 872,075, Yy, 09 8%, Q A%, AN QUCEMI I RIERGA . . r
9,700, 0,,,  Sa  pk  NNARe tstatabatente  eeT e igteh il do g gt e et g, M
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for some §(t) and |f'(v,+{)l € k;. Thus,if X,(d,8)>r >k, for d>d,(r), 8>
0,(r), then z(t) =0 as t- = exponentially. This implies that the solutions of (2.5)
approach an equilibrium vo(d,B) as t - » By the same type of argument, the
solution vo(d,e) is hyperbolic. Thus, Ad,e is a singleton ({v,(d,8)} and it is
hyperbolic with exponent 3 r-k,. This implies that By g is a singleton (Y, g} which
is a hyperbolic equilibrium point and attracts N(Sp%,e)-

There is a constant kg such that |f(u)] € kg, for uEUd;dl(r)’% )B(.—)7+N(5p¢’d,e)-
Since Y,¢ is an equilibrium point, it follows that a’wd'e(x)/axf is uniformly

bounded by kg Thus, the set Wa,e’d 3 d,(r), 03 Bo(r)} belongs to a compact set K.

Let Gj -~® 35 j= beasequence so that V’a,ej" d:d'. as j-~* Then, lbd.. is an
equilibrium solution of (2.1) satisfying the Dirichlet boundary conditions. This
equilibrium is hyperbolic and therefore attracts a neighborhood of itself
exponentially. This neighborhood can be chosen in such a way as to attraét every limit
point of {wd.e,dm,(r). 8 » 8,(r)). But this will imply there is only one limit point d’d,-
and completes the proof of the thecorem for N=1,n=1.

For N > 1, n = 1, the last part of the proof follows in essentially the same way
since one can construct a quadratic Liapunov function for (2.6).

The case n=2,3 and arbitrary N follows along the same lines as before. One
must obtain good estimates on the first and second eigenvalues of -A and the
embedding X*CL® must be uniformin 6. Because of this last fact, all solutions in
the attractor can be considered in L" for 0> 8,(r), there will be a compact set K, C

L® which contains the set Nad'e, d »d,(r), 8 6,(r)} and vbd'e - wd.. as 0~ The

function ¢, » Will satisfy the Dirichlet problem and regularity theory implies it is in
Xg‘(n,RN). Therefore, we only discuss the second eigenvalue and the uniform

embedding of X% into L We also only give the proof for n = 3 since obvious

”~
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changes will give a proof for n=2.
First, we establish uniform bounds in 8 for the ecigenvalues of -dA(+BC)
where the boundary conditions (BC) are 8u/8n + 8cu = 0 in 30. As in Hale and

Rocha [7], we consider the minimum characterization of the first eigenvalue

2.7 xlzmin{d lem’ + eI cu?: I ul= 1}
an 0

from which we obtain that 0 €, €0 |0yt I c.

If A, = €fu,, then

ul=u1(d/9)-°|ﬂl"J ¢ as d/@-e,
an

If A = dvl, then

v, = vl(e/d) *V;>0 as 8/d~=,

where v, is the first eigenvalueof -A with Dirichlet boundary conditions. Thus,
for any r > 0, there are dy=dy(r)>0,8,=0,(r)>0 suchthat ),(d,8)>rfor d> d,
0> 90.

To estimate ), let )\, =du, andobtain

My = min{jﬁﬁ?ulz +% Ian eu?: In ul=1, Inu¢l - 0}

where ¢, is the cigenfunction corresponding to ),. Then there exist positive

constants d,, u independentof 6 suchthat u, > g forevery d>d, Tosece this,

consider u, = p,(d,8) and assume the existence of sequences dj, Oj such that
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dj >d, and uz(dj,ej) -0. Since 0 ¢ In|v¢l|’ € pu,, we have J‘n|v¢>l|2 - (0. Moreover,
denoting by ¢, the eigenfunction corresponding to ) ,, we also have that I |v¢>z|2 -0.
Then, from In ¢f =1, j= 1,2, we have that ¢, |4-1/3 contradicting L 6,06, =0
Hence for d>d, we have the estimate A\,>du uniformly in 6.

We now prove the following.

Lemma 2.1. Suppose n =3, a> 3/4, X = L? and X% = X%6,d) js the

ional power i wi -DA with boundary conditions (1.2). For any
d, > 0, there is a constant k(d,) such that forany d ? d, €€([0,*) andany u€
X%6,d)

w$
vl o € k(dy) 'uk"‘(e,d)

roof: Asfor thecase n =1, the essential step is to consider the following problem:

Au=g for xE€EQCR"
Bgu=0 for x € a0,

def
where Bgu - 8u/dn + 6u, 6 € [0,) and to prove the following uniform

regularity estimate:
28 u t M +Jlu
(2.8) I "Hz (lgll L2 I ||L3)

where M is a constant independent of 6, and then use the fact that, for 6 > 0,

||u||Lz €c ||g||Lz , (Friedman (4, pg. 76)).

Since regularity is a local property, we let Lp, = 1 be a partition of unity
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DY) subordinate to a neighborhood coveringof Q Then
2 2 2
y (29) i, = I Tpul, <k Tlipull,.
Ny If pu hassupportin the interior of £, then (M. Schechter [13], Lemma 7)
,&z
)
loull, € Clipui?, + lspyul )
¥ _ Since Ap,u = p. Au + derivatives of u of order € 1, we have
1 1
" llap,ull?, € 2llp,aull? 5 + 2 ¢, ful?
i L2 i LZ 1 Hl
,“::, and from the inequality (L. Nirenberg [12], appendix):

e (2.10) uuu;1 ¢ e'uuu;,+k,(e')uuu’L,,

e valid for every €' . 0, we finally obtain

—— 2 2 2 2 2
lloullt, € C(llpiuIIL, + 2I|piAuIIL, +2¢ ¢ 'Ilulln, +2¢, ,IlullL,

€ 2C [||Au||:, +(1/2+ c,k,)uuu’L, +e 'c,uun’n,]

2 2 2 2
(2.11) IIPiulIn, ¢ K(IIBIIL, + lIuIle + GIIullng)-
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o

(r Now, if the support of p, u contains a piece of 30, we consider a transformation of

. variables straightening up the boundary. We let 801 denote the piece of 480

VR def

,-" contained in the support of v = p;u and assume without loss of generality that 89 is

2

i{ connected. Let ¢ : R" = R" be a smooth local change of coordinates mapping the

o support of v into a ball B, centered at the origin, and 6(1.l into B,NT, where

¢

:" T denotes the hyperplane T = {y = (y,,...y,) € R® Iy, = 0). Under this local change |
: !
]

" of coordinates, the initial problem is transformed into the following: |

!

Y :
g Lu=g for y€& B,n{y,>0)

;'. [}

::o Bgu=0 for y€B,NT,

4

\-

'\‘: where Béu = (1-8) 8u/8y, - 8u, and L is a linear second order strongly elliptic

S

28 operator with variable coefficients. Let us denote by L, the homogencous

2 operator with constant coefficients which equals the principal part of L at the
- origin. Then, as in M. Schechter [14], (proof of Lemma 12), we may assume that the

\

: change of coordinates ¢ (after a rotation) has the form Vi =X j=l..n-l,y =

) #(x,,..X;) such that, at the point x,=¢71(0), we have #(xo) =0 and also 3¢/3x_=

¥

:: 1, hence preserving Lebesgue measure. For this change of coordinates, we have L,=

s

o

" A. Then we consider the problem:

‘-3: (2.12) Aws=f for € EB=R™!xR

{ : y + +

2
¢ Bgw =0 for y € R™1x(0),

.‘
s Here, for simplicity, we assume that n # 3 and introduce the notations y* =

y

I.

4
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v,

o (Yys¥popYy) and w, the volume of the unit ball in R™ Then, from Gilbarg and *
- |
0 Trudinger ([6], Chapter 6.7), we can solve (12) in terms of the Green’s function:

4

)

L

by W= [ Gy

E,

:{

: where G(x,y) = T(x-y) - TI(x-y*) + I(x-y*) with I(z) = |z|"“/u(2-n)mn the
A%

fundamental solution of Laplace’s equation (n > 2), and
2 ®
-1

& z(z)=-2I ¢80-97s_8 r(;4¢ 5)ds, ¢, =(0,..0,1).

:'.! 0 ayn

L.

g Since © € (0,1), we have, for z€EY,
ks

IL(z) < 2I 1% I(z + ¢ 8)| ds = 2T(2),

] 0 n

%)

45s)

' W ¢ [ HEIfo)Idy,

18] E"

X +

3

: where H(x,y) = I(x-y) + 3[(x-y*). Then, as in Agnon, Douglis and Nirenberg [1], we
>

K- can extend these kernels to R™ as odd in x,, and apply the Calderon-Zygmuzd

theorcm, obtaining

2 2
w € N, [IfI*., .
[} lle 1 IIL,

porbeir

One can do the same after differentiating w twice and passing the derivatives to

b the kerne1 G, obtaining then
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) i
: 213) IwI2, € N, |2 |
" (2. 22 SN ;. i
4 |
% where the constants N; do not depend upon 8. Then, since Lyv=Lv+ (LO-L)v, I
:'. we have I
% I
- |
N . \ \
IILoVIIL, € 2IILVIIL,+2II(L0-L)VIIL,, !
L}
and again, by (10), |
' ;
) !
2 2 2 2 !
:' IILOVIle € 2||LVIIL,+ 5'IIVIIH,+N'IIVII L
\ Thus, from (2.13), considering a partition of unity sufficiently small so that
8' € (2N,)™}, we obtain
! MLoVI; € 2LV, + 8'NILovIZ, + N IvIE,
[}
t
k)
p 2 2 2
IILOVHL, € k,(llLVIIL,+IIVIIL,)-
R
) So, again by (2.13), we sce that
[)
louill, € Clipul?, + LUl ).
) .
! As before, we can now obtain
\
A 2 2 2 2
o Ilpiuuﬂ, € K(IISIIL, +IIU|IL,+ €llull n’)
R .
]
2|
]
K
[}
1
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! e and, from (2.9), we have

- 2 2 2 2
u ¢ K + lull*, + €jju .
< il IIH, (IlsllL, Il IIL, Il IIH,)

WG Then, choosing € sufficiently small, we finally obtain the desired estimate (2.8).

Wy This completes the proof of the lemma.
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3. An cxample.

In this section, we discuss the situation in which u in (1.1), (1.2) is a scalar,
0 = (0,1) and f(u) is a cubic. It is convenient in the computations to replace the

parameters (d,8) by (d’,e/(l-e)d). The example to be considered is

u, = d’u,‘x + f (u) x €(0,1)
3.1, (1-6)du, = Bu at x=0
(1-8)du, = -8u at x=1

where d € (0,») and 6 € [0,1] and
(3.2) f(u) = u(l-u)(u-a), a € [-1,1]

Since (3.1) is a gradient system every solution approaches an 'equilibrium

solution. In the rescaled variables x = dy, these solutions satisfy
(33), u, +fw=0 y€E(@OL?
and boundary conditions:

(l-e)uy = fu at y=90

(3.4)
(1-6)u, = -u at y=4d}

Since the set of equilibrium solutions is bounded, there is a compact attractor
Byg for every d > 0, 8 € [0,1] (see, for example Henry [10] or Hale [9]).

If WY¢), W¢) are the stable and unstable sets for an equilibrium solution
then a recent result of Henry [11] shows that WY¥(¢) is transversal to W*(y) for all

equilibrium solutions ¢,¥. This implies that the flow defined by (3.1) is

L A
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g structurally stable if and only if the equilibrium solutions are hyperbolic; that is,
,;;;. if and only if each equilibrium solution has the property that its linear variational
I
'.‘ v equation has nonzero eigenvalues. This implies that the curves in the (d,6)-plane
4
:}., which correspond to bifurcation points of the flow must be either primary
e bifurcations from an cquilibrium or saddle-node bifurcations of equilibria. The
o
purpose of this section is to discuss these curves for (3.3), for values of a €[-1,1]. For
,:, a =-1 we prove the following result for the case a = -1; that is f(u) = u - us,
e
Y Theorem 3.1. Let 5; C (0,=) x [0,1] be the structurally stable regions for (3.1)_,
5
D ; which consists of exactly 2j+1 hyperbolic equilibrium points,. Then the following
[
b .
;. clations hold: ‘
( . I n |
i" |
bl 1) §; has only one connected component,
'3
Q) 2) S, S, are unbounded, S; is bounded for j » 2,
R/ vy |
N i
‘ 3) §5n(@=0)=¢, S,Nn{6=1)#¢ f
- !
J 4) Sjn{6-0)¢¢, Sjn(e-l)#¢, Vi3, ‘
g % . and, for cach integer k,
K- > 1‘
;.;; (Ca Uj,k“ Sj) N{6=0)=(C2 Uj,k Sj) N6 =1} =[0d,] ‘
8 |
)
: where d, = (km)™.
¥
N
5) @, are smooth Cl-curves nponincreasing in © Thesc curves are
e nonintersecting jn (0,%) x (0,1).
!‘ .
:: Before proving this result, we make the following remarks.
..;: Remark 3.2. Suppose d, is as in property 4) and d, > d, is fixed. From
y .
;PS‘ properties 2) and 5), if one studies the attractor Bd'e as a function of @ for a fixed
"
?.
")
8)
o
=
e
o
8 .

e OO n - L -t % . > Ly La \ . o NP W
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%u

Al d > d,, then onc must go from a situation of three equilibrium points at @ = 0 to
_" _; one equilibrium point at @ = 1. Furthermore, according to property 5), there is

only one point @ at which a bifurcation occurs. This d, provides a good estimate

b ke
.{ .,
;{.?J{

bl of the d, occurring in Theorem 1.1.

5 . . .

.(P'j Remark 3.3. Properties 1) and 4) imply that one can find a homotopy from
", any structurally stable system with Neumann conditions to a structurally stable
v' one¢ with Dirichlet conditions. The case with a &€ (0,1/2) was considered by
E ‘., Gardner [5] where he shows the existence of such a homotopy for the case with
%:‘E.E::: three equilibria. We will see later that for a [1/2,1] no such homotopy exists.

O

‘ Proof of Theorem 3.1, Let L, be the lines in the (u,uy)-plane defined by L,
r:o = {(w,uy) : (1-Q)u, = £6u). Let u = u(y,u) be a solution of (3.3),, where u,
"\ corresponds to the maximum value of u. If this maximum occurs at y = T,
‘ then u(T,uy) = u, and uy(‘r,uo) = 0. We define the "time map” T to be T(ug) =
. 7. From this time map, the existence of solutions of (3.3)_, can be inferred.
:;:. Such a solution exists if and only if there exists a u, € (0,1) for which T(ug)
;i; = (2d)"!. Introducing the polar coordinates u = r cos s, u, = -r sin s in (3.3),,
‘i | onc can show that s = s(y,u,) satisfies the differential equation:

_ s, = sin’ + (I - r’cos¥s)cos’s, y € [0,d7Y),

def
' s(0) = -¢; ¢ = arctg 6/(1-8)  (0,n/2).
Py From this equation we determine the following expression for the time map:

¢
. (35) T(u) = I [sin?s + (1 - r’cos?s)cos’s]'ds
0

"‘;’ [}

Ly B s - y - . 1 L9 g & ; I T 'y
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where r = r(s,uy). Then, as in Hale and Rocha [7], we can prove that the time map
is a monotone increasing function of u, (0,1). In fact, differentiating (3.5), we

have:

¢
(3.6) T'(up) =2 I [sin® + (1 - r3cos3s)cos?s] r %iu costs ds
0 0

and 8r/8u, > 0 and ¢ (0,7/2) imply that T'(uy) > 0 for u; (0,1). Thus, as in
Chafee and Infante [3], the bifurcation of equilibrium solutions can only occur at
the origin. This will happen for the values of d = d(6) corresponding to the zero
eigenvalue for the linecarized problem:

(37 u +u=0y (04,

and boundary conditions (3.4). Then, we will have u = A cos y + B sin y, and the

boundary conditions will be satisfied if and only if:
(3.8) d= [arc cotg 1 [l_ﬂ_ ]]

This provides an expression for the curves 88‘i referred to in property 5) of the
Theorem 3.1. Moreover, one also concludes that the d, in property 4) are given by
d, = (km)™>. This completes the proof of the theorem.

Figure 3.a presents the sets Sj, and Figure 3.6 the bifurcation diagram for a

fixed value of @ (0,1).

A

~—— @ //// d

— S, ds

0 Fig. 3a 1 8 Fig. 3b
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o

X In the following, we consider the time map and its derivatives defined at

:, uy, = 0 by continuity. Then, one can easily check that T(0) = ¢, T'(0) = 0 and

a

A T*0) > 0 for 8 € (0,1]. For a # -1 the problem becomes much more difficult

R\

¢ because the expressions for the derivatives of the time map are more complicated.

& Nevertheless, we can prove the following:

:

" Theorem 3.4, For every D sufficiently large, let S; € (0,D] x [0,1] denote the
structurally stable regions for (3.1), consisting of exactly 2j+l hyperbolic

R

E equilibrium points, Then there exists a ¢ € (0,1) such that for all a € (-1,-1+c) the

1}

" llowi

2

. 1) S; has only one connected component if j = 2k, k 3 0.

B 2) S, has exactly two connected components if j = 2k+1, k 3 0.

3§ J

Ki

R Morcover. the relations 3) to 5) of theorem 3.1 still hold.

N

2 To prove this, we introduce in the time map the dependence on a, T = T(uy,a):

o o

i ¢

E.: (3.9) T(uga) = I (sin?s + [-a + (1+a)r cos - ricos3s)cos?s)~1ds

R | 0 4

Y From the remark before the statement of the theorem, we know that 3T/8uy(0,-1) =

5

3 0 and 3°T/8u}(0,-1) > 0 for 8 € (0,1} 1In the same way, one can verify that

n

" G’Tlaaauo(o,-l) < 0 for € (0,1]. Then, for any 8 > 0, we can find an ¢ > 0 such

. that, for @ (8,1], we have 8°T/Bud(0,-1) > ¢ and 8*T/8aduy(0,-1) < -e. Hence, for

f’; 6 € [6,1]), the changes introduced in the time map as a > -1 are very simple, and

]

:' we can find a ¢ € (0,1] such that for all a € (-1,-1+c) the time map has a unique

; extremum at Eoe (0,1), which is a minimum. This gives us the shape of the first

:: bifurcation curve in Figure 4.a, showing what is usually called a transcritical ]

bifurcation at the origin. A simple analysis of the phase plane shows that only

Y
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B
L the odd bifurcations at the origin will be transcritical, the even ones being
P" supercritical. This observation takes care of the curves 85j in the region [0,D] x
’ ?':
;::- (8,1]. For the region (0,D) x (8,1], we start by observing that if &8 = §(D) is small
o
ity enough this region always contains at least three hyperbolic equilibria, thus, the
1': ‘ first bifurcation of the origin is exciluded. Then, one needs only to consider the
:E:::‘ solutions arising from the second, third, etc., bifurcations. If we define
:E,M

i'il d.f ¢+(j-l)n

U(upa) = I (sin®s + [-a + (1+a)r cos s - r’cos3s)cos?s) 1ds,

AR -
s ¢
weg j= 1,2,
:’:'\
l‘f then U.i represents the value of y at which the solution of (3.3), satisfying the
) y
[

,_)-’.; initial condition in (3.4) and having at the first maximum the value u, satisfies
)
the final condition in (3.4) after passing through j extrema. Note the relation
a1

] with the time map: U,(uy,a) = 2T(uy,a). One can clearly use Uj to determine the

N
'.ﬂ existence of solutions of (3.3), in the same way as the time map was used. As
% 'h:ﬁ
Ny before, we can verify now that, for all @ € [0,1], a’uj/aug(o,-n) >0 for j » 2,
\4‘

: 8Uj/8u0(0,a) = 0 for j = 2k and all a » -1, and a’Uj/aaauo(O.-l) < 0 for j = 2k+l, k
\‘..I

)
':'.:E = 1,2.... . Hence, the changes introduced in Uj, j» 2, asa > -1 are very simple and
'y
AL
.'-“ again we can find a ¢ € (0,1] such that, for all a € (-1,-14c), U, j » 2, has a .
’1‘“
. unique extremum which is a minimum. This minimum occurs at the origin if j =
-{""-; 2k, and at ij € (0,1) if j = 2k+1, for k = 1,2,.. . This justifies the bifurcation
'I
1

2 diagram presented in Figure 4.a, and concludes the proof of the theorem. In
0N
e Figure 4.b, we present the sets Sj as obtained from the theorem. It turns out that,
=
?:‘ : if we consider the linearized problem u, -au= 0 and compare with (3.7), we
i -4
:?::,: obtain an expression for the curves 88, corresponding to the bifurcations at the
- origin if we multiply (3.8) by the factor (-a)‘/’ for a € [-1,0).
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d d
:: 2 §~—~“Si 2
B ds p~——____ S — -1 4d;
Yy . 3%
; —
. 0 1 6
)
i’: Figure 4.a Figure 4.b
?
:: If one considers the results obtained by Smoller and Wasserman [15] for the cases
‘e
. of Dirichlet and Neumann boundary conditions, the results of this theorem are not
i
K surprising. Moreover, numerical tests indicate that these results seem to hold for ]
¥ all a in [-1,0); thus, the maximum value of ¢ in theorem 3.4 being possibly 1.
[
;: For a = 0, the problem is degenerate and does not have any structurally
(]
)
“ stable regions. It becomes then very interesting to make the same study for a€
: (0,1). This problem is as difficult as the previous one for a € [-1.0) for the same
*
ﬁ reasons. Therefore, we concentrate on qualitative information. Considering the
g
M
phase diagram corresponding to the equation (3.3),, one notices that there is a
:} qualitative change as a crosses the value 1/2. In fact, for &8 € (0,1/2), this diagram
" 4
:, contains a homoclinic orbit to the point (u.u,) = (0,0); at a = 1/2, it contains two
p
! heteroclinic orbits to the points (0,0) and (1,0), and, for a € (1/2,1), the diagram )

R i A

\ U] %

t‘l'
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N : has an orbit homoclinic to the point (1,0). This qualitatiave change reflects on the
» structurally stable regions for (3.1),. Let us define a function ¥ = (a) in the
M

¢

X! following way. For a € (0,1/2], 7(a) is the value of @ in L, corresponding to the
N

‘! : angle of the tangents to the separatrices at the origin in the phase diagram. A
' simple computation yields Y(a) = (I + a1/?)"L For a € (1/2,1) we define Y(a) as
J':‘

Z‘, the value of 8 in L, corresponding to the tangents to the homoclinic orbit passing
]

&’

v through u = 1. This function Y is a continuous function satisfying 0 < y(a) ¢
4 (1+v2)™! for a € (0,1). Then, if again we let S; denote the structurally stable
g

‘: regions for (3.1), corresponding to 2j+1 equilibria, we have:

4

W

Theorem 3.5: For a € (0,1) the following holds:
) 1) Ifa < 1/2, there exist positive constants 6 and D such that

3 (0,8) x [Ya)1] € Sy,

b [D,®) x [(a),1] C S,

: 2) If a»1/2 we have

g (0,°) x [¥(a),1] C§,.

) To prove this, we consider the effect that the above observation about the
:, phase diagram for (3.1), has upon the time map as defined by (3.9). If, for a

; (0,1/2), we denote by « the smallest positive root of I‘o' f (s)ds = 0, then the point
E («0) of the phase diagram corresponds to the intersection of the homoclinic
‘ orbit through the origin with the positive u-axis. Then, for 8 » ¥(a), the time map
!E T(-.a) : («1) = (0,#) is continuously differentiable and unbounded as u, = « or 1.
'; Moreover, one can easily check that 8T/3uy(-,a) : (1) = R is positive as u,
s approaches 1 and negative as u, approaches « This implies the existence of a
s; minimum value p, > 0 for T(-,a), and also a maximum value p;, » p, for its
t

i

)

DY

‘ il S0 0N
'l‘? RO L % .“‘.‘i"‘""" H‘.‘.!“.',"\l ')?,‘+

) o J0 P N [ Ha e L € . R -
4 Ot s 0 < ¢ S a Tty 0 3
B "l"‘l’q't LA ,’A“.‘a"’-'?‘p‘l‘»‘?'t"" l.""'l ?':‘- 4‘-'!":‘( LIS P “""‘i'i!;'. S" b"‘i".@ .J"n"’l‘-‘( A )
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d;

dz

", d3

=30~

extrema. Then, if we take D > (2p°)'1, for d » D there will be no nonconstant
solutions for (3.1),, and taking & = (2pl)“ there will be exactly two nonconstant
hyperbolic solutions for d < 6 Moreover, for 8 € (0,1] and all a € (0,1), zero is
the only constant solution, being always hyperbolic. This completes the proof of
part 1) in the theorem. Part 2) will follow from the observation that for a

[1/2,1) and 6 3 (a) there are no nonconstant solutions of (3.1),. In Figures 5.a
and 5.b, we present our conjecture for the shapes of S.i in the cases of a€ (0,1/2)

and (1/2,1), respectively.

A (a-az)_md’\
So So
S di S1
S, a2 R 52
S3 dal Ss
— .
0 y(a) 1 6 0 yY(a) 1 )
Figure 5.a Figure 5.b
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mark . It is clear that part 2) of the previous theorem presents the
4 existence of a homotopy from a structurally stable system with Neumann
boundary conditions, which must have at least three solutions, to a structurally
stable system with Dirichlet boundary conidtions, which must have only one
4 solution. The above example also makes clear what one should do to create such
) qualitative phenomena as the alternative in Theorem 3.5, in systems corresponding
N to more general functions f. Finally, in this example the curves asj in theorems
' 3.1 and 3.4 were constituted only by codimension one bifurcations. It is possible
) ' to create examples in which these lines intersect, presenting higher codimension
bifurcations. For instance, take an example for which the time map at some 9,
has two minima which are equal. Then, for this example there would be a dy >0

4 such that (d,;,8,) would correspond to a codimension two bifurcation.
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