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*.- STATIONARY MARKOV SETS

M. I. Taksar*

Department of Statistics
Florida State University
Tallahassee, Florida

United States

1. Introduction

If one looks at the set of times when a strong Markov process visits a point

in the state space, then this set is a regenerative set. It forms a replica of

itself after each stopping time whose graph lies in this set. Closed regenerative

sets have been studied for a long time (see Hoffman-Jdrgensen [4], Maisonneuve

[8], Meyer [91 and others).

Since the studies of regenerative sets were motivated by the theory of Markov

processes, such sets were originally called (strong) Markov. In addition it was

always supposed that any regenerative set M is a subset of the positive half-line

and P{OE c} = 1.

However, if one considers visiting times of a stationary strong Markov pro-

cess, then the corresponding set M is stationary, that is the probability law of

the set M + t is the same as the one of . The "natural" state space for station-

* arv sets would be the set of closed subsets of a real line and the condition

0c M a.s. should be dropped. The first study of such sets was done in Taksar
[11]. It was sho-n that all such sets are in one-to-one correspondence with the

* I ranges (closures of the images) of the processes with independent increments

having finite expectation.
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The paper of Maisonneuve [8] gives a simple and comprehensive approach to

the regenerative sets on a real line. It also gives an easy proof of the main

results of [11). Further development of the theory of regenerative sets on a

real line is done in the recent work of Fitzsimmons, Frisdedt and Maisonneuve [3].

All regenerative sets have a (weak) Markov property. The "future" after

time t of such set and its "past" are conditionally independent given "present".

A Markov set is the set for which conditional independence of the "future" and

the "past" holds, but stronger regenerative property might not be true.

_ Apparently, Markov sets form a larger class than regenerative sets. In a

stationary case, however, the difference is not as big as one could expect. It

was shown in [11] thatstationarv Markov sets are "almost" regenerative. There are

two types of regeneration after each point t; one occurs if the point t belongs

to the set and the other type of regeneration takes place if t does not belong to

the set. In particular, every stationary Markov set which almost surely has

Lebesgue measure zero, is regenerative, (see [11) Theorem 2).

In this paper we will describe all closed stationary Markov sets. We will

show that each stationary Markov set which is. not regenerative can be constructed

from two special regenerative sets, by either taking a mixture of these regenera-

tive sets or taking a "superposition" of two regenerative sets. Superposition can

be described loosely as cutting two real lines 11 and I2 with two sets 1\1 and N12 in

them, into pieces of iid length and then combine them into one line alternating pieces

from I1R and I12. The union of the cut offs from M and N1 will be the superposition

c* thE. sCts M ] and N!,.

i,, vaper is structured a.z follows. In section 2 we give definitions and

formulate the main results. In section 3 we establish the main properties of

stationary Markov sets. Section 4 studies the operation which transforms a

stationary Markov set into a stationary regenerative set. Section 5 analyses

those stationary Markov sets which are neither regenerative nor are mixtures of

2
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*regenerative sets. In section 6 we study the "residual life" process associated

with the stationary Markov set, and find its stationary distribution. The last

section is devoted to reversabiIity properties. We outline a necessary and suffi-

cient condition for the set -N to have the same distribution as M.

2. Basic definition. Formulation of the main result.

In our definition and notations we follow Maisonneuve [8] and Fitzimmons,

Fristedt, and Maisonneuve [3]. Let 20 be the set of all closed sets in JR. For

each J 2 and tEIR put (assuming inf 0=. sup 0= 

r d 0 ) n (W°) t - ()
tw dt( tot t

A
T (WO) {s-t: s->t, SEW0 }

C (w0 ) {s-t: s_<t SEW,}
t

Let GO (Go respectively) be the a-field generated by all functions d, sc IR
t

(s-<t respectively). Let Jo (JO respectively) be the a-field generated by all
t

functions u, u E JR (u >- t respectively). It is easy to see that GO is an increasing
U t

and JO is a decreasing filtration and 3o=Go.
t
A closed random set M on a space ( ,F) is a measurable mapping of (P,F) into

(Qo ,Go).

In this paper we will deal only with closed random sets, so in the sequel we

will not write "closed" each time. Put
-%'D A RtA

dt M o R R =r oM
.1 t t

I L t t o M, N =n o M
t t t

M Mt o T A oM

t t

tIt is obvious that all the mappings Dt , Rt , Lt and Nt are measurable and so are

t
N It and Mt.

3
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Let (Q,F,P) be a complete probability space and M be a random set on this

space. Let G, Gt and Jt be the preimages in F of the o-fields GO, Go and J 0
t tt t

under the mapping M.

(2.1) A set M is called right Markov (r.M.) if for any two bounded measurable

functions f and g on (s°,G°)

P{f(Mn[t,a[)g(Mn]--,tI Dt }:P{f(Mn[t,-[) I Dt 1P{g(Mn] - ,t]) I Dt

(2.2) A set M is called left Markov (l.M.) if for any two bounded measurable function

p{f(Mn[t,-[)g(Mn]-,t) ILt} = P{f(Mn[t,[) IL t} P{g(Mn]-",t]) I L t

For brevity here and in sequel we write equations with conditional expectations

without adding a.s. after equalities. Given a random set M, we denote by M + s

the set {t+s: tc M}.

(2.3) A set M is called stationary if for any bounded measurable function f on

(Q0 ,G0 ) and any s E IR

P{f(M+s)} = P{f(M)}.

Our aim is to describe all stationary r.M. sets. We will need results from

the theory of regenerative sets. The precise notion of regenerative set used in

this paper is due to Maisonneuve [8].

(2.4) A random set N is right regenerative (r.n) if there exists a measure

P on (Co,() such that for each fE b(, (set of bounded G°-measureable functions)
'I 0

O1 P{f-mtj( t I P {f} on {Dt<v].
t 0 t

Following [8], the measure P is called the law of (right) regeneration of M.

(2.5) A set N is left regenerative (i.r.) if there exists a measure P0 on (Q°,GO)

such that for each fE bG°

P{fo M ItI = P0{f} on {L > - ®)
t t t

1. 4
p'W.
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% In the sequel for brevity, we will use the term regenerative (r.) and Markov (M)

instead of right regenerative and right Markov respectively.

Increasing processes with independent increments (subordinators) play an impor-

tant role in the description of regenerative sets and, aswe will see in the sequel,

stationary Markov sets as well. Each subordinator z is characterized by a constant

a < 0 and a measure IT. on ] 0, We call such a subordinator an (a,IT ) -process.

Let z (w) t >O, be a stochastic process on a probability space ( 2,F,P). The
4 t

image M of this process is defined as

M(W) = z (2

where bar above the set stands for closure. If z is a subordinator, then the

image of z is a right regenerative set. If z is a decreasing process with inde-

pendent increments then the image of z is a left regenerative set.

Let us recall the main results of [8] and [11] regarding stationary regener-

ative sets. There is one-to-one correspondence between all stationary r.r. sets

M and all pairs (a, IT) defined up to proportionality, where a and IT are charac-

teristics of a subordinator subject to

f x IT (dx) <
0

The stationary set M which corresponds to the pair (a, fl) is called (CY, 1)-generated.

Any stationary r.r. set M is also 1.r. Moreover the set -MI has the same distri-

bution in (P , G0) as M.

Since the definition of r.M. set is weaker than that of r.r. set, any r.r.

set is r.M., however the opposite is not true.

An example of a stationarv r. M. set which is not r.r. was constructed in

[11]. Any mixture a (0, 1)-generated set and a real line 1R with "weights"

0 <p < 1 and q 1-p is a r. M. set but not a r.r. set.

5 .. °..-%• " ." " • ,•' ." , ". . ' ". " ." ." " .", ' ' • ,€ " ¢ , , ., .'' ' ''. -. ,. , ., , "' ' "" " " "" "". . v' ' • , ." " " . " " . ." -" "" -". ."". , .



DEFINITION. Right Markov sets of the first type are right regenerative sets.

Right Markov sets which can be represented as a mixture of a (0, 11)-generated and

a real line are called r.M. sets of the second type. Right Markov sets which are

neither of the first or the second type are called right Markov sets of the third

type.

Markov processes provide good examples of different types of stationary

Markov sets. If xt is a strong Markov process and b is a point in the state space

then the "visiting set"

M ={t: xt = b)

is regenerative and if in addition xt is stationary, then N is stationary.

To obtain a Markov set of the second type, consider a strong Markox process x 1

for which Px 1 =b) = 0 for each t, but point b is not a polar set and a

process xt which stays deterministically at the point b. The mixture xt of the1 1 2

processes xt and x t will be a Markov (but not a strong Markov) process. The
visiting times of b by x t is a Markov set of the second type, and if x t is sta

tionarv then so is the visiting times set.

To give an example of a Markov set of the third type, consider a particle

moving on the positive half line according to a diffusion law. An infinitely thin

elastic screen is placed at the origin. The particle is reflected from this screen

until time

T = {inf t: .t >S

where t is the local time at :ero of the reflected diffusion and S is a random

variable with exponential distribution independent of the process xt. At the

moment i the particle moves to the other side of the screen where it stays for

time X, where X is another exponential random variable independent of x. and S.

At the time X+ T the partical is placed back to a random point on the positive

half line and the whole process starts anew. The closure of the set of times when

this particle visits the origin is a Markov set of the third type. If this Markov

6
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process is stationary (which can be easily achieved, provided that there exists a

constant downward drift, or there exists a reflecting upper barrier)then this

Markov set is stationary.

In the remainder of this section we define rigorously the superposition of

two regenerative sets and formulate the main result.

Let 11 be a measure on ]0,-] and P be a probability measure on [0,-[ and A and

a be two positive constants. Let yt be a (0, l)-process and {S k , k = 1, 2 .....

{X k } and {Y k , k = o, 1, 2, ... be three sequences of iid random variables, indepen-
dent of y and independent of each other. The distributions of S. and Xare

exponential with parameters a and A respectively. The distribution of Y. is given
j

by u. Consider a subordinator xt of a pure jumn type constructed in the following

manner (we assume below o0 = 0)

ak k-i =Sk, k= 1, 2,

(2.6)
Xk Xk + Xk, k= 1, 2,...

=x if O <s<U < , k=0, 1

"'.Put Y + xtPut" (2.7)

L u {x: \! :- +x
. L k=1 °k

" = - crL (2.8)I4

,-I'. The set M defined by (2.8) is called (11 ,aX,, -set. (Note that there are many

.( ,:j,',U)-5ts corresponding to different initial distributions of the process yt

Leot ~'be the restriction of ij on ]0,~[ We say that quadruple (T1 ,XL,,) is

epiivalent to (Ilcal,X 1 , l) if there exists a constant c such that

c ""L (2 9)
(~10a) = c(I 1 0cz1 )

... I, - H (2.10 )

7.,'..,. . . .



l- 0{o)/(ca+ Ii (1R)) = X(1- clil{O)/Ca1 + I 1 (iR+)) (2.11)

In particular, when IT is an infinite measure, equivalency of (11 U,A,J) and

(IlPalIPll) means proportionality of (IT,a) and (T11 19a) and equality of (X,v)

and (,11).

It is easy to see that if 1I(.R) =- and quadruples (JI ,X, ) and (II ,, , )

are equivalent then every ( I,a,X,v)-set is a (TI1ll, 1,iVl)-set as well. In fact,

if we construct processes x, y and Z by (2,6) and (2,7), then processes x= Xt

yt an d Zt =t generate the same set M given by (2.8). However, the Levi's
t ct t ct

" measure of the process xct is cli and the rate of jumps of the process Ye is c a,

which shows that ( l,a,X,p)-set is (clI , c a,X,p)-set as well.

If J1 is a finite measure then both processes xt and have jumps governed by

Poisson rrotesses with rates , and J(R+) respectively. In particular

P y- y0
} = /(&+ 1H(R+))

(see 12.6, for definition of c1. The set M given by (2.7) consists of the inter-

,nn , n discrete points of the image of 7. The length of the first interval

1 7 0 C je I to 1 X + ... + X where N has geometric distribution with para-

meter c . Thus the distribution of I1 is exponential with parameter (1 - pw{0}).

I, >t'ijhwt ,u or thli interval .1 which is contingent to 1 in I
li Il (i e , i " - 1 511is

fro t;C right (i.e., inI,t:t.Jl = sup~s:sl ) has distribution (.ii1/'fl(R. ii

* -1
(note that (TI (Rt)) i is the distribution of the jumps of the process y). Like-

t

wise for anv other interval Ik in L and contingent to Ik interval Jk. The distri-

bution of any" interval contingent to M which does not coincide with any of Jk is

equal to the distribution of jumps of y, i.e. to (T OR ))-Tl . From the above it
C t

is easy to show that if N1 is a (JI,a,.,ti)-set and (II ,,,) is equivalent to

(llal,,l,jl) then there exists a (II 1 l,al 91 1)-set whose distribution is the

same as that of M.

S.8
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DEFINITION. A random set M is called (1I, a, X, o)-generated if for each t there

exists a random variable vsuch that t a. s. and N1n[O 'o has the same

distribution as a (II, a,X,ji)-set. In this case the quadruple (l~,.)is called

the generator of the set M.

The next two theorems give the main result of this paper.

(2. 12) MEEOREM. Every stationary r.M. set H of the third type is (fla,-

geeatd The generator of M is unique up to equivalency and is subject to

f xfl (dx) <~ (2.13)
0

f x p (dx) (214

Each quadruple ( H,a,X,li) subject to (2.13) and (2.14) is a generator of a unique

stationary riaht Markov set.

Let 6 denote a unit measure concentrated at point a.
a

(2.1) ThORE A satioaryr.M. set M of the third typ~e is left Markov iff

its generator (H&~)is equivalent to (11 ,o.,\6 0) In this case the set -MI

has, the sam~e di stril ut ion as M)*

In the di fflusion example presented above the sct of visiting times of 0

becomes a left Markov set when the diffusion process is made continuous. That

YeJCan i" ;It the1 t ie -7 + \the particl e is moved onl the other side of thle

9
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3. General properties of stationary Markov sets.

-. Here and in the sequel we will deal only with those stationary Markov sets

which are a.s. nonempty. This is equivalent to

P{D < } = 1 for all t E I. (3.1)
t

The following proposition was proved in [11] (see Lemma 7.3).

(3.2) PROPOSITION. If N is stationary Markov set then for each function fE bG°
= -:--

there exist two constants a and b such that for each t

P{fo t 1 0 } = a 1 >t + bl
t t

For brevity we will denote indicator functions of ]--,t[, ]--,t], [t,-[,

]t,-[ by l<t, l<t, 1>t and 1>t respectively.

The following corollary is a simple consequence of Propostion (3.2).

(3.3) COROLLARY. If N is a stationary Markov set then there exist two measures

P0 and P1 on (00",) such that for each fE bCG°

P{foNtGt} = <t (1 t)P {f) + 1 t(Dt )P {f}. (3.4)

Let NI denote the set of all points of N1 which belong to NI with its right

nei ghborhood.

(3.5) PROPOSITION. For each f b0 ° and any stopping time T with respect to the

filtration Gt+.,

Nfo TM r+} = 1T6MPo{f + ]T(' ) Pllf} (3.6)
O|

0p,,.ic. Usual arguments show that Proposition (3.3) remains true if t in

(3.4) is replaced by any stopping time with respect to Gt, taking finite or coun-

table number of values.

10
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It is sufficient to prove (3.6) for f of the form

[ '

. .-"f =g(rsl rs2
S-. ..., r )

where g is a bounded continuous function of k variables. For such f the function

f o Mt is continuous in t and

T TP. ', MTIGT+} = ur ~o M nIGT } =

(3.7)

= lr [1 >T (DT )P0{f
) + IT (DT )P1{f}]

n-- n n n n

where T is any sequence of stopping times, taking on finite or countable number
n 1

0- of values and such that T 4 T.
n

Put

zen (x) k 2-n if (k-1) 2 n <x<k 2-n (3.8)

and let (assuming inf 0=

"'"' = nf{a n(S : s 1 -u M M for all s<u (s).

andom variable T' is a stopping time (see K. Clh \VI and so isThe rno arblT n  .. . .

T (M) a(T) + L 1Tn = lI (bI" -(T l a,_I ' (3.9)

Each Tn given by (3.9) takes at most a countable number of values and T 4 T. By the

*construction >T Tn on the set {Tg M} and {Tn=1) } converges to the set {TEMl}.n n

n n

Hence we can pass to a limit in (3.7) and obtain (3.6).

a 11



(3.10) PROPOSITION. For each fE bG° and each stopping time T with respect to

Gt and each i=0, 1,

P .{f o Td IGT+) = iwL°P0{fl + iw(°)Pl{f) (3.11)
T T 0

The proof is similar to the proof of previous proposition.

From now on we will consider only stationary sets of the third type, for

which

P{D t} > 0. (3.12)

(Theorem 2 of [11] shows that failure of (3.12) implies that N1 is regenerative.)

(3.13) PROPOSITION. For each t

-DP{Dt , t EM = 0. (3.14)
4r

P4 0c0. Suppose the left hand side of (3.14) is equal to e >0. By virtue of

Proposition (3.5)

Pff oNt IGt+} = P0{f} on {Dt =t t '). (3.15)

;". On the other hand, using sequentially (3.4) and (3.15)

(3.16)

P{f Mt P {f} = [PP {f} If" E=tt- '-Pf'l/P'fl/tt on : ' "

t t t

Equality (3.16), which is true for each f, shows P0 = P. which contradicts the
1'

assumption that 11 is the set of the third type.

(3.17) COROLLARY. pl{O- } 1.

h&.t'o. By proposition (3.13) the sets {I) =t) and {tE M|) are indistinguish-

able. Using (3.4),

NP)t=t}=P{I t =t, 0 ( t} = P{P t =t}P{1 10 0.

Thus, the statement follows from (3.12).

,. 12
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" (3.18) PROPOSITION. For any functions fE bG0 and gc bG0  such that g= 0 ont+

{dt= C} and each i= 0, 1

P.{fCTd g}= Pi{g;dt>t}P0 {f} + P. {g;dt=t}Pl {f}. (3.19)

It

P-c'. For i 1. Put T = t + s. By (3.4) and (3.12)

p Tfo- g)}-- p{fo MTg -Ms ID -s}/P{D =s}.
I t d

Taking first conditional expectation with respect to G'
S+t

p f g} = PigoM s (Dt0 ) + goN1 ts (Dts)Pi{fl) sS/P{1Ds

which is equivalent to (3.19).

Let

qt il nf's > t: S , n t  t°M N,

A
yt= inf{s> : St°}, >t = y t M

(3.20)
t t17 = in f {s > it ' S C to, Vt V

-O ' ' = y = V0 ; %=

4w

(3.21) PROPOSITION. For y and r, defined by (3.20)

• , = 0 = 1. (3. 2 2

iand thCrL exists a constant 0 .... such that for each a

-Xa

PI{ >a} = e C (3.23)

13
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Pcc{. (3.22) follows from (3.17). Let a, b>0. Applying Proposition (3.18),

P1  >a+b)=Pi {i>a,jOTa>b}=P1 t>a,da=a}P1 {j>b} + P1({>a,da>a)P0{ >b) (3.24)

If '>a then aE 0 and d a =a. Thus P{>a, d >a} = 0 and (3.24) equals toIfr>atena~ n a a.Tu l ad

P {>a} P {j>b} whereas (3.23) follows.

Suppose (3.23) equals 1. Then P {1IR  = 1. The latter would imply that

M is a mixture of a real line IR and a regenerative set with the law of regenera-

tion P This contradicts the assumption that M is a set of the third type. Like-
0*

wise, if (3.23) equals 0, then this would imply that P{da= a} = 0. The latter is
a

with a contradiction to (3.12).

Let t, t .. etc. be given by (3.20). Define

'(Ot) A (0,t) = 5(O,t) t , (3.25)
A._

(k,t) =n(klt,

A.~

7(k,t) v kI, 2,'...

(k,t) (k t)=A.k.~ ) =I,2 .

.. '"h'..n(k,t) = n(k,t) oM

y(k,t) = (k,t) o M

v(k,t) = (k,t) oM.

When t is fixed we will write for brevity ?(k), 'j(k), y(k), etc. instead of

-- (k,t), (k,t), y(k,t), etc.

The Points n(k) and y(k) mark the beginnings and the ends of the intervals

which , n [t,-[ is composed of.

-(3.26) PROPOSITION. The sequence {(y(k) - n(k), v(k) -y(k), n(k4l) - y(k))) is a

sequence of iid three-dimensionals vectors on (Q,F,p). The sequences {Y(k)- 1(k)}

and -k) y(k)} are independent and for an" a >0

14
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Pty(k) - rn(k) > a) e , (3.27)

where X is the same as in Proposition (3.21).

The sequence I{(j(k) - (k) , (k) - j(k) , (k+l) ; (k))) is a sequence of iid

three-dimensional vectors on (s20,G0, i, i= =0, 1. The sequences { (k) - (k) I and

[,5(k) - (k)) are independent and for any a> 0 and any i= 0,1

p .{j (k) -?(k) >a) e

It follows from [2] Ch. VI that for each k, the random variables

n(k), y(k) and v(k) are stopping times and if k <j then

Let h be any' bounded function of three variables. Since n(k) c %i, using Proposition

(3.5),

*P{h(y(k)-n(k),v(k)-y(k), T(k+1)-v(k)) Ink) p

The above shows independence of (y(k) - nl(k) ,v(k) - y(k) ,j (k+ 1) v v(k) f rom thle

sequence {y (J) - Ti(j) ,v j) - Y (j) , T1 0+l1) M ())} j =1, 2, ... ,k -1.

Let gbe a bounded function of one variable. put f (w') =g(- ) Then using

Proposition (3.5)

PNg(v(k) - y(k)) 1 >b (y (k) - n (k))1(.8

= Pil (y(k) - T (k))f-oT (>b~ n (k)+b

= PU h (y(k) - ri(k)) )P {f)

*1The last equality in (3.28) is due to

{y (k) -r(k) Wb c{(k) +b

aind (3 4). Likewise, settinp h(w0 ) 1,b(-)

Pflfi-.\ ) b PfhoT ~~M} P{} P >b
4-,. ri~y~~j - n~k) > P1{}=P{

and (3.27) follows from (3.23).

ai
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The proof of the second part of the proposition is done in a similar manner.

4. Deletion Operation and its Properties.

In this section we define an operator which removes parts of the set M in

such a way that M becomes a regenerative set. Put

K(wo) W wO\closure(c °) limWO\ u [i(k,t), j(k,t)]
t- -0 k=l

K(wl) K(wO) (4.1)

The operator K removes closure of the interior of -- , and the remaining

set has no interior. Thus

K(Wo) 0

(4.2) PROPOSITION. For any wo and any t

dt  K(wO) C O (4.3)

P~eoo. Suppose (4.3) is wrong, then for some k -1

dtoK(0) [ (k,t), j(k,t)[ (4.4)

Since d , the only wa" that (4.4) can be true is
t

" - dt o K(wo) = (k,t) (4.5)

If {k,t1 = t then (4.5) fails because in this case

dt  K(-) T(k,t) (k,t). If t , (k,t) then (4.5) implies ]t, (k,t)[ -K .

Thus K(k,t) K((-., ) which contradicts (4.5).

(4.6) IMOREM. The set k oM is a stationary regenerative set.

di P'zoo,'. From a trivial relation

-: W+16

.' .'. .'.' ' ," .. •.. . c .- .. ,-, . - ,- .... - . - . ., - .., . . . ., . . . .. , , , , . ; . , . . . . . . , . . .. . . . ...



it follows that

KoM + s = K(M+s). (4.7)

"" Likewise

.
t 0K ° M  Ko t • (4.8)

" Relation (4.7) shows that stationarity of N1 implies stationarity of K MNI.

Put D' = dt oKo M. Then D' is a stopping time. By virtue of Propositiont t t

*, (3.5), Proposition (4.2) and (4.8), for any function fE bGo

P{fo TDt, a K MIGD,+)= P0 {fo K t ° MDG D+}= P0{fo K} (4.9)
tt

*" This proves that K a M is regenerative with the law of regeneration

P = P0 ° K' (4.10)
!0

- (4.11) REMARK. The proof of Theorem (4.6) shows that K o M is regenerative

A
with respect to the filtration G = GD  which is larger than the natural

t

filtration generated by Ko M. It can be shown in a similar manner that

Po{fO T KIG o } P{f IGo } = P{f} (4.12)0 dt  d + dt •o + Pf
t t t t

We will call KoNM the regenerative part of the set M. By [6] the set

K o M is either perfect or discrete.

According to [7] and [11] their exists a process z0 with independent incre-

ments such that K(w° ) = for Po a.a. wo and such that the local time
+

e = z = inf{t: z t >s) (4.13)

* is a continuous process adapted to the c-field Go and for any uc
t+ I

e = e + e o T • (4.14)

(4.15) PROPOSITION. If M is a stationary Markov set with a perfect regenera-

tive part then

P0 {0 (c} = 0

17
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Proof. Put

WT'(o) =inf{n (s): s>0 u w°  for all s<u<-: (S)}
n

where x (s) is given by (3.8). Let
n

:''"0 if 0E °

%T'(wn otherwise

Then T is a sequence of stopping times such that
n

T : D T 0 on {0E 0 } (4.16)
__ n

From [6] and [8] it follows that for any perfect regenerative set with the

law of regeneration P

P{0 is an isolated point in wo} : 0 (4.17)

On the other hand K(w° ) and wo coincide in a neighborhood of 0 on {0 J }.

From (4.10) and (4.17) follows

P {0c°, 0 is isloated point in woo 0 (4.18)

Combining (4.18) with (4.16) we get

d ' 0 a.s. P (4.19)
T (419n

Take f= g(rsl,r .... ,rs ), where g is a positive bounded continuous
1 2 k

. function of k variables. By virtue of (4.19)

P 0f} = lim P 0{f aT lim{l T (Co) pl{f} I Tn+ 
° P0 {f  (4.20)

0~ n 0 T n T n
n

Suppose P {0cr7'} = F >0. Then the right hand side of (4.20) converges to0

P {f) + (1-C)P 0 {f}

18



which implies P = P The latter implies M is a regenerative set, and this
0 1

is in contradiction with our assumption that M is the set of the third type.

Let b(w°) be the set of accumulation from the left points of Jo, i.e.

xEb(w°) iff there exists a sequence {x } such that xn <x, x E w and Xn x.
11 n

(4.21) PROP TION. If M has a perfect regenerative part then for each k

and t

P{n(k,t) E b(M)} = 1 (4.22)

Poo6. Suppose (4.22) fails. Then with a positive probability there exists

an interval contiguous to M whose right end coincide with n(k,t). Fubini's

theorem implies an existance of u for which

P{D = n(k,t), Du > u} > 0 . (4.23)

-Applying (.4) to f= 10 (t2 ) and using (4.23), we get

P 0 0 o} > 0

which is in contradiction with proposition (4.21).

* - Put
., A

0 0,

k =  (k) - O(k) - (k)

where s is given by (4.13) and ?(k), (k) and 9(k) stand for (k,O), }(k,0)4 S

and (k,O), given by (3.5).

(4.24) PiOPOSITION. If N1 has a perfect regenerative part then k k-l'

k= 1, 2, ... are exponential ild on { Q 0, P1}

Ptwu. Let ? = ?(1). Consider

pO{1 1>a = Po{O >a+b} = Po{e >a, O -a>b}.

19



Let

a inf{s: 6 a}. (4.26)

Then a is a stopping time with respect to Go and 0 = a. Thus the right-hand
t+ 0Y

side of (4.25) can be written as

- o a, 8 -a >b} Po{o>a, 6~ o T >b} (4.27)

""P to.- >a, 6 0
T >b}0

SPO{P {O o T >bIG O  n > a}o 0 fiOT a a t 0+ i

= P {0 > a} P O{e > b} .

The first equality in (4.27) is due to (4.14). The second equality holds because

a> ?j and for any s o = nj -s on the set {s < ). The last equality in

(4.27) is a consequence of Proposition (3.10) and the equality

d ~

which is true for any perfect regenerative set and any o given by (4.26).

Equally (4.27) shows that C1 has exponential distribution.

Since for any k

""" 3R(k), ,(k)[ j K wo,

the quantities e and e coincide. Thus, in a way similar to the one
fik) an (k)

in which (4.27) was obtained,

|-oP{.-"- - . > a I GO
0 (k+l) O(k) (k)+

?i -k4a)>ea G)0>l?..~~~~ ,(,= o{ +1~)- O9k) > O(k) }

.W-

Po{ei(k+l)- (k) ° T.(k) >  I V Ik)}

= ,'.'.= P o o o T > a [ G2

0 fOt) V(k)

= 0{.> a} .

eq 20
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The above equality shows that Ck+l k is independent of n 1, 2, k

and have the same distribution as C

(4.28) REHM . The proof of Proposition (4.24) also shows that k-ck_1 is indepen-

dent of the sequence of random vectors (V(n) -1(n), 1(n) - ?i(n)), n= 1,2....

S. Structure of Stationary Markov Set.

In this section we will show that each stationary set M is (11,aX, ii)-

generated. This will be done separately for the case in which M has a perfect

regenerative part and in the case in which M has a discreet regenerative part.

Suppose M is a set with a perfect regenerative part and P0  K -  is its

law of regeneration. Consider the process Vt on ( 0 ,G°,P 0 )

%1: ~vt = ((k) - (k),
k:Ck<t

where 0k= 8 (k) with e given by (4.13). The process Vt  is of a pure jump type.

In view of Proposition (4.24) Ck- k- are exponential iid. By virtue of the

Proposition (3.26) and Remark (4.28) the random variables ( (k) - (k)) are iid

independent of the point process k* Therefore, the process Vt is a process

with independent increments.

Proposition (4.21) and Proposition (3.10) together with (4.18) show that

?(k) and (k) are points of accumulation of Ko w a.s. P0. This implies

z =(k), z = (k), (5.1)
- k k

where z is the process whose image is equal to K-ouO n [0,-[. From (5.1)

and the definition of Vt  follows

V - V =z - . (5.2)k k- k k-

* 21
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Put

W t =z - Vt
t t t

Since both zt  and Vt are processes with independent increments, so is Wt ,

The set K o wO has Lebesgue measure zero, therefore the process z t  has trans-

lation constant equal to zero and is of a pure jump type. In view of (5.2),

Wt  is an increasing process of a pure jump type such that

.' I W (5 .3)
4k k

Relation (5.3) implies that V. and W. have no common points of discon-

tinuity. Accordingly Vo and W. are independent (see [10]).

(5.4) THEOREM. A stationary Markov set M with a perfect regenerative part is

(1, a,., ) -generated.

Ptoo . For each t we need to find t such that M n [ t,w[ is a

(Rl,z ,a ,),-set. In view of stationarity it is sufficient to consider only t= 0.

Put ¢:v, where v is given by (3.20). Let

Xk 7~(k) °  o N N- (k) o T o M -y(k+1,O) - n(k+l,0)

k .(k) T M - -(k) o T M - v(k+1,0) - y(k+l,O)

(5.5)
A

W X t t

A. v = lW t o
t t TV

Then for t given by (2.6) we have

Zt t 0 V0

0 0 T Mt* .%. k = k °  v

Let ITI hc the Levi's measure of the subordinator W. Let a be the parameter

*O 22
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of the exponential distribution of k- k-l' A be the parameter of the exponen-

tial distribution of y(k) - n(k) (see (3.27)) and

U(r) P{v(k) - y(k) E P) = P0{V(k) - 7(k) E I).

We would like to show that the set Mn[ ,-[ is a (,A,a, p)-set as defined by

(2.6) -(2.8). Since v= D and yEi1, we can apply Proposition (3.5) and get
Y

P{fo NIYIG} = P{fo TV o NIG + = P0{f} (5.6)

In particular, (5.6) shows that the law of (V. o o M, . o o M) is the same

as the law of (V., W.) on (QO,GO). It also shows independence of v and

(V. o oM, W. o T oM).

V 1 V.0T;;. A

For M = o M and for zt  V + IV
1-t t

Ko 1 = N1 oN1
1 1"

Thus

zIo I+40 = K oMn ,[
+

The construction of the process Vt (and xt by (5.5)) shows that L given byt t

" (2. 7) coincides with the closure of Nn , Since NI= Ko M u NI, we got the

.-representation (2.8) with x. and y. given by (5.5). Proposition (4.24) shows that

" = o M forms a Poisson point process. Proposition (3.26) and Remark (4.28)

show the required independence of {Xk} , {Yk) and y. as well as independence of

x. nd y given by (5.5). This concludes the proof that Mn [,-[ is a

"'"" (II, , , )-set.

--. A stationary Markov set with a discreet regenerative part cannot be treated

in the same manner because Propositions (4.15) and (4.21) are no longer true in

this case. As a result (5.1) and (5,2) as well as (5.3) might fail. The failure

" "° of (5.1) - (5.3) might result in dependence of the processes V. and W.

23
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However, the case of a set with a discreet regenerative part can be treated

"from scratch". The analysis of this case is rather simple, so we will only out-

line the main points without going into details.

Put

p = P0{0E o
0 . (5.7)

It is easy to show that if M has a discreet regenerative part then 0 <p < 1.

Let X be given by (3.23) and

-M kdr) = P 0 {V- 7 r) (5.8)

11(1) = P0 {d 0E roEo) (S.9)

Proposition (3.5) shows that the right endpoint of each interval contiguous

to M belongs to N1 with probability p independently of the length of this

interval. Thus T V -M can be described by means of a Markov renewal process

U(t) (see [1] Chapter 10) with three states. The holding time in the first state

is exponential with parameter A, the holding time in the second and third states

have distribution vi and IT respectively. The transition matrix of the imbedded

discreet Markov chain is

0 1 0

p 0 1-p

Sp 0 1-p

P The set of times when U(t) undergoes transitions from one state to another or

U(t) is in the first state corresponds to oaM.

It is easy to verify' that the set M n [v,-[ V + T oN is a (TT,a, X,v)-set

. where a is such that

p

(Note that if Y is a (0,11)-process and x t  is the process defined by (2.6),

I then a/(a+l) = P <o < inf{t: Y xy

24

•A 4



(5.9) PROPOSITION. If M is a stationary (TI, a,X,hw)-generated set then J1 and

.-.' i1 satisfy (2.13), (2.14).

P oo. (For M with a perfect regenerative part, for M with a discreet

regenerative part the proof is similar). Let xt  and yt be the subordinators
- . 1

which generate (jI,a,A,p)-set (see (2.6)-(2.8)). Then

K (Z uL) Z z R

The latter shows that the process = x + y generates stationary regenerative set

K o M. If JI' is the Levi's measure of Z then from [8] and [11]

f xTI'(dx) < . (5.10)
0

": On the other hand it is known (see [10]) that
rw

P{Zt Z O } = t fx I' (dx) (5.11)
0

The left hand side of (5.11) can be rewritten as

P'y Pt-Yo) + P{x t x 0 tfx II (dx) + ta-l - + x (dx) (5.12)
:.\. t0 0

Relations (5.10), (5o11) (5.12) imply (2.13) and (2.14).

(5.13) PROPOSITION. If M is a (lncA, ) -generated set, then the quadruple

(H, L,;,u) is determined by M uniquely up to equivalency.

"'" P'wo,~L . The compliment of N1 consists of a union of open intervals (Lt Rt).

Since Mr.,[ is a (nl,a, ,v)-set we can write (recalling representation (2.6)

- (2.5))

P1 f(RtLt ) 1 (5.14)
i(1)_t<n(2) - t

lim P( f(Rt-Lt) R
k- (k)-<t<n(k+l) t

a25
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• I," =Q{ f(Z t -Zt) 1ZtZ t }z (5.14)

C <t<o+l t t

'"= Q{ (tY - ly Iv
k<t<Ok +I

<t< JSLk+l 0k
= If }Q{G k+ I - k) = l I- f I

Here Q is the probability measure associated with the process x, y and Z in

(2.6) - (2.8). Formula (5.14) shows that (1I, a) is determined by M uniquely up

to proportionality.

On the other hand, direct computations show that for an) (I, a,A,p)-set

P{y-nl} = [X(1-ai 1 {O) / (ax+ 1I(Ik+))] -  (5.15)

and
;_..,m+(5.16) I " (r) if () = ( .

P{v-y Er} = -l
(r) + I{O} 11 (R+) 11(r) if JI(IR+) <

Equalities (5.15) and (5.16) complete the proof of the proposition.

6. Markov Properties of the Residual Life Process

Consider the "residual life" process

R.= infIs- t: s>t, scM} (6.1)

associated with the stationary Markov set M. Markov property of M implies that

R t is a Markov (but not necessarily a strong Markov) process.

d, % Consider a (TI, ct,X,v)-set given by (2.7), (2.8) and the processes y., x. and

Z° which generate it. Let

C inf{s-O: Z a} (6.2)
ea s
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F a Za. a

(6.3)
H = Z

a c-
a

Let N be the union of ak (see (2.6)). Then Rt given by (6.1) can be

represented as

R' '"{0 if CtE N and t E y
q; .:R t  

(6.4)
t Ft- t otherwise

Let Q be the law of the subordinators x. and y. of (2.6) - (2.8). The

transition function of Rt associated with a stationary (11,a,X,j)-generated set

is the same as transition function of Rt associated with any (TI,aX,p)-set.

-. Hence we can assume any distribution of yo in (2.6)- (2.8), in particular

Q Y0 
= O}

The transition function of the process R given by (6.4) is

p(t,x;F) = lr(x) if x <to

p(t,x;r) = Q{F -tgri,c tN} + t Q{F -tct=ak,Z +X k<t}, x > 0, 0 F,
- k=1

(6.5)
*- p(tx;{O}) = kQkct=oka +X. >t, x> 0

k=l k

Xtt Ay t. (t,O;?) = e le{f} + f? ~ + t - v )dv + J il(d)p(t-v ,;F),

0 0

where is a distribution of the jumps of the process x. (i.e., 01 is a con-

volution of and an exponential distribution with parameter X).

A (IT 1  ,)-generated set is stationary iff

-ro(r) = P{R c ri

does not depend on t
4 .- 2-7
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Inversely, if we are able to construct a probability measure m which is

- invariant with respect to p(t,x;r) then the stationary Markov process Rt with

the one dimensional distribution m and the transition function p -will yield a

stationary (Jt,ca, X, 1) -generated set by the formula

M = DI

where Dt = t+ Rt .

(6.6) THEOREM. If JI and X are subject to (2.13), (2.14) then there exists a

unique stationary probability measure m for the Markov process R t associated
4.o

m(f) = C[- 1 f(O) + Jf(t)lh(]t,w[)dt + a f f(t)I(]t,-[)dt]
0 0

For the proof of this theorem we need the following proposition.

(6.7) PROPOSITION. Let (y,Q) be a (0,11)-process and let

c-= inf{s:y s 2a}.

Let S be -n exponential random variable with parameter a independent of the

process Y" Then
i

% 
. V

Q{ f f(v -u)du} = a f f(t) T(]t,-[)dt . (0.S)
0 o u 0

P'wc . The right-hand side of (6.8) can be rewritten as

Ys

Q{ f(y-u)du}-..-. v v s S v

*1 Ys
Q1 f f(u)dul 69

5 Is-,! "SV

s's '

t
where g(t) ={f f(u)du. The right hand side of (6.9) is equal to

0
28
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Q{1tg)S = Jg) Q{S) = - 1 (g)

(see [101 Section 3). By Fibini's theorem

1(g) = f g(x) R (dx) = f{f f(t)dt) Tt(dx)= f f(t)f Jn(dx) = f f(t) ll(]t.-[)dt
0 00 0 t 0

whereas (6.8) follows.

Pc-c of the Theorem (6.6). Let x. and y. be the processes (with Qyo=01=1)

which generate a (I,a,X, i)-set by formulae (2.6)- (2.8). Then the process Rt

associated with this set by formula (6.4) is a regenerative process (see [1] Ch. 9)

with the moments of regeneration pl, p 2 , ... k

2A P ..

-. Pk

Really, by virtue of the strong Markov property

x x -Xxs  a xo+S- a

and
k
Ys =  aa+-)o

y k 5  0k

have the same distribution as the processes xs and y respectively and are

independent of {xs, k s

R k t = Rt (xk'yJk)

R Pk +t Rt

the process R k+t is independent of {Rs s 0 k and has the same distribution

is R . The same argument shows that the sequence {pk } forms a renewal process.

Since

- k - Z = (y -Yok) + X + Y

kk+l k 1 k

j and since Xk has a continuous (exponential) distribution, Pk+l Pk has a

continuous distribution as well. Thus the renewal process {ok} is aperiodic and

29
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EtPk+l - = E{Xk} + E{Yk' + E{y k+1yo k} (6.10)

= f- 1  t i(dt) + a f t l(dt)

0 0

The right-hand side of (6.10) is finite by virtue of (2.13) and (2.14).

According to Theorem (2.25) of Chapter 9 of [ 1 ] there exists a unique sta-

tionary measure m for the regenerative process R., given by

P
1

"r ) = C Q{ J rRt )dt}, (6.11)
0

where C is equal to (6.10) (The expression in (6.11) is equivalent to the one

given in Ch. 9, Theorem (2.25) of [1]). Since the process xt  is equal to 0 on

the interval 10,la the process s coincides with y on ]0 1 r and

R = Y -t for t y-'.e t c t  - )o
ct 1

Rt =0 for y a t <ya + XI

Rt = -t v + X +Y -t for v + X t-
t 0 a10 1 '

(see (2.6), (2.8) and (6.4)). Thus

VX""p 1  "0 elxl yl

Q{ f L(R t )dtO = Q{ f I (vc -t)dt} Q{f1I(O)dt)+ Q1f 1lY -t)dt (.12)
0! 0 t 0 0

V., The first term in the right-hand side of (6.12) equals to
-.- 1

ml.- cC 1 f 1 (t) fl It -I) dt (.3

b,,,b virtue of Proposition (t[.7. The second term in (6.12) equals

1 (0) E {X1} = A 1 (6.14)

r.."

s0



I.

The last term in (6.12) equals

(6.15)

Q{ * 1l-(Y 1 -t)dt) Q{ I' 1 (t)dt} Q{f l(t)lt~ dtl rt)I],)t

0 0 0 1 0

From (6.11) -(6.15) follows Theorem (6.6).

(6.16) COROLLARY. For each (III (x, X,iw) subject to (2.13), (2.14) there exists a

-;ta:tionarY (T1, a, X,;j4-generated set.

This completes the proof of the Theorem (2.12).

(6.1"7) REMARK. The proof of Theorem (6.6) shows that any (HI , X, ',) -generated

* .set MI with

P{inf NI J 1

is stationary.

7. Reversability Properties of Stationary Nlarkov Sets.

Iin this section we will prove Theorem (2.15). We consider a stationary

(H, A,')-generated set with a perfect regenerative part. The p)roof of Theorem

(2.15 for. M with a discrete regenerative part is similar. The closure of 1\1

consists of a union of closed intervals of iid exponential length and by virtue of

Proposition (4. 15) and (4.21) the endpoints of these intervals are points of accumu-

lo-t ionl of MI - MI. [herefore the endpoints of these intervals belong to K o MI.

Accordinig to Theorem (4.6) the set Ko N is stationary regenerative with

* LebeS"LuC measure zero. By' Theorem 1 of [11] there exists a (0, 11' subordinlator

* .whose raneoicdswt K -N Mr, [0,-[. If P= 6 then (2.6)- (2.8) show, that

IT1I is the Levi'Is measure of the process Z and

RJIT + 1 +(7.1)

..%where G is an exponential distribution with parameter X. In particular, N1 has
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a perfect regenerative part iff

To show that 41 has the same distribution as N we have to consider the

two dimensional process

(Lt,Rt) = Ctrt) o N 

It follows from the Markov property of M that the process (Lt,R t is a

stationary Markov process. If N is a (H,a,),6o)-generated set then the transi-

tion function of (Lt,Rt) is

p(t, (u,v) ;r) = lr(u,v), if v > t, r c i--,01 x [0,- [

p(t,(u,v);r) = Q{f1t-vF t-v) E r c tvEN}, v<t, rc]-a,0[x]0,Oz[

(7.2)
p(t,(u,v); (0,0)) = Q{ct vEN) Q{ct_v=Ok}, v <t

k

t X
p(t,(0,o);r) = f Xe- s p(t,(0,s),r) ds, rc ]-,0]x[0,[

0

Here Q is the law of the processes x, V and Z of (2.6)- (2.8), c is

'iven by (6.2) and (ttt,Ft) are given by (6.3).

Note that when = 60, the length of each jump of the process 7. caused by

a discontinuity of x. is exponentially distributed and the range of each jump

belongs to the (6I, ), ,, 56)-generated set. This results in simplifications in

(7.2) as compared to (6.5)

Let TI(x; F) = JI(P-x) where r-x = {y-x; ycF).

The process (Lt,Rt) is stationary due to stationarity of M. Repeating the

proof of Theorem (6,6) for (Lt,Rt), we can get that the one-dimensional distribu-

tion n of this process is given by

(7.3)
-l- I 0

x n ) c[A l( 0)(rxA) + a- 1s(P) nI(x;A)ds], r c I , A c IR
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Let (u,v) = (vu) and if A c IR x IR then AT should be understood similarly.

% Let

yt =-Yt, xt =-xt

z = -z

t
(7.4)

-.- *r H(-r)

IT *(X;r) A *(r) = l(-x;-r)

Consider the set -M. The process

(L R) (t,rt o (41) = (-Rt,=Lt)

is a Markov process with the one-dimensional distribution (obtained by change

of variables in (7.3))
(7.5)

-1o
(0,0) S-+

_"7"-.n*(P×A) = C[X 1 1(,)((..) x -F)) + 3 1(lsA) ,l(~~s fc], A +1R

0

and the backward transition function

p*(s,(uv);r) = p(s,(-v,-u);rT), T r -o],0] x [o,[, u< 0 v (7.6)

Let

. Q{f 1 (Zs)ds),
0

" Q{f 1(:)ds) =

0
(7)

.~)= .(r- b ),

A (F) = :.(f-b)
,, ,)b

o %*

(7.8) PIOPOSITION. For any function f of two variables

. Q( f(ZtZ t )l tcN }  f A (dx) f f(x,y) 11(x;dy)

z t-Zt 0 0

" . r ,33., -. . .. .
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0 0
*{ i.* -f(Zt_ 3z)1 f A'(dx) f f (X,y) 11*(;d)
t- t -w tZ

The proof of this proposition is well known.

(7.9) PROPOSITION. For any two functions g and h on IR

f g(x) lT(x,f)dx =f f (x) 11 * (x; g) dx (7.10)

00-00 

-CO

A A,(f)g(x)dx = f .' A(gd (7.11)
- x -

For the proof of this proposition see [11] Lemma 6.4.

(7.11) PROPOSITION. Weasures n and n* given by (7.3) and (7.5) respectively,

coincide.

P~co6 The first term in brackets in the right-hand side of (7.3) is equal to

the first term in the right-hand side of (7.5). The integral term in the right-

hand side of (7.3) equals to the corresponding term in (7.5) by virtue of (7.10).

(7.12) PROPOSITION. For an), two sets r, A c ]RxR

Jn(du, dv) p(s, (u, v);L) f fn*(du, dv) 1)(s, (u, v);r (7.13)
r

RPLeo. Consider A and r of the form

A ,A x L" LA < 0, L11 0

(7.14)

rr r 1 < 0, r2 >0

Put A - A + s and A 2 A" + s and assume

P2 < A1 (715

(The inequality between two subsets of the real line means the corresponding

inequality between any two points from the first and the second set respectively.)
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For v <A1 we can write

p(s,(u,v),A) =Q{H E A'+ s- v, F E A"+ s- V, c Z N}

lA v(Zt- A- (Zt tEN1

(7.16)

-fA(dy) 
1A y)Iy;-v

- A (dy) 1 (y) J, (yA)V A '2)

We used Proposition (7.8) in the third equality in (7.16) and the identity

T(V- ;AL2 - V) = I(yA) in the fourth equality in (7.16). Thus the left hand

side of (7.13) can be written as

0 00 0

I r sds ffl1(s; dv) I~ (v) f A (dy) IA (y) ITI(y; A2  (7.17)
-~ 1 s2 v1

Applying successively (7.10) then (7.11) and then again (7.10) to (7.17) we get

the following sequence of equalities:

f n(du, dv) p(s, (u, v) ,A) =f*(v, rl1 , (v)dv f AV WdY)l1A J'>' f(y L 2 )
* 0 2 v1

= fHy;.~)l,(y) d-%l (dv) 1, (V) rt*(v; r) 7

=f I~ (x) 11 (x;dy) 1, (y) f K~dv) 1 (v) Hl*(v;rl)

From (7.5) and the analog of (7.16) for p*...,)we get that (7.18)

equals to the right-hand side of (7.13).

The proof of (7.13) for arbitrary r' and A is done in a similar way.

(7.19) COROLLARY. The probability law of the set -NI is the sane as that of M.

In particular NI is left Markov.
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Pro6. From proposition (7.11) we see that the processes

(/t,rt) o M and (Zt,rt) o (-M) have the same one dimensional distribuitons.

Proposition (7.12) shows that these two processes have the same backward transi-

.-- tion function. Therefore, these two processes have the same law. The rest follows

from representation

MN : (roNI)m

In the remaindcr of this section we show why (11, c,A, i) -generated set is not

left Markov if (TI,c.,X,i) is not equivalent to (1 l) X,1 , 0).

If M has a perfect regenerative part (i.e. IT(]+) =] ) then from (2.6) -

(2.8) we see that the distribution of v(k) -y(k) is equal to w . If p O

4 then with positive probability v(k) -y(k) > 0. By Fubini's theorem there exists

. t such that

IP{Lt < t, Lt =y(k) > 0

.. However, the latter contradicts to Proposition (4.21) (or, to be precise, to the

analog of the Proposition (4.21) for left Markov sets.)

If M has a discreet regenerative part (i.e. TT(I+) <-) and (TI,cAj) is

not equivalent to (Il, XX1 , O) then

c + c 2 1 (7. 2()

From (2.6) - (2,8) we see that the distribution of the length of the jumps of the

-~ -1
process v is I(DP) IT. The distribution of v(k)-Y(k) is

(I - )) J1(IR )TI

where o' is a restriction of v on ]0,c[. If (7.20) is true then .211 is

not equal to IT(1+) - 1 I. Elementary calculations show that in this case the

conditional distribution of Rt- Lt given the event

36
-" 'S



REFERENCES

1. inlar, E., Introduction to Stochastic Processes. Prentice-Hall, 1975.

2.Dellacherie, C., Capacites et processes stochastiques. Springer, 1972.

3. Fitzsimmnons, P. J., Fristedt, B., Maisonneuve, B.; Intersections and limits
* of regenerative sets. Z. Wahrscheinlichkeitstheorie verw,. Gebiete 70,

157-173 (1985).

4. Hoffmann-j6rgensen, J.; Markov sets. Math. Scand. 24 (1969).

S . Krylov, N.V., Yushkevich, A.A.; Markov random sets. Trans. Mosc. Math.
Soc. 13, 127-153 (1965).

6. M1aisonneuve, B, ; Ensembles rdge'ne'ratifs, temps locaux et subordinateurs. In
Se'minaire do Probabilites V. Lecture Notes in Mathematics 191, Springer 1971.

7.Maisonneuve, B.; Systems regeneratifs. Asterisque 15, SociAt6 Mathematique
* de France 1974.

8 . Maisonneuve, B.; Ensembles re ge'neratifs de la droit. Z. Wahirscheinlich-
keitstheorie veriv. Gebiete 63, 501-510 (1983).

- - ~9. Meyer, P.A. ; Ensemles rd gndratifs, d'apres Hoffmann-rgnn. nSmiae

*do Probabilite~s IV. Lecture Notes in Mathematics 124, Springer 1970.

10. Skorohod, A.V,; Stochastic processes with independent increments (in Russian).
Nauka, Moscow 1964.

11. Taksar, M.I,; Regenerative sets on real line, In Seminaire de Probabilit's
XIV. Lecture Notes in Mathematics 784, Springer, 1980.



N~~~Ti~~ ~~q~~y~~.,- -J.~~~ ~~~- . . . ~ -

,r77

ON .


