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;Eﬁ ‘ Abstract

[ Several notions of stochastic convexity and concavity and their

;ié properties are studied in this paper. Efficient sample path approaches are

;:E: developed in order to verify the occurrence of these notions in various

S-; applications. Numerous examples are ygiven. The use of these notions in

jjé several areas of probability and statistics is demonstrated. In queueinyg

;\a theory, the convexity f[as a function of c} of the steady state mean waiting

e time in a GI/D/c queue, and [as a function of the arrival and service rates]

éﬁ in a GI/G/1 queue, is established. Also the convexity of the queue length in

L?: the M/M/c case [as a function of the arrival rate] is shown, thus

S strengthening previous results while simplifying their derivation. In

;;E reiiability theory, the convexity of the payoff in the success rate of an

3;2 imperfect repair is obtained and used to find an optimal repair probability.

e Also the convexity of the damage as a function of time in a cumulative damage

'EE shock model is shown. In branching processes, the convexity of the population

?;i size as a function of a parameter of the offspring distribution is proved. In

E’i nonparametric statistics, the stochastic concavity [Eonvexity] of the

,?E empirical distribution function is established. And, for applications in the

%;g theory of probability inegalities, we identify several families of
-gf‘ distributions which are convexly parametrized.
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1. I!atroduction.

ilany collections of random variables {X(6),0e0} [e.g., some stochastic

processes] have the "property" that in some sense X(3) 1is stochastically
convex (or concave) and perhaps also increasing (or decreasing) in 4. In
this paper we discuss some notions of stochastic convexity (concavity) and
develop efficient sample path approaches to verify the occurrence of these
notions in various stochastic processes.

Section 2 consists of some preliminaries and definitions. Stochastic
monotonicity and some notions of stochastic convexity are discussed there,
3asic properties of these notions are also given in the same section. Sample
path convexity and concavity notions are defined and studied in detail in
Section 3. These notions have the advantage that they are sometimes easy to
verify and that they yield the useful convexity and concavity concents of
Section 2. 3asic preservation results, which are useful in tne applicdtions
to tollow, are also given in Section 3. A sample of collections of random
variables {X{#6),sev} which satisfy the notion of sample path convexity or
concavity is ygiven in Section 4, These collections {X(6),ve0} are either
parametric families of random variables or well studied stochastic
processes., Combination of the examples in Section 4 with the properties
obtained in Section 3, and with the fact that sample path convexity
(concavity) implies the convexity (concavity) notions of Section 2, yields a
host of applications in various areas of probability and statistics, 1A sanple
of such applications (in queueing theory, reliability theory, hranchiny
processes, nonparametric statistics, and in the theory of provadility
ineyualities) is given in Section 5, [n particular it is snown how various
monotonicity and convexity (concavity) results, which have been optainad in

the literature usiny tedious alyebra, can be easily obtdained (and
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strengthened) using the sample path convexity (concavity) approach.
Throughout this paper 'increasing' ['decreasing'] means ‘nondecreasing’
['nonincreasing']. Uhenever an integral [,(x)dF(x) [or expected value
Es(X)] is written, it is tacitly assumed that . 1is such that the integral
[or Ep(X)] exists. Also, it is tacitly assumed that all the real functions

mentioned in this paper are Borel measurable.

2. Preliminaries: stochastic and convex orderings.

A class C of functions R » R can yenerate < partial ordering «£ on
the set of distribution functions on R = (-w,») by postulating that any two
such distribution functions F and G satisty F« G if and only if
(2.1 ;o) dF(x) < (x)dG(x) for all . - C.

The following definitions can be tound, e.y., in Stoyan (13R33),

Definition 2.1. {fet X and Y be random variables with distrihution

functions F and G respectively.

(a) Denote X St Y and say X [or F] is stochastically less than Y [or G]

if (2.1) holds for the class C of real increasing functions un the union

of the supports of F and G,

(b) Denote X Scx Y [resvectively, X Sey Y] if (2.1) nolds ftor tne class

C of real convex {respectively, concave] functions on the convex ull of
the union of the supports of F and G.

{c) Denote £ «. Y [respectively, X Y] if (2.1) nolds for =he class

icx “icv

C of real increasing convex (respectively, concave] functions on tne

convex hull of tne union of the supports of F and .
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Remark 2.3. Sone useful properties of tne

{(d) O=note X i Y if (2.1) holds for~ the class C of real increasing linear
functions on the convex hull of the union of the supports of F and G.
For a distribution function 4, let H denote 1 - H. The following

results are well known (see, e.y., Stoyan (1933)).

Theorem 2.2. Let X and Y be random variables with distribution

functions F and G respectively. Then

(a) X sgp V<= F(x) < G(x) for all x ¢ R,
(b) X Sex V< C Fly)ay ) S{y)dy for all x = R,
X X
.X - .X -
(¢) X Gey Y 0 Flylay <) Gly)dy for all x & R,

(d) X <, ¥ <=> EX < EY.

The ralation Sex 15 sometimes called dilation, Conditions wnicn dre

-

eqyuivalent to X o 1onan de found, e.g., in Shaked {(1380).

'icx' and  ‘'icv' conditions are

(here X and Y are nonneyative random variables):

1,

) N S { R
(i) X Sex Y => EX° < EY", . LsCy seas
.. 1/% 1/k .
- [ng < / < = 2 cee o
{(ii) X Sev Y => EX EY R 1,2,
st

denote equality in law.

~ ~
'

Theoremn 2.4. [If X < Y then tnera2 exist ¥ and ¢ 2fined i S0 g ymae

st
D1 ; 3t g St . ) .
probability space such that X 27 ¥, 2V ana 4 d.s,
. : : . --1, - - -
For every distribution o denota i ) = oinf ok TR SREN
. 5 P . . . DoLo==1. oL ==l
2:790K 2.5, 0 Thegrem 2.3 one may set o= 0 S0 0 2 00 Jhaera 1
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is a uniform (0,1) random variable.

Let {Pa,es®} be a family of univariate distributions. Throughout this
paper © 1is a convex set (that is, an interval) of the real line or of the
set {0,1,2,...}. Let X(3) denote a random variable with distribution PO'
We find it convenient and intuitive to replace the notation {Pg,eeo} by

{X(8),6e0} and this notation will be used throughout this paper. Note that
when we write {X(6),9e£0} we do not assume [and often we are not concerned
with] any dependence (or independence) properties among the X(3)'s. We are
only interested in the 'marginal distributions' {Pa,oeo} of {X(3),3el> eaven
when in some circumstances {X(%),9e0} is a well defined stochastic process.

Note also that X(9) does not mean that X 1is a function of ¢; it only

indicates that the distribution of X(3) is Pg. Thus, for example, for
p:R>R, the notation E3s(X(9)) stands for deP3 --- this is usually denoted
in the literature by Ee;(x). When [X(9),5e0} 1is a well defined stochastic
process then the notation E¢(X(8)) 1is often justifiably used.

In the following definition the abbreviations SI, SCX, SCv, SICX, SIL,
SD, SDCV etc. stand, respectively, for stochastically increasing,
stochastically convex, stochastically concave, stochastically increasing and
convex, stochastically increasing and linear, stochastically decreasiny,

stochastically decreasing and concave etc.

vetinition 2.6. Let {X(3),yeC} be a set of random vdariables. Jenote

(a) {x(9),9ec0} ¢ SI [Sb] if

(2.2) 5eC = () = £(X(4)) - €

tor C - the class of all increasing real functions on R, nd C, -

............

. . .. e « . - A - ~ o . . DR -
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5
the class of all increasing [decreasing] real functions on ¢.
(b) {X(8),0e0} € SCX [SCV] if (2.2) holds for C - the class of all real
convex [concave] functions on R, and C, - the class of all real
convex [concave] functions on 2.
(c) {X(8),08ec} e SICX [SICY, SIL] if {X(98),vec} e SI and if (2.2) holds

for C - the class of all increasing and convex [concave, linear] real
functions on R, and Ca - the class of all increasing and convex
[concave, linear] real functions on 0.

(d) {X(3),0e0} ¢ SDCX [SOCV, SDL] if ({X(5),5e0}eSD and if (2.2) holds
for C - the class of all increasing and convex [concave, linear] real
functions on R, and C: - the class of all decreasing and convex

[concave, linear] real functions as o.

Some basic properties of these notions are given next.

Lemma 2.7. If  (£(5),veoreS] Lrespectively, SD] then there exist randon

variadles X{v), ..., derined on a common probability space, sucn that

wn

X{o) 2% X(s), v -~ ., 4nd, a.5., X{u) 1is increasing [respectively,
decreasingj in o . .,
Jne way to construct {X(:),veG; 1in Lemma 2.7 is to set

X(g) = F'I(U,u) hn e C, where U is a uniform (0,1) random varianle anda

F'l(u,u) = infix:PIX(2)>x} < dt.

Remark 2.8. It is worthwhile to note down the following 'continuous' ndaloy

of Remark 2.3.
(i) X{(3), v £ o} & SICX => Exﬁ(w) is iacreasing and convex in

for & = 1,2, cee &
l/k(j)

(ii) {(X{u), : e 0} = SICVY => EX

1s increasing and councave in
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for k = 1,2, eee
(iii) In particular, if {X(8), 8 € 0} ¢ SICX [SICV] then EX(8) is

increasing and convex [concave] in 3 e C.

Remark 2.9. In Definition 2.6 (a), (b) and (c) we require € and CO to be

"similar" classes (e.g., for SICX, both are the classes of increasing convex
functions). In yeneral these need not be “"similar". For example, of a
particular interest is the class of processes {X(8),9e0} such that Es(X(0))
is increasing and convex in 3 for all increasing functions o. Such classes
will be considered elsewhere (but see Proposition 5.7).

Some of the stochastic notions of Definition 2.6 are often preserved

under reparametrization (or time transformation):

Proposition 2.10. (a) If {X(6),6e0} e SI [SD] and h:u+¢ is increasing

then {X(h(3)), & € ¢} € SI [SD].

(b) If {X(9),9e0} ¢ SICX [SICV, SIL] and h:0 » 0 1is increasing and convex
[concave, linear] then {X(h(9)), 0e0} e SICX [SICv, SILJ.

(c) If {X(3),5¢0} ¢ SDCX [SDCV, SDL] and h:o » ¢ is increasinag and

concave [convex, linear] then {X(h(9)), 5ec} e SDCX [SDCV, SOL].

The proof of Proposition 2.10 is straightforward. So is also the proof

et 'Et'

of the next result. denote converyence in law.

Proposition 2.11. Suppose {Xq(a), ceCr e C o for omo= 1,2, ... . If

st . 0 e . e
&“(u) J*QX(u) for each g . . then {X{v),uus} ¢ C where C _{SI, SO, SCX,

scv, SICX, SDCX, SICV, sbCvY, SIL, sSbLi.
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3. Sample path convexity: definition and some properties.

The interest in this paper centers around the monotone convex and concave
notions SICX, SICY, SDCX and SDCV. In this section we find sufficient
conditions which imply that a process {X(3),3e0} satisfies some of these
notions. Jur approach is to 'put' some (imore explicitly four) of the random
variables {X(©),0€0} on a common probability space and then obtain 'almost
sure' results which carry back to the whole process {X(0),ge0}.

We start with a definition wnich formally states these conditions. For
any four real numbers X{s X9, %3, Xg We abbreviate the conditions

Xy < min(xz,x3) < max(xz,xg) < X, Dy ) 1

Xy < [xz,x3,x4] denotes I m1n(x2,x3,x4) and [xl,xg,x3] <Xy denotes

< [x7,x?] < X Also,

max(xl,xz,x3) < X

Jefinition 3.1, (a) The family &X{5), > - ) is said to oe stocnastically

s

increasing and convex i1 sampla path sanse  if far any . oo i o=

1,2,3,34, such that IR 5 i dnd 2 vy E i » f3, there
exist four random varianles xi, i=1,2,3,3, defined on the same
probanility space such that
\ ~ st .
(st) Xi 27 X(wi), 1= 1,2,3,4,
- {cx) Xp + Xy < X &y d.5. [convexity condizion),
o
R . el ~ _A o - . .
Yl (i-cx) LXI,XZ,ABJ < Xy .5, (NORDENTCINY Ionditiony,
& X
-‘-
t;:; Denote conditions (st), {(cx), {(i-cx) oy {¥is), . L1l L.
L..':: )
AT (b) If (st) holds and also {cv) and [1-cv), ahera
I.'.'
n",
5% (o) AT
Yy cv LI SRR SN | deS ey
jx;- ' 1 4 ? 3
Y
r,:.-,
o
.}
i

Y
eter e

g

S




AT e

R YA AR

LA )
XA
.l'_l.l_l'l

y
1

@

then denote {X(8), v € ¢} e SICV(sp).
(c) If (st) and (1) hold and also (i-cx) [which is then equivalent to

(i-cv)], where

then denote {X(8), 5 ¢ C} € SIL(sp).

(d) If (st), (cx) and (d-cx) hold, wnhere
o , -
{d-cx) LXZ’X3"(4] < Xl deS.,

then denote {X{u), = & 0} ¢ SDCX(sp).

I

(e) If (st), (cv) and {d-cv) hold, where

~ - A

(d-cv) Kg © [X]5K 5K, a.5.,
then denote {X(9), = ¢ C} ¢ SDCV(sp).

(f) If {st) and (2) hold and also {(d-cx) [which is then eguivalent to
{d-cv)] then denote <{X(3), » & ~; ¢ ShL(sp).

In order to gain some insight into the monotonicity and the convexity
conditions above consider, for exanple, the SICX(sp) case. First note that
(i-cx) indeed implies stochastic monotonicity of {X(u), 5 ¢ O}: from (i-cx) w2
st o2 5 st

AR SR

2.6(a)]. Since S Uy s Uy sy 1% seens wre natural to postulate tne

nave X( X(ug) and tnus  (X(), ¢ - o} e SI [see detinition

simpler” such as

stocnastic monotonicity by replaciny (i-2x) vy something

R T

IR I T I T
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= (i") Xp < [X,%5] < Xy, aus..

g:J However in some applications we found it hard [if not iimpossibl>] to verify
‘i) or even (i') [see, e.y., Subsection 5.3], whereas (i-cx) could be
obtained. Note also that if . 1is increasing and convex [concave] tnen the

set {:(uv), v e o} of degenerate random variables is SICX(sp) [SICY(sp)].

The (sp) conditions enjoy some useful preservation properties wnich are

N discussed below. The first one is

s Proposition 3.2. (a) If ZX{(3), v = o} = SICX(sp) [SICV(sp), SIL{sn}
T and if 5 s an increasing and convex [concave, lTinear} functian then
" TN Yy, 2eGy e SICKUsp) FSICY{sp), SIL(sp)].

Cj (p) If (<), 3 € 0} e SDCX{sp) ([SDCY¥’so), SILispll ang if s

‘;Ti increasing and convex {concave, linear] function then

_Eﬁ' {o(X(8)), =eC} & SDCX{sp) [SnCV(spl), SDL{sp)1.

i;; Proof. Suppose {X{3), 0 = o} « SICX(sp}. ‘et e i = 1,2,3,%, be such

;ét that 3 < vy < 93 < 4y and ) *ouy = oot ip. L2t ;1, 1=1,2,2,4, »ne

e
R W T W B
. - . .

e random variables on a comion probability space sucn that {st), {(cx) and
- (i-cx) of definition 3.1 hold. In particular, a.5., ‘) ~ ¢ + {0 - (g
1 ] I -+ 7

T - ~ . o .

;:;g AZ < x4. niow, the convexity and monotonicity of _ daply

(f;. ?(KZ) - '(Xl) < y(x4) - ;(X1+X4-X2) &X4) - gx2>. S0, tne monotonicit,
e af ., daplies [@(Xl), X0, p(X3)] <0G s Thus s kY,
s

K-, satisfies (st), {cx) and (i-cx) of definition 3,1, The preafs of thae STCV and
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SIL cases and of (b) are similar. |
The next result is a dual of Proposition 3.2. It shows that the (sp)
conditions are sometimes preserved under reparametrization (time

transformation). First the following lemma is proved. Roughly speaking it

)
says that if ii’ i=1,2,3,4, exist such that (st), {cx) and (i-cx) hold

~

whenever {ei, ie{1,2,3,4,}} ¢ SIL(sp) then such X

1"
. 4 _ 1 .
whenever {ei, ie {1,2,3,4}} e SICX(sp). Let Ocy = {(81,92,33,94).

i=1,2,3,4, exist

61 < 62 < 33 < 64 and 62 + 83
4

Oy = [(61,62,63,84): 9 < 8 < 63 < 8, and Oy + 83 > 01 + 04l Below we

< 61 + 84} and let

1

assume 0O € [0,=).

Lemma 3.3. Suppose that for each 3 ¢ 0 the distribution of X(®) has no

atoms.
(a) If {x(8), 9 € 0} e SICX(sp) [SDCV(sp)] then for each

(81,02,03,84) € Oix there exist gi’ i=1,2,3,4, defined on a

common probability space which satisfy (st), (cx) ana {i-cx) [(cv)
and (i-cv)] of pefinition 3.1.
(b) If {X(3), 9 € c} e SICV(sp) [SDCXx(sp)] then for each (91,52,53,04)

€ oiv there exists Xi’ i=1,2,3,4, as in (a) which satisfy (st),

(cv) and (i-cv) [(cx) and (d~cx)] of Definition 3.1.

Proof. First we prove (a). Suppose {X{3), = e 0} ¢ SICX{sp). Let

(81,02,63,94) € oﬁx. Set 91‘ = max(f),:32+»33-04) and ; = min(~32+-33,;4).
Then oi < 9, 85 < 9 and Gi + Ji = fy * Gy Then there exist
ii, 22’ i3, i& such that i{ st X(u{), i= 1,4, and
i. 3t X{49.), i =2,3, and, a.s., [f',f ,i ]« i' and i' + X' > X+ X .
i i 1°°2°"3 4 1 ) 2 3
For each o & ¢ denote F (x) =z PIX(3)>x} and




(3.1) X o= FLEL D),

~ 1 1 ~
(3.2) X, = ?;i(?%m)\.
Tnen (using the fact that the distributions of fi and i& nave no atoms)
il gt X(cl), iq st X(a4) and (by the stochastic monotonicity of X{uv) in
e 0) il > ii, 24 > ii. Thus ;i’ i=1,2,3,4, satisty {cx) and {i-cx) of

Definition 3.1. The proof for SOCV(sp) is similar.
The proof of {(b) for the SICV(sp) case is similar to tne dadove proof of
the SICX{sp) case. The main difference is that tnat instead of 'decreasing'

91 and sy to Oi and ui ana tnen ‘incraasing' ¥, and

[ )

i
XA to X and - X,, in the SICV(sp) case one first 'decreases' . und o,
- ~
to Gé and ué and then ‘increases’ “é ana 4o ¥, and ¢, The proot

of the SDCX(sp) is similar., |

Remar« 3.4. The assumption of no atoms in Lemma 3.3 is not really

necessary. Sven without this assumption, (a) and (b} of lLzwma 3.3 nold, The
proof of tnis statement is the same as the proof of Lermma 3.2 =xca)t that
constructions (3.1) and (3.2) are to be modified so that they are proper for

the yeneral case. We omit the lengthy details.

Proposition 3.5. f(a) If <{X(9), v e ¢} ¢ SICXx{sp) (SDCVisni] ana if

9:0 » G 1s increasing and convex tnen {X(;(uv)), > - .= 2 sl1Cd(isn)
[s5uCy(sp)].
(D) If (X(9), 5 ¢ ¢} = SICV(sp) [SLCA(sp)] and if i » . 15 19Cradsing
and concave then (X{.(9)), & = €} = SICV(sp) (LSOCX{sp)i.
Proof, We only prove (a) for tne SICX(sp) case. The proots of tne otner

statements are similar, So suppose [X(3), = . o} = SICX{sn). Lot =

e

e et e e atatarac.s
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1,2,3,4, be such that 8] € 8y < 83 < 9 and 01 + 04 = 92 + 03. Denote

n, = Q(ei), i=1,2,3,4. then np Sy SNy <y and Nty ny + na,
that is (”1’”2’“3’”4) £ oﬁx. The result now follows from Lemma 3.3 and
Remark 3.4. |

The next result shows that indeed Definition 3.1 gives sufficient
conditions for stochastic monotone convexity and concavity as defined in

Definition 2.6.

Theorem 3.6. If {X(8), 6 € ¢} € SICX(sp) [SICV(sp), SIL(sp), SDCX(sp),
SDCV(sp), SDL(sp)] then {X{(8), @e0} e SICX [SICV, SIL, SDCX, SDCv, SDL].
Proof. Suppose {X(®), ¢ e 0} e SICX(sp). Let ¢ be an increasing convex
real function. Proposition 3.2(a) shows that {o(X(8)), 0e0}eSICX(sp). That
is, if 63, 1 = 1,2,3,4, are such that 01 <8, <83 < Gy and

~

3, + 6, = 8, + 5, then there exist four random variables Yi’ i=1,2,3,4,

1 4 2 3
on a common probability space such that 91 Y ¢(X(ei)), i=1,2,3,3, and

(3.3) Yo,

(3.4) Y

The stochastic monotonicity of {o(X(3)), 8e0} follows from (3.3). From
(3.4) we obtain E¢(X(82)) + E¢(X(93)) < EQ(X(Ol)) + E¢(X(94)) whicnh is
equivalent to the convexity of E&(X(5)). Thus ({X{3), 2xC; = SICY. The
proof of the SICV, SIL, SDCX, SDCV, SDL cases is similar.

The next result gives sufficient conditions for [(X(3), . « o} <o ne SCX

and SCV. It will be used in Subsection 5.7.

Proposition 3.7. If (X(#), 5 e 0} & SIL{sp) or SDL(sp) then {X(u), v ¢ ¢} =

Y
------
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SCX and SCV.

Proof., We will show

The other cases can be shown similarly,
Suppose {X(9), 0 € ¢} = SIL(sp). Let . be a convex function. Let

9

i» 1= 1,2,3,4, be such that v, < 6, < 35 < 8 and g + =48, +0,. If

17 % T %7
we show that  Eo(X(g)) 1is convex in 9, that is,

(3.5) Ea(X(51)) + Eo(X(34)) > £o(X(5,) + Ea(X(83)),

then it follows by Definition 2.6(b) that (X(s8), 5 ¢ ¢} e SCX.

To show (3.5) let Xi’ i=1,2,3,4, ve four random variable on a common

st

probability space such that X X(o.), i = 1,2,3,4, and, a.s.,

i
X1 + X4 =X, * X3 and [XI’XZ’X3] < X4 (or, eguivalently,

X1 < [XZ,X3,X4]). The convexity of » implies that, a.s.,

Taking expectations in (3.6) one obtains (3.5).
The following lemma yives sufficient conditions for sanplie patn
convexity, concavity and linearity. Ysually it i3 not easy to verify, tnese

conditions, hut see Example 4.5.

Lemma 3.3. Let {X(s), v « ¢} De a collection random varibles and dennte

F-l(u;u) 2inf (P X{u)>x) s ul, ueD,1], 9 e Ce If for all

'-'-‘h"\'.-

ot
N'-.\
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u e (0,17, ?-1

(u;8) s

(1) increasing and convex [concave, linear] in 6 € 0 then {X(3), 6 € C} ¢
SICX(sp) [SICV(sp), SIL(sp)].

(ii) decreasing and convex [concave, linear] in 6 ¢ 0 then {X(3), 89 ¢ 0}
e SDCX(sp) [SDCV(sp), SDL(sp)].

Proof. For the SICX(sp) let 85, i =1,2,3,4, be such that

6] < 8y < 83 < 0y and 8 + By = 6y + 05 For some uniform (0,1) random

PN

variables U let Xi = F'l(u;ei), i=1,2,3,4. It is easily seen that ii’
i=1,2,3,4, satisfy (st), (cx) and (i-cx) of Definition 3.1.
From the definition of sample path convexity, concavity and linearity it

is immediate that one has:

Theorem 3.9. If {X{(8), 6 ¢ ¢} and {Y{(g), & € ¢} belong to the class C
where C e {SIC¥(sp), SICV(sp), SIL(sp), SDCX(sp), SDCV(sp), SDL(sp)} ard

if

Z(8) = X(6) with probability p,

Y(8) with probability 1-p,

then {Z(8), 6 € 0}e C.

Theorem 3.10. If {X(8), 6 ¢ 6} and {Y(3), 0 € ¢} Dbelong to the class

C where C e {SICX(sp), SICV(sp), SIL(sp), SDCX(sp), SDCV(sp), SOL{sp)} and
if X(0) and Y(ou) are independent for each 9 ¢ o then

{(X{o) + Y(y), 9e0} € C.
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4, Examples.
In this secticn we list a sample of examples using similar constructive
ideas in most of them. Lemma 3.3 is also used. Some of the examples are

used later in Section 5.

Example 4.1 (classes with the semigroup property). Let {X{5), 4$e0}
(o€ (0,=)] be a collection of random varibles with the semigroup property in

g, that is, if Yl and Y, are independent and
t

nwn

{ S-t Dl St
Yl X(al) and Y2 2 X(JZ) then Yy + Yy 2 X( e

{X(@), veO} € SIL(sp).

1+02). In this case

Proof. Let 3j, 1= 1,2,3,4, Dde such that 61 € up € 93 < §; and

01 + 94 = 32 + 53. Let Yi’ i = 1,2,3, be independent random variables such
~ §t N > §t AN N \A St
that Y1 E X\cl), Y2 = X\UZ-JI) and {3 2 x(ea-az) [recall
37 9 T3 sl SELOX =W, K = A+ Yy, Xg= Yy o+ ¥y ana
X, = Y, + Y, +Y,. It is easily seen that XK., i = 1,2,3,4, satisfy (st},
3 1 2 J i?

(2) and (i-cx) of Definition 3.1.

It follows that if X(g) 1is a Poisson random varible with mean 3 or
gamma random variable with shape parameter 6 or negtive binomial random
variable with the proper parametrization [or binomial random variadle with
3 being the number of independent trials] then

{(X{3s), se(0,=)} Lor (X(%), 6c{1,2,...}:] belongs to SIL{sp). Also, if 5
J = 1,2, «.., are independent nonneyative identically distributed randon

variaples and S” =0,

i
>
o

then (5., i ¢ (0,1,2,00a;: Nave the

semiyroup property in i, Thus {Si’ i (U,1,2, 000 SIL{S0)

Example 4.2. (nonhomoyencous Poisson process). Let x(t), & ¢ D), ne a

nonhomogeneods Pnisson process with intensity function x. f A i3
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i' increasing [decreasing, constant] then {X(t), t e (0,=)} ¢ SICX(sp)

#: {sicv(sp), SIL(sp)].

- Proof. First suppose A(t) = A, independent of t. Then

i; {X(t), telU,=)}e SIL(sp) by Example 4.1. Now suppose x 1is increasing.

?: Then p(t) = jg Alu)du 1s increasing and convex, C(learly

R (X(t), tel0,=)} 2¥ (N(a(t)), t e [0,@)} where {i(t), t > U} is a

;; homoyeneous Poisson process with intensity A = 1. But we have shown apove

,? that {N(t), te[0,=)} € SIL(sp). Thus {X(t), t e [0,=)} ¢ SICX(sp) by

;f Proposition 3.5(a). The proof the SICV(sp) case is similar. 1

E: Example 4.3, (sum of independent random variables). Let Xj, J = 1,2, eeey
:' be independenti nonnegative random variables. Set Sﬂ =0, Sn = _2 Xj'

& (a) If {Xj, Je {(1,2,e0.1} € ST then {Sn, ne {0,1,2,00e3} ¢ JgICX(sp).

! (6)  If X, J e (1.2,0.03} € SD then (S, n e {0,1,2,..u1} & SICU(sp).
f: (c) If XJ’ J=1,2,ees, are identically distributed then

x ., 0 e 0,1,2,...30 ¢ SIL(sp).

i: Proof. (a) Suppose {XJ, joe {1,2,.0.3} e SI. Let ng, i =1,2,3,4, be such
$: that N <Ny <n3<ng and nyp +ny =n, +n3. Let ij, =1, ., Ny be
{ﬁ random variables such that ij st XJ. Let §J’ J = n1+1, cees Ny, be such
§€ that ?J st iJ and let ?j’ J = ng ¢+ | Ng» be such that ?j st Xj and
;i 9n3+J » §n1+J a.5., J = 1,2,3, «.u, ny-nq (=ny-nq). [Since

3 Xn3+j st Xn1+j’ it follows from Theorem 2.3 that such random variables can be
2 constructed on a common probability space.] Furthermore, tne random variables
:E ij’ =1, «eey ny and the random vectors (§n1+k’§n3+x>’ K= 1, eauy, 0y~
23 ny can be taken such that all are mutually independent [just generate them

. from independent uniform (0,1) random variables].

i AL B ., ™.

How set S1 = j:1 Xj’ 52 = jil XJ + j:nl+1 XJ,

- ‘
» -..l . k-\dl:xl\l\ N,
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) o n, ) n, ‘ A o n, .
Sa= L Xi o+ Y.+, X, and S, = . X. + X
Sosa gt 0 I a Yoinr oy Ea
1 2 1
A T S .,
+ X, + Y.. Clearly s, 2° Sy s i=1,2,3,% Also, clearly,
j=n2+1 J j=n3+1 ' i
d.S., S1 + 54 > 52 + 53 and 51 < L52,53] < 54. Thus

{Sn, ne {0,1,2,0..77 € SICX{sp).
The proof of (b) uses a similar idea and is omitted. Statement (c) has

been proven in Example 4.1. An alternative proof of (c) can be obtained from

-~

the proof of {a) by taking there Y,1 L 2 ?n

iy J =1y eeey Mp-nae
14+ L J 473

Example 4.4. (binomial random variables with parameter p). Let {X(p), pec
Lu,1]} be a collection of pinomial random variables with parameters n and
p (n is a fixea integer). Then I{X(p), pe [0,1]} e SIL(sp).

Proof. First note that x{p) 2y

(p)+---+xn(p) where X.(p), 3 = Ly eeey

1 1
L o

n, are independent and identically distributed Bernoulli random variinles

with P{XJ(p) = 1} = p. e first show, for j = 1,2, ..., 0, tnag
(4.1) K0), 2 e 10,171 & SIL(sp).

To see it let py, 1 =1,2,3,%, be such that Py € Py € Py 2 2y and

Py * Py =Pyt 3. Let U be a uniferm (1,1) random varianlie. Let Iy
denote the indicator funciion of A, Dafine il = IfU-v s
) = = + in:
0  Luep,y %37 Ly Tl e, MM
R 2 N S; 2
; = =T X (p.) o= 1,2,3,3 .
A4 I{ngd}. Then X1 J(Dl)’ i W 243,73, 1N
Ay i =1,2,3,4, satistfy (%) and (i-cx) of lefinitton 3.0,
From Theoremn 3.10 and (4.1) it tollows tnat
s -, N S_t . n . (. , - . Ot f oA
U((P), p £ L'\-)’l]' = o, )(J\t))s Ao L]’l ]J SRS GV P
=1
4

........................
........................
................
-----
* COY




st y .
P

@
PP
PN
LA ¥

N Y
SRS B

‘{f"

.'f"f':'.'
U R

‘I»

4y

PP PR
. ’ :'J.fl"a"};';';

o

Example 4.5, (location-scale parametrizations).
(a) Let Z be a nonneyative random variable and let a be a constant.

Set X(9) = a + 6Z, 3 > 0. Then X{u), 6 ¢ [0,=)} ¢ SIL(sp).
(b) Let Z be a nonneyative random variable. Set X(3) = Z/y, v > U.

Then {X(6), 6 € (0,=)} ¢ SDCX(sp).
Proof. Suppose Z has the survival function G. Using the notation of Lemma
3.8 we have ?'l(u;a) =a + sG'l(u) for (a) and ?'l(u;u) = G‘l(u)/g for
-l( 1

(b). The first F “(u;e) 1is increasing and linear and the second F~"(u;.)

is decreasing and convex. The two results then follow from Lemma 3.35.

5. Applications.

5.1. GI/G/1 queue. Consider a single server gueueing system at which

customers arrive according to a renewal process with inter-renewal times
{An(a), n=1,2,...; for some 3 > 1, The service times of these customers
form a sequence of independent and identically distributed randon variables
{Bn(u), n=20,1,2,...3, wu >0, independent of (A (), n =1,2,...:. Lat
Nn(o,p) be the waiting time of the n-th customer [Ho(o,u) 0. It ois well

known [see, e.y., Ross (19.')] that

Wolo,u) = Bl _(Co,u) + 3, 1 {w) - A
Theorem 5.1. {a) Fix u > 0. If {An(s), ve(U,®)} © SICV(sp) for
n=1,2, ..., then {Hn(u,“), sell,=)} ¢ SOCX{sp) for n = 1,2, .o, .
(o) Fix 3> 00 If (B (b)), ue(D,«); o SOCX(sp) for n = 0,1,2, ..oy then
{Wn(v,u), pe(0,o)} € SDCX(sp) forn = 1,2, vue
Proof, e prove (a); the proof of (b) is similar. Certainly

{wo(u,u), 9e{0,=)} ¢ SNDCX(sp). Suppose {uq_l(a,u), g v (0,0)) ¢

SDCX{sp). ‘ote that if {An(ﬁ), 3w (0,e)} ¢ SICY(sp) then {-Aq()),

Ge

s
A e 0

2

. . B S L. T S VL DL
R N R R I I I TP I IR L I SR S A P

W -, » C ) w, S e Lt et . » L SRS .
A Al A A A AT AT L G e e L R e AL et altat A,



e : PRk T A A e An e te e it DA RN BA AR S i A NS AA S OAA SRR AR N

\..

e 19
o

T ¢ (0,»)} ¢ SDCX(sp). Thus Theorem 3.10 implies that

i
{:;} (5.1) My (osm) + Bo_p(u) = A(5), 5 (0,)} ¢ SDCX(sp).

o

ST
ﬁ;i The function [x]" is increasing and convex. Thus from (5.1) and Proposition
\ A}

o 3.2(b) it follows that {wn(a,u), 5 ¢ (0,)} =

s

- +
Ao Q9 (6sm) + B () - A(2)]7, 3 € (0,°)} ¢ SDCX(sp). 4

s
vkl

o Remark 5.2. Let {X,, n = 0,1,...} be a sequence of independent and

. identically distributed nonnegative random variables and set Bn(;) = X e
- Then {Bn(p), ue(0,w)} e SDCX(sp) [Example 4.5(b)]. Therefore the waitiny
(3 . . . .

S time {Hn(e,u), ue(0,®)}r in this GI/G/1 queue is SDCX(sp) and hence SJCX

j{j [Theorem 3.6]. The convexity of E[wn(s,u)] with respect to u is proven in
o leber (1933). From Proposition 2.11 it follows that the steady state wean

26 waiting time in this queue is convex with respect to p., This fact nas oeen
o established in Tu and Kumin (1983). Observe that in Theorem 5.1(b} we ao not
'{E: restrict Bn(u) to take this specific form,

J

.‘\l.‘j

N , . . . .

v 5.2. GI/G/c__queue with rotary assignment. Consider a single stage queueiny
':i system with ¢ parallel serves at which customers arrive according to a

ﬂi renewal process with inter-arrival times {Rys N = 1,2,000re  The service times
v

- of these customers form a sequence {Bps n = 1,2,...} of independent and
O
‘ﬂ; identically distributed random variables independent of {Rn, T

;f; The customers dare assiyned to the servers in a rotary manner., 7nat is, tne
J'.:J

e (cn+r)-th customer is assiygned to server r (r=1,2,...,c;n=0,1,...). The

$§f stationary waiting time (say W(c)) of an arbitrary customer, wshen it exists

g

(that is, when ¢ is large enough, say ¢ » c* for some c*] has the same

‘\

X, .‘.

-
o A

‘. .. .. .I
AR R I

s
s
2l
v

»
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Yaa e o Lo oCadaar bt
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- distribution as that of the stationary waiting time of an arbitary customer in
7__ a GI/G/1 queue with inter-arrival times [A (c) = R(n-])c+l+'°°+Rnc’ n =
'i 1,2,...} and service times {By, = 1,2,...3. In Example 4.3(c) it is shown
L? that {An(c), cef{l,2,¢0.}} is SICV(sp) [in fact SIL(sp)]. Thus, from Thearem
"7 5.1(a), Theorem 3.6 and Proposition 2.11, one has
2
;2% Corollary 5.3. The stationary waiting time (c) of an arbitrary customer in
E a GI/G/c queue with rotary assiynment satisfies {W(c), c & (c*,=)} ¢
e SDCX(sp) .

NN
.
A
e
B Remark 5.4. Rolfe (1971} conjectured that E[W(c)] is convex in ¢ » ¢* for
: a GI/G/c queue with first come first served service policy and proved it for
'jlj the M/D/c gueue. For the GI/D/c queue the distribution function of the
stationary waiting time is the same under the rotary assignment and first conme

.:‘.

%: first served service policy. Thus Corollary 5.3 extends the result of Rolfe
;f%{ (1971) to the GI/D/c gueue and provides a partial answer to his conjoecture.
RS
O
ff? 5.3. 18/4(n) /1 queue. Consider a single stage yueueinyg system at whicn
:fif customers arrive according to a Poisson process with rate i > ), Customer

V" n brinys a random number B, of tasks, n = 1,2,... . The 3,'3 ara
o independent and identically distributed. Denote Db =28 0, D=
ﬂfﬁ O,1,2,.0. « The service requirements of these tasks form a sejuence of

®1 independent . identically distributed mean u~1 exponential rangom varianles
[\

- independent of {Bn, n=1,2,..." The service rate is  +4(n) when there are
[ .

.ji n tasks in the system, n = 0,1,2,... , where +(0) =0 and ~(n) > ) for n
. + 1. Let Yt(A) denote the number of tasks in the system at time t.
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‘bﬁ? Theorem 5.5, Suppose +y(n) is increasing and concave in n = 0,1,2,... .
s~
;‘S~ (a) I[f lim y(n) < » and ifr {YO(R),Rd(D,w)}QSICX(Sp) then
N N )
-\-
22131; (5.2} (o (a), & < (9,2)} ¢ SICX(sp) for all t > 0.
)
gy (D) It for some x* > 0 the steady state distribution exists for
- ‘ st ;
i A e (0,3*] and {t(x) = ¥Y*(A) as t » o for each A ¢ (D,A*] then
Y*(X), ae(0,a*]} < SICX.
Y Proof. Suppose vy. z lim y(n) < =, Let Ag Me an arditrary (large) positive
q_:t: > n+w
Qﬁ' nuader and set n = 2(A,+uys) < w, For i« AS consider tne Mar<ov cnain
'..‘ » >
B O,
,%%2 {Xn(A), n=0,1,2,...} with state space {0,1,2,...} and transition
t
‘:;: probanilities determined by
~Tn
l-.‘\
\"_n
L = ,
\' F“((_/',A) = 21X \I\)>;/|Xn_l(3\) x}
‘\
g-': = ) if )’<\<-],
{x)
=1 - it oy =x -1,
;\ b £
= N i y o2 X.
- Jj—x f ¥
Suppose
. .y St .
<bc3) X\/J(/\) = YO(/‘\).
Let {i{t), ¢t > 0} be a Poisson process with rate : defined on tie save
probability space as that of {Xn(A), A= 0,1,2,000; and ingependent ot it
From (5.3) it follows that tne unifarmized process {K”(r\jhﬁ, toa
REMWS!
satisfies
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(5.4) (v (1), t >0y & ey (Mo £ > 0}

[see, e.g., Keilson (1979)]. Since 1 - Eli%ill-> %— it follows that for
each vy,

(5.5) ?x(y;x) increases in x ¢ {0,1,2,...} and in A ¢ (O,AS].

We will show tnat, for every n e {0,1,2,...},

(5.6) {Xn()\), FS (U,AS]} e SICX(sp) .

From Theorem 3.9 and (5.4) it then follows that

oY (X)), & ¢ (D,AS]} e SICX{sp) and since Ag is arbitrary we obtain (5.2).

¢
The proof of (5.6) is by induction on n. By assumption, (5.6) is true

when n = 0. Suppose (5.6) is true with n - 1 replacing n. Let

X € (O,AS], i =1,2,3,4, be such that A, < A, < A <y and Atk T,

i 1 2
+ A3 Then by the induction hypothesis there exist ii’ i=1,2,3,4, defined

on a common probability space such that Xi st

Xn-l()\i)’ 1= 1’253"19 and

such that (cx) and (i-cx) of Definition 3.1 hold., Let x;, i = 1,2,3,4, bhe a

]"

particular realization of Xi’ i=1,2,3,4, Thus [xl,x?,x3] < Xy and

{(5.7) X| * Xg > Xy + X3.

First suppose that eguality holds in (5.7), that is, Xp ¥ Xy = %y

-~

X3. Construct Xi’ i=1,2,3,4, on a common probability space using two

independent uniform (0,1) random variables Uy and U2 as follows:

(1) If Uy e (042;/n) then ;i Dyt Q'l(

Up)s 1= 1,2,4, and if :

e .
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Ul € (U,J\l/n) v (Az/n,xa/n) then X. = x

(1) If U] e (&/n,l=(uvg/n))  then ii =x

U1 € (Xl/n.kz/n) G Lka/n,l-(uYs/n)j then 23 z X

(iii) If U1 £ {1-(uy2/n),]:‘ then ,‘(1.
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a; =1 , 1=1,2,4 and

1 [UZQY(xi )/YS]

IR TN I VG I O VTR CUR PP BT
Z\Y 1 YS Y 2 YSS oS0 Y )(2 Y X3 -\{(Xl‘ /.

. e ~ st .
+ = = = 2 ~1 T. 2
It is now verified that X; [Xn(xi)[xn_l(xi) xi], i 1,2,3,4. Th

N . . . —~ ~ ‘- N . . - “.\
verification of LX1,X2,X3] < X[l and X1 + x4 > X2 + (3 d.S. in cases i}

and (ii) is simple. 1In (iii) notice that, by assumption, Xp % Xy T 4yt o4

-+

and that the concavity of +{(+) implies y(xz) + Y(x3) - y(xl) p y{xl;. Thus

- n~ ~

hence K. + X, » f + X

5 33 1 4> a.,5s. Jo prove

3

-~ -~

(5.3) Xl,Xz,X3J < X4 d.5.,

“

323

note that (5.9) can be violated only if Xy = x; for some i

j 1,2,31. But

since we postulate xp + x4 = xp + x3 it follows that if x4 = x5 for some

i e {1,2,3; then dp = 4y for that 1 and thus (5.3) holds.
Summarizing the results of the preceedinyg parayraph we see that if
equality holds in (5.7) then [xn(xi)|xn_1(xi) = x;J, 1= 1,2,3,3, “can pe
put" on the same probability space such that (cx) and {i-cx) of Definition 3,1
hold.
[f strict inequality holds in (5.7) then using the stochastic
monotonicity (5.5) it can be shown, by an argumnent similar ty the proor of

Lemna 3.3, that [Xn(Ai)|X (Ai) = xi]? i=1,2,3,4, "can pe put" on the

n-1
same probadility space such that the analogs of (st), f{cx) and {i-cx) hold,

The proof of (5.6} is now completed using the fact that SICX{sp) is closed

- - -
b
4

P P T L I L I S T A I o NS TP T S L SR L L L I e S I R R I A W Tl et S L S e S
T e e e L e T e T e ~,.‘f'~." RGOSR, (Xt PR ERTS N o~ \"\ LRSS \'_-.' e




f ‘ 24

\fl under mixing [Theorem 3.9].

? If Yy < then statement (b) follows from (a), Theorem 3.6 and

fﬁf Proposition 2,11, By standard 1imiting arguments it can be shown that (b) is
Jlf‘ true also when y_ = o, |

-, S

‘ A

2

o Remark 5.6. For the M/M/c queue [that is, M/M(n)/1 with

,j;; y(n) = min(n,c), n > 0] Grassman (1983) and Lee and Cohen (1933) showed
'

= that EY*(X) 1is increasing and convex in A e (0, \*]. The alygebraic proof
L

:;5 used there can become very cumbersome, if not impossible, if one tries to
o0 establish the convexity of E¢(Y*(A)) in x for all increasing convex

[ » functions ¢:{0,1,2,..} > R. Thus one sees that the sample path approach is
;;} simple and very powerful.

) 5.4. Proportional hazards and imperfect repair. The main result of this
o subsection is

L4
S
|l

O Proposition 5.7. Let F be an absolutely continuous survival function such
{1{ that F(0) = 1. For p e (0,1] tlet X(p) have the survival function Fp
Eif (that is the X(p)'s have proportional hazards). Then Eo(X(p)) is convex and
iﬁ decreasing in p ¢ (0,1] whenever o 1is increasing. In particular

A
b {X(P), p ¢ (0,11} ¢ SDCX.

:E: In order to motivate the proposition, and indicate its uses, consider the
D ) J\--

®, followiny imperfect repair model of Cleroux, Dubuc and Tilquin (1979) and
‘:&; Brown and Proschan (1983).

2

7,

Model 5.3. A new item with an absoiutely continuous survival function F

1-,
S

undergoes an imperfect repair upon each time it fails before it is scrapped.
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jziz With probability p the repair is unsuccessful and the item is scrapped.
:.;' With probability 1 - p the repair is successful and minimal, that is, after
;;; a successful repair at time t the item is as good as a working item at age
A ‘.

‘:;. It X(p) denote the time to scrap in Model 5.8 then the survival

E;E function of X{(p) s P {Berg and Cleroux (1982) and Brown and Proschan
(1983)) -

:&f 2roof of Proposition 5.7. Clearly ?p(t) is convex and decreasing in p for
x;i eacn tel0,»). Thus E3(X(p)) is convex and decreasing in p e(0,1] whenever
22: 5 1s a binary increasing function, and hence also whenever ¢ is an

gﬁs increasing step function. Stanaard limiting arguments complete the proof.
j;; Proposition 5.7 can be applied as follows. Suppose the cost of

L performing an imperfect repair with probability 1 - p of unsuccessrtul outcome
;;:l is C(p). It is reasonable to expect that C(p) decreases in p. {f the

E?} benefit associated with a lifetime X(p) 1is an increasing function SR AR
i)' then the total benefit B(p) is

i 3(p) = E4(X(p)) - C(p).

o

.igg Suppose that, due to enyineering constraints, p must lie in the interval [a,b]
'jti for some 0 <a <b <1, and that C(p) is Tinear in yc(a,d}. Then, by
’-i Proposition 5.7, B(p) is convex in [a,b}. So p =a or n = > ‘s an optinal
::i solution which maximizes the benefit.

7

"

JJB 5.5. Branchiny processes., Consider a falton-Watson discrete time branching
5,3: process {X;(3), i=0,1,...} depending on a parameter - > 0 which is the

s
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%5; parameter of the offspring discrete probability function f(.;8). Then the
~
S transition probabilities of this Markov chain are
<
% PUG(0) = y[X, y(8) = x} = f(y10), xoyel0,1,2,0000,
“\
:j: where f(x)(-;a) denotes the x-th convolution of f(«;9).
i Result 5.9. Suppose f(e+;9), 9 > 0 has the semigroup property, that is,
*Ql f{e;9,)*F(+;3,) = f(+;9,+6,) where '*' denotes convolution. If initially
SNy 1 2 1 72
':53 Xu(u) = x, where x 1is a constant independent of 0, then
Ca (X, (9),5e(0,=)}SICX(sp) for each n = 1,2,... .
fﬁ‘ Proof. We will show that for each n =0,1,2, ..., and for each i, 1 =
S 1, 5. < . :
S »2,3,4, Such that al < 92 < by < 04 and 91 + 04 02 + 93, there exist
e four random variables Xi’ i=1,2,3,4, defined on the same probability space
;:ij such that
v '
R
(5.9.1) X, £ x (v,) i =1,2,3,4
,L) L i n il 9L 9Ty
SE? (5.9.11) X1 + Xy o2 x2 + X3, .S,
._§; (5.9.111) X1 < [XZ,X3] < Xy a.S.
o
&:ﬁ It follows then that {X(3), 0 € (0,=)} ¢ SICX(sp).
ii: The proof of (5.9) is by induction on n. Clearly (5.9) holds for n =
:, 0. Suppose (5.9) holds with n - 1 replacing n., Then there exist
. ;i’ i=1,2,3,4, defined on some common probability space . such that
s N t . . A A -
= 7 =3 Kooy (87)s 1= 1,2,3,4, and, aus., ¥ < [¥,,Y;] <Y, and
i Y H Yy Y, kY
Aﬁ: Define now the tollowing mutually independent random varibles which are
::
-*\
e
_q’
2
.s'}\;q" .\,V\ﬂ":-*\.’ n e "-"- ‘e :,- AR S K :':...- ".-'..'. '.:,\" '-;\'I:, N R WL ,‘ PARRNIY J ', , LSS
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assumed to be independent of ?

i i=1,2,3,4 {(we can take , to be rich

v
i )

>

enough to support these):

)

9

{} Z%] having probability function f(-,ol), J = 1,2, euuy

AN -9

o Z%.’2 1 having probability function f(-,a9-01), J = 1,2, eee,
N -0 -

: zJ.4 2 having probability function f(+,3,-3,), J = 1,2, ...,
r? and set

2

N v

- ! o)

X, = ; Z.
| A

.r_ J-l
- Y.
- 2 9
& " io 1 8,=0
- X, = L LZ + 232 1},
J'. 2 J=1 J J

4 v ' ey Y

e S O N T A R o, ige8,

:‘ X3 = L {.Z + ZJ ; + :_." LZJ + ZJ I’
K » 1= = +
.b J=1 J Y21

= Y
\ 4 o= 3=

: " | 2 1 472

- X, = & LZ' + . + 7. I,
e 4 i1 J J J
A -
( Then, from the semigroup property it follows that Xi 2 Xn(ei)’ i =
2 v v e " . 9 ’ " o
y: 1,2,3,4. Clearly X1 < LXZ,XSJ < X4 d.5., and since {4 > Y2 + Y3 - Y1 ,

) v " v " ;
: also X1 + X4 > X2 + X3, d.5,
& Similar results hoid also for continuous time branching processes, These
'-
b will be discussed elsewhere.

‘; 5.6, Empirical distribution functions. Let Yis oy eeey Y, De independent
:f random variables with a common distribution function F. Suppose the support
-'.\.
‘:: 0 of F is an interval of real numbers or integers, Denote by

"1

Fn(t), t ¢, tne empirical distribution function constructed from tne Yi's.
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Result 5.10. If F is convex [concave, linear] on

o then {F (t), t e 0} e SICX(sp) [SICV(sp), SIL(sp)].
To prove Result 5.10 note that Fn(t) has a binomial distribution with
parameters n and F(t). Thus the result follows from Example 4.4 and

Proposition 3.5.

5.7. Convex parametrization. According to Schweder (1982), a family

{Pe,eeo} {o 1is an interval of real numbers or of integers] of distributions

is called convexly parametrized if Eo(X(0)) is convex for every convex

function ¢ where X(3) 1is distributed according to P That is, {X(35), &

5
€ 0} € SCX [see Definition 2.6(b)]. By Proposition 3.7, {X(38), 6 ¢ C} ¢

SCX whenever {X(8), 9 € 0} e SIL(sp) or SDL(sp). Thus Examples 4.1, 4.4
and 4.5 yield a host of convexly parametrized families of distributions (some
of which have already been noticed by Schweder (1982)). For these families of

distributions, Schweder (1982) and Shaked (1980) obtained various inequalities

useful in biology ana statistics.

5.3. Majorization and Schur-convexity. Let X(ej), J=1,2,ee.,n, be

independent random variables having distributions F(-;SJ), J = 1,2, eesy n,

respectively, where ({F(+;9), 6 € 6} is a family of distributions., Marshall
and 0lkin (1979, p. 102) snowed that if {F(+;0), 9 € 0} satisfies the
semiyroup property [see, e.g., Example 4.1] and if F(x;9) has some total

positivity property then Ew(X(ol), ooy X{0.)) 1is Schur-convex in

n)

(ul,...,on) whenever V(Xl,...,xn) is Schur-convex. [n particular, if
n
4:RsR is convex then, under the conditions above, E _ .,(X{=.)) is Schur-
Y J

convex in (Upyeea,tp)e.

From Example 4,1 and Proposition 3.7 we see that for each j =1, ...,
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n, EQ(X(SJ)) is convex in 3 whenever ({F(e;5), 8 ¢ ¢} has the semigroup
n

property. Thus, if o is convex, then E_l 2(X(3.)) 1is symmetric and convex
in (51,...,Sn) and hence Schur-convex in %21,...,un).

The latter conclusion {which is weaker than the concliusion of Marshall
and Jdlkin (1979,p.102)) is obtained without the total positivity assumption of

Marshall and Olkin (1979, p. 102).

5.9. Cumulative damaye shock models. Esary, Marshall and Proschan (1973)

considered the folowing model for wear processes.

Model 5.11, An item is subjected to shocks occurring randomly in time
according to a Poisson process {N{t),t>0} with rate A. The i-th shock

causes a nonnegative random damaye X

j+ The damages are independent and

accumulate additively.

Denote 5. =0, S, =95 n=1,2,e0. « Thus at time t > 1) the

Result 5.12. (a) If X., ie{l,2,...}3} ST then

N

{SN(t)’ t‘:[t)f")} € SICX(SP).

(D) If  {Xj, ie {1,2,00a}}7 ¢ SD then Syt te[0,=)}eSICV(sp).
(c) If the X;'s are identically distributed then

{SN(t)’ telU,«):=SIL(sp).

The proof of this result consists of two steps. For t;, i =1,2,3,4,

such that tl % t2 < t3 % t4 and tl + t4 = t2 + t3, first construcs

-~

U, 1= 1,2,3,4, such tnat i, 3t N(ty), 1= 1,2,3,4, and a.s.

-A uA : A 5 .-A _A " } jou 2}
Nl < [dz,d ] < ”4 and Jl + d4 = N2 + N3, as in Example d.1., Then

construct Si’ i =1,2,3,3, such that Si gt

S. s 1= 1,2,3,34, and, a.s.,
T
i
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S, + S4 > [<,=]S2 + and S

.
e 1

§3 p s [§2,§3] < §4.

Jther convexity results can be obtained for Model 5,11, For example,

N under the assumptions of Result 5.12(a) [(b), (c)] the wear process SN(t) at
E:I‘: time t is SICX(sp) [SICV(sp), SIL(sp)] in X ¢ (0,=). If the distribution
N of the Xi's of Model 5.11 depends on & then for each t > 0, stochastic

= convexity [concavity, linearity] of SN(t) in o follows from stochastic

:fa convexity [concavity, linearity] of each X in 9 provided the Xi‘s are

identically distributed. We omit the proofs of these results.
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