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OPTIMAL IDLE AND INSPECTION PERIODS FOR M/G/I QUEUES

by

Sung Shick Kim

Korea University

and

Richard F. Serfozo

Georgia Institute of Technology

Abstract

We consider an M/G/1 queue that operates under a (T,N)-policy:

whenever the system becomes empty, the server is idle for a time T and

then it inspects the queue continuously without serving customers until

there are N customers waiting - thereupon the server is activated for

service and serves customers continuously until the system becomes empty.

This idle-inspection-service cycle is repeated indefinitely. There are

costs for inspecting the queue, activating and running the server, and

holding customers in the system. We present a computational procedure

for determining the design parameters (T,N) that minimize the average

cost.
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Introduction

Intermittent rather than continuous service is characteristic of

service systems in which servers must be absent periodically for other

duties or for rejuvenation. Intermittent service is also used in systems

where short queues are tolerable, or where short busy periods for servers

are uneconomical. In designing such systems, a natural question is: How

long should the server be absent without observing the queue and at what

queue length should the server start serving customers?

In this paper, we address this question for an M/G/I queue that

operates under a (T,N)-policy as follows. Customers arrive by a Poisson

process {A(t); t > 01 with rate X, and the service times have a mean

-1
U and a finite variance, and U > X. For simplicity, we assume the

system begins at time zero with the server deactivated and no customers

in the queue. The server remains idle in the time interval J0,T ard, at

time T, the queue is inspected which reveals A(T) customers waiting. If

AT) is less than a number N, then the queue is inspected continuously

until the time SN of the N-th arrival. Thereupon the server is activated

for service and serves customers continuously until the system becomes

empty, at which time the server is deactivated. On the other hand, if at

time T it is found that A(T) > N, then the server is immediately

activated for service and serves customers until the system becomes

empty, as in the previous case. This idle-inspection-service cycle is

repeated indefinitely.

Associated with this (T,N)-policy are costs for inspecting the 0

queue, for activating and running the server, and for holding customers

in the system. The aim is to find the design parameters (T,N) that

minimize the average cost of operating the system. !es

%
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We begin our analysis in Section I by deriving an expression for the

average cost of a (T,N)-policy. Then in Section 2 we present a method

for computing an optimal (T,N)-policy. We also give some insights into

how the optimal policy changes as the parameters of the model change.

The special (T,N)-pollcy with T=O (no idle time) is the well-known

N-policy studied by Yadin and Naor (1963), Heyman (1968), and Sobel

(1969); related works are Bell (1971), Balachandran (1973), Levy and

Yechiali (1975), Tijms (1976), Talman (1979), Shanthikumar (1981), Kimura

(1982), and Lu and Serfozo (1984). Also, the special (T,N)-policy with

N=1 (no inspection period) is essentially the T-policy studied in Heyman

(1977) (Heyman and Sobel (1982) discuss the N- and T-policy as well). In

Heyman's model, when the server completes an idle period and finds no

customers waiting, then the server takes another idle period; in our

model the server is committed to serve after each idle period. We show

how our analysis can be easily modified to conform to the former

assumption. In addition to finding an optimal (T,N)-policy, our model is

useful for comparing the costs of various (T,N)-policies in which one

parameter is fixed and the other one is optimized.

1. The Average Cost of a (T,N)-Policy

In this section, we derive an expression for the average cost of

operating the M/G/1 queue under a fixed (T,N)-policy. We begin by

introducing ,ore notation.

Associated with the idlu-inspection-service cycle described above,

we let i denote the length of time that the queue is inspected after time

T, while no services are being performed. Namely, i - max[O, SN - T}.

At time T + i the server begins a busy period. The number of customers
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waiting at the start of this busy period is v = max{A(T),N}. We let BV

denote the length of the busy period starting with v customers. Then the

total duration of the idle-inspection-service cycle is S = T + I + B

We assume that the costs of operating the system are as Zollows:

K = cost per cycle for activating and deactivating the server

v = cost per unit time of inspecting (viewing) the queue

r = cost per unit time of running the server

h = cost per unit time of holding one customer in the system.

Then the total cost for a cycle is

Z = K + vt + rB + h X(t)dt,

where {X(t); t .' 0} is the number of customers in the system over time.

The integral is the total customer waiting time.

Our main concern is the average cost per unit time over the infinite

horizon, which we denote by C(T,N). Since the traffic intensity p =

is below one, the queueing process is regenerative, and so it is well

known that C(T,N) = EZ/ES.

An expression for this cost is given in the following result. For

this, we let T denote the length of a busy period for a standard M/G/l

queue started with one customer, and let W denote the total waiting time

of the customers present in this busy period. It is known (e.g. see

p. 447 in Heyman and Sobel (1982)), that

(1.1) ET = 1/(p - A)

(1.2) EW = Xo2/(2(I - p) 2) + /(P - X),

where a2 is the variance of the service time. We also let
N-i

N-1 n -AT
* 1 (T,N) = E (N - n)(XT) e - n!

n=O

% % A
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N-i 2 2

02 (T,N) = E (N 2 - n 2)(T)n e- T/n.
n=0

Theorem. Under the preceding assumptions,

(1.3) ES = [T+X- 1  b1(T,N)]/(1-p)

2
(1.4) EZ = K + [h(XT) + h4 2 (T,N) + 4l(T,N)(2v(l-p) - h)]/[2X(l-p)]

(1.5) C(T,N) = (h/2){[a XK + (XT) 2 + (av-I) ,(T,N)

+ 2 (T,N)]/[XT + 41 (T,N)]} + rp + hX(l-p)EW,

where a = 2(1-p)/h.

Proof. By the definition of the cycle time S, we have

(1.6) ES = T + Ei + EB.

Clearly

(1.7) Ei = E[E(max{O, SN - T}IA(T))]

N-1
= E E(S Nn)P(A(T)=n) = OI(T,N)/X.

n=O
B

Next, we can write B==lTk, where i,,T2 ,... are independent copies of T

that are independent of v. Then by a standard conditioning argument and

(1.1), we have

(1.8) EB = EvET = Ev/( -)

where

(1.9) Ev = E[A(T) + max{O, N- A(T)}]

= XT + $1(T,N).

Combining (1.6) - (1.9) yields expression (1.3).

Now consider the expecte2 cycle cost

(i.10) EZ = K + vEi + rEB + hE X(t)dt.

We already have expressions for Ei and EB . It remains to find an

expression for the expectation of the waiting time

-'"
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(.1) foX(tOdt = oA(t)dt + f~i TA(L)dt + fT+,X(t)dt.

By Fubini's theorem, we have

(1.12) E fTA(t)dt = fTEA(t)dt = fT tdt = X 2

Next, observe that

T~i N-1
(1.13) E f T A(t)dt =E[I(A(T) < N) E flyn

n=A(T) '

-1 N-1
=X -1E[I(A(T) < N) E n],

n=A(T)

where Y1 . Y 2,'... are independent exponential variables with mean X- that

are independent of A(T), and I is the indicator function. Then applying

the identity

N-I 2,2
E n = [(N-I)N - m(m+l) 1/2 = [(N -n)-(N-rn)1/2

n=m

to (1.13), and recalling the definitions of 01and 02' we obtain

(1.14) E fT- A(t)dt = ~(T,N) - (,)/20

Finally, we can write

jZv Xv-dn= i X(t)dt,

n=1 v-ni-

where t n= inf~t > T + i.: X(t) =n ). In the time interval [t v-n+i'

t v- , the process X(r) starts at v-n+1 and remains above this level

until the end when it reaches v-n. Let (T1,W1) (TW ),.... denote

independent copies of (T,W) that are independent of v. Then

ftv-n X(t)dt = W n+ ( v-n) t

where W nis the area under X(t) above the level v-n, and (v.-n)Tn is the

area under X(t) below v-n (t = T + I+ T +-..+ T )n It follows that

v-n I5n
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V V

(1.15) E f +ix(t)dt = E E Wk + E{E[ E (v-k)Tk v]}
k=1 k=1

V

= EvEW + ETE[ E (v\'-k)]
k=1

- EvEW + ETE(v 2_ v)/2,

where

(1.16) Ev 2 = E[A(T) 2 + max{O,N -A(T) 2]

2
= XT + ( 2T) + o2(T,N)

Substituting (1.11) - (1.16) into (1.10) yields expression (1.4). Then

expression (1.5) follows from (1.3), (1.4) and C(T,N) = EZ/ES.

2. Computation of Optimal (T,N)-Policies

In this section, we address the problem of finding a (T,N)-policy

that minimizes the average cost C(T,N).

As a first step, consider the subproblem of minimizing C(T,N) over N

for T fixed. This is of interest in itself when one is designing a

system in which the idle time T is preset and cannot be varied. The

solution to this subproblem is as follows.

Theorem 2.1. For each T, the cost C(T,N) has a unique minimum over N,

which is attained at the value

(2.1) N(T) = min(Nl: D(T,N) > 0}1,

where

2
(2.2) D(T,N) = XT(av-1) - aXK - (AT) +

(2N+I)[XT + I(T,N)] - 2(T,N).

Proof. It is easily seen that

(2.3) *1(T,N+I) = I(T,N) + F(N)

02 (T,N+I) = *2 (T,N) + (2N+I)F(N),
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where F is the Poisson distribution with mean XT. Using these

expressions and (1.3) - (1.5), one can show that

C(T,N+I) - C(T,N) = D(T,N)(h/2)F(N)/[(AT + 01(T,N))(AT + p(T,N+1))].

The terms following D(T,N) are positive, and so C(T,N) will have a unique

minimum over N at the value (2.1) if D(T,N) is strictly increasing in N.

But this is true since one can show that

(2.4) D(T,N+I) - D(T,N) = 2[IT + 41(T,N)] > 0.

Computation of Optimal N(T) Policies. The optimum N(T) in (2.1) can be

obtained by computing D(T,N) recursively by the following formulas based

on (2.3) and (2.4):

(2.5) 0 1 (T,N) *1(T,N-1) + F(N-1)

D(T,N) = D(T,N-1) + 2(XT + *(T,N-1)), N > 2

-XT
where *I(T,I) = e

Our computations show that N(T), as a function of T, is

nonincreasing and then nondecreasing. This was as anticipated: For T

near zero, N(T) is moderate since it is the major control parameter; as T

grows, N(T) can be reduced, but it eventually tends to .

Remark. Recall that the (T,N)-policy with T=O is the N-policy. In this

2 2
case, 1 (0,N) = N, 02(0,N) = N and D(O,N) = N + N - aXK; and so the

optimal N(O) is the smallest integer greater than (1/4+aXK) 1/2 - 1/2.

This is consistent with Heyman (1968).

Now consider the problem of finding an optimal (T,N)-policy. This

problem can be expressed, with Theorem 2.1 in mind, as

(2.6) min C(T,N) = min min C(T,N) = min C(T,N(T)).
T,N T N T

If the function C(T) C(T,N(T)) were to have a unique minimum, say at
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T*, then it would follow from (2.6) that (T*,N(T*)) is the unique optimal

(T,N)-policy. Because the function (T) is rather intractable, we were

not able to prove that it has a unique minimum. However, extensive

computations showed that (T) does indeed have a unique minimum; we

enumerated hundreds of functions and each one had a unique minimum.

Computation of Optimal (T,N)-Policies. From the preceding comments, it

follows that an optimal (T,N)-policy can be computed as follows.

Consider a grid of T-values T1, T2,... as fine as desired. Using

(2.1) and (2.5), compute N(T) and C(T) = C(T,N(T)) for the successive

T-values T1 ,T2 ... until the time T = min{Tk: C(Tk) < C(Tk+l)}.

The resulting (T*,N(T*)) is the optimal (T,N)-policy. (Alternatively,

one may find the T* that minimizes C(T) over T in [T1,T2 ,...} by a

Fibonacci or Golden Section Search Procedure, where N(T) and C(T) are

computed at each stage by (2.1) and (2.5). However, the saving of

computation time by this approach is negligible.)

This procedure is very easy to implement. Examples of optimal

(T,N)-policies computed by it are shown in Table 1. For these

computations, we set A = 1 (which is equivalent to X being the time

-1
unit), and we set a = 2(1-p)/h = I (which is equivalent to a being the

monetary unit).

The average cost associated with an optimal (T,N)-policy is

C(T*,N(T*)) = hC*/2 + rp + hX(1-p)EW,

where C* denotes the expression in braces in (1.5), which is the only

term relevant to the optimization (the other terms do not depend on

(T,N)). Some of the values of C* associated with Table 1, for v=30, are

as follows:
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K=100 200 300 400 500

C*=20 28 35 40 45

These C* values are rounded to the nearest integer. The corresponding

values of C* for v below 30 are not more than one unit below these values

for v=30. The C* is obviously increasing in v and K. Note that the

optimal policies do not depend on the cost r of running the server or on

2the variance a of the service time.

Remark. If there is no cost for inspecting the queue (v=0), then it is

optimal to continually inspect the queue and have no idle time (T*=0).

This intuitively obvious result follows since one can show that 3C(TN) =
DT

0 when T=O.

It is of interest to know whether the optimal policy (T*, N(T*)) is

nonincreasing or nondecreasing in a particular input parameter. For

example, Table I shows that T* t in v, but N(T*) 4 in v. Here is a

formal result in this regard.

Theorem 2.2.

(i) T* is strictly t in each of the parameters K, v and j.

(ii) N(T*) t in K and + in v.

2(iii) N(T*) t in 11 for 1 4 10 = inf{j: T* > v/X K}, and N(T*) + in for

V> 0"

Proof. These properties are based on the following result. Consider an

optimization problem, like ours, of the form

min f(x,v),
xgS

where S is a subset of the line or plane and v > 0 is a parameter of

interest. Suppose f(x,v) has a minimum over x e S at the point x (v);

when there are several minima we assume there is a smallest one and call
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it x (v). That is, we assume the following minimum exists

x (v) = min(x: f(x,v) = min f(x',v)}.

x?

It is known (see for instance [8]) that x (v) t or + in v according to
af*

whether -L (x,v) + or t in x; moreover x (v) is strictly monotone when 
-f

(x,v) is.

First consider T* and N(T*) as functions of p. One can show that

3 (TN) v [F(N-) + ,(T,N)(I - F(N-l))]
3T 311i [(Nl

2
/[AT + pl(T,N)] < 0.

Thus, it follows by the preceding comments that T* is strictly t in 1

(as asserted in (i)). Similarly,

aC(T,N+1) 3C(T,N) -2 2X F(N)(KTX - v)

/[XT + ,(T,N+I)][XT + qb(T,N)].

This expression is negative or positive according to whether T is < or >

v/KX. Th' observation and T* being strictly increasing in P proves

assertion (iii). Assertion (ii) and the rest of (i) follow by similar

argument s.

Remarks. Our model assumes that after each idle period, even when there

are no customers waiting, the server is committed to an

inspection-service period. A variation is that when a server completes

an idle period and finds no customers waiting, then it takes another idle

period. The results above also apply to this setting: just replace

I(T,N) and 2 (T,N) by II(T,N) - Ne- T and 2 (T,N) - 2 e- XT

respectively. Note that the (0,N)-policy in this setting is not the

N-policy, whereas in our model it is.

x-', .., .-' ; ?" ". .. ?i-- --i.. -.- .@ -" _-- -:,-;i--;--~ i- :-i .?'? -L: o-- 4,? .-.- ..'. .Z- 4.-,,-?i. --;* ,--
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Table I

OPTIMAL (T,N)-POLICIES

The Table entries are T* N(T*).

K V 0 5 10 15 20 25 30

100 9 0 9.5 7 9.9 4 10.0 2 10.0 1 10.0 1 10.0 1

120 10 0 10.4 8 10.9 5 11.0 3 11.0 1 11.0 1 11.0 1
140 11 0 11.2 9 11.7 6 11.8 4 11.8 1 11.8 1 11.8 1

160 12 0 12.0 10 12.5 7 12.6 5 12.6 2 12.6 1 12.6 1

180 12 0 12.7 10 13.3 8 13.4 5 13.4 3 13.4 1 13.4 1

200 13 0 13.8 11 14.0 9 14.1 6 14.1 4 14.1 1 14.1 1

220 14 0 14.0 12 14.7 9 14.8 7 14.8 4 14.8 2 14.8 1

240 14 0 14.6 12 15.3 10 15.5 7 15.5 5 15.5 2 15.5 1

260 15 0 15.2 13 15.9 11 16.1 8 16.1 6 16.1 3 16.1 1

280 16 0 15.8 14 16.5 11 16.7 9 16.7 6 16.7 4 16.7 1

300 16 0 16.3 14 17.1 12 17.3 9 17.3 7 17.3 4 17.3 2

320 17 0 16.8 15 17.6 12 17.8 10 17.9 7 17.9 5 17.9 2

340 17 0 17.3 15 18.2 13 18.4 10 18.4 8 18.4 5 18.4 3

360 18 0 17.8 16 18.7 13 18.9 11 19.0 8 19.0 6 19.0 3

380 18 0 18.3 16 19.2 14 19.4 11 19.5 9 19.5 6 19.5 4

400 19 0 18.8 17 19.7 14 19.9 12 20.0 9 20.0 7 20.0 4

420 19 0 19.2 17 20.2 15 20.4 12 20.5 10 20.5 7 20.5 5

440 20 0 19.7 18 20.6 15 20.9 13 21.0 10 21.0 8 21.0 5

460 20 0 20.1 18 21.1 16 21.4 13 21.4 11 21.4 8 21.4 6

480 21 0 20.6 19 21.5 16 21.8 14 21.9 11 21.9 9 21.9 6

500 21 0 21.0 19 22.0 17 22.3 14 22.3 12 22.4 9 22.4 7
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