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Abstract

Several notions of stochastic convexity and concavity and their

properties are studied in this paper. Efficient sample path approaches are

developed in order to verify the occurrence of these notions in various

applications. Numerous examples are given. The use of these notions in

several areas of probability and statistics is demonstrated. In queueing

theory, the convexity [as a function of cT of the steady state mean waiting

time in a GI/D/c queue, and [as a function of the arrival and service rates]

in a GI/G/l queue, is established. Also the convexity of the queue length in

the M/M/c case [as a function of the arrival rate] is shown, thus

*strengthening previous results while simplifying their derivation. In

reliability theory, the convexity of the payoff in the success rate of an

imperfect repair is obtained and used to find an optimal repair probability.

Also the convexity of the damage as a function of time in a cumulative damage

shock model is shown. In branching processes, the convexity of the population

size as a function of a parameter of the offspring distribution is proved. In

nonparametric statistics, the stochastic concavity [convexity] of the

empirical distribution function is established. And, for applications in the

theory of probability ineqalities, we identify several families of

distributions which are convexly parametrized.

AMIS Subject Classification: Primary: 60E)5, SOcOdary: b2ElO,60K25,60K0.

Key words and phrases: Stochastic nonotonicity, classes of distribution with

the semigroup property, Poisson process, lueues, proportiondl hazard, 0

imperfect repair, branching processes, o'pirical distributions, convex

%parametrization, majorization and Schur-convexity, reliability theory,
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I. .itroduction.

lany collections of random variables {X(6),E:O} [e.g., some stochastic

processes] have the "property" that in some sense X(3) is stochastically

convex (or concave) and perhaps also increasing (or decreasing) in u. In

this paper we discuss some notions of stochastic convexity (concavity) and

develop efficient sample path approaches to verify the occurrence of these

notions in various stochastic processes.

Section 2 consists of some preliminaries and definitions. Stochastic

monotonicity and some notions of stochastic convexity are discussed there.

3asic properties of these notions are also given in the same section. Sample

flI path convexity and concavity notions are defined and studied in detail in

Section 3. These notions have the advantage that they are sometimes easy to

verify and that they yield the useful convexity and concavity conce:)ts or

Section 2. 3asic preservation results, which are useful in tne applications

to follow, are also given in Section 3. A sample of collections if randoin

variables X(o),j,(} which satisfy the notion of sample path convexity or

concavity is given in Section 4. These collections 1X(6),uE&) are either

parametric families of random variables or well studied stochastic

processes. Combination of the examples in Section 4 with the properties

obtained in Section 3, and with the fact that sample path convexity

(concavity) implies the convexity (concavity) notions of Section 2, yields a

host of applications in various areas of probability and statistics. A sanple

of such applications (in queuein theory, reliability theory, "ranc!iinj

processes, nonparametric statistics, and in the theory of proi)abili-y

,. inequalities) is given in Section 5. in particular it is snown how various

monotonicity and convexity (concavity) results, which have ,.een oi)taineo it

the literature using tedious aijeora, can be easily o[btained (and

•w



2

strengthened) using the sample path convexity (concavity) approach.

Throughout this paper 'increasing' ['decreasing'] means 'nondecreasing'

['nonincreasing']. 'Whenever an integral r,(x)dF(x) [or expected value

Ey(X)] is written, it is tacitly assumed that . is such that the integral

[or E(X)] exists. Also, it is tacitly assumed that all the real functions

mentioned in this paper are Borel measurable.

2. Preliminaries: stochastic and convex orderings.

A class C of functions R + R can yenerate u partial ordering -< on

the set of distribution functions on R =  by postulating tnat any two

4r' such distribution functions F and G satisfy F.4 U if and only if

- co

(2.1) ' ,(x)dF(x) ; (x)dG(x) for all C.

The following definitions can be found, e.g., in Stoyan (IlR3).

Definition 2.1. Let X and Y be random variables with djstrihution

functions F and G respectively.

(a) Denote X < Y and say X [or F] is stochastically less than Y [or G]

if (2.1) holds for the class C of real increasing functions in the union

of the supports of F and G.

(b) Denote X 4cx Y [resu)ectively, X c Y] if (2.1) holds tor tne class

C of real convex [respectively, concave] functions in the convex 'ull of

the union of the supports of F and G.

(c) Denote X . Y [respectively, X , Y] if (2.1) nolls for ohe classicx icy

C of real increasing convex [respectively, concave] functions ,)n the

convex hull1 of tne iunion of the supports of F and i.

'U.

,- +- ',- . -+ #+.m ',- . -,- - , m ~ . .+,m, +,' +°,+' , ,
,

. . ,, , "' ! . ", ". A.A a ", . . . . " ', . .. .



(d) Denote X Y if (2.1) holds fo- the class C of real increasing linear

functions on the convex null of tne union of the supports of F and G.

For a distribution function H, let q denote I - H. The followiing

* results are well known (see, e. ., Stoyan (1983)).

* Theorem 2.2. Let X and Y be random variables with distribution

functions F and GO respectively. Then

(a) Xs Y <=> T(X) ' (x) for all x R,

(b) X icx Y <= (y)dy .7(y)dy for all x R,

x x

(c) X ic. Y <> T()J (y)dy for all x R

(d) X Y <=> EX < EY.

The ralation .-Xis sometimes cal led dilation. Conaitions .-jniCn drXe

equivalent to X -xY can o)e found, e.g., in Shaked (1980).

Remark 2.3. Sorie useful properties of tne 'icx' and 'icy' cnri i i on s r e

(here X and Y -ire nionnegative random variables):

(i) X " icx Y => EX~ E K ,

(ii) X 4 icv ' > EX EY 1/,...

Let denote equality in law.

*Theoreri 2.4. If X Y then tnr:r exist Yind ' ei1 (I n i;,

probability space such that X -2 Y, Y Y mio ' c

*For every distribution d denot*2 I inf <:,X 1 , .

:~.1j rK n.~ TO nuren 2.4 cn9 -iy seit 11 *~r

IAA -
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is a uniform (0,I) random variable.

Let (P,,eeo} be a family of univariate distributions. Throughout this

paper 0 is a convex set (that is, an interval) of the real line or of the

set (0,1,2,...}. Let X(f) denote a random variable with distribution P0.

We find it convenient and intuitive to replace the notation P, ,eco} by

{X(o),O6O} and this notation will be used througlout this paper. Note that

when we write {X(e),OcO} we do not assume [and often we are not concerned

with] any dependence (or independence) properties among the X(,)'s. We are

only interested in the 'marginal distributions' {P.,UC} of {X(;),wC" even

when in some circumstances {X(o),jO} is a well defined stochastic process.

Note also that X(e) does not mean that X is a function of o; it only

indicates that the distribution of X(3) is P0. Thus, for example, for

9 :R-*R, the notation E (X(3)) stands for fydP this is usually denoted

in the literature by Ee.,(X). .hen {X(o)),oco} is a well defined stochastic

process then the notation E(X(f)) is often justifiably used.

In the following definition the abbreviations SI, SCX, SCV, SICX, SIL,

SO, SDCV etc. stand, respectively, for stochastically increasing,

stochastically convex, stochastically concave, stochastically increasinJ and

convex, stochastically increasing and linear, stochastically decreasing,

stochastically decreasing and concave etc.

Definition 2.6. Let {X('j),ucO} be a set of random vdriables. Jenote

(a) {X(O) bo-} E SI [SOj if

(2.2) EC : () E (X( ) ,. C

for C - the class of dil increasing real fmnctions on R, iml C,,

- - * * . . .
" ",","- ;". ". . " ' ," .. v -...",",,.. .-.:,'.-: . ... , . ,' ,1.1 -.'-,':.-. .: . - . ....- , .. , ., .'.':,
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the class of all increasing [decreasing] real functions on c.

(b) {X(),co} E SCX [SCV] if (2.2) holds for C - the class of all real

convex [concave] functions on R, and C0 - the class of all real

convex [concave] functions on o.

(c) tX(e),eco} E SICX [SICV, SIL] if {X(a), o} c SI and if (2.2) holds

for C - the class of all increasing and convex [concave, linear] real

functions on R, and C. - tne class of all increasing and convex

[concave, linear] real functions on o.

(d) {X(5),Eo } c SDCX [SDCV, SDL] if (X(o),9Fao}SD and if (2.2) holds

for C - the class of all increasing and convex [concave, linear] real

functions on R, and C_ - the class of all decreasing and convex

[concave, linear] real functions as O.

Some basic properties of these notions are given next.

Lena 2.7. If ,X() 1--3 Lrespectively, SO] then there exist rando

variables i!- 2, , derined on a common probability space, sucn that

Xk) s; X( j), u , -ino, 'i.s., x×u is increasing [respectively,

decreasing] in

One way to construct {X(i n Lemma 2.7 is to set

X(u) = -l(U,u) , t C, Where iU is a uniform (0,1) random variaole an

-- (u,-) inf x:P{X(. )>x I . .

Remark 2.8. It is worthwhile to note down the following 'Continuous' Indlo

of Remark 2.3.

i) [X(Q), u c (} F, SICX => EX, is increasing and .onv.,x in

for k = 1,?,

i) (X(%), . SICV => EXl/k( ) is increainr inl (:ncave in

"" "2.:'-2.S. . - - . - . -?-2 -"-.,........... .......... ,,.......... ........ ., .. _, ,,. ,.,, ... .' " - . . .'" i" S ... ' " " i "" " . ." "
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for k : 1,2,.

(iii) In particular, if {X(5), a F o} c SICX [SICV] then EX(O) is

increasing and convex [concave] in 3 E c.

Remark 2.9. In Definition 2.6 (a), (b) and (c) we require C and C to be

"similar" classes (e.g., for SICX, both are the classes of increasing convex

functions). In general these need not be "similar". For example, of a

particular interest is the class of processes {X(o),3Eo} such that E (X(O))

'- * is increasing and convex in 6 for all increasing functions p. Such classes

-will be considered elsewhere (but see Proposition 5.7).

Some of the stochastic notions of Definition 2.6 are often preserved

under reparametrization (or time transformation):

Proposition 2.10. (a) If fX(O),EZo} F- SI [SD] and h:o+c is increasing

then {X(h(a)), 6 e oE SI [SD].

(b) If iX(O),aco} E SICX [SICV, SIL] and h:o + o is increasing and convex

[concave, linear] then {X(h(q)), 0£o} E SICX [SICV, SIL].

-: (c) If (X(C),0o} E SDCX [SDCV, SDL] and h:C + rC is increasing- and

. concave [convex, linear] then {X(h(q)), -3E} C SDCX [SDCV, SDL].

91 The proof of Proposition 2.10 is straightforward. So is also the proof
i "Z'::." ,st,

of the next result. Let denote convergence in law.

Proposition 2.11. Suppose {X (), ; a C for !11 1,2, If
( ) ( St X() for each ,then {X(),,< C wher C Sl , ,SCX,

SCV, SICX, SDCX, SICV, SUCV, SIL, SOL'.

*W~

i A-;:
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3. Sample path convexity: definition and some properties.

The interest in this paper centers around the monotone convex and concave

notions SICX, SICV, SDCX and SDCV. In this section we find sufficient

conditions which imply that a process {X(9),oEO} satisfies some of these

notions. Our approach is to 'put' some (more explicitly four) of the random

variables {X(b),oEO} on a common probability space and then obtain 'almost

sure' results which carry back to the whole process {X(o),eo.

We start with a definition wnich formally states these conditions. For
any four real numbers x, x, x3, xl we abbreviate the conditions

xI1 mnin(x 2,x3) < max(x2,x,) < x4  by < [x?,x 2 ] x1. Also,

x [x 2 ,x 3 ,x 4 ] denotes x, : min(x 2,x3Y and [x1,X9,X3] x4  denotes

nqax(xlx 2 ,x 3) X x4 .

Oefinition 3.1. (a) The fami j {'((A, ::} is said to oe stacnisticafl,

increasinti and convex in saale .pi-2 sense if for any 3 . =

*' -ii 1,2,3,4, such 3L t i* )4 jrid there2 "4 2 '

exist four random variaoles Xi, i 1,2,3,4, defined on tne same

prooaDility space such that

A .
=st X( -i , i 1 ,2,394,

(cx) + 3 a.s. (convexity C.v li ,. i ),

,-.- i-CX) ]X X 4 X.,o o ) i i. ..i); ; i)

.enote conditions (st), (cx), (i-cx) :y ,Y;), , .

(b) If (st) holds and also (cv) and (i-cv), ,ietr

(cv) Xl?

I.



"- ) i 1 29' 3' 4]  a s.,

then denote {X(e), j £ o} : SICV(sp).

(c) If (st) and (z) hold and also (i-cx) [which is then equivalent to

(i-cv)], where

) 1 + X 4 = 2 + X3 a.s.,

then denote {X(o), C3 & c} c SIL(sp).

(d) If (st), (cx) and (d-cx) hold, where

%d-cx) [X2 'X3,X4] X a.s.,

then denote 'X(u), :a S SDCX(sp).

(e) If (st), (cv) and (d-cv) hold, where

d-cv) X 4 " [) I'X2'X3 ]  a.s.,

then denote {X(o), .3 c C) SDCV(sp).

f) If (st) and (z) hold and also (d-cx) [which is then equivalent to

(d-cv)] then denote (X ( C) ) C} c SDL(sp).

In order to gain some insight into the monotonicity and the convexity

conditions aoove consider, for exadl~ple, the SICX(sp) case. First note that

(i-cx) indeed implies stochasti: nonotonicity of {X( J), j o}: from (i-cx) ae

t Stnave X(. 1 ) X X X(L ) and tnus {X( ), , SI [see ,)etinition

2.6(a)]. Si rice c it see;ns iore ndtjral to postulate tne

srocnastic onotonicity hy replacinj (i-':x )y something "simpler" such 3s

k;, I'.T>..........................-...-..............-a--."--*..... .. ' -. ---.....-..'.FI- 1i .1 .-..-.>,>i-> >.L--' ' - .
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(i) X X < 4 a.s.,

or

(i') X [x2 'X3 ] ' X4 ' a.s..

However in some applications we found it hard [if not impossibl 1 to verify

(i) or even (i') [see, e.g., Subsection 5.3], whereas (i-cx) could be

obtained. Note also that if is increasing and convex [concave] then the

set { (u) - } of degenerate random variables is SICX(sp) [SICV(sp)].

The (sp) conditions enjoy some useful preservation properties Wnich are

" - discussed below. The first one is

Proposition 3.2. (a) If X(9), , : SICX(sp) [SICI(sp), SILso)

and if is an increasinj and convex Fconcave, linear! f.inct.ion tien

S(- < ; ), ;c0} ) SICX sp) [SIC'(sp), SIL(s ) .

(D) If (', E D} SDCX(sp) [S DCVs), SL(sp)_ i d if is

increasigj and convex ,concave, Iliedrl finction then

{?(X( )), Fo} c SDCX(sp) [S)CV(s,), S L',soIW].

Proof. Suppose {X(), o s , SICX(sp). Iet i 1,2,3,4, ;e such
...that; 3 '" and ;I . Let , i = 1,2,3,4, oc

!31 1 J 2 t 3 4 % ) and

. random variables on a common probability space sucn tnat st), (cxi and

(i-cx) of Definition 3.1 hold. In particular, e.s . , . -. ,,

X2'- X1 "  ;ow, the convexity and jionotonicit. oJ - ioly

AA) (X1 ) '(X)- X 1 XA) ) X . lstenonic

)f , imlpiIies ("X1 K), .(X9), 1 )] (i) a.s.. Thus (, . - "

satisfies (st), (cx) and (i-cx) of Ilefinition 3.1. The ru)fs .if the inA

Ki.-".
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SIL cases and of (b) are similar. ii

The next result is a dual of Proposition 3.2. It shows that the (sp)

conditions are sometimes preserved under reparametrization (time

"" transformation). First the following lemma is proved. Roughly speaking it

says that if Xis i = 1,2,3,4, exist such that (st), (cx) and (i-cx) hold

whenever ei, ih{1,2,3,4,}} E SIL(sp) then such Xi' i=1,2,3,4, exist

whenever {6i' i E {1,2,3,4}} c SICX(sp). Let ocx {

l < 2 < a 3 < 04 and e2 + 0 3 I + 94} and let

Ocv = (81,e2,6a3'4): 0 < a < 03 < a4 and 02 +03 . +04}. Below we

assume oc [O,,).

Lemma 3.3. Suppose that for each :3 0 the distribution of X(O) has no

atoms.

(a) If {X(6), 0 F o} £ SICX(sp) [SDCV(sp)] then for each

( 1 '02'u 3 '0 4 ) a cx there exist Xi, i = 1,2,3,4, defined on a

common probability space which satisfy (st), (cx) and (i-cx) [(cv)

and (i-cv)] of Definition 3.1.

(b) If ;X(a), 0 c c} c SICV(sp) [SDCX(sp)] then for each (91,02,3,04)

4A
"e 0 there exists Xi. i = 1,2,3,4, as in (a) which satisfy (st),

(cv) and (i-cv) [(cx) and (d-cx)] of Definition 3.1.

Proof. First we prove (a). Suppose :X(3), -; e 0} SlCX(sp. Let

01 2030 E Set !j max(O,+- ) and m : ,nin( ,2" 90 0 '39 4) 1 cx : '2+ 3 '4 42 "

Then o' < and 3 Then there exist1s X(0,"4)41, - =2 3,4 nx4 ") +
, such that 2 X(o!), i = 1,4, and

'St A

i X(PV) i = 2,3, and, a.s., [X 2  and X 3

For each u c i7. denote Fo(x) P1,X('3)>x} and

"" P(u) inf(x:7 (x)ru}, u c [0,1]. Define

N1,.- _
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(3.2) X4  -4 (X9)
44

Tnen (using the fact that the distributions of X'< and X, nave no atoms)

st X(VI), 4 X(34 ) and (by the stochastic monotonicity of X(l) in
X =

X >  , X4  X . Thus i , i = 1,2,3,4, satisfy (cx) and (i-cx) of

Definition 3.1. The proof for SDCV(sp) is similar.

The proof of (b) for the SICV(sp) case is similar tio tne dDove proof of

the SICX(sp) case. The main difference is ciat tnat instead of 'decreasing,

and 04  to 9i and t, and tnen 'increasing' X' and

X4 to X, and X49 in the SICV(sp) case one first 'decreases' -nrid

to 0' and 0' and then 'increases' ,' and '' to X Y, ,1 . The )roof

of the SD)CX(sp) is similar. a

Remnark 3.4. The assumption of no atoms in Lemma 3.3 is not really

necessary. Even without this assumption, (a) and (,) of L._iw-ia 3.3 l h he

proof of tnis statement is the same as the proof of Lemma 3.3 except ,'tat

constructions (3.1) and (3.2) are to be modified so that ti7y are prooer for

the yeneral case. We omit the lengthy details.

Proposition 3.5. (a) If ,LX(o), : , SICX(sp) [SDCV',] tnl if

p: is increasing and convex then 'X( ()), s ,

[SjCV(sp)].

(o) if iX(%), O - c} SICV(sp) [SDCX(sp)] and if i.:s * S is creasin;

and concave then [X(Y(h)), C , SICV(sp) [SDCX' sp)].

Proof. We only prove (a) for the SICX(sp) case. The proofs of tne fier

statements are similar. So suppose XL), .. RI} SICX(;). 1-- .t , -

- t:A.

,..;,;..
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1,2,3,4, be Such that 01 e2 < e3 94 and o1 + 04 = 02 + 03 Denote

ni  = 9(i) ,  i = 1,2,3,4. then n1 4 2 n3  4 r4  and n1  + n4 ) n2 + n3,

that is r n The result now follows from Lemma 3.3 and

- Remark 3.4. ii

The next result shows that indeed Definition 3.1 gives sufficient

*i conditions for stochastic monotone convexity and concavity as defined in

Definition 2.6.

* Theorem 3.6. If {X(e), a E o} c SICX(sp) [SICV(sp), SIL(sp), SDCX(sp),

SDCV(sp), SDL(sp)] then {X(a), oao} 6 SICX [SICV, SIL, SDCX, SDCV, SDLi.

Proof. Suppose {X(e), I- c O} £ SICX(sp). Let be an increasing convex

real function. Proposition 3.2(a) shows that {p(X(o)), Oco}SICX(sp). That

is, if ei, i = 1,2,3,4, are such that o1 <u2  03 6 <4 and

I + 04 = 02 + 03 then there exist four random variables Yi i : 1,2,3,4,

. on a common probability space such that Yi ,(X(oi)), i = 1,2,3,4, and
1 I

" (3.3) LyI '  Y2 ' Y3} I Y4, a.s.

(3.4) 1 + 4 "'2 + i31 a.s.

The stochastic monotonicity of {9(X(a)), a~o} follows from (3.3). From

(3.4) we obtain E,(X(0 2 )) + E (X(o3)) < Ey(X(O)) + E (X(o ) wnicn is

equivalent to the convexity of E (X(3)). Thus L(), ,:O} SICk. The

proof of the SICV, SIL, SDCX, SDCV, SDL cases is similar.

The next result gives sufficient conditions for nX( ), . I t e SCX

and SCV. It will be used in Subsection 5.7.

Proposition 3.7. If {X( ), ] } SIL(sp) or SOL(sp) then tX(), : }

I%

'en
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SCX and SCV.

Proof. We will show

{X(),o c S IL(sp) => {'X(, .J)q i SCX.

The other cases can be shown similarly.

Suppose 1'X(J), 3 c (J4 SIL(sp). Let ,-, be a convex function. Let

b i=1,2,3,4, be such that 9 11 6 2 1 ~3 <1 4 dnd I + 4 ~2 + 3. if

we show that E(y(X(d)) is convex in 0, that is,

(.)Ey?(X(-01 )) +Ey(X(3 4)) M( 32

then it follows by Definition 2.6(b) that (X(f), o }~ SCX.

To show (3.5) let Xi, i =1,2,3,4, be four random variable on a comimon

probability space such that X. X(e. ), 1 1,2,3,4, and, a.s.,

X+ X X + X and Fx XX(r qiaety
X1  4  '2 3 - 1' 2 X3] X4  (r qiaety

X x2 [X , 3 9 X4] The convexity of implies that, a.s.,

(3.6) '~X) + (X) 0 (X2) + (

Taking expectations in (3.6) one obtains (3.5).

The following lemma gives sufficient conditions for sa!ile patn

convexity, concavity arid linearity. Usudily it i's not easy toj ver ifj toese

conditions, out see Example 4.5.

Lemma 3.:3. Let 11X( c o j:G be a collection random varioles and denote

F% (u i nf x:P fX( )> x u} 'j[),1 . If for all
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u 6 Coll], 1 (u;e) is

Mi increasing and convex Econcave, linear] in 0 o then {X(a), 0 c}

SICX(sp) [SICV(sp), SIL(sp)].

*(ii) decreasing and convex [concave, linear] in 6 o trien (X(iJ), 0 o}0

sSDCX(sp) [SDCV(sp), SDL(sp)].

Proof. For the SICX(sp) let 0i, i = 1,2,3,4, be Such that

-: 0~~ 3 ~04and o+ 04 02 + 03 For some uniform (0,1) random

-:~~~ vaibeMUlte F(~i) i = 1,2,3,4. It is easily seen that i

i= 1,2,3,4, satisfy (st), (cx) and (i-cx) of Definition 3.1. !

From the definition of sample path convexity, concavity and linearity it

is immediate that one has:

Theorem 3.9. If {X(a), o G } and {Y(d), 0a o belong to the class C

where C F- {SICX(sp), SICV(sp), SIL(sp), SDCX(sp), SDCV(sp), SDL(sp)} and

if

L(O) = X(O) with probability p,

= Y(O) with probability 1-p,

then tZ(O), 0 E: O}E C.

Theorem 3.10. If {X(O), 0 o}c and {Y3,0 01c belong to the class

C where C E (SICX(sp), SICV(sp), SIL(sp), SDCX(sp), SOCV(sp), S!DL(s )! and

if X(o) and Y(o) are independent for each a n then

(X 6) + Y(4J), 060} E C.



4. Examples.

In this section we list a sample of examples using similar constructive

ideas in most of them. Lemma 3.3 is also used. Some of the examples are

used later in Section 5.

Examole 4.1 (classes with the semijroup property). Let {X(f), eo}

[oc (0,-)] be a collection of random varibles with the semigroup property in

u, that is, if Y and Y. are independent and

YIst X(o) and Y2s then Y1 + Y2 _St X(1I+02). In this case

{X(o), uEO} E SIL(sp)•

Proof. Let ;i, i = 1,2,3,4, ze such that l 2 63 and

+ = 2 + Let Yi' i = 1,2,3, be independent random variables sucn

t' Y ') t kantt I X 6eJ) and ' X(a 4 -0 2 ) [recall

2 set x '1 1 2 + Y2 Y + V and

X4 =YI + Y2 + Y3 . It is easily seen that xi. i = 1,2,3,4, satisfy ,

(L) and (i-cx) of 3efinition 3.1. ;

it follows that if X(u) is a Poisson random varible with mean - or

gamma random variable with shape parameter o or negtive binomial random

variable with the proper parametrization [or binomial random variable with

0 being the number of independent trials] then

{X(o), E(;),)} [or (X('), I&tl,2,...}} belongs to SIL(sp). MIso, if x

j = 1,2, ... , are independent nonnegative identically distriouted ranko,
n

variables and Si , S n  X. then jS. i io'l? ... 'ave ti

j=1
semigroup property in i. Thus (S i

Exam:iple 4.2. (nonhomogeneous Poisson process). Let eX( t _ F),. , a

nonhomojeneous Poisson process with intensity function ;. :f \ is

-2-
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increasing [decreasing, constant] then {X(t), t : (0,-)} C SICX(sp)

[SICV(sp), SIL(sp)].

. Proof. First suppose X(t) - x, independent of t. Then

(X(t), tc[O,-)}c SIL(sp) by Example 4.1. Now suppose A is increasing.

Then A(t) E JO X(u)du is increasing and convex. Clearly

[X(t), te[O,-)} at {N(A(t)), t c [0,v)} where (N(t), t > U is a

homogeneous Poisson process with intensity A = 1. But we have shown aDove

that {N(t), tE[O, )} e SIL(sp). Thus {X(t), t E [0,-)} SICX(sp) by

Proposition 3.5(a). The proof the SICV(sp) case is similar. i

Example 4.3. (sum of independent random variables). Let X., j = 1,2,
n

be independenL nonnegative random variables. Set S 0, Sn  =

(a) If {X., j {1,2,...}} SI then {Sn, n : {0,1,2 .... j} c SICX(sp).

(b) If {Xj, j c {1,2,...}} F SD then {S n, n c (0,1,2 ....}} C SICV(sp).

(c) If Xj, j = 1,2,..., are identically distributed then

S n, n c {0,1,2,...}1 £ SIL(sp).

Proof. (a) Suppose {Xj, j c (1,2,...}} £SI. Let ni , i = 1,2,3,4, be such

that n, < n2 < n3 1 n4  and nI + n4 = n2 + n3 . Let X, j = 1, ... , n3  be
Ast

random variables such that Xi = X. , Let Y., j = n+ ... , n2 , be such

st
that V. s X. and let Y., j = n3 + 1, ... , n., be such that Y. = X. and

Yn3+ j  Ynl+j a.s., j 1,2,3, ... , n1 -n3 (=n2-nl). [Since

Xn+J t Xnl +j
9 it follows from Theorem 2.4 that such random variables can be

constructed on a common probability space.] Furthermore, tne rindomii vria, les

X., j :, ... , n3  and the random vectors (Y k n3 q k 1, ...

1 3
n3 can be taken such that all are mutually independent Fjust t.;enerate them

from independent uniform (0,1) random variables].

nI  n
low set S = + ;:9

I _ j '--' j =n +1
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n n n n n- 1, 2 and 1 2S 3  Xan+ X. + 4

j= J=nl+1 =n,+1 j=1 j=n +1

n3  n4
X. + '3 Y.. Clearly S t S i 1,2,3,4. Also, clearly,J=n2+1 J j =n3+1 n i

2 n3

a.s., S1 + S4  S2 + S3  and S [SS3 ] S Thus

rSt n c OIP...} SICX~sp))
n'

The proof of (b) uses a similar idea and is omitted. Statement (c) has

been proven in Example 4.1. An alternative proof of (c) can be obtained from

the proof of (a) by taking there Yn3J i z 1, .... nd-n3.

Example 4.4. (binomial random variables with parameter p). Let {X(p), pc

[0,1]} be a collection of binomial random variables with parameters n and

p (n is a fixed inteyer). Then {X(p), p [0,l]} E: SIL(sp).

Proof. First note tnat X(p) s X,!p)+...+X (p) where X

n, are independent and identically distriouted Bernoulli random varia,Ies

w iith P{Xj(p) = I = p. Je first show, for j = 1,2, ... , n, tnat

. (4.1) {Xj(p), D : [,0,1 } I SIL(sp).

To see it let Pig = 1,2,3, , e such that P1 I P2  and

P1 + P4 
= P2 + P3. Let U be a uniform (),l) random variale. Let L

denote the indicator function of A. ?efine x, I IJ

X1 = Ix I + I,
" X2 Up2}' 3 {U<p:; = _

(4 .  Then j(Pi) i = Ind

Xi 1 1,2,3,4, satisfy (,) and (i-cx) it ef inni t n .i.

% From;i Theorem 3.10 and (4.1) it foll.s tnit
4 nx P P U 1 , St X -) L

LJI

-°

.9.
".• . .. ..-"- ," ".. . .,,"•.. . . . . . . . ...,.. . ..".- . ." . ..."-. -."."" "". ' . "- '. . .." " .°- ..'""..- .-. "'''2 ''." .,., ,. ... ',-.".* "
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Example 4.5. (location-scale parametrizations).

* (a) Let Z be a nonnegative random variable and let a be a constant.

Set X(j) = a + OZ, ) . Then fX(u), 0 [0,-)} SIL(sp).

(b) Let Z be a nonneyative random variable. Set X(s) Z/, > U.

Then {X(6), 6 F (0,-), SDCX(sp).

Proof. Suppose Z has the survival function . Using the notation of Lemma

3.8 we have r (u;o) = a + )G '(u) for (a) and F (u;u) = lu)/: for

(b). The first F (u;.) is increasing and linear and the second F- (u;.)

is decreasing and convex. The two results then follow from Lemma 3.'2,.

5. Applications.

5.1. GI/G/l queue. Consider a single server queueing system at which

customers arrive according to a renewal process with inter-renewal times

{An(O), n = 1,2,...} for some j > 0. The service times of these customers

form a sequence of independent and identically distributed random variables

{B n(,), n = 0,1,2,..., > 0, independent of An(.;), n = 1,2 .... Lt

Wn (o,) be the waiting time of tne n-th customer [ W(,1) - 0]. is well

known [see, e.g., Ross (19,,')] that

Wn(U,vi) = [WJn-i(6 ,) + 3 n-i ) ( n = 1,2.

Theorem b.l. (a) Fix w > 0. If 'A (-, , (U,w)} L SICV(sp) for

n = 1,2, .. , then Jn ,) .:ciuw)} . S )CX(sp) for n = 1,2,n

(b) Fix 3 > U. If {Bn(n), E(O),-)} , S)CX(sj)) for n = 0,1,2, ..... ten

{W (WJu), (I0)} SDCX(sp) for n = 1,2,.. •
n

Proof. We prove (a); the proof of (b) is similar. Certainly

{Wo(j, ), 0c(O, )} C SDCX(sp). Suppose ( , 0

Si)CX(sp). Note that if (An(,:), c: (f,.o} SICV(sp) then {-An( 2,

.......................................
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(0,)} c SDCX(sp)• Thus Theorem 3.10 implies that

(5.1) Wn-1 i(,1) + Bq_ (w) - An(H) (0,)} E SDCX(sp).

The function [x] +  is increasing and convex. Thus from (5.1) and Proposition

3.2(b) it follows that {W n 6 F (0,o)} =

{[Wn I(o,) + Bni(() - A n(6)], F - (0,)} c SDCX(sp). :I

Remark 5.2. Let {Xn, n = Oi,...} be a sequence of independent and

identically distributed nonnegative random variables and set 3 (/) = ( I;.r.,n. n

Then {Bn('), pe(O,w)} c SDCX(sp) [Example 4.5(b)]. Therefore the waitingn

time {Wn( E ( , in this GI/G/1 queue is SDCX(sp) and hence S:CX

[Theorem 3.6]. The convexity of E[nW (o,ij)] with respect to u is proven in

I eber (1983). From Proposition 2.11 it follows that the steady state ialean

waiting time in this queue is convex with respect to p. This fact has )een

. established in Tu and Kumin (1983). Observe that in Theorem 5.1(b) we I.o not

restrict 3n(p) to take this specific form.

5.2. GI/G/c queue with rotary assignment. Consider a single stage queueiny

system with c parallel serves at which customers arrive according to a

renewal process with inter-arrival times {Rn, n = 1,2,...}. The service times

of these customers form a sequence {Bn , n = 1,2,...} of independent and

identically distributed random variables independent of {Rn , n = ,2. •

Fhe customers are assijned to the servers in a rotary manner. That is, tje

(cn+r)-tn customer is assigned to server r (r=1,2 ...,c;n=i),l .... The
stationary waiting time (say W(c)) of an arbitrary customer, .1hen it exists

[tha t is, when c is large enough, say c c* for some c*] has the same

d.

S'_. . . . . . . . ... .. . . . . . . . € - - - . % . . • - . . . ., . - - - - - _ -
K-". ". .' '' .. '' "-.,,,'""""''., ... ,1' ..- ,'' ' ,%., = *.. , ,- ,' ,' ' ' .''I'' ,'wI,



I .

20

distribution as that of the stationary waiting time of an arbitary customer in

a GI/G/1 queue with inter-arrival times {An(c) = R(n1l)c+l+...+Rnc , n=

1,2,...} and service times {Bns n 1,2,...}. In Example 4.3(c) it is shown

' that JAn(C) cc{1,2,...}} is SICV(sp) [in fact SIL(sp)]. Thus, from Theorein

5.1(a), Theorem 3.6 and Proposition 2.11, one has

Corollary 5.3. The stationary waiting time 11(c) of an arbitrary customer in

a GI/G/c queue with rotary assignment satisfies {W(c), c e (c*,-)} E:

SDCX(sp).

El Remark 5.4. Rolfe (1971) conjectured that E[W(c)] is convex in c c* for

a GI/G/c queue with first come first served service policy and proved it for

the M/D/c queue. For the GI/D/c queue the distribution function of the

stationary waiting time is the same under the rotary assignment and first c:,e

first served service policy. Thus Corollary 5.3 extends the result of , olfe

(1971) to tnu GI/D/c queue and provides a partial answer to his conjccture.

5.3. ;.I6/A1(n)/l queue. Consider a single stage queleing syste1 at ,.nicn

customers arrive according to a Poisson process with rate " > (). C,-stomer

n brings a random number Bn Of tasks, n 1,2.... The 3r, s are

independent and identically distributed. Denote Ob n '

0,l,2,.... The service requirements of these tasks for: a se,ence )f

independent identically distributed mean W-1 exponential randol >ariables

independent of 1Bn n = 1,2,...' The service rate is ,1(n) ioen t'iere ar,

n tasks in the system, n = (0,1,2,... where -f(O) P and -.(n) > f)r

S1. Let ft() denote the number of tasks in the system at time t.

i * -
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Theorem 5.5. Suppose y(n) is increasing and concave in n = 0,1,2,...

(a) If lir y(n) <- and if {Y (x), , -)}-SICX(sp) thenI n -,co

-2.. (.2 {'(() A £ (g, ) SICX(sp) far all t 0.

() If for some * > 0 the steady state distribution exists for

t
Xc(0,'1"] and Yt() s  Y*(k as t - for eacrn i c(~ then

4Y*(X), (ox*]} SICX.

Proof. Suppose " lira y(n) < .. Let A5  )e an arbitrary (large) positive
n

nu;:iber and set r E 2( x+p) < -. For x . consider the 'ar<ov chain

X(), n = 0,1,2,...} with state space 10,1,? .... } and transition

probailities determined by

X >v " ,X1
i-i

"- -1 if y < x - 1,

- .r') if y = x-

- X

"" i y >X .

Suppose

-- .(5.3) X ) at

Let {(t), t O } be a Poisson process with rate efi red n ti e Si;e

prooability space as that of ,Xnkx, n = U,1,n ... A ,i !iependont )t it.

From (5.3) it foil ows thnat tne uni for i zed prr)cess X. X

satisfies

.. . ... .. : .:... . .-.. ::, .:..:.-.. . .,.,
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,'Zi ~l W54 y( , t > O} st 'X Wt(X, t 01O

Lsee, e.g., Keilson (1979)]. Since 1 - (x+l) it follows that for
1 T

each y,

(5.5) F(y;A) increases in x c {0,1,2,...} and in x c (O,x s].
'S

Wle will show tnat, for every n : {0,1,2,....

(5.6) iXn ( 1), x (0,xs]} SICX(sp)

From Theorem 3.9 and (5.4) it then follows that

{Yt (x), ( ,;s]} E SICX(sp) and since Xs  is arbitrary we obtain (5.2).

The proof of (5.6) is by induction on n. By assumption, \5.6) is true

when n = 0. Suppose (5.6) is true with n - 1 replacing n. Let

A. : (OX ]'  i = 1,2,3,4, be such that XI  X2  X3 < X and ' +
1 s 1

+ X3. Then by the induction hypothesis there exist Xi, i = 1,2,3,4, defined

st
. on a common probability space such that at : Xni 1,2,3,4, and

i1 ho d - i1
such that (cx) and (i-cx) of Definition 3.1 hold. Let xi, i = 1,2,3,4, he a

particular realization of Xi. i = 1,2,3,4. Thus [xlx 2 ,X3 ] x4  ind

(5.7) x1 + x4 ) x2 + x3.

First suppose that equality holds in (5.7), that is, x1 + x= ,,t

x3. Construct Xi i = 1,2,3,4, on a common probability space using two

independent uniform (0,1) random variables U1  and U2  as follows:

(i) If 11 (Oxi/n) then Xi -xi (I 2 i 1 2,4, and i

.:. : .. .,...-.:....:,..:.:.:...: .... :....:... . . -. ... , .... .... .-.-:.:.:-: :.. ..... ........ .. .4. , . ..- .'
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. u (0i/ n) V (A/n X/n) then x x +
1'5U 2 £4 3 3 2)

(ii) If U1 E (,I/,1-(oy 5 s!;)) then X -xi, i= 1,2,4, and if

UI  (xln,X2 /n) x 14Yi)i then - x,
1  2x s-

-*. (ii) If U1 £ l-(u 2 /n),l; then . -- x. - , i I, 23,4 , .iere
2 /n)"the 1 1 i I

A C 2 IEu2  i = 1,2,4 and

2 1 [U
3"[U< y(Xl)/yS] [y(X2 )/Iys U2 J-'(x 9 )+'(x )-y(x) ' /y

It is now verified that X., s [Xn(xi)lXnl(,\i)= xi], i = 1,2,3,-+. Tne

-- verification of [X X and XI + X4 > X 2 +  3 a.s. in cases il

and (ii) is simple. In (iii) notice that, by assumption, xI + x, (.

_ " and that the concavity of y(.) implies y(x2 ) + Y(x 3 ) -- ((x 1 ) 1 -Tus

I + A4 A< A2 + . 3  hence X1 + X4 X 2 + X3 a.s. To prove

3 4.

note that (5.8) can be violated only if x4 =x i  for some i £ , . 3ut

since we postulate x1 + x4 = x2 + x3  it follows that if xa = 1 for some

i (l,2,31 then A4 = A. for that i and thus (5.3) holds.

Summarizing the results of the preceeding parayraph we see that it
equality holds in (5.7) then [Xn(Ai)Xn-1 (xi) = xi], i = 1,2,3,', "can oe

put" on the same probability space such that (cx) and (i-cx )f efinition 3.1

hold.

*If strict inequality holds in (5.7) then osing tne ;tocnastic

monotonicity (5.5) it can be shown, by an argument similar t) the )root )f

Lemma 3.3, that [X (x)IX x.) = x.] 1,,3,1, "can t)e put" on ,2(.
-*.n 1 n-l i 1

* same probability space such that the andlogs of (st), (cx) and ,i-cx) hold.

The proof of (5.6) is now completed using the fact that SICXsp) is closed

.
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under mixing [Theorem 3.9].

If Ys < - then statement (b) follows from (a), Theorem 3.6 and

Proposition 2.11. By standard limiting arguments it can be shown that (b) is

true also when -Y =, ;I

Remark 5.6. For the M/M/c queue [that is, MIM(n)/I with

y(n) = min(n,c), n > 0] Grassman (1983) and Lee and Cohen (1983) showed

that EY*(X) is i.ncreasing and convex in x s (0,X*]. The algebraic proof

used there can become very cumbersome, if not impossible, if one tries to

-' establish the convexity of E (Y*(X)) in x for all increasing convex

functions 9:{0,l,2,..} R. Thus one sees that the sample path approacn is

simple and very powerful.

5.4. Proportional hazards and imperfect repair. The main result of this

subsection is

Proposition 5.7. Let F be an absolutely continuous survival function such

-Pthat F(0) = 1. For p a (0,1] let X(p) have the survival function F

(that is the X(p)'s have proportional hazards). Then E (X(p)) is convex and

decreasing in p e (0,1] whenever is increasing. In particular

{X(P), p c (0,l]} E SDCX.

In order to motivate the proposition, and indicate its uses, consider the

0 ,following imperfect repair model of Cleroux, Dubuc and Tilquin (1979) and

"brown and Proschan (1983).

*i Model b.8. A new item with an absolutely continuous survival function F

undergoes an imperfect repair upon each time it fails before it is scrapped.

uroe d
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With probability p the repair is unsuccessful and the item is scrapped.

With probability I - p the repair is successful and minimal, that is, after

- i  a successful repair at time t the item is as good as a working item at age

-..

If X(p) denote the time to scrap in Model 5.8 then the survival

S.-"function of X(p) is PP (Berg and Cleroux (1982) and Brown and Proschan

proof of Proposition 5.7. Clearly rP(t) is convex and decreasing in p for

eacn t[O,o). Thus E.;(X(p)) is convex and decreasing in p c(0,1] whenever

p is a binary increasing function, and hence also whenever p is an

increasing step function. Standard limiting arguments complete the proof.

Proposition 5.7 can be applied as follows. Suppose the cost of

performing an imperfect repair with probability 1 - p of unsuccessful outcome

is C(p). It is reasonable to expect that C(p) decreases in p. if ne

benefit associated with a lifetime X(p) is an increasing function :R 'R

then the total benefit 3(p) is

3(p) = E,(X(p)) C(p).

Suppose that, due to engineering constraints, p riust lie in tne inzerval [a,b]

for some 0 < a < b 1- 1, and that 1(p) is linear in .J:Ldo! Then by

0 Proposition 5.7, B(p) is convex in [a,b]. So p = d or ' = s an eptiiaI

solution which maximizes the benefit.

a' I 5.5. Branching processes. Consider a Galton-Watson discrete time branching

process (Xi(), i=o,l,...} depending on a p3rameter > 0 which is the

--
" 

"
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parameter of the offspring discrete probability function f(.;O). Then the

transition probabilities of this Markov chain are

P(X (0) = yX~ 1(a) = X1 = f (y;6), x,yF-tO,l,2,...},

wh~ere f(x)(.;a) denotes the x-th convolution of f(-;9).

Result 5.9. Suppose f(.;o), o > 0 has the semigroup property, that is,

f(-;Y f('2) = f(-.301+ 2 ) where 1*1 denotes convolution. If initially

X0 ) x, where x is a constant independent of o, then

{Xn(v),uE(0,w)}e-SICX(sp) for each n = 1,2,...

Proof. We will show that for each n =0,1,2, .. ,and for each ei, i

1,2,3,4, Such that a 1 0 4 and a 4-+ 0 4 0 ~2 + 03 there exist

four random variables X.i, i =1,2,3,4, defined on the same probability space

such that

(5.9Ji) St i X(O.) i =1,2,3,4,

(5.9.ii) +X 4  X2 + ~

(5.9.iii) X<[X2,X] X4  a.s.

It follows then that {X(e), 0 c(0,r-)) SIGX(sp).

The proof of (5.9) is by induction on n. Clearly (5.9) holds for n

*0. Suppose (5.9) holds with n - 1 replacing n. Then there exist

Y. i = 1,2,3,4, defined on some common pronaility space such that

*Y. :s Xn- (U, i i 1,2,3,4, arid, a.s., Y. I < yv [Y2 Y 4and

1 4 '0Y2 +Y3-

Define now the following mutually independent random varibles which are
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assumed to be independent of y. ,i = 1,2,3,4 (we can take ,2 to be rich

*enough to support these):
a

Z. having probability function f(.,o I), j = 1,2,- -6

Z 1 having probability function f(.,a 2-ui), j = 1,2,

Z having probability function f(.,34-0 j2 1,2

and set

1 I

.1X, 1 1
t.. i~

j12"" Y2 i

x + Z 2- 11x2 ; Lz + z J9°I
j=1

Y Y 2 +Y 3- 1 -
Sz 1 + Z I 4 2 + 2 3 z + Z i2

7, - L Lz~ j ]
3 1

Y
A 4 j14 z + z I + z4  2~
j=1 

j

Then, from the semigroup property it follows that Xi Xn (u.) i =
A

1,2,3,4. Clearly X < ' 3 X a.s., and since 4 Y + Y
1 9 2'3 x4 4 ; Y2 3~ Y'

also X1 + X4 > X + X 3 a.s. T;

Similar results hold also for continuous time branching processes. These

will be discussed elsewhere.

5.6. Empirical distribution functions. Let Y1 9 Y2 9 .... Yn 1)e ildependent

random vdriables with a common distribution function F. Suppose the support

u of F is an interval of real numbers ur integers. Denote )y

Fn(t), t , the empirical distribution function constructed from tne Yi S.

1% ~ .~c~;* ' ~ -.. ~ ~*~
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Result 5.10. If F is convex [concave, linear] on

0 then {F n(t), t e o} E SICX(sp) [SICV(sp), SIL(sp)].

To prove Result 5.10 note that Fn(t) has a binomial distribution with

parameters n and F(t). Thus the result follows from Example 4.4 and

Proposition 3.5.

5.7. Convex parametrization. According to Schweder (1982), a family

{P0 ,OcO} [o is an interval of real numbers or of integers] of distributions

is called convexly parametrized if Ep(X(O)) is convex for every convex

function 9 where X(a) is distributed according to PV That is, X(f), 6

oc + SCX [see Definition 2.6(b)]. By Proposition 3.7, {X(3), e c c}

SCX whenever {X(O), o E 01 SIL(sp) or SDL(sp). Thus Examples 4.1, 4.4

and 4.5 yield a host of convexly parametrized families of distributions (some

of which have already been noticed by Schweder (1982)). For these families of

distributions, Schweder (1982) and Shaked (1980) obtained various inequalities

useful in biology and statistics.

5.8. Majorization and Schur-convexity. Let X(Oj), j = 1,2,...,n, be

independent random variables having distributions F(.;oj), j = 192, .... n,

p respectively, where {F(.;9), o c r} is a family of distributions. Marshall

and Olkin (1979, p. 102) snowed that if tF(.;O), 0 e 0} satisfies the

semigroup property [see, e.g., Example 4.1] and if F(x;o) has some total

positivity property then E,(X(ul), ... , X(On)) is Schur-convex in

(ul,...,un) whenever ,(x1 ...,xn) is Schur-convex. In particular, if
n

S:R+R is convex then, under the conditions above, E (X(. )) is Scmur-

convex in (ul,...,un).

From Example 4.1 and Proposition 3.7 we see that for each j = I ... ,

I,"
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n, E. (X( 6) is convex in 3jwhenever {F.u) ci has the seinigroup
n

property. Thus, if is convex, then E " (X(L)) is symmetric and convex
.J=1

in (~,~G) and hence Schur-convex in

The latter conclusion (which is weaker than the conclusion of Marshall

and O1kmn (1979,p.102)) is obtained without the total positivity assumption of

Marshall and 01kin (1979, p. 102).

5.9. Cumulative damage shock models. Esary, Marshall and Proschan (1973)

considered the folowiny model for wear processes.

Model 5.11. An item is subjected to shocks occurring randomly in time

* according to a Poisson process VJ(t),tN0} with rate X. The i-th shock

* causes a nonnegative random damage X1  The damages are independent and

accumulate additively.

Denote so 0 Sn = Sn~ + Xn n =1,?......Thus at timne t > ithe

accumulated damage is S,( t),

* Result 5.12. (a) If 4-, ie, SI then

{Sd~j e SICX(sp).

*(D) If {Xi, ic il,2 ... ~ SD then I'SN(t)t tCCtO)NtSICV(sP).

(c) If the Xi's are identically distributed then

The Sri(t)~tT~')SL5)

Teproof of this result consists of two steps. For to, i 1234

such that t~ fi ~ t nd + t4  t + t first constrict

,i =1,2,3,4, such tnt 1 5t Nt. , i 1 34 and 'I.S.

I 2 i3] 4 and ?J + 14 = 2 + a 9 s in Examnplo 4.1. Then

* construct ~ i 1,2,3,4, such that S. SA ,,,,ad .
construct Si ,,1,ad

Q e.1
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SI + $S [~[:]2S + S and S [$S $ S$
1 4 2 3 9 23 4

Other convexity results can be obtained for Model 5.11. For example,

under the assumptions of Result 5.12(a) [(b), (c)] the wear process S.,(t) at

'. time t is SICX(sp) [SICV(sp), SIL(sp)] in X c (0,-). If the distribution

of the Xi 's of Model 5.11 depends on a then for each t > 0, stochastic

convexity [concavity, linearity] of SN(t) in 0 follows from stochastic

convexity [concavity, linearity] of each Xi in a provided the Xi's are

identically distributed. We omit the proofs of these results.

4C.

'...

-9 ,

I-.

"*1-

* 'o
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