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STATIONARY MARKOV SETS

M. I, Taksar*

Department of Statistics
Florida State University
Tallahassee, Florida
United States

1. Introduction

If one looks at the set of times when a strong Markov process visits a point
in the state space, then this set is a regenerative set. It forms a replica of
itself after each stopping time whose graph lies in this set. Closed regenerative
sets have been studied for a long time (see Hoffman-Jgrgensen [4], Maisonneuve

[8], Mever [9] and others).

Since the studies of regenerative sets were motivated by the theory of Markov
processes, such sets were originally called (strong) Markov. In addition it was
always supposed that any regenerative set M is a subset of the positive half-line
and P{0e M} =

However, if one considers visiting times of a stationarv strong Markov pro-
cess, then the corresponding set M is stationary, that is the probabilityv law of

the set M+t is the same as the one of M. The '"natural" state space for statione

l‘] ‘_

arv sets would be the set of closed subsets of a real line and the condition

e

| S
‘e

0<M a.s. should be dropped. The first study of such sets was donc in Taksar

a & .'1' v
At A
PRI

(11]. It was shown that all such sets are in one-to-one correspondence with the

o —_—
vat [
J!, ranges (closures of the images) of the processes with independent increments Eﬂ
~ .
R
A . .. .
p having finite expcctation. J
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- from two special regenerative ¢ets, by either taking a mixture of these regenera-
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The paper of Maisonneuve [8] gives a simple and comprehensive approach to
the regenerative sets on a real line. It also gives an easy proof of the main
results of [11]. Further development of the theory of regenerative sets on a
real line is done in the recent work of Fitzsimmons, Frisdedt and Maisonneuve [3].

All regenerative sets have a (weak) Markov property. The '"future" after
time t of such set and its "past" are conditionally independent given '"present", ,
A Markov set is the set for which conditional independence §f the "future" and
the "past' holds, but stronger regenerative property might not be true. !

Apparently, Markov sets form a larger class than regenerative sets. In a
stationary case, however, the difference is not as big as one could expect. It
was shown in [11] thatstationary Markov sets are "almost' regenerative. There are
two types of regeneration after each point t; one occurs if the point t belongs
to the set and the other type of regeneration takes place if t does not belong to
the set. In particular, every stationary Markov set which almost surely has
Lebesgue measure zero, is regenerative, (see [11] Theorem 2).

In this paper we will describe all closed stationary Markov sets. We will

show that each stationary Markov set which is. not regenerative can be constructed

tive sets or taking a "superposition" of two regenerative sets. Superposition can

be described loosely as cutting two real lines Rl and]R2 with two sets Ml and M2 in
them, into pieces of iid length and then combine them into one line alternating pieces
from R]‘and Rz. The union of the cut offs from M, and M, will be the superposition

1
¢t the scets .\1] and M,.
The paper is structured as follows., In section 2 we give definitions and
formulate the main results. In scction 3 we establish the main properties of

stationarv Markov sets. Section 4 studies the operation which transforms a

stationary Markov set into a stationary regenerative set. Section 5 analyses

thosc stationary Markov sets which are neither regenerative nor are mixtures of
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regenerative sets. In section 6 we study the "residual life" process associated
with the stationary Markov set, and find itsstationary distribution. The last
section is devoted to reversability properties. We outline a necessary and suffi-

cient condition for the set -M to have the same distribution as M.

2. Basic definition. Formulation of the main result.

In our definition and notations we follow Maisonneuve [8] and Fitzimmons,
Fristedt, and Maisonneuve [3]. Let Q° be the set of all closed sets in R, For

each .“ 227 and teR put (assuming inf @=-, sup @= --)

a
dt(wo)g inf{s>t: sew®}, £ (W°) =supfu<t: vew®}
A oy 4
1, (%) £d () - t, n (%) 2t - £, (w°)
Tt(wo)é {s-t: s2t, sew®}

Ct(mo) é\{s-t: s<t sew®}

Let G° (Gs respectively) be the g-field generated by all functions ds, se R
(s <t respectively). Let J° (Jf respectively) be the o-field generated by all
functions Zu, ue R (uzt respectively). It is easy to see that Gf is an increasing
and Jg is a decreasing filtration and J°=G°.

A closed random set M on a space (%,F) is a measurable mapping of (2,F) into
(2°,6°).

In this paper we will deal only with closed random sets, so in the sequel we
will not write "closed" each time. Put

A
N = e
cdgoM, R

L2l oM, N En on

5 A
Mt £ T”t oM, M 2o oM

It is obvious that all the mappings Dt’ Rt’ Lt and N, are measurable and so are

t
M.
M" and 1t
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Let (Q,F,P) be a complete probability space and M be a random set on this

Pl l'f

)

space. Let G, Gt and J, be the preimages in F of the o¢-fields G°, Gg and J€

2
e

MO

under the mapping M.

(2.1) A set M is called right Markov (r.M.) if for any two bounded measurable

functions f and g on (2°,G°)
P{fMnlt,=[)g(Mnl-=,t]] Dt}=P{f(Mn[t,w[) | D }P{g(Mnl-=,t]) | D }.

(2.2) A set M is called left Markov (1.M.) if for any two bounded measurable functiong
f and g on (QO:GO)

P{f(Malt,=[)g(Mn]-=,t) [L } = P{f(Mn[t,w[)lLt} P{g(Mn]-w,tJ)lLt}.

For brevity here and in sequel we write equations with conditional expectations
without adding a.s. after equalities. Given a random set M, we denote by M+ s

the set {t+s: t € M}.

(2.3) A set M is called stationary if for any bounded measurable function f on

(2°,G°) and any se R

P{f(M+s)} = P{f(M)}.

Our aim is to describe all stationary r.M. sets. We will need results from

)
.

R A A
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the theory of regenerative sets. The precise notion of regenerative set used in ;

a

e

this paper is due to Maisonneuve [S8].
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(2.4) A random set M is right regenerative (r.x) if there exists a measure

el
Lo
"
$}j PO on (2°,(®) such that for cach fe¢ b (sct of bounded G°-measureable functions)
4
LA
t = o
0: PLEMYGLY = Polf} on (D <),

Following [8], the measure P0 is called the law of (right) regeneration of M,

(2.5) A set M is left regencrative (i.r.) if there exists a measure P* on (2°,6%)
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such that for each fe bG:
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In the sequel for brevity, we will use the term regenerative (r.) and Markov (M)

instead of right regenerative and right Markov respectively.

Increasing processes with independent increments (subordinators) play an impor-
tant role in the description of regenerative sets and, as we will see in the sequel,
stationary Markov sets as well. Each subordinator z is characterized by a constant
@ <0 and a measure JU on ] 0,«[. We callsuch asubordinator an (o,ll )-process.

Let zt(w), t20, be a stochastic process on a probability space (?,F,P). The
image M of this process is defined as

M(w) = ZR (w)

+

where bar above the set stands for closure. If z is a subordinator, then the
image of z is a right regenerative set. If z is a decreasing process with inde-
pendent increments then the image of 2z is aleft regenerative set,

Let us recall the main results of [8] and [11] regarding stationary regener-
ative sets. There is one-to-one correspondence between all stationary r.r. sets
M and all pairs (a, J1) defined up to proportionality, where x and U are charac-
teristics of a subordinator subject to

oo

jxn (dx) < «
0

The stationary set M which corresponds to the pair (a, O) is called (o, II)-generated.
Any stationary r.r. set M is also 1.r. Moreover the set -M has the samc distri-
bution in (4°,G%) as M.

Since the definition of r.M. sct is weaker than that of r.r. set, any r.r,
set is r.M., however the opposite is not true.

An cxample of a stationary r.M. sct which is not r.r. was constructed in

[11]. Any mixturc a (0, II)-gencrated set and a real line R with "weights"

0O<p<1land q=1-p is a r. M. set but not a r.r. set.
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DEFINITION. Right Markov sets of the first type are right regenerative sets,

Right Markov sets which can be represented as a mixture of a (0, I)-generated and

a real line are called r.M. sets of the second type. Right Markov sets which are

neither of the first or the second type are called right Markov sets of the third

tyvpe.

Markov processes provide good examples of different tyvpes of stationary

Markov sets. If X¢ is a strong Markov process and b is a point in the state space

then the "visiting set"

is regenerative and if in addition Xy is stationary, then M is stationary.

To obtain a Markov set of the second type, consider a strong Markov process xg,
for which P{xi= b} = 0 for each t, but point b is not a polar set and a
process xs which stays deterministical%y at the point b. The mixture X, of the
processes xg and xf will be a Markov (but not a strong Markov) process. The
visiting times of b by Xe is a Markov set of the second type, and if xg is sta-
tionary then so is the visiting times set,

To give an example of a Markov set of the third type, consider a particle
moving on the positive half line according to a diffusion law. An infinitely thin

elastic screen is placed at the origin. The particle is reflected from this screen

until time

A
I‘N"-

= T = {inf t: - _ =&}
e, t
&;f where it 1s the local time at zero of the reflected diffusion and $ i< a random
'@ . . X .
v variable with exponential distribution independent of the process x, . At the
at
Mo
tﬁ} moment 1 the particle moves to the other side of the screen where it stays for
e

F

[y
’
v
[

time X, where X is another exponential random variable independent of x. and S.

At the time X+ 1t the partical is placed back to a random point on the positive

{.

3

J: half line and the whole process starts anew. The closure of the set of times when
N this particle visits the origin is a Markov sct of the third tvpe. If this Markov
&,

U
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process is stationary (which can be easily achieved, provided that there exists a
constant downward drift, or there exists a reflecting upper barrier)then this
Markov set is stationary.

In the remainder of this section we define rigorously the superposition of

two regenerative sets and formulate the main result.

Let T be a measure on JO,~] and u be a probability measure on [0,=[ and X and
a be two positive constants. Let Y, be a (0, II)-process and {Sk}’ k=1, 2, ...,
{Xk} and {Yk}‘ k=0, 1, 2, ... be three sequences of iid random variables, indepen-
dent of Y¢ and independent of each other. The distributions of Si and X, are
exponential with parameters a and ) respectively, The distribution of Y]. is given

by u. Consider a subordinator X¢ of a pure jumn type constructed in the following

manner (we assume below og=0)

O =01 =Sc . k=1,2, ...
(2.6)
X -x_ =Y +X, k=1, 2, ... |
ok Ok k k
Xg= X, if o s$ssu < Oka] ? k=0, 1, .
Plxt : =\ + X
oot (2.7
L = 0 {x:2 =<xs + X}
k.;l O‘: Ok- Kk
M= o 2.8
A Thgi ( )

The set M defined by (2.8) is called (J1 ,u,),u)-set. (Note that there are many

(Y ,%,,u)-scts corresponding to different initial distributions of the process v,).

Let ' be the restriction of v on J0,=[. We say that quadruple (T ,u,X,u) is

equivalent to (nl’ul’)‘l’ul) if there cxists a constant ¢ such that

(O, a) = C(Hl’al) 2.9)
ui0} - uI{O}
U;_ullz___,__.___._..__n (2.10)
N(R,)
7
Bt
L L\':c.'_'-':'.'.'.f.\’;';:'. .:‘_P.;,‘/_.,;);-_L.;. 4'_, .:‘:_,»4_ = . 4 -‘-‘.‘\~:.-.“ .”.‘ N
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A(1-ouf0}/(a+ TU(R.)) = A(1 - a1, {0} /(e + T, (R,)) (2.11)

In particular, when TU is an infinite measure, equivalency of (M ,a,A,u) and
(rll,al,xl,ul) means proportionality of (I,a) and (]Tl,al) and equality of (X,u)
and (xl,ul).

It is easy to see that if II(IR+)=oo and quadruples (JU 4, ),u) and (H],al,kl,ul)
are equivalent then every (Tl,a,A,u)-set is a ( Hl,al,xl,ul)-set as well. In fact,

if we construct processes x, y and Z by (2,6) and (2,7), then processes x£= X ¢

y£= Yet and Z£= ZLt generate the same set M given by (2.8). However, the Levi's
C : )

measure of the process X, is ¢l and the rate of jumps of the process Yot is ¢ «a,

t

which shows that ( IT,a,X,u)-set is (¢T, ¢ o,X,u)-set as well.

If 1 is a finite measure then both processes X, and Ye have jumps governed by

Poisson processes with rates » and JI(R,) respectively. In particular

e

P P{_Vo =y0} = o /(a+ H(IR+))

1
(sce [2.6) for definition of cl). The set M given by (2.7) consists of the inter-

vils v | and discrete points of the image of Z. The length of the first interval

H of i< oequal to Xl* XNy + ...+ XV where N has geometric distribution with para-
meter p.f0:. Thus the distribution of I, is exponential with parameter A(1-puiol).
The distribution of the interval J. which is contingent to 1, in M

1 1

from the right (i.e., infit:tedyr=sup{s:scly})  has distribution '« ({0 /T(R

(note that (IT(Rt))°1]T is the distribution of the jumps of the process v). Like-

wise for any other interval I, in L and contingent to I, interval Jk‘ The distri-

k k

bution of any interval contingent to M which does not coincide with any of Jk is
equal to the distribution of jumps of y, i.e. to (I GRt))-IH . From the above it
is easy to show that if M is a (11,a,*,u)-set and (I ,a,r,u) is equivalent to

(Oypy,*1,u1) then there exists a (Ill,al,kl,ul)—set whose distribution is the

same as that of M.




DEFINITION. A random set M is called (I, a,x,u)-generated if for each t there

exists a random variable $ys such that ¢t2't a.s. and Mr\[¢t,w[ has the same

distribution as a (I, a,A,u)-set. In this case the quadruple (I,a,X,u) is called

the generator of the set M,

. The next two theorems give the main result of this paper,

(2.12) THEOREM. Every stationary r.M. set M of the third type is (IT ,a,X,1)-

generated, The generator of M is unique up to equivalency and is subject to

f xIT (dx) <= (2.13)
0
éxu(dx) <o (2.14)

Each quadruple (J1,0,X,u) subject to (2.13) and (2.14) is a generator of 4 uniqgue

stationary right Markov set.

Let da denote a unit measure concentrated at point a.

(2.15) THEOREM A stationary r.M. set M of the third type is left Markov iff

its generator (Il ,a,>,u) is equivalent to (Tl,a,\,éo). In this casc the set -M

has the same distribution as M,

In the diffusion example presented above the set of visiting times of 0
becomes a left Markov set when the diffusion process is made continuous. That
can be done if at the time =+ ) the particle is moved on the other side of the
clastic screen and starts again moving according to the original reflected diffu-

sjon law.

]
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3. General properties of stationary Markov sets.

Here and in the sequel we will deal only with those stationary Markov sets

which are a.s. nonempty. This is equivalent to
P{Dt'<w} =1 for all te R, (3.1)
The following proposition was proved in [11] (see Lemma 7.3).

(3.2) PROPOSITION. If M is stationary Markov set then for each function fe bG®

there exist two constants a and b such that for each t

t
P{foM ]Gt} = a lDt>t +bly -t -
For brevity we will denote indicator functions of J-=,t[, J-»,t], [t,«[,
Jt,»[ by 1.5 1, 1, and 1, respectively.

The following corollary is a simple consequence of Propostion (3.2).

(3.3) COROLLARY. If M is a stationary Markov set then there exist two measures

Py and P1 on (2°,6°) such that for each fe bG®

t - -
P{foM |Gy = 1_ (DIP{£} + 1 (D )P {f). (3.4)

Let M denote the set of all points of M which belong to M with its right

neighborhood.

(5.5) PROPOSITION. For cach fe bG° and anv stopping time T with respecct to the

filtration Gt+

, T o ¢ <
PUFeM |G} = L0 R LE) « 1.0 Py {£) (3.0)

P4c¢4. Usual arguments show that Proposition (3.3) remains true if t in
(3.4) is replaced by any stopping time with respect to Gt’ taking finitec or coun-

table number of values,
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It is sufficient to prove (3.6) for f of the form

f = g(rs ,T

1 S

y eees T )
2 T sy

where g is a bounded continuous function of k variables. For such f the function

t . . .
foM 1s continuous in t and

T Tn
P{feM lGT } = lim P{foM |G, } =
+ T
n--oo n

= 1lim [1 (0. )P {f} + 1_ (D.. )P.{f}]
) WL IR T o1 0

where Tn is any sequence of stopping times, taking on finite or countable number

of values and such that Tn + T,

Put

e () 2k 27", if (k-1)2"sx<k 27" (3.8)

and let (assuming inf @ = +«)

T - Nl cte ¢ - - AT
Id = um‘utn(sj.s =T, ud M for all s<usa,(s):.
The random variable T! is a stopping time (sce 21, Ch V1) and so is

Tn = 11(Lﬂ &, (T) + 1

21
el
~—

X
TFM1n ) (:

Each Tn given by (3.9) takesut most a countable number of values and Tn + T. By the

construction I > T on the set {T¢ M} and {Tn=D,r } converges to the set {Te M}.
n n

Hence we can pass to a limit in (3.7) and obtain (3.6).
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(3.10) PROPOSITION. For each fe bG® and each stopping time T with respect to

G;+ and each i=0,1,

P.{for1 IG
1

1) = lregoPolf} + 1p@OIP (£}, (3.11)

dy

The proof is similar to the proof of previous proposition.
From now on we will consider only stationary sets of the third type, for
which

P{Dt= t}> 0. (3.12)
(Theorem 2 of [11] shows that failure of (3.12) implies that M is regenerative.)
(5.13) PROPOSITION. For each t
P{D,=t, teM} = 0. (3.14)

Proc4. Supposc the left hand side of (3.14) is equal to € >0. By virtue of

Proposition (3.5)

t - -
P{foM th+} = Po{f} on {Dt—t, t € M}, (3.15)
On the other hand, using sequentially (3.4) and (3.15)

(3.10)

to~ . : e , A ) ,
! G - - ! ol - U s YD =t ho= ot
PLf M lpt} = Pl{f} = [KPOIf‘ + llht t.1 H,Pl fil/1 It t on It t

. Equality (3.16), which is true for each f, shows P0= Pl’ which contradicts the

assunption that M is the set of the third type.

{5.17) COROLLARY, pl{OC QO} = 1.

Prees. By proposition (3.13) the sets {”t= t} and {te M) arc indistinguish-

able. Using (3.4),
~t “
Ploy =t} =Pl =t, 0c8 ) =P{n = t}P {0ciy),

Thus, the statement follows from (3.12).
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(3.18) PROPOSITION. For any functions fe bG° and ge bG& such that g=0 on

{dt=°°} and each i=0, 1

Pi(fndt gl= Pi{g;dt>t}P0{f} + Pi{g;dt=t}P1{f}. (3.19)

Puccy. For i=1, Put T=t+s. By (3.4) and (3.12)

P {fe1,g}= P{f°l\1Tg°l~1S|D =s}/P{D =s}.
1 dt s s

Taking first conditional expectation with respect to G$+t’

N S — ] e
(Dt+S)PO{f} +go ML, (Ut*s)Pl{f}|DS—51/P{DS-5}

t+s S

s
Pltrcrdt gl = PlgeM1_

which is equivalent to (3.19).

lLet

. b ~ A -
n, = inf{s>t: se ("}, ng = Ny M,
-~ A . - - ~0 A e
= >h.: sewll} = yYeM
Y, inf{s Nt osewlt, Yo =Y s
(3.20)
v éinf{s>~ s ¢ w0} v 29 om
t Yt) A ’ t t y
by 583,98 % s £
n = nos Y = YO’ 0’ o= io, Y = \n, - \0,
(3.21) PROPOSITION,  For y and n defined by (3.20)
P in=0:= 3,22
] 1 (3 )
and there exists a constant 0+ - < « such that for each a

Aa

P1{§>a} =c 7, (3.23)

R
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Precd. (3.22) follows from (3.17). Let a, b>0. Applying Proposition (3.18),

PlW>a+b}=Pl{9>a,§ora>b}=P1{?>a,da=a}Pl{?>b} + Pl{?>a,da>a}P0{\7>b} (3.24)

If Y>a then ae &° and da= a. Thus Pl{?> a, da>-a} = 0 and (3.24) equals to

Pl{?> a} Pl{?> b} whereas (3.23) follows.

Suppose (3.23) equals 1. Then Pl{Bg_c w0} =1, The latter would imply that

v M is a mixture of a real line R and a regencrative set with the law of regenera-
1?" tion P,. This contradicts the assumption that M is a set of the third type. Like-
1ff- wise, if (3.23) equals 0, then this would imply that P{da= a}l =0, The latter is
1- with a contradiction to (3.12).

_1 let ﬁt, Vt, ... etc. be given by (3.20). Define

" . A . - A < -
P 7(0,t) = y(0,t) = ¥(0,t) =t , (3.25)

- - - A -

:-: n(]\’t) = n\j(k—l,t) ’

i -~ A o

'__ y(k,t) = Y\j(k-l,t) ’
. S(k,t) 59 k=1, 2
s T (k1,1 T

‘IE;I n(k,t) & Ak, 1) o M

-

= vk, 1) 2 §(k,1) oM

by A
v(k,t) = S(k,t) oM,

;iﬁ When t is fixed we will write for brevity #(k), y(k), v(k), etc. instcad of
T Ak, 1), F(k,1), v(k,t), etc.

}i: The points n(k) and y(k) mark the bepginnings and the ends of the intervals
%2 which 8n[t,=[ is composed of.

KN
& (3.26) PROPOSITION.  The sequence {(y(k) - n(k), v(k) - v(k), n(k+1) - v(k))} is a
'-:..‘

:i scquence of iid three-dimensionals vectors on (2,F P}, The sequences {Y(k) - n(k)}
Lﬁ; and (k) - y(k)} are independent and for anv a>0
"3

&
b

J'-';

b

58

1o

2

14

- -
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S ‘
2 ;
LE -2a |
_‘:,: P{y(k) - n(k) >al = e ’ (3.27) i
..‘-‘

a where A is the same as in Proposition (3.21).
B The sequence {(7(k) - #i(k), V(k) - y(k), n(k+1) - v(k))} is _a sequence of iid

~ .

:-::: _ three-dimensional vectors on (QO,G°,Pi), i=0, 1. The sequences {y(k) - n(k)} and

.::::: {V(k) - ¥(k)} are independent and for any a>0 and anv i=0,1

:{-:. |
Y
b PR - A(k) > a) = 72, |
:‘_ Pacc4. It follows from [2] Ch. VI that for each k the random variables

"y n(k), vy(k) and v(k) are stopping times and if k < j then

-

o

-..j_-\. v(j) = n(k)<y (k) £ v(k).

'~
Y]

< .

,:._-. Let h be any bounded function of three variables. Since n(k) € M, using Proposition
e (3.5),

N
& PR (y (K)=n(K) v (K) -y (k) ,n(k+1)-v(K)) | G 1y 3= Py {N(F,9-7,7(2,00-9)) .

I
"l‘-
L

The above shows independence of (y(k) - n(k), v(k) - v{K), n(k+1) - v(k)) from the

AN
[
LR

-~

VI3 4 s Tt
O (N
g ‘u’.:’..:'.uf‘ /. '.‘ ,"'. L 2

sequence {v(i) - n(3),v(§) - v(G), n(G+1) -v(iinl, i=1, 2, ..., k-1,

Let g be a bounded function of one variable. Put f{w®)=g¢(¥-7%). Then using

Proposition (3.5)

J P{g(v(k) - v(k)) 1>b (v(k) - n(k))} (3.29)
2 = PUL, (v(K) - n(K)) P (£) .
e."'
!_’ The last equality in (3.28) is due to |
|

{y (k) - n(k) >b} < {n(k) +b~ A},

4

g

and (3.4). Likewise, setting h(w®) = 1., (%)

] LY
A

P{y(k) - n(k) >b} = P{horn(k)°M} = Pl{h} = P1{§>b)

Lt Y
\I:‘\:.l-\

and (3.27) follows from (3,23).
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The proof of the second part of the proposition is done in a similar manner.

4, Deletion Operation and its Properties.
In this section we define an operator which removes parts of the set M in

such a way that M becomes a regenerative set. Put

K(w©) £ w\closure (§°) = limuﬂ\kzlfﬁ(k,t), Y(k,t)]
t>-o =

4

K(w®) = K(w°) , (4.1)

The operator K removes closure of the interior of w®, and the remainin
P s g

set has no interior. Thus

S
K(w®) = ¢ .
(4.2) PROPOSITION, For anv w® and any t
dtoK(wO)EGP. (4.3)

Proc§. Suppose (4.3) is wrong, then for some k21
dtoK(w°)€ [(A(k,t), v(k,t)l (4.4)
Since dt’ K(.7)- K{«"), the only way that (4.4) can be true is
d, ° K(w%) = A(k,t) . (4.5)

If #(k,ty=1t then (4.5) fails because in this casc
de KLy =Tk, 8 Rk, t). It A(k,t)  then (4.5) implies Jt,fi(k,t)[7 K. ),

Thus ﬁ(k,t): K(«”) which contradicts (4.5).

(4.6) THEOREM. The set keM 1is a stationary regenerative set,

Precf. From a trivial relation

/"\
wl+s = 00+s

16
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it follows that
KeM+s = K(M+s), 4.7)

Likewise

Tt0K0M=K°‘rt°M . (4.8)

Relation (4.7) shows that stationarity of M implies stationarity of Ko M,
Put D£ = dto Ke M, Then D{ is a stopping time. By virtue of Proposition
(3.5), Proposition (4.2) and (4.8), for any function fe bGO

P{fOTD,OKOMIC J= PplfeKer,, oM[G o= Pifek) (4.9)
t t t

This proves that KoM is regenerative with the law of regeneration

(4.10)

(4.11) REMARK. The proof of Theorem (4.6) shows that KoM is regenerative

. . . A . .
with respect to the filtration GT: =G which is larger than the natural

4
Dt

filtration generated by KoM, It can be shown in a similar manner that

o ° 0 = o 20 =
Polfety K|Gd+} = P{f leodt+} P{f} . (4.12)

t t t
We will call KeM the regenerative part of the set M. By [6] the set
KeM 1is either perfect or discrete.

According to [7] and [11] their exists a process 2 with independent incre-

g ments such that K(w®) = R for PO a.a. w® and such that the local time
« +
N -1b ,
. = 2 = M 2
N ,es 2 inf{t: Z, s} (4.13)
¥ . . :
E.’ is a continuous process adapted to the o-field G:+ and for any ue R
6 =6 +6 o1 ., (4.14)
u+s u S u
& (4.15) PROPOSITION., If M 1is a stationary Markov set with a perfect repenera-
. -
- tive part then
[
E P,{0c8°) =0 .
17
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Proog. Put

Tn' o) ='1nf{aen(s): s20, uew® for all s<u5aen(s)}

where aan(s) is given by (3.8). Let

0 if 0e &°
Tn(m°) =
Tn'(mo) otherwise

Then T is a sequence of stopping times such that

- - A0
Tn-DTn-O on {0e3&°}. (4.16)

From [6] and [8] it follows that for any perfect regenerative set with the

law of regeneration P

P{0 is an isolated point in w®} = 0 . (4.17)

On the other hand K(w®) and w® coincide in a neighborhood of 0 on {0¢ @°}.

From (4.10) and {4.17) follows
90{0260, 0 is isloated point in w®} = 0 . (4.18)
Combining (4.18) with (4.16) we get

d. +0 a.s. P,. (4.19)

Take f=g(r_ ,r_ ,...,vr_ ), where g 1is a positive bounded continuous
$177 s, Sy
function of k variables. By virtue of (4.19)

dT
n

, 2 - . o - . A0 -
Io{f_r lrllm PO{f 1 } ll’]im{lT @) Pl{f} + lTnewO Po{f} (4.20)

n

Suppose PO{OF&O} = €>0. Then the right hand side of (4.20) converges to

cPl{f} + (l-c)PO{f}

18
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which implies P0= P1 . The latter implies M 1is a regenerative set, and this

is in contradiction with our assumption that M is the set of the third type.
Let b(w°) be the set of accumulation from the left points of w°, i.e.

o]

xe b(w®) iff there exists a sequence {xn} such that x <x, X €w and x_*x.

(4.21) PROPOSITION. If M has a perfect regenerative part then for each k

P{n(k,t) € b(M}} = 1 (4.22)

Proo4. Suppose (4.22) fails. Then with a positive probability there exists
an interval contiguous to M whose right end coincide with n(k,t). Fubini's

theorem implies an existance of u for which
P{Du = n(k,t), D, > ul >0 ., (4.23)

Applying (3.4) to f= 10((30) and using (4.23), we get

PO{O €x®}>0

which is in contradiction with proposition (4.21) .

Put

ne=

CO 0,

1>

% T %m0 T %m T Sm

where 95 is given by (4.13) and #(k), ¥(k) and ¥(k) stand for n(k,0), v(k,0),

and 9(k,0), given by (3.5).

(4.24) PROPOSITION. If M has a perfect regenerative part then (;k- gk-l’

k=1, 2, ... are exponential iid on {2°% C° P }.

Preo4d. Let TH=1H(1). Consider

PO{C1>a+b} = P0{6ﬁ> a+bl = P0{6ﬁ> a, eﬁ-a> b} .

19
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o o = inf{s: esza}. (4.26)

Then o 1is a stopping time with respect to Gto+ and 60=a. Thus the right-hand

L:.‘-_. side of (4.25) can be written as

e Po{eﬁ>a, eﬁ-eo>b} = Po{eﬁ>a, eﬁ_0010>b} (4.27)
--:":‘_ = p {e-. > a’ e~ o T > b}

b 07 Nety O

oo .

= = PO{PO{eﬁoro ° Ty > b|Go+}; 6z > a}l

y = P0{8ﬁ>a} P0{6ﬁ>b} .

R

Z-::‘.- The first equality in (4.27) is due to (4.14). The second equality holds because
_.; o>% and for any s Fer = fi-s on the set {s <7} . The last equality in
4-'.-

.&: - . - -

Y (4.27) is a consequence of Proposition (3.10) and the equality

e d

- d =0

o

:jl'.:f which is true for any perfect regenerative set and any o given by (4.20).

e Equally (4.27) shows that %y has exponential distribution.

‘ Since for any k

I T0(K), S()L & Kowo,

.‘_v'_::. the quantities eﬁ(k) and e\.)(k) coincide. Thus, in a way similar to the one
,1 : in which (4.27) was obtained,

'::-'." o
- Potoaten) ~ Cag) 7 @ | Gy |
e =P {6 -5 >a | G }

o 0" R(k+1) T UV (K) LUB(K)+

ok

o~ - O Ta 9

o = PolOsgeny-s00 ° oo T 2 | Spge)

- P {o. o 1 62

W (k)

7 -

::-:- - Po{eﬁ> a} .

g

g 20

"

A
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The above equality shows that S Ty is independent of S n=1,2,...,k

Cn-l’

and have the same distribution as Ci.

(4.28) REMARK, The proof of Proposition (4.24) also shows that S Cko] is indepen-

dent of the sequence of random vectors (¥(n) - ¥(n), ¥(n) - fi(n)), n=1,2, ... .

5. Structure of Stationary Markov Set.

In this section we will show that each stationary set M is (M, a,A,u)-
generated. This will be done separately for the case in which M has a perfect
regencrative part and in the case in which M has a discreet regenerative part.

1

Suppose M 1is a set with a perfect regenerative part and PO- K™® is its

law of regeneration. Consider the process Vt on (Q°,G°,pP.)

vy =) (3 (k) - 1K),
k:ck<t

where g, = eﬁ(k) with & given by (4.13). The process V. 1is of apure jump type,

In view of Proposition (4.24) ck- ck-l are exponential iid. By virtue of the
proposition (3.26) and Remark (4.28) the random variables (V(k) - fi(k)) are iid
independent of the point process L Therefore, the process Vt is a process
with independent increments,

Proposition (4.21) and Proposition (3.10) together with (4.18) show that
fi(k) and (k) are points of accumulation of Kow® a.s, PO° This implies

zc'k = (k) ot fi(k), (5.1)

where z, is the process whose image is equal to Kow® n [0,°[, From (5.1)

and the definition of Vt follows

Y -V =z -2 . (5.2)

AR S - '---'-'»_'-.‘.' . ., ) . e L. .. - e - ..n W e e,
R A R A O '..."‘_.. e
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Since both Zy and V, are processes with independent increments, so is W

¢
The set Kow® has Lebesgue measure zero, therefore the process z, has trans-
lation constant equal to zero and is of a pure jump type. In view of (5.2),

Wy is an increasing process of a pure jump type such that

W= W . (5.3)

Relation (5.3) implies that V, and W_ have no common points of discon-

tinuity. Accordingly V_ and W_ aYe independent (see [10]).

(5.4) THEOREM. A stationary Markov set M with a perfect regenerative part is

(M, a,r,)-gencrated.
Pro04.  For each t we need to find by such that Mr1[¢t,w[ is a
(M,a,),u)-set. In view of stationarity it is sufficient to consider only t=0.

Put ¢ =v, where v 1is given by (3.20). Let

"ne»

Y(k) o T,° M-f(k) o T,° M = y(k+1,0) - n(k+1,0) ,

Xk

"

Y, EBR) ot o M-F) ot oM 2 v(k+1,0) - y(k#1,0),
(5.5)

nes

Voot t e,

ne-

v WtO’rv+¢.

Then for :t given by (2.6) we have

™~
it

z °T\)°M+¢ .

g :CROT\)OM

Let T be the Levi's measure of the subordinator W. Let a be the paramcter

22
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of the exponential distribution of Zy ~ Cxo1e A be the parameter of the exponen-

tial distribution of y(k) - n(k) (see (3.27)) and

w2 P - y(K) e T) = PIS(K) - ¥(K) € T}.

We would like to show that the set Mn[¢,»[ 1is a (TM,r,a,u)-set as defined by

(2.6) - (2.8). Since wv= DY and ¢ ﬂ, we can apply Proposition (3.5) and get

P{fOMYlGY+} = P{fo Tv°M]GY+} = Pylf) . (5.6)

In particular, (5.6) shows that the law of (V, o T,° My, W, o T, ° M) is the same
as the law of (V_, W) on (2°,G°). It also shows independence of v and

ot oM ' o °
(V.oox oM, Woot oM,

A
= 1_9oM and for =z =Vt+wt

For Ml v t

Thus

ZpeM *6 = KoMn[¢,f

+

The construction of the process \’t (and Xy by (5.5)) shows that [ given by

~

(2.7) coincides with the closure of Mn[¢,=[. Since M= KOMUKQ, we got the

representation (2.8) with x, and y, given by (5.5). Proposition (4.24) shows that
Tl T, M forms a Poisson point process. Proposition (3.26) and Remark (4.28)
show the required independence of {Xk}, {v;} and y. as well as independence of
Xxe and vy, given by (5.5). This concludes the proof that Mn[¢,~[ 1is a
(I11,a,>,u)-set.

A stationary Markov set with a discreet regenerative part cannot be treated

in the same manner because Propositions (4.15) and (4.21) are no longer true in
this case. As a result (5.1) and (5.2) as well as (5.3) might fail. The failure

of (5.1) - (5.3) might result in dependence of the processes V, and W,

: -. e ',' .< -.- '."'. "_'.-,’ ..“ '_- - ". '. .“, .. et .‘ -. -V . ..- C h-' n.' -‘ -.' q‘. -. ,.‘ -A' - '. -‘.~'~..-'.n.' -
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However, the case of a set with a discreet regenerative part can be treated
"from scratch". The analysis of this case is rather simple, so we will only out-
line the main points without going into details.

Put

o
]

PO{Oe &8°}. (5.7)

It is easy to show that if M has a discreet regenerative part then 0O<p<1,

Let X be given by (3.23) and

u(r) PO{G-VeI‘} (5.8)

n(r)

P,ld, € I]0E 30} (5.9)

Proposition (3.5) shows that the right endpoint of each interval contiguous
to M belongs to  with probability p independently of the length of this
interval. Thus T,°M can be described by means of a Markov renewal process
U(t) (see [1] Chapter 10) with three states. The holding time in the first state
is exponential with parameter X, the holding time in the second and third states
have distribution u and T respectively. The transition matrix of the imbedded

discreet Markov chain is

0 1 0
p 0 1-p
p 0 1I1-p

The set of times when U(t) undergoes transitions from one state to another or
- U(t) 1is in the first state corresponds to T oM.
- It is easy to verify that the set Mn[v,~[ = viT oM is a (Jl,a,r,u)-sect

- where o 1s such that

(Note that if Ve is a (0,11)-process and x. is the process defined by (2.6),

t

then o/ (a+l) = P{ol <inf{t: Ye# Ve .
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(5.9) PROPOSITION. If M is a stationary (J1,a,X,u)-generated set then JT and

v satisfy (2.13), (2.14).

Proog. (For M with a perfect regenerative part, for M with a discreet

regenerative part the proof is similar). Let X, and Ye be the subordinators

which generate (IT,a,A,u)-set (see (2.6)-(2.8)). Then

Ko(Z]R ul) = Z]R .

+ +

The latter shows that the process Z=x+y generates stationary regenerative set

KeM, If ' is the Levi's measurc of 2 then from [8] and [11]

[+

% X' (dx) <= (5.10)

On the other hand it is known (see [10]) that
P{Z,-2p} =t [x TI'(dx) (5.11)
0
The left hand side of (5.11) can be rewritten as
r -1..-1 . %
P{yt—yo} + P{x -x.} = t]x TT(dx) + toa [A~ + fxu(dx)] (5.12)
t 0 0 0
Relations (5.10), (S5.11) (5.12) imply (2.13) and (2.14).

(5.13) PROPOSITION. f M is a (Jl,a,X,u)-generated set, then the quadruple

(M, x,>,u) is determined by M uniquelv up to equivalency.

Prooi. The compliment of M consists of a union of open intervals (Lt , Rt)'

Since Mn [QO,W[ is a (M,a,X,u)-set we can write (recalling representation (2.6)

- (2.8)).

P{ ) F(R,-L, ) 1

} (5.14)
v(1)<t<n(2)

th Lt

= 1lim P{ ) £(R_-L_) 1

}
koo u(k)st<n(k+1) ¢ ¢ ReFLy
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= Q{o <§<o £(2, - zt')lzt‘zt-} (5.14)
k k+1
=l §  fly .-y }
t t-y =y
Uk<t<°k+1 tt-

Mif)Qloy,, -0} = a ' N{f}.

Here Q is the probability measure associated with the process x, y and Z in
(2.6) - (2.8). Formula (5.14) shows that (JI,a) is determined by M uniquely up
to proportionality.
On the other hand, direct computations show that for any (IT,a,X,u)-set
Ply-n} = [A(l-a u{0} / (a+ T(R,)) 1"} (5.15)
and
() if T(R) = = (5.16)

P{v-yeT} = )
W) o+ p{0}M(R) T M(r), if M(R) <

Equalities (5.15) and (5.16) complete the proof of the proposition. |

6. Markov Properties of the Residual Life Process
Consider the '"residual life" process

R, = inf{s-t: s>t, seM} (6.1)

associated with the stationary Markov set M. Markov property of M implies that
Rt is a Markov (but not necessarily a strong Markov) process.

Consider a (J1, a,X,u)-set given by (2.7), (2.8) and the processes y., x. and
Z. which generate it.  Let

<, £ inf{s 2z 0: Zsza} ’ (6.2)

-
L

-07'-‘.l"l'.
AN
»



S N < 4 . i et < = . ‘"‘
“ F,o=2, ,
g “a

d-t;.. (6.3)
e Ha = Zc -

e a

ol

1.\1'
-~ Let N be the union of % (see (2.6)). Then Rt given by (6.1) can be
N

- represented as

::::: 0 if ¢ eN and tey,

-'::- R = (6.4)
A o t .
b lF -t otherwise .

A t

~
gy
:;.: Let Q be the law of the subordinators x. and y, of (2.6) - (2.8). The
) -
v .

o transition function of Rt associated with a stationary (I1,a,A,u)-generated sect
f\ is the same as transition function of Rt associated with any (I1,a,A,u)-set.
-t'."

Ty
\.:"_‘_. Hence we can assume any distribution of Yo in (2.6) - (2.8), in particular
\ ':-:‘
C Qly, =0} .
T
::::: The transition function of the process Rt given by (6.4) is
ot

= oy
’ p(t,x;T) = II‘(X) if x«<t,
-‘:::‘; p(t,x;T) = Q{F _-ter,c_éN} + ): Q{F -teT,c =0, ,2  _+X <t}, x>0, O0e€rT,
O t t =% 0" k
1 “-P
’\)‘ ® (6.5)
- p(t,x;{0}) = z Qfc =ok,20 _+Xk>t}, x>0,

:‘:n: ]\=l t ]\

e

--:..-' -)\t t _A t

p(t,0;7) = e "1 AT+ aeT (e t - v ddy + [ o (dy)p(t-y,y;T),

Y ¢ N 1

0 0 0

..\_n

SO where “ is a distribution of the jumps of the process x, (i.e., wy is a con-
::_::: volution of .. and an exponential distribution with parameter ).

o

o )

A A (IT,.,7.)-generated set is stationary iff

A

o m,_(T) SPR e

- t t

docs not depend on t

%) 27
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Inversely, if we are able to construct a probability measure m which is
- invariant with respect to p(t,x;I') then the stationary Markov process Ry with
P the one dimensional distribution m and the transition function p -will yield a

stationary (W, a,),u)-generated set by the formula

M=TDp »
where Dt = t+ Rt'
:::?;: (6.6) THEOREM. If TU and X are subject to (2.13), (2.14) then there exists a
EG)
::f'f:f unique stationary probability measure m for the Markov process Rt associated
o
. with a (JI,x,),u)-set. The measure m is given by
\l
n(£) = COATYE(0) + [E()u(dt,=0)dt + o™} [ £(t) T (Je,=[)de] .
0 0
For the proof of this theorem we need the following proposition.
(6.7) PROPOSITION. Let (ys,Q) be a (0,71)-process and let
R Cr= 1nf{s:ysza},
:.:::: Let S be an cxponential random variable with parameter o independent of the
. process y,. Then
e v
-h.-:' ts ©
o QU £y ~wdu) = o1 [ £(2) T, =0)dt . (6.8)
0 ‘u 0
-I‘-.
v.’::-‘
% Peceg. The right-hand side of (6.8) can be rewritten as
E:'f:f Ys
A Q{ y [ fly -u)dul
L.:_. voZy ’S.«'g , b
‘s 7§ ‘s
@, Ys
s = Q{’ . ) e [ f(u)du} (6.9)
!.f-\- )S ’S_ 2= y
-




‘ QIM(g)s} = M(g) QlS} = ™! M(g)

:& (see [10] Section 3). By Fibini's theorem

.:: o ® X oo @ ®
N M(g) = [ g(x) M@dx) = [{f £(t)dt} N(dx) = [ £(t) [N (dx) = [ £(¢) M(It,=[)de
- 0 00 0 t 0

whereas (6.8) follows.

Pxcc4 of the Theorem (6.6). Let x. and y. be the processes (with Q{y0=0}=1) |

which generate a (JI,a,A,u)-set by formulae (2.6) - (2.8). Then the process R

F AL« —

I.‘ t
LY
'f} associated with this set by formula (6.4) is a regenerative process (see (1] Ch. 9)
b~
) with the moments of regeneration p., 0y, «vvy Ppy +ov-
.
:":' P 4.
_-‘. =L .
- K %k
‘o Recally, by virtue of the strong Markov property
k A
N Xs T X5 45 ™ %o
.- k k
o
‘ and
> Y-y y
] op+s oy

have the same distribution as the processes Xg and y_ respectively and are

independent of {xs, v.; s< ok}. Since

g?

% kK

Ro vt = Ry (xeuye)

9 k

D, the process Rr ot is independent of {RS, s< ok} and has the same distribution
™ k

- as Rt' The same argument shows that the sequence {ok} forms a rencwal process.

® Since
2
- C - @, =2 -2 = (v -y ) + X, +Y
- K+ . o o o o k K
e 1 k k+1 k k+l k
1' and since Xk has a continuous (exponential) distribution, Prel ™ Pk has a
o L . . . .
v continuous distribution as well. Thus the renewal process {p, } is aperiodic and
.
oy
’..‘
29
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E{pp,g - Dk} = E{Xk} + E{Yk} + E{y°k+1..y°k} (6.10)

=2t e ftu@n ot fenay .
0 0

The right-i.and side of (6.10) is finite by virtue of (2.13) and (2.14).
- According to Theorem (2.25) of Chapter 9 of [ 1] there exists a unique sta-
tionary measure m for the regenerative process R,, given by
°1
m(r) = ¢ Q{ [ 1_(R )dt}, (6.11)
0 rt

where C'1 is equal to (6.10) (The expression ¥n (6.11) is equivalent to the one

given in Ch. 9, Theorem (2.25) of [1]). Since the process X, is equal to 0 on

the interval ]0,01[ the process 2y coincides with y. on ]0,01( and

R, =y -t for ts< Ys

=
1
(SN
)
-~
i
L]
+
o
+
-z
]
H
bh
@]
—
<
+
P
A
~
A
t

(sce (2.6), (2.8) and (6.4)). Thus

~Le v .
/! K Cl g X

1
Q{ J1.(R)dt} = Qf [ 1.(v,
0 0 ¢

v

1 1
-t)dt} + Q{flr(n)dt} + Qi L.(Y,-t)dti  (6.12)
t 0 0

The first term in the right-hand side of (6.12) equals to

y Y 1.(1) Tt =) dt (6.13)
0

by virtue of Proposition (v.7). The second term in (6.12) equals

. -1 )
1.(0)E (X} = 1.(0) (6.14)

30

w._' . e e noamnw g s AT N SRR RS B vv o R N A I g T T T SR L
. AR -_’4"’_‘:."&"-,’\'%,"\"1::::;\'}. '.‘.",, l\ ',!".':‘-'(E'\t‘t*ﬁt,zﬁ‘v[\:-’v‘,\['lv."‘ AT ] h:,:".r A C L I‘.,‘- o TeTn




v

i, ¢
g

. "
:

x

L
[4

el
'._ The last term in (6.12) equals
O (6.15)
r\:.'.
oy
R Yl Y1 o i
ot Qf | ln(\'l-t)dt} = Q{J 1I‘(t)dt} = Q{f lr(t)ltq’ dt} = | lr(t)u(]t,w[)dt.
o 0 0 1 0
From (6.11) - (6.15) follows Theorem (6.6).
{(6.16) COROLLARY. For each (I, a, X,u) subject to (2.13), (2.14) there exists a
stationary (M, a,A,u)-generated set.
This completes the proof of the Theorem (2.12).
(6.17) REMARK. The proof of Theorem (6.6) shows that any (J1,a,A,u)-gencrated
set M with
P{inf M = -»} =1
is stationary.
7. Reversability Properties of Stationary Markov Sets.
In this section we will prove Theorem (2.15). We consider a stationary
(7T, +, %, 3,) -generated set with a perfect regenerative part. The proof of Theorem
(2.13) for. M with a discrete regencrative part is similar. The closure of !
consists of a union of closed intervals of iid exponential length and by virtue of
Proposition (4.15) and (4.21) the endpoints of thesc intervals are points of accumu-
lation of M-f. Therefore the endpoints of these intervals belong to KoM,
According to Theorem (4.6) the set KoM 1is stationary regenerative with
. Lebesgue measure zero., By Theorem 1 of [11] there exists a (0,J1') - subordinator
1
'f%: whose range coincides with Ke Mn [0,=[. If u= 60, then (2.6) - (2.8) show that
::f ' is the levi's measure of the process Z and
-
" N'= 1" + oG, , (7.1)
s A
.o.".
P

. . . .
3 where G, is an exponential distribution with parameter A. In particular, M has
AP
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a perfect regenerative part iff

T[(IR+) = ©

To show that -M has the same distribution as M we have to consider the

two dimensional process

(LR = (2y,r) o M.

It follows from the Markov property of M that the process (Lt’R ) is a
stationary Markov process. If M is a (II,a,A,GU)-generated set then the transi-
tion function of (L

t’Rt) is

p(t,(u,v);T) = 1.(u,v), if v>t, Tcl-=0]*[0,~[,

JeT, ct_VEN}, v<t, rcl-=,00x]0,«l

p(t, (u,v);T) = Q{(H

t-v’Ft-v
(7.2

p(t,(u,v); (0,0)) = Q{ct_veN} =) Q{ct_v=ck}, vet

k

t
p(t,(0,0);T) = [ 2e™™S p(t,(0,5),T) ds, Tc J-w,01x[0,=[
0

s g» of (2.6) - (2.8), ¢ s

’

Herc Q 1is the law of the processes Xy ¥ and Z
given by (6.2) and (Ht’Ft) arc given by (6.3).

Note that when uw=4,, the length of each jump of the process I, caused by

0’
a discontinuity of Xx, 1is expoﬂéntially distributed and the range of each jump
belongs to the (1T, 2,a,8,)-gencrated sct. This results in simplifications in
(7.2) as compared to (6.5)

LLet I(x;T) = II(T-x) where T-x = {y-x; vel}.

" The process (Lt’Rt) is stationary duec to stationarity of M. Repecating the
ité proof of Theorem (6,6) for (Lt’Rt)’ we can get that the onc-dimensional distribu-
7 tion n of this process is given by
0 (7.3)
n(rxa) = efa™? 10,0y (T®) eq71 [w 1,(r) M(x;8)ds], T<R_, 6 < R, .
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Let (u,v)T = (v,u) and if AcR xIR then AT should be understood similarly.

Let
© A -
Ye T Yeo Xe = =X

A
*
Zt = -Zt .
(7.4)
(& nen,
* A *
N7 (x;T) = IM*(r-x) = N(-x;-T),
Consider the set -M. The process
(LI,RD) £ (£, © (-M) = (-R ,-L,)
t’t t’t t’ 't
is a Markov process with the one-dimensional distribution (obtained by change
of variables in (7.3))
(7.5)

+

n*(rxa) = C[A‘ll(o’o) ((-8) x (-1)) + o ! (f) 1,(8) *(s;1)ds], Te R, AcR

and the backward transition function

P*(s, (u,v);3T) = pls,(-v,-w;T1), TeJ-e,01x[0,=[, us0sv (7.6)
Let
p e
A = Qi 1.(z)ds},
0
e 2 olf 1.0ds) = (D),
" :
(7.7
4,1 = AT -b),
N(r) = 25 (T-b),

(7.8) PROPOSITION. For any function f of two variables

Q{ £(Z, ,2,)1,-4} = JA(dx) [f(x,y) T (x;dy)
VZE-’Zt t->"t  teN é (J;
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0 0
— * -

1 Q{Zt*_,zt* £z, 201 ;) = .{o“*(dx).{, £(x,y) T*(x;dy)

'_:3::: The proof of this proposition is well known.
.‘ .-

-':}': (7.9) PROPOSITION. For any two functions g and h on R

N )

\.}:\ o ©
OON f g(x) N(x,f)dx = f f(x) H*(x;g)dx (7.10)
) = -

\':':‘ © ©

NOR

T J A (Dgxdx = [ £(x) K (g)dx (7.11)
For the proof of this proposition see [11] Lemma 6.4 .

SANA

e (7.11) PROPOSITION. Measures n and n* given by (7.3) and (7.5) respectively,
‘:i::'.: coincide.

.'_:..'

oA

e Prcog. The first term in brackets in the right-hand side of (7.3) is equal to
::-:1.: the first term in the right-hand side of (7.5). The integral term in the right-
o hand side of (7.3) equals to the corresponding term in (7.5) by virtue of (7.10).

2 o

- (7.12) PROPOSITION. For any two sets T, Ac R_x R,
b

\“.
) J n(du,dv)p(s,(u,v);8) = [n*(du,dv)p*(s,(u,v);T) (7.13)
b r 5

',;'_::Z Proof. Consider 4 and T of the form

«

o b o= A x A", A' <0, A" >0

E:;..; (7.14)
-\~~.

::.::: I = I‘lxr‘z I‘1<O, I‘2>0

@
Pais

YA R =
.\-::. Put 2, = L' +s and by=a"+s and assume
\’_':
e ro< A (7.15)
- 2 1 -

i
,*::Q_.

M

::':"_: (The inequality between two subscts of the real line means the corresponding

P ' :
NN |
Ly inequality between any two points from the first and the second set respectively.) i
Y3y
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For v~<A1 we€ can write

= 1 _ " - . z
P(s,(u,v),8) = QIH__ ed'+s-v, F__ et"+s-v, c &N}

B Q{_E lA -v(zt-) 1A -V Zt) 1t€N}
Lt_zzt 1 2

(7.16)

it
O“— 8

A(dy) lAl_V(y) N(y;8,-v)

1]
- 8

A, (ady) lAl(y) T{y;d,) .

We used Froposition (7.8) in the third equality in (7.16) and the identity
II(y-—v;A2-v) = H(y,Az) in the fourth equality in (7.16). Thus the left hand

side of (7.13) can be written as

0

/ Iy (9)ds [TT(s;dv) 1 () MY Ly O ysty), (7.17)

2

Applying successively (7.10) then (7.11) and then again (7.10) to (7.17) we get

the following sequence of equalities:

e o]

[n(du,dvip(s, (u,v),8) = [T*(v,r)1. (Wdv [ A (dy)1, (v) TU(y;z.)
0 I v Vv 5

-
i

ff.*y(dv)lF

-0 2
2

S
[T(y;2e)1, (v)dy
2

-

(V) H*(V;Tl) (7.18)

n
th— 8§

y
I, COT*xsdy) 1, () [ io(dv)1, (v) T (v;T))
0 RRC 2

’
“n

From (7.5) and the analog of (7.16) for p*(e(+,+),-) wc get that (7.18)
equals to the right-hand side of (7.13).

The proof of (7.13) for arbitrary T and A is donc in a similar way.

(7.19; COROLLARY. The probability law of the set -M is the same as that of M,

In particular M 1is left Markov.

............................
............




R R R R R e ke "M Ve b Sl Sl Sl fed ¥
CahSaia il Sal el Sak v \vwkw\._‘v-\-\r‘_vv'_r_v-*v—v_vr AN Jha- st AL M- aaatine aae asr aen ane aos o0 0,

MRS ol Sl et e Rl St

Proo4. From proposition (7.11) we see that the processes
(Kt,rt)o M and (Et,rt)o (-M) have the same one dimensional distribuitons.
Proposition (7.12) shows that these two processes have the same backward transi-
tion function. Therefore, these two processes have the same law. The rest follows

from representation

M= (roMp .

In the remainder of this section we show why (IT, a,),p)-gencrated set is not
left Markov if (M, a,X,u) is not equivalent to (IIl,al,Al,éo).

If M has a perfect regenerative part (i.e., H(Bg) =«) then from (2.6) -
(2.8) we sec that the distribution of v(k) -y(k) is equal to uw. If u= 60
then with positive probability v(k) - vy(k) >0. By Fubini's theorem there exists

t such that

P{L, <t, Lt=Y(k)}>0 .

However, the latter contradicts to Proposition (4.21) (or, to be precise, to the
analog of thc Proposition (4.21) for left Markov sets.,)
If M has a discreet regenerative part (i.e. (R ) <>} and (T,a,A,u) 1is

not cquivalent to (Hl,ql,kl,éo) then

uo# c160+ c2]I . (.
From (2.6) - (2.8) we sce that the distribution of the length of the jumps of the

process v is IT(R+)-1H. The distribution of wv(k) - vy(k) 1is

1

to
-

' .

[RE}
* .

wt o+ (1 - u{O})II(R;

.
T3]

B
et

. ", where u' is a restriction of wu on 10,=[. If (7.20) is true then (7.21) ix
v_ ¢ - .

e not equal to TI(R,) ! . Elementary calculations show that in this case the
<o

o conditional distribution of R, -L, given the event

. .

'e?

l:'J

l.'J
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