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^ ABSTRACT. 
Ntmierical simulations of the weak beam-plasma rnstabUity were done in 

the turbulent regime where small-scale trapping is a dominant feature of the 
instability, a regime with behavior not predicted by quasilinear theory. It occurs 
when the trapping frequency u = (k^D)^^^ is larger than the growth rate 7fc 
of the instabOity. The results of the simulations were compared with those of 
a specific model of the turbulence, the so-called "turbulent trapping" model, 
which gives precise formulas for the particle correlation functions, and predicts 
a growth rate well enhaaiced over the quasUineai value. It was found that 
the model gives accurate predictions for the correlation functions, and thus 
jM'ovides a good description of the turbulent structure of phase space. On 
the other hand, while growth rates were enhanced over the quasilinear values, 
the enhancements observed are smaller than expected from the quantitative 
predictions of the model. Further work is necessary to determine whether this 
discrepancy is a failing of the turbulent trapping model, or the result of the 
numerical limitations of our computational scheme. 
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I,    INTRODUCTION. 

Since its creation over 20 years ago (^), quasilinear theory has been ac- 
cepted as the valid description of weakly turbulent pkismas where wave-pwtrticle 
interactions dominate, with as central paradigm the weak, wann-beam-plasma 
instability. It is only relatively recently that the rigor of its derivation and 
its range of validity in the one-dimensional case have been questioned by J.C. 
Adam, G. Laval and D. Pesme {ALP{,^,^,^,^)). Their work demonstrates the 
existence of a new regime existing within the accepted limits of quasilinear the- 
ory, in which both the growth-rate and the velocity-space diffusion should be 
enhanced over their quctsilinear values. 

This conclusion is based on the existence of strong mode-coupling effects 
between resonant waves, due to the self-consistency of the electric field, ef- 
fects which occur when the resonance broadening frequency, i/fc = (fc^P' )^'^, 
is larger than the qusisilinear growth-rate 7^ . In this regime, a set of mode 
coupling-terms, arranged in an infinite series, becomes of the same order as 
the quasilinear term. This arises because of the partial trapping of the beam 
particles by the waves on a time scale i/^^ •C (7fc )~^5 a process which gen- 
erates a harmonic series of sidebands or "quasimodes", that is non-resonant 
pertiirbations of the beam distribution function, at the harmonic frequencies 
w = nu>k and at the wave numbers nk. These quasimodes do not satisfy Pois- 
son's equation, but perturb pwutides for which the resonance condition of the 
fundamental, Wfc = kv, continues to be satisfied. Because of this invariance of 
the resonance condition, the mode-coupling coefficients are large, even though 
the coupling takes place via small, non-resonant sidebands. Thus, the cascade of 
the quasimodes beating back into the fundamental leads, over a few e-foldings, 
to effects of the same order as the usual wave-particle interaction. In p>articular, 
tmder this regime the statistical properties of the electric field strongly deviate 
from Gaussian statistics and this results in turn in an enhancement of the dif- 
fusion coefficient over its quasilinear prediction. Through energy conservation, 
a conconmiitant increase in the growth rate must result as well. 

In a preceding paper(®), two of the authors presented model equations that 
were proposed in an attempt to take into account the mode-coupling terms 
which originate in the self-consistency of the electric field, and which invalidate 
the quasilinejir theory in one dimension. This model has received the name of 
the "turbulent trapping model", since it is devoted to describing those physical 
effects associated with the partial trapping of the particles in the wave packets. 

In the present paper, we numerically study the interziction of a very weak 
warm beam with a cold and massive bulk plasma, with the aim of detecting 
the new effects predicted by the turbulent trapping model. Our numerical 
experiments are simplified as much as possible, but hopefully retain all the basic 
physics of the process. The most fundamental simplification hes in modelling 
the bulk plasma as a cold, linear fiuid.   In effect, it provides nothing more 



-4- 

than the linear dielectric which sustains the electron plasma waves. Apart 
from a small nimierical effect, these are waves with zero group velocity, that is 
oscillations with stationary envelopes, growing on the energy of the circulating 
beam particles. 

The paper is organized as follows. Section (2) contains a general discus- 
sion of the turbulent trapping model, and Section (3) a brief review of previous 
nimierical work. Sections (4-5) are analytic in nature and provide the basic 
formulation of the problem. In sections (6-8) we continue the analytic work, 
«ind review the quantitative predictions of the turbulent trapping model in some 
detail. It is in sections (9-12) that we embark on the nimierical simulations, 
and present our results for comparison with the analytic work. The discussion 
of these results is centered on the main predictions of the turbulent-trapping 
model, concerning the structure of the correlation functions, and the enhance- 
ments of the growth rates. 

We shall summarize our main conclusions. (1) As regards the correlation 
functions <md the consequent structure of turbulent phase spsice, the turbulent 
trapping model provides a surprisingly accurate prediction, especially in view 
of its semi-quahtative nature. (2) While there is evidence for an enhancement 
of the growth rates above the quasUinear values, we have not obtained a quan- 
titative verification of the predictions of the turbulent trapping model. In the 
regime where the model is expected to be strictly valid, the enhancements ob- 
served are considerably smciUer than predicted; and when the enhzoicements are 
closer to what would be expected from the turbulent trapping model, they are 
observed in a regime where the model is no longer strictly vahd. We beheve 
however that these results for the growth rates are not final, and this because 
our simulations operated under numerical limitations which might be removed 
in future work. 

n.    GENERAL DISCUSSION OF THE THEORY. 

The non-validity of the quasilinear theory in a regime where the latter was 
thought to be correct can be understood on a formal basis, starting from the 
fact that the Vlasov-Poisson equations form a quadratically nonlinear set for the 
distribution function. Thus the standard techniques, applicable to any quadrat- 
ically nonlinear equations, can be applied to the Ylasov-Poisson equations as 
well. These techniques are mainly, the BBGKY hierarchy, the iterative meth- 
ods used in the Soviet Uterature in order to derive the Wave Kinetic Equation 
(with the Random Phase Approximation), and lastly, the Direct Interaction 
Approximation (DIA). The DIA equations were shown by D. Dubois and M. 
Espedal(^), and by others(*), to add new self-consistency terms (or polariza- 
tion terms) not present in other renormalized turbulence theories, theories that 
were based on the simplifying assumption of quasi-Gaussian electric field fluc- 
tuations.   In fact, such self-consistency terms are easily found to be inherent 
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in the BBGKY hierarchy and in the iterative methods as well. Moreover, the 
mode-coupling terms identified by ALP to give a contribution of the same order 
as quasilinear may be shown to belong to this class of seK-consistency terms. 
The non-validity of the quasUinear theory in the regime i/fc > 74 is a direct 
consequence of the self-consistency of the electric field: namely, the statistical 
properties of the electric field are self-consistently related to the particle mo- 
tions through the Poisson equation, this self-consistency makes the electric field 
deviate from Gaussian statistics, and this in turn leads to a modification of the 
diffusion coefficient in the regime i//, > 7^. This result has to be contrasted 
with the so-called stochastic acceleration problem in which the electric field is 
externally given. In this case the statistical properties of the electric field may 
be assumed Gaussian, and the quasilinear predictions follow. 

A "bootstrap" argument can help to provide a qualitative description of 
these effects. Let us assume that we start off with a rather particular organizar 
tion of the turbulent fields, one that partitions them into a set of wave packets 
of different phase velocities and finite amplitudes, which, for a given phase ve- 
locity, have small overlap in real space, and, when considered in velocity space, 
have barely overlapping trapping widths. In this picture, the envelopes of the 
wave packets are almost stationary, as the ^oup velocity of the electron-plasma 
waves is very small. The beam p>article8 stream through these almost immobile 
packets, to be momentarily trapped and scattered on their way. 

K one attempts to partition a turbulent electric field of given total en- 
ergy and given total spectral width into such a configuration of wave pack- 
ets, one finds that the characteristic spectral width of each packet is of order 
6k w k{i/k/i^p), where ui, = {k^D'''y^^ is the "classical" resonance broaden- 
ing frequency(®) and D'' is the quasilinear diffusion coefficient, proportional to 
\Ek 1^. Each wave packet has a trapping width of order {ly^/k)^^^, has a length 
in real space of order I/6k, and is such that a particle -will reside in it for just 
about one trapping time, I'k^- One can show that such a configuration leads 
to non-Gaussian statistics of the electric fields. 

The fact that the sep£tratrices of the wave packets just barely overlap is 
essential to our argument. Under such a circumstance, though in most of the 
phase space near the wave packets particle motion is stochastic, diffusion in a 
regime so close to the stochasticity threshold need not be quasilinear. Thus, 
the local diffusion coefficient may differ from the quasilinear one by a factor of 
order 1(^°). If one then links, through Poisson's equation, the energy loss of the 
particles to the equal energy gain of the wave p>ackets, one must conclude that 
at least initially, starting from this particular configuration of wave packets, 
the electric field energy will grow at a rate 7jb different &om the quasilinear. In 
other words, the motion of an individual particle is sufficiently stochastic to be 
diffusive over long times, yet is sufficiently coherent over a single trapping time 
for a modification of the particle's wave emission rate to occur. 

Now, two cases can obtain. If the growth rate is larger than the trapping 
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frequency, 7^ > i/fc, the wave packet structure will be destroyed by overlap of 
neighbors before the modified diffusion and wave emission Ctin occur. In this 
case, we can conclude that the initial configiuration of "barely overlapping" 
wave pctckets is irrelevant, because it subsists for a time much shorter than the 
diffusive time-step. The second case, 7^ < Vh,'is the one of interest to us. In 
this limit, particles are trapped and detrapped many times in one e-folding, 
and the wave packets can be thought of feeding quasistaticaUy on the nonlinear 
djrnamics of the particles, at a rate different from quasilineiir. 

The "bootstrap" argument is valid only if we can answer two questions, 
which apply in the regime 7* < i^fc: (1) how does the wave-packet configuration 
we have chosen to discuss arise in the first place, and (2) how does it sub- 
sist through many e-foldings, when individual wave packets must necessarily 
disappear, to be replaced by others? 

To answer question (1), we can argue that if the modified growth rate 
regime results in an enhancement of the growth rate, 7fc > 7^ , then the wave 
packet structure wUI eventually dominate any other. This argument, which 
is valid in the case of a linear instability dominating all other linear waves, 
is harder to justify in this case because the phenomenon is nonlinear on a 
microscopic scale. We shall however keep to this qualitative answer. 

Question (2) is intimately linked to the self-consistency of the electric field. 
We have no definite c[ualitative answer, but can try to rephrase the question in 
terms of a local energy exchange mechanism. We note that as the wave energy 
grows, the trapping width of the average wave packet increases. For a constant 
spectral width, this means that at a given point in space the number of wave 
packets will diminish with time. This suggests a local mechanism, by which one 
wave packet can dominate over its neighbors, by diverting the particles on whose 
energy they would have grown, to the extent of completely depleting some of 
these neighbors and extending its trapping width to their region of phase sp£tce. 
Assuming this mechanism exists, we have a picture of a configuration slowly 
transforming itself over a time scale comparable to the growth rate, through a 
process of competition between neighboring wave packets. Now, such a process 
is a coupling of modes, between waves differing by 6k « k{ut,/up) and thus, 
the presence of mode coupling terms in the analytic theory, imposed by self- 
consistency, is consistent with this picture of a self-sustaining turbulence of 
wave packets. 

Our picture is analogous to the seK-sustaining clump turbulence described 
by Dupree(^-'-), but with the important difference that in our case the plasma 
waves display a well-defined dispersion relation w = 0)4, imposed by the linear 
bulk plasma, and which is absent in the formulation of clump turbulence. We 
shall see that this results in correlation functions of the distribution function 
which extend over many wave periods, in sharp contrast to the clump correla^ 
tion function, whose coherence length is limited at most to one wave period. 
Notwithstanding these differences, and extending the notion of "dump" to the 



7- 

correlation function in the beam-plasma instability, one might reformulate the 
wave-packet picture of the preceding paragraphs by saying that the modifica^ 
tion of the growth rate, in the clump picture, results &om enhanced Cerenkov 
emission by the clumps, which radiate into a background of adiabatic beam 
particles (see also Ref.(,^^,^^)). 

ni.    PREVIOUS NUMERICAL WORK. 

While simulations of the beam-plasma instabiUty are nothing new (,^^,^^), 
performing such simulations imder conditions where quasilineax theory can be 
verified without am^biguity is demanding, both in computational resources and 
in the care with which the parameters of the simulation must be chosen. This is 
because behind its apparent simplicity, the weak beam-plasma instabihty hides 
several time scales, which must be correctly resolved for quasilinear theory to 
be applicable (,^®,^^). The same apphes to the turbulent trapping model which 
assumes constraints similar to those of quasilinear theory. 

To our knowledge, the first numerical experinaents testing qu£tsilinear the- 
ory in its full regime of validity are due to J.C. Adam(^®). These simula^ 
tions exhibited the formation of discontinuoiis electric field spectra, ascribed 
to mode-coupling effects, and showed an enhancement of growth rates over the 
quasilinear values, but unfortunately were not sufficiently detailed for quanti- 
tative conclusions about the turbulent trapping regime to be reached. A set of 
older and somewhat complementary numerical experiments are those due to A. 
Bakai and Yu. Sigov (^°), who emphasized in their study the qualitative obser- 
vation of phase space structure, without however providing more quantitative 
descriptions of the phenomena. 

In the present work, we have tried to proceed well beyond the results of 
these previous simulations, by a more systematic measurement of growth rates, 
by the quantitative description of phase space through the use of correlation 
functions, and finally, by the direct comparison of numerical results with the 
analytic predictions of the turbulent trapping model. 

IV.    PHYSICAL PROBLEM AND APPROXIMATIONS. 

The plasma is one-dimensional and consists of one species, electrons moving 
agadnst an immobile neutralizing background of ions. A sketch of the initial, 
unperturbed distribution function is shown in Fig.(l). 

In our simplified model, the bulk plasma is completely cold and is rep- 
resented by linear fluid equations for the perturbed bulk velocity and density. 
The beam plasma on the other hand, is described by the exact Vlasov equation, 
with no other approximation in the numerical simulations, than those imposed 
by the finite differencing method we have chosen.   This numerical approach, 
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in which the bulk is "streamlined" so as to simply support linear plasma os- 
cillations, is valid for problems where the detailed beam dynamics are most 
important. Modelling the bulk as cold and linear then results in a considerable 
or even vital economy of mesh size. 

Let the total, averaged spatial density of the electrons be no, with this 
density split between the bulk, nop, and the beam, TIOB, "of + ^B = ^o- The 
beam is a small perturbation to the bulk, no£ <C nop. We model the bulk 
evolution by the coupled continuity and momentum equations: 

—np = -nop—up, (1) 

^up = -^E{x,t) (2) 

where hp and up are the linearized fluid variables. The beam is described 
by a distribution function, fBix,v,t) which evolves according to the Vlasov 
equation: 

with the normalization of the unperturbed distribution function: 

dv fB{v)=noB, (4) 

The electric field E{x, t) is determined self-consistently from Poisson's equation: 

—E{x,t) = ^noP + hp{x,t)+JdvfB{x,v,t)-no\, (5) 

where we have subtracted from the electron-charge source terms the neutralizing 
charge of the immobile background ions, qno- 

We proceed to normalize eqs.(l- 5). We already have a characteristic time- 
scale, determined by the plasma frequency: ^ 

Up = ——, (6) 
meo 

but, because the bulk is cold, we cannot choose its thermal velocity as a refer- 
ence velocity, nor the Debye length A/j = vy/wp as a reference length, as both 
are zero. Rather, we introduce a reference velocity VR which is of the order of 
the beam velocities (Fig.(l)). The reference length is then A^ = VR/LJP, and 
we define the normalized variables as: 
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t'=wpt,    X' = X/XR,    V'=V/VR, (7| 

qE 
E' = ,    u'p = up/vR,    n'p = np/nop, (8) 

nuupVR 

TlQB 

Dropping the primes, eqs.(l- 5) then become: 

9 d 
^np = --up, (10) 

§^up=E. (11) 

1^ + 4^ + 4^ = ^' (^2) 
~E = Rpnp + RB  ( f f dv-lj. (13) 
dx 

with the normalization: 

f dx f dvf{x,v,t) = L (14) 

where L is the system length, iind where we have defined the parameters, 

ii^ = 22£,        Rp = ^ = l-Rs, (15) 
no "o 

which gauge the relative bulk and beam densities, with RB <C 1. If RB = 0 ex- 
actly, Eqs.(10,ll,13) predict linear plasma oscillations, with a plasma frequency 
wp = 1. For convenience, we shall drop all primes in referring to the normalized 
equations. 

For eqs.(10- 13), we can define the normalized energies of the electric field, 
of the bulk plasma and of the beam plasma particles. These are, respectively: 

WE = \JE^{x,t)dx, (16) 

wp = ^Rp Ju%{x,t) dx, (17) 

WB = \RB j jv''f{x,v,t)dxdv. (18) 
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and with these definitions, conservation of the total energy of the system follows: 

^'Wtot = -i^{'^E + Wp + WB) = Q, (19) 

V.    LINEAR GROWTH RATES AND QUASILINEAR THEORY. 

For a very weak beam, RB <^ 1, eqs.(10- 13) have the dispersion relation: 

w = ±Wfc,    Wk = sgn(fc),     |wfc| = 1, (20) 

so that the phase velocities are vi, = w^/fc = ±l/|fe|. With this particular 
definition, the waves on the "+" brcinch all propagate to the right, and those 
on the "-" branch all to the left. The linear growth rate of the waves is given 
by: 

7fc = -RB|t,2 </>*)>«, (21) 

where < f{v) >, is the space-averaged distribution function of the beam (see 
Appendix A for a discussion of ensemble and spatial averages). For the finite- 
length system of the numerical simulations, the mode structure is discrete, 
with wave numbers k = 2nn/L, n = 1,2,  The electric field has the modal 
expansion: 

£;(x,f) = ^£+(t)e'(''—•*"*) + J^^kity^'"'^''*^' (22) 
k h 

where we made exphdt right and left-propagating waves. With the beam dis- 
tribution function confined to positive velocities, only the right-propagating 
modes E^{t) are resonantly driven by the beam p>articles, and their amplitudes 
eventually dominate over the left-going waves Ej^{t). 

The correlation time of the electric fields, defined as the width of the two- 
point correlation function, is given roughly by: 

27r ^     2iT .   . 

'''~ A{u>k-kv) '^ vAke' ^    ' 

where Aks refers to the total width of the turbulent spectrum excited by the 
beam. In the usujJ formulation of quasilinear theory, it is understood that the 
correlation time is very short, and that we have the ordering: 

T<:<7fc' ,  T</>, (24) 



-11- 

where T<y> is the characteristic time for the evolution of < f{v) >,. An 
equivalent way of stating Ek}.(24) is through the so-cadled O'Neil-MaJmberg 
parameter »/ (^), which can be written, with our choice of normalizations: 

'7 = i^B(fB/At»B)^ (25) 

In this expression, VB is the mean phase velocity of the unstable waves. With 
this definition, the condition r}<^\ can be shown to be equivalent to Eq.(24). 

If we use the standard formula for the quasUinear diffusion coefficient In 
the resonant velocity region (see for instance(^^)), we find: 

D''\v) = ^\EtX,   : (26) 
V 

where k„ = l/v and where L is the total length of the system. The overbar 
average is defined in Eq.(51) of Appendix A: it is meant to reconcile the sta- 
tistical properties of a single, long system with those of an ensemble of sudi 
systems. 

VI.    THE EQUATION FOR THE CORRELATION FUNCTION. 

The starting point for the turbulent trapping model is the 2-point, l-time 
correlation function, which is a measure of the phase-space "graininess" of the 
beam distribution function. It is defined by: 

C{x.,v_,v+,t) = < 6f{xuvx,t) 6f{x2,V2,t) >, (27) 

where x_ = ii - X2, «_ = Vi — V2, v+ = {vi + W2)/2, and where 6f is the 
fluctuation of the distribution function about the averaged distribution, Sf = 
f— < / >. Implicit in Eq.(27) is the assimiption that the tiirbulence is spatially 
homogeneous, so that C does not depend on x+ = (xj + X2)/2. Furthermore, 
C is a slowly-varying function of v+ (with variation on the scale of the total 
beam width), so that we shall keep this variable a tadt parameter by writing 
C = C(x_, v_, f) in most places. 

On the basis of a number of simplifying assumptions done in the spirit of 
the turbulent trapping model, one can derive(®) a Fokker-Planck equation for 
C(x_,v_,t) which has the form: 

(dt+v.d^_ - 2 (1 - cosk+x.)D{v+,t)di^_^ C(i_,t;_,t) = 

2 cosife+i_ D{v+, t) (a„^ < / >)^, (28) 
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where k+ = l/v+ is the wavenmnber resonant with the average velocity t;+. An 
important feature of Eq.(28) is that the diffusion term D{v+, t) is left undeter- 
mined. It is defined as the one-particle diffusion coefficient, for an ensemble of 
particles starting at v(t) = v+ and executing a diffusive motion in the turbulent 
fields imtil a later time t" = t + T. That is: 

D{v+,t)=< (^^^ >, (29) 

where Av = v{t + T) — v{i). Provided the time scales are well separated, there 
will exist a diffusive regime r^ <^T <^f^^, such that Eq.(29) provides a value 
of D independent of T. Now, if quasilinear theory is valid, then from Eq.(29) we 
must necessarily obtain D{v+,t) = D^^{v+,t), where £>*' is given by Eq.{26). 
However, Eq.(28) allows for a more general type of diffusive motion. In fact, the 
only assimiption we retain is that D{v+, t) grows as the square of the resonant 
wave amphtude, so that D{v+,t) « exp(27fc^t). Because 7^^^ <, T^f>, this 
means that the entire right hand side of Eq.(28) has this exponential dependence 
as well, to within the slow modulation by (9„^ < / >)^, which occurs on the 
r<^> time scale. Thus the time derivative on the left hand side of Eki.(28) is of 
order dt « 27*^. 

Let us "freeze" the value of £> at a given time, and define an instantaneous 
trapping frequency and an instantaneous trapping velocity: 

uu = iklDiv+)f^,        Avu = {Div+)/k+)'/^, (30) 

If we then normalize variables in terms of these trapping parameters: 

u = v./2^'^Avtu        £ = fc+z_,        T = 2^/2//„t (31) 

C(x_,v_)=     22/3A4  (a„^</>)^ F(^,M) (32) 

we obtain the normalized equation: 

{6r-\-vdi-{l- cos^)a2 ) H(^, u) = cose, (33) 

where 6r = 0('yi,^/uti) symbolizes the importance of the time derivative: Eq.(33) 
is in fact rigorous only provided the time-derivative term 6r can be neglected, 
which requires 71^ "C Utt- 

Eqs.(28) or (33) incorporate two basic features of the turbulent motion 
of the beam particles. The first is that as a:_ —> 0 and v_ -+ 0, C(x_,t;_) 
becomes large, reflecting the fact that particles initially very close in phase space 
remain correlated for a long time, and do not random-walk independently in 
velocity space(^^). The second feature of Eq.(28) is that the diffusion coefficients 
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are periodic in x_, with a period equal to that of the wave with which the 
mean velocity of the particles is resonant. Again, this is linked to the fact 
that particles initially an integral number of wavelengths apart will undergo 
strongly correlated motion. This second property is only approximate; it will 
be discussed in more detail in the next section. 

VII.    SOLUTION IN THE TURBULENT TRAPPING REGIME. 

The regime of turbulence is determined by the relative importance, in 
Eq.(33), of the time-derivative term 8r = 0(7k+/i^ft). This distinguishes two 
regimes. In the first, the growth-rate dominates the trapping frequencies, 
7'' >> vtt, and in this case we can neglect the 9j_ term in Eq.(28). In effect, 
the f£tst growth rate washes out any harmonic strucuture linked to the electric 
field turbulence (apart from the overall amplitude). G. Laval and D. Pesme(°) 
have shown that in this regime one recovers the quasilinear growth-rate. 

The "turbulent trapping" regime exists in the opposite limit: 

7''«^'«, ' (34) 

In this limit, we neglect 8r in eq.(33), and we can say that the modes grow 
"quasistatically" when their slow growth is measured on the now relatively 
short time-scale of the turbulent trapping, v^^^. With 6r ignorable, Eq.(33) is 
rigorous and has an exact series solution(°), given by: 

• 00 

H{i,u)=   Y,  ^n(«)expM^-sin^)), (35) 

where the sum excludes the term n = 0, and with: 

Hn{u) = ^^-j^P[ua„N"^) (36) 

with N = |n|, a„ = sgn(n), and with the Airy-related function: 

P{z) = - Texpi-TyS-izT) dT (37) 
"■ Jo 

Graphs of H{^,u), obtained from the analytic series (35), are shown in 
figs. (2). A saUent property of this approximate solution is that H{^,u) has a 
logarithmic divergence as ^, u —> 0, with the asymptotic expression: 
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This divergence reflects the property required of Eq.(28), that points of phase 
space initially very close remain correlated for long times. A similar struc- 
ture arises in the solution of T.H.Dupree's equations for turbulence in a bulk 
plasma(^^). 

The series solution, Eq.(35), diverges as ^,« —♦ 0 because we have neglected 
the 6r term in Eq.(33), a term reflecting the importance of the time derivative in 
Elq.(28) for small separations z_ and v-. Indeed, we expect (35) to break down 
when the terms ud( and (1 — cos^)^ in Eq.(33) are comparable to 6^- If we 
assume that d^ fts du ^ 1, in the normalized, approximate solution H{^, u), then 

1/2 the 6r term becomes important when u < ^T and ^ < 6T . In physical units, 
the conditions for the validity of (35) are then |v_| >• 7i^/fc+ and |fc+x-| 3> 

While an analytic solution with 9i ^ 0 has not been found, we can obtain 
the special value of C(0,0) very simply, by letting x_,«_ —» 0 in Eq.(28), which 
eliminates all but the first term on the left. We have, with dt = 2'yk+ '• 

C(0,0) =< {6ff >= ^^ (5„^ < / >)^ (39) 
7*+ 

an expression which assumes that 7^^^ ■^ ■''</>• 

We should also stress that the strict periodicity of C(i_,t;_) as a function 
of z- is an approximation which residts &om assuming that particles at v = v^. 
feel the single wave nimaber fc = fc+ = l/v+. To be consistent with the spirit 
of the turbulent trapping model, we must in fact assume that the particles see 
an entire wave packet, still centered about k+, but of width 6ktt = k+Utf The 
Tna.viTmiTn correlation length. In, will be of the order of the length of this wave 
packet: 

In = l/k+un = \/k^^''D^I\ (40) 

QuaUtatively, we expect the series solution (35) to be modified by an enve- 
lope function of width In, such that successive peaks of C(z-, v_) diminish in 
amplitude, tending to zero for |x_| ^ In- As we shall see, this behavior is 
numerically confirmed. 

By inspection of Fig. (2a), we can see that the total width of the profile of 
H{u, 0) is about 3. This width in «_ is then approximately 3 X 2^1^ Avn « 
4Avn- Now, for Eq.(28) to be vahd, the width in v_ of the correlation function 
must be small compared to the beam width. This imposes the reasonable 
trapping width constraint: 

4At;tt < AvB, (41) 
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where Avg is the beam width over which waves are excited. In other words, any 
turbulent structure must remain small, and it is in this sense that the turbulent 
trapping model remains within weak turbulence theory. 

VIII.    ANALYTIC GROWTH RATES IN THE TURBULENT TRAP- 
PING REGIME. 

By using Poisson's equation, we can express the growth rate 7j^ in terms of 
a velocity integral of the correlation function. G. Laval and D. Pe8me(^) have 
used this expression to find the growth rate in the turbulent trapping regime, 
by what might be termed a "bootstrap" method. First, C(x_,t;_) is derived 
from the series solution in Eq.(35). With Poisson's equation, this results iu an 
expression where 7* is an explicit function of D, the undetermined diffusion 
coefficient. It is then found that by choosing a pari^icular form for 7^ and D, 
global energy conservation is satisfied while the functional relation between 7* 
and D remains true. The expressions for fk and D are simply: 

7fc = 2.2 72', (42) 

D{v) = 2.2 iy>\v), (43) 

where 7^ and Z)''(t;) are given by e<p.(21) and (26). The numerical factor of 
2.2 comes &om the summing of a series of hannonics in Eq.(35), in the form 
of a series of Bessel functions. The striking feature of eqs.(42,43) is that the 
enhancement of the growth rate and diffusion coefficient is this simple numerical 
factor, independent of k and of the level of turbulence, provided i/tt "> 7*- 

Analytic work(*), done in the complementary regime Uu < 7fc, suggests a 
refined threshold for turbulent trapping, with the strong inequality replaced by 
the condition: 

i'«>5 7Ji, (44) 

The work of Ref.(*) also suggests that, starting firom initial conditions, the 
enhancement of the growth rate in the turbulent trapping regime will occur 
only after a substantial time lapse, that is aAer at least a few e-foldings of the 
electric field. This is because for eqs. (42,43) to be valid, the non-resonant har- 
monics of the Fourier components of the electric field must be in a quasistatic 
equilibrium with the fundamental, resonant harmonics. At t = 0, the nonreso- 
nant components are rigorously zero, and thus a finite time must elapse, before 
the mode-coupling mechanisms can build-up the hierarchy of modes, mutually 
scattering into each other, which contribute to the enhancement of the growth 
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of the fundamental. If iV is the number of e-foldings undergone by the electric 
field, we shall require: 

iV«3 -5, (45) 

for a regime of enhanced growth rates to manifest itself. 

EX.    THE NUMERICAL SCHEME. 

The Vlasov solver for Elq.(lO) uses a finite difference scheme developped by 
J.P. Boris and D.L. Book(^) , the so-called "flux-corrected transport" method, 
which exhibits a particularly low diffusivity, while maintaining good numerical 
stability even with very sharp density profiles in phase sp<tce. This scheme is 
combined with a spUt-step method devised by C.Z. Cheng and G. Knorr(^), 
in which transport of the distribution function alternatively proceeds in z and 
inv. 

The distribution function for the beam particles, f{x,v), is defined on a 
mesh with Nx points in the spatial dimension x and N^ points in velocity v, 
with spadngs Ax and Av respectively. The total system length is L = N^Ax, 
with boundaries in i at x^tii = 0, im«« = L. The boundaries in velocity are at 
V = Vmin and v = Vmax- The spatial boundary conditions are periodic, while at 
V = Vmin,iJmax we impose / = 0, a good approximation provided / is zikeady 
very small some distance from the velocity boundaries. We advance the system 
in time with a time-step At, usually chosen so that cjpAt = 0.2. 

The bulk equations are solved independently on the one-dimensional spatial 
mesh, using fast Fourier transforms in a leapfrog scheme. Be!tm and bulk 
equations are then coupled through Poisson's equation, also solved with Fourier 
transforms. 

Because our simulations are aimed at exploring the initial turbulence cre- 
ated in the beam-plasma instabiUty, we think of the beam distribution function 
as a tunable source of free energy, and we define its shape to obtain a con- 
stant initial growth rate(^^) over a large band of phase velocities(figs.(3a,b)). 
This is done by piecing together simple functions of velocity (see Appendix 
C). Our choice of an initial distribution function is somewhat artificial, but it 
has the great advantage of avoiding trapping effects which arise from the early 
dominance of a single mode. 

In Table I, we list the principal parameters of the two simulations to which 
we shall refer in the following sections. In the table, we indicate how well the 
validity conditions, simomarized by eqs.(54-58) of appendix B, are satisfied. 

We initially perturbed the beam distribution function and the bulk plasma 
density with a purely spatial modulation, so as to obtain an initicJ electric field: 
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E{x,0)=f^ek sm(fcx + <i>u), ^ -' (46) 
h=ki 

where the phases 4>k are chosen randomly from one mode to the next, and 
where the coefficients e^ are defined so as to provide an electric field with a 
given, smooth ampUtude spectrum. The modes in fci < fc < fcz are restricted 
to lie In the unstable part of the spectrum. ( Fig. (3a) ). 

The initial standing wave of Eq.(46) splits into right-propagating and left- 
propagating waves, with only the former amplified by the beam-plasnMi inter- 
action. Neglecting balUstic effects, from Eq.(22) we have the linear behavior: 

1   *' 
■£^(a;, 0 = ^ 1] efc [sin(fec - t + </>fc)e-'»* + 8in(*x -I-1 + 4>h)],        (47) 

XI.    THE NUMERICAL CORRELATION FUNCTION. 

In this section, we consider the numerical results obtained in Simulation 1 
(Table I), for the correlation functions of the beam distribution function. The 
initial distribution function used in the simulation, the resulting linear growth 
rates and the phase velocities of the modes initially exdted are shown in figs. (3). 
The initial growth rate was JL = 2.19 X 10~^ (obtained with a relative beam 
density RB =nB/no = 2x 10"'), and the modes were exdted in the range of 
phase velodties 1.15 < Vfc < 2.55 (79 modes in 0.392 < fc < 0.871). For the form 
of the initial exdtation, we chose a nonuniform distribution of mode ampUtudes, 
with the dependence on wave nimaber e* a 1/fc'. This choice insured that the 
same amount of resonance overlap obtained for all modes of the spectrum. 
The additional advantzige of this uneven distribution of amplitudes is that it 
permitted us, at any one instant in time, to measure the correlation function for 
an entire range of trapping widths Avu, by scanning v = v+ across the width 
of the beam. 

If we consider a mode in the center of the spectrum, say with Vk = 1.75 ( 
k = 0.564 ), we find that initially utt/fL « 4.5, and at the end of the simulation 
i^tt/lL « 9- Thus according to Eq.(44) the center of the spectrum was in the 
turbulent trapping regime from the very onset of the instability. However, Sim- 
ulation 1 proceeded for only about one e-folding, to t = 500, an evolution time 
which is probably insuffident for the manifestation of enhanced growth rates 
(Eq.(45)). The discussion of the latter effects is deferred to the next sections, 
where we discuss them in relation to a longer simulation (3.2 e-foldings). 

The evolution of the total field energy WE{t) is shown in Fig.(4). The 
oscillating character of wsit) comes from the interference of the growing right- 
propagating waves with the left-propagating waves of constant amplitude. 
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The final space-averaged distribution function,< /(v) >,, is shown in 
Fig. (5), where it is comp>ared on the same graph to the initial distribution 
function. It can be seen from this figure that Uttle modification of < f{v) >, 
has occured, indicating that at this point T</> > 7~^. By looking at a cross 
section of / at fixed z, as is done in fig(6), we can also see that the amplitude 
of fluctuations in the non-averaged distribution function has remained small. 

So that we may obtain a more general view of the phase space organization 
of the beam, in Fig. (7) we show the contour lines of the final distribution func- 
tion, /(x, v) at t = 500, for the entire length of the simulation, 0 < x < 1024. 
We shall now interpret this figure. We first note that at t = 500, the wave 
spectrum has remained almost entirely confined to the initial range of phase 
velocities, 1.15 < Vfc < 2.55. Tims we expect trapping to occur within this 
velocity range, and the motion of particles to be adiabatic beyond it, with how- 
ever some extension of the trapping region above and below the range of excited 
phase velocities, due to the finite trapping widths of the waves. This is indeed 
suggested by the contours of Fig. (7). For v > 2.8, the distribution function is 
only shghtly perturbed by the wave turbulence, while in the resonant or near- 
resonant range 2.8 > v > 1.1 the contours display a "graininess", consisting 
of closed or almost closed patterns or "grains", suggestive of the formation of 
small plateaus in the distribution function. When they are examined individ- 
usdly, these patterns have dimensions in x and v which qualitatively scale as 
expected. At large velocities (say v = 2.3), where the resonant wave amplitudes 
are large (AAvu = 0.24), the circles or semicircles of the contours are wide in 
velocity. At low velocities (say v = 1.3), the resonant wave amplitudes are small 
{4Avtt = 0.15) and so is the size of the "grains". The spatial arrangement of 
the "grains" also reflects the properties of the resonant wave: one can verify 
that they have a spacing roughly equal to the wavelength of the wave, which is 
A+ = 2ir/k+ = 2nv+. 

To further clarify these observations, we show in Fig. (8) a perspective plot 
of a small portion of the distribution function, extracted from the region which 
is labelled "Area 1" in Fig.(7). This picture displays the plateaus, which were 
suggested by the contour plot in Fig. (7), in a more convincing manner, and it 
is from these plateaus that we infer the existence of locally trapped particles. 
A striking feature of the figure is that phase space appears very regular when 
it is seen on this small scale, a central prediction of Eq.(28). As noted above in 
Section 5, this regularity is only approximate, and should break down beyond 
the length of a resonant wave packet, a length which we estimated to be of order 
Iti = l/k+vu{ Eq.(40)). For the "reference" velocity v+ = 1.75, this length is 
Itt w 90 at the end of the simulation. In Fig. (9) we blow up the longer region 
which is labelled "Area 2" in Fig.(7), and display it in perspective. This picture 
extends over a length in x of 160 imits, almost three times the length of Area 1. 
The figure shows that when seen over this larger space scale, the aUgnement of 
successive plateaus loses its regularity, indeed over a length which is comparable 
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to Itt w 90. 

The discussion given above is qualitative «tnd visual in nature. To probe the 
structure of Fig. (7) in a quantitative manner, we need a more exact numerical 
tool, and such a tool is precisely the correlation function of Elq.(27). In the 
simulation, we evaluated C{x-,v-) by performing a spatial average over the 
length of the system. Thus, for given values of i_ = i-Ax, «_ = j-Av and 
t;+ = Vmin + (j+ — l)At/, we calculated the sum: 

j     JV. 

C(x_,v-,v+) = —Y^fij^ ■ fi+i_j++j_, (48) 
^^' i=i 

where fij is the distribution function at the mesh point (t, j). 

To make the linlr with the analytic solution given by Eq.(35), we needed to 
know the value of the diffusion coefficient in e<js.(30). The simplest approach 
was to assume that D = D'' and obtain Z?*' from Eq.(26). In so doing, we 
ignore any possible increase in diffusion, as would be indicated by Eq.(42). This 
is justified to the extent that, as mentioned above, we do not expect the system 
to have had the time develop enhanced diffusivity within a single e-foiding. 
Furthermore, should D be enhanced by the amount suggested by Eq.(42), this 
enhancement will lead to a quite modest broadening of the trapping width, with 
Avu = [D/kyl^ = LZAv^j. From the discussion that follows, it will be seen 
that the observation of such a moderate broadening is difficult to obtain from 
the inspection of the numerical correlation function. Thus, a less ambiguous 
detection of enhancement is to be obtained from the direct measurements of 
the growth rates, to be presented in the next section. 

We first consider the structure of the correlation function in velocity space, 
by plotting C(0,«_), for a fixed value of the mean velocity v+. Thus in Fig.(lO), 
we compare the numerical results for C(0, v_) with the predictions of the series 
solution, Eq.(35), for the mean velocity v+ = 1.745(At;ft = 0.034). We noted 
above that the series solution blows up at i;_ = 0, and is not valid for |v_ | <C 
Avtf However, in the region where the analytic solution is valid, that is for 
|v_| » 7fc4./fc+ « 0.0035, the numerical and analytic curves are in qualitative 
agreement, in that their central peaks have almost the same width, and that 
both correlation functions are small when |t;_| 2> 2Avtt- This confirms the 
importance of the quantity Avu as the basic turbulent velocity scale. We have" 
further analysed the agreement between the two curves of Fig. (10) by plotting 
in Fig. (11) the width 6vu of the central peak of the correlation functions, now 
as a function of the parameter v+, with v+ varying across almost the entire 
range of phase velocities. The width of the central peak is defined as the 
separation between the two zeros at the base, and is given analytically by 6vu = 
4.32Avtt- The jigreement remains rough, but reflects the correct dependence 
on the resonant field amplitudes. 
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While the analytic C(0,v_) strictly falls to zero for |v_| > At;«, the 
numerical correlation function in Fig. (10) retains sizeable fluctuations. We 
suspect that this results from the finite length of the sim^ulation {L = 1024), 
which limits the number of uncorrelated regions contributing to the sp>atial 
average which defines the correlation function. For v+ = 1.745, the correlation 
length is roughly lu « 90, and thus in the neighborhood of this velocity only 
about L/ltt '^ 10 statistically independent regions exist in the system. The 
fluctuations in Fig. (10) are then the noise which results &om doing statistics 
with only about 10 samples. We suspect that this noise could be reduced by 
additional numerical processing, in which the correlation function, obtained as a 
"snapshot" from Eq.(48), would be further averaged in time, over a period of at 
least a few trapping times v^^- However, we have not attempted to implement 
such a scheme. 

While we do not have an analytic solution for C(0,t;_) in any finite range 
of |v_| •C Avtt about v_ = 0, we did find an expression for the single peak 
value C(0,0), Eki.(39). In Fig.(12), we plot as a function of v+ the numerical 
and analytical values obtained for C(0,0). This graph indicates that Eq.(39) 
is indeed qualitatively correct, but that a sizeable quantitative difference exists 
between the analytic prediction of C(0,0) and the numerical result. We should 
note that the numerical value of C(0,0) is relatively insensitive to changes in 
grid size (a 20% change results upon halving Ax or Av), a result which gives 
us confidence that the differences observed in Fig. (39) are not due to spurious 
numerical effects. We suspect that the finite rate of change of the average 
distribution function, which is not much smaller than the growth rate (with the 
estimate T</> W 2000 « 4 x 7;^^), might be responsible for reducing the value 
of C(0,0) to under what would be expected from the uncorrelating effect of 74^ 
alone. 

We next consider the spatial structure of the correlation function, by plot- 
ting C(z_,0), once again for fixed v+. In Fig.(13) this is done for v+ = 1.745, 
over the range -50 < x_ < 50. The curve of C(x_,0) displays the two main 
features predicted by the analytic theory. The first feature is a relatively fast 
and almost periodic dependence on x-, with a period we label Lpp ("peak to 
peak"). The second feature is a broad envelope, of width we label Lm< which 
modulates the fast dependence of the correlation function. In what follows, 
Lm is defined graphically, as the length over which the envelope decajrs to 1/e 
of its peak value, and is estimated by linear extrapolation from the first three 
central peaks of the correlation function. According to the analytic results, we 
should have Lpp = 27r/fc+ and L^ ~ ^tt (eqs.(40)). The agreement is shown in 
figs.(14,15). It is very good for Lpp and at least qualitatively correct for Lm- 
We should stress however that the result Lm « ht was derived from very qual- 
itative considerations; thus the intersection of some parts of Fig.(15) should be 
regarded as a coincidence. 

In Fig.(16), we plot the numerical C(x_, 0) for a smaller range of x_ than in 
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Fig.(13), —12 < X- < 12, and make a direct comparison with the series solution, 
Eq.(35). We note once again that the analytic solution unfortimately artificially 
blows up at i_ = 0 (and at multiples of the period 2ir/k+). Notwithstanding 
this, quaUtative agreement for values of x_ not too close to these points is good. 

XII.    THE NUMERICAL GROWTH RATES. 

In this section we consider the numerical restdts for the growth rates which 
were obtained in Simidation 2 (Table I) by the direct measurement of the field 
cunplitudes. This simulation was run with the hope of observing a significant 
enhancement of the growth rates over the quasilinear values, and in this it differs 
from Simulation 1 in two important respects: the initial amplitude spectrum 
\Ek\ was chosen uniform in fc, as opposed to \Ek\ ~ 1/fc^ previously, so as to 
minimize nonuniformity in trapping widths, and the system was left to evolve 
over a significantly longer time, that is for about 3.2 e-foldings of the electric 
field amplitudes. As noted above (Eq.(45)), several e-foldings should be neces- 
sary for the equilibration of the nonresonant harmonics to occur, and hence for 
the regime of enhanced growth rates to set in. The initial linear growth rate was 
7£ = 1.2 10"^ ( obtained with a beam density of Rg = TIE/no = 7.4 lO"*) and 
the waves were initially excited in the range of phase velocities 0.668 <Vk< 1-81 
( 77 modes excited in 0.552 < fc < 1.497). For the waves near the central value 
of phase velocity Vk = 1.0, we initially had Uu/lk = 5.8, and at the end of 
the nm, vtt/lL = 150, so that as in the previous simulation, the evolution of 
these waves was in the turbulent trapping regime from the very outset of the 
instabiUty. 

We ran Simulation 2 for UpT = 2875 time units (about 450 plasma peri- 
ods), during which the total electric field energy increased about 210-fold. In 
Fig.(17) we show the amplitude spectrum of the forward waves, |f^| at t = 0 
and at the final time t = 2875, that is after about 3.2 e-foldings of the field am- 
phtudes. The spectrum at t = 2875 displays two distinctive features. The first 
is that the average spectrum, which started out as rigorously flat, has under- 
gone nonuniform amplification, with a peak toward the lower values of fc, near 
fc = 0.8. The Fourier amphtudes for fc > 0.8 have not grown as much, and there 
has been Uttle growth at the very edges of the spectrum. This nonuniformity 
can be ascribed to the concurrent flattening of the average distribution func- 
tion (Fig. (18)), which is becoming severe towards the end of the simulation. 
This flattening, when weighted with the factor of vl in Eq.(21), has a more 
pronounced effect on the growth rate of the waves with lower phase velocities 
(and hence for the waves with larger fc). 

The second distinctive feature of Fig.(17) is the jagged aspect of the small- 
scale structure of the spectrum. There cire large and irregular amplitude vari- 
ations from one mode to the next, and this results in the spikes which can 
be seen in Fig. (17).   We beheve that this irregular spectrum, which was also 
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observed by J.C.Adam (^®), is due to the evolution of the system into a set of 
uncorrelated subsystems, each of characteristic length /f(. Each Fourier mode 
can then be written as a sum of independent random variables(^), with, as a 
consequence, the statistical independence of neighboring modes. 

To give statistical meaning, in terms of ensemble averages, to the mode 
ampUtudes obtained in Simulation 2, we used the convolution average defined 

in Eq.(51) to calculate \Ek\ . We then numerically computed the average growth 
rate according to: 

lu = 2a^^°« \Kit)\\ (49) 

which is a definition of 7^ equivalent to the one assimied in Eq.(42). We com- 
pared this to the growth-rate predicted by quasilinear theory, Eq.(21), tising 
the numerical, space averaged distribution function which is obtained firom the 
simulation: '-v. 

lt= RB\vl<nvu,t)>„ (50) 

As a function of velocity, the nimierical quantity < /'(«) >j displays short-scale 
fluctuations which are probably the result of the relatively short length of the 
simulation, as compared to the correlation length (L/ltt ^ 10). To reduce these 
fluctuations, we resorted to additional smoothing of < /'(«) > j, by averaging its 
value over neighboring points in velocity, through convolution with a triangular 
window W{v) of the same form as the one used in Eq.(51). While we used the 
same averaging function W for < f{v) >, and \Ek\ , we should note that the 
statistical operations involved are essentially independent. 

In Fig.(19), we show the evolution of 7fc'(t), for k = 1.0, Vk = 1.0. The 
considerable variation of 7^ over the time scale 0 < t < 2875 is consistent with 
the large modification of < f{v) >, which can be observed in Fig.(18), where we 
compared the initial and the final average distribution functions. It is apparent 
from this latter picture that we are running into a regime where T</> < 7j^ . 
This is a result of the long running time of the simulation, and indirectly of the 
constraints placed on the initial field ampUtudes, which cannot be infinitesimal, 
but have to be sufficiently large for the condition Vu/lk > 5 to be satisfied at 
t = 0. 

Thus, inspection of Fig.(19) indicates that for t > 1000 the characteristic 
time T</> for a change of order unity to occur in < f'{v,t) >, is of order 
T^fy » 1300, comparable to or smaller than the e-folding time of the electric 
field, which is tnitiaUy 7t"'^(0) = 830, and which decreases to 7j^^ « 2000 
towards the end of the simulation. We may conclude that the present simulation 
is not so. ideal verification of behavior in the turbulent-trapping regime, which 
assumes 7^^   <^ T<f>- 
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The evolution in time of the ratio ^k/fl' for fc = 1 is plotted in Fig.(20). 
The distinctive feature of Fig.(20) is that ^JJI^ > 1 throughout the evolution 
of the system. A further observation is that the ratio 7fc/7fe' '^ not constant, 
but imdergoes a slow mcrease, reaching a value of about 1.2 after 2.6 e-foldmgs 
of the electric field, at t = 2000. In the final time interval, 2000 < t < 2875, 
'^khk  undergoes a sharper rise reaching a Tnayimum value of 1.6. 

It is tempting to explain the enhancement of 7^/72' to values greater than 1 
by the effects predicted by ALP and described by the turbulent-trappmg model. 
However, we must note that the enhancement of the growth rate remains modest 
during most of the simulation, with 7^/72' < 1-2 during the first 2.6 e-foldings 
of the electric fields. This enhancement is weU short of the valuej)f 2.2 predicted 
by the turbulent trapping model, Eq.(42). Furthermore, when 7^/7^ increases 
to a more sizeable value (from 1.2 to 1.6, in the time interval 2000 < t < 2875), 
it does so precisely in a regime where the trapping widths have become quite 
large, that is where neither quasilineax theory nor the turbulent trapping model 
are expected to be strictly valid in the first place. 

The correlation of large trapping widths with strong enhancMnent^of the 
growth rates is made clearer if we look at "snapshots" of the ratio 74/72 , plot- 
ted now as a function of k. This is done in figs.{21,22), for the fixed times 
t = 2000 and t = 2875. In the figures, we have indicated the interval m k 
corresponding to the turbulent trapping width 4Av«t, for waves resonant with 
Vk = 1.0. Thus, at the end of the simulation (Fig.(22)), the large enhance- 
ment of the growth rate occurs when the trapping width is itself large, with 
AAvtt/^VB « 0.3. Furthermore, this enhancement is accompanied by strong 
edge effects, so that ^J-yl^ is more strongly nonuniform in fc as well (similar 
nonuniform profiles were observed by J.C. Adam(i8) ) xhis strong nonum- 
formity can be ascribed to the fact that in this regime, the waves derive then- 
energy from large populations of trapped particles, which are trapped in only 
a few wave packets within the entire beam. The local slope < f'{v) >„ which 
defines the quasilineax growth rate, is no longer the salient physical parameter 
responsible for the growth rate of the resonant waves. In this extreme regime, it 
is not surprising that the growth rates are uneven, on account of the few wave 
packets exchanging energy with the particles, and that they are quite different 
from the quasilineax growth rates. 

However, Figs. (20- 22), have a striking characteristic which moves us to 
interpret the mcrease of growth rates as resulting from effects in the spirit of 
those predicted by ALP. While the nonuniformity in the growth rate observed 
in Fig. (22) can be ascribed to the large trapping widths of the wave packets, 
this situation does not by itself account for the fact that the growth rates are 
greater than quasilineax, everywhere across the spectrum. 

Furthermore, the finite resolution of the grid severely limits the number 
of nonresonant harmonics which can be generated by the partiaUy trapped 
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particles. Thus, the maYiTmim physical wave number k allowed on the mesh 
is of order 7r/2Ax w 3, so that the waves with fc « 1 may interact at most 
with 3 harmonics. The result of this tnmcation may be a significantly smaller 
enhancement of the growth rate than predicted by Elq.(42), which assumes that 
an infinite cascawie of harmonics contibutes to the enhancement. Thus, we 
suspect that this may explain the low enhancements observed in Fig.(21). 

XIV.    CONCLUSION. 

We performed numerical simulations to verify the existence of a new tur- 
bulent regime in the development of the weak beam-plasma instability, and 
more specifically, to vahdate the predictions of the "turbulent-trapping" model 
concerning correlation functions and enhanced growth rates. 

Our most definitive conclusions regard the predictions of the turbiilent 
trapping model for structure in phase-space. Both qualitatively and quanti- 
tatively, this model provides good predictions for the correlation functions of 
the beam distribution function. This important result supports the qualitative 
picture in which the turbulence is composed of wave packets whose trapping 
domains barely overlap in phase space, with a characteristic width in velocity 
Avtt = (D/fc)^/', and a correlation length in space of Z« = 1/k^'^D^'^, with 
D a £>«'. 

Less definitive are our conclusions regarding the prediction of an enhance- 
ment of the growth rates, an enhancement which might otherwise be expected 
on the basis of the success of the model in predicting the correlation functions. 
The enhancements which are observed are modest (enhancements of 1.2-1.6, 
compared to a prediction of 2.2), with upper values occuring in a regime of 
marginal validity for the quantitative predictions of the model. However, we 
suspect that the nonideal aspects of the sinmlations are responsible for some re- 
duction of the nimierical growth rates which were observed. Thus, we conclude 
that there is nonetheless qualitative evidence for enhanced growth rates. 

Future work might bear on more ambitious simulations, which can over- 
come the nimierical limitations of the present ones, which suffered from a relar 
tively coarse nimaerical mesh. Another approach in the study of the effects of 
trapping on the growth rates would be to shift the emphasis from weak turbu- 
lence, to the study of what might be called "moderate" turbulence (a few wave 
packets in the width of the beam), a regime in which the choice of numerical 
parameters is less dehcate. The insights gained from studying this regime of 
more vigorous trubulence might then be extrapolated back to the weaker regime 
assumed by the ALP model. 
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APPENDIX A: ENSEMBLE AVERAGES VS.    SPATIAL AVER- 
AGES. 

Statistical theories of turbulence usually are stated in terms of the ensem- 
ble averages of spectral quantities. Thus one might conclude that the proper 
numerical study of turbulence would require performing a large number of nu- 
merical simulations, each with different initial conditions, and averaging the 
finid results. In fact, if the turbulence studied is homogeneous in space, in 
principle all the relevant information about ensemble averages can be extracted 
from any one realization in the ensemble, that is from a single numerical sim- 
ulation, provided that the system is long enough. The criterion for sufficient 
length is that the length L of the system be much longer than the correlation 
length Ic of the quantity investigated (see (^) for equivalent discussions of data 
processing, for power spectra in the time and frequency domain). 

For instance consider the squared Fourier amplitude of the electric field, 
which will be the main spectral quantity of interest. The problem is to approx- 
imate its ensemble average, which we denote by < \Ek\ >, from the results of 
a single simulation. The prescription is as follows: we first obtain the "raw" 
squared Fourier spectrum \Ek\ , directly from the nimierical E(x) resulting 
from a single computer run. In generzil, this quantity will be a rather chaotic 
function of k. We then perform a convolution to define the smoothed average: 

\E,f = Y,W{K-k)\EK\\ (51) 
K 

where W{K) is a window function such that ^Zjr W^(^) = 1- In what follows, 
we choose W{K) to be triangular in shape, with W(K) = (A*/fc„)(l - \K\ /k^,) 
and W{K) = 0 for \K\ > k^. Provided that the width of W{K) is small 
compared to the total spectral width (that is, the inverse correlation length), 
but large compared to the mode spacing {k^, "^ Ak = 2n/L), Eq.(51) will 

provide an approximation to the ensemble average, \Ei,\   »< \Ek\   >■ 
In dealing with spatial quantities, such as the spatial correlation functions 

or the avereige distribution function, it is legitimate to replace the ensemble 
average by a sliding spatial average over the entire length of the system, pro- 
vided once again that the system is long comp>ared to the correlation length. In 
what follows we adopt the following conventions: the unadorned angle brackets 
< ... > refer to ensemble averages, the addition of a subscript "s" denotes a 
spatial average, < ... >,, and the overbar notation wiU be reserved for the 
spectral quantities, to denote the filtering operation of Eq.(51). 
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APPENDIX B: CONDITIONS OF VALIDITY. 

In this Appendix we summarize the several conditions which define the 
turbulent trapping regime. In addition to those stated in the main text, a 
condition on the validity of the derivation of (42,43) is that dispersion within a 
turbulent wave packet is small over a time scale of l/7fc. This is expressed by 
the condition (*): 

dk^     \\vk-Vgk\J 

where vt is the phase velocity and Vgk the group velocity of the waves. The 
cold bulk plasma is theoretically dispersionless, but in fact has the numerical 
dispersion relation Wfc = 1 — fc^Aa;^/8 valid for fcAx ■C 1. With Vfc « 1/fc, 
\vgk\ = \du;k/dk\ •C Vfc, Eq.(52) reduces to: 

4       7fc 

This constraint is necessary, in addition to those already outlined, for a valid 
test of the turbulent trapping theory. 

To summarize all constraints, we have (eqs.(24),(41),(44) and (53), and the 
paragraph following Eq.(44)): 

Tc < i/«^ < 7*'  ^ r^f>, (54) 

4Aw««: Avfl, (55) 

''tt > 5 7fc, (56) 

1 fc^AxV, 
, Odisp = T < 1, (57) 
' 4      7i 

JV«3-5, (58) 

where N is the nimiber of e-foldings during the evolution of the instability. 
Eqs. (54,55) are general conditions for weak turbulence, and are required for 
quasilinear theory as well. Only eqs. (56,57,58) specifically define the turbulent 
trapping regime. 

Eqs. (55), (56) and (58) are the most stringent conditions imposed on the 
simulations. For instance, suppose that we want to foUow the evolution of the 
system through N e-foldings of the field amplitudes, while remaining in the 
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turbulent trapping regime throughout the computer run. For a fixed beam 
width, Eq.(55) Umits the amplitude of the final electric field. This imphes that 
the initial field ampUtudes have to be scaled-down by a factor of order e~ from 
a rigid, fixed upper limit. Thus the initial value of Vtt ^ \E\ ' « e~^^l^ is 
small. In turn, Ek}.(56) implies that the initial growth rate must be sufficiently 
small as well, with the same scjJing 7 a i^ti/S « e~'^^l^. Thus the total run 
time T of the simulation, which,according to Eq.(58), has to undergo at least N 
e-foldings, will scale as T « Ne^^l^. We conclude that the computation tinie 
increctses very rapidly with the number of e-foldings we wish to observe. The 
value TV = 4 represented a practical limit to ova computing resources. 

APPENDIX Cs INITIALIZATIONS. 

The initial beam distribution function was designed for a constant linear 
growth rate over almost all of the unstable, positive-slope velocity range, by 
piecing together the simple functions (^®): 

A{V - V{f + B{V - v{f,      Vi<V<Va, 

fo{v)=     Ci + C2{l-Va/V), Va<V<Vb, (59) 

D{v - V2)^ -\- E(v - v^f,    Vfc < t; < W2 

In Eq.(59), the expressions in the velocity ranges (vi, Va) and (wb, v^) are transi- 
tion functions, with the coefficients chosen so that /o(v) and /o(v) are continu- 
ous everywhere. The coefficients are further chosen to satisfy the normalization 
J fo{v)dv = 1. The form (59) insures that in the interval Va < v < t/j,, the 
growth rate, given by Eq.(21), is constant. 

A concern in choosing the coefficients e^ in Eq.(46) is to insure that the 
resonance overlap between adjacent modes is satisfied within the entire excited 
spectrum, and this from the very beginning of the simulation. Considerations of 
trapping widths are important because in the absence of resonance overlap there 
is no diffusion. In other words, the effect of the discreteness of the spectrum 
is attenuated only provided the modes overlap. In fact resonance overlap was 
satisfied in all of our simulations. 
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TABLE 1: Simulation Parameters. 

Simulation 1 2 

^', X 7v„ 2048 X 200 1024 X 250 

Az At; At 0.5   0.0232   0.2 0.5   0.00723   0.25 

Initial Modes 79 77 

RB — ^B/^O 2.0 10-^ 7.4 lO--* 

At>B 1.4 1.1 

l^pTrr,ax 500 2875 

Tc 7.5 6.5 

100(t»jk= 1.75) 
45 

140(r*= 1.0) 
17 

450(vfc= 1.75) 
400 

830(t;t = 1.0) 
2500 

'"</>(rmoJ 2000(t;fc = 1.75) 1300{vt = 1.0) 

f^u/lLit =  0) 4.5(t;fc = 1.75) 
9 

5.8(t;*= 1.0) 
150 

N 1 3.25 

4Avu/AvB{t = 0) 0.044(t;i = 1.75) 
0.097 

0.027(vfc= 1.0) 
0.24 

Bdi.tlTma^ 4.0 10-» 3.0 10-» 
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FIG. 1.    Sketch of the bulk and beam distribution functions. 
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FIG. 2. (a) Plot of H(0,ti) showing the velocity dependence of the analytic correlation 
function; u = v-/2^^^Avtt- (b) Plot of H(^,0) showing the spatial dependence of the 
analytic correlation function;  f = k^X-. 
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FIG. 2.(c) Contour plots of the analytic correlation function H(i~,u). 
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FIG. 3.    (a) Initial beam distribution function /o(f) for Simulation 1 and phase velocities 
of the Fourier components excited at t = 0. (b) Initial linear growth rate for Simulation 1. 
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FIG. 4.    Evolution of the total electric field energy in Simulation 1. 
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FIG. 5.    Final space-averaged distribution function for Simulation 1; the dashed line is 
the initial space-averaged distribution function,/o(v). 

FIG. 6.    A cross-section of the final distribution function in simulation 1, taken at i = 512, 
showing fluctuations in /; the dashed line is the final space-averaged distribution function. 
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FIG. 7.    Contour plot of the final beam distribution function, at t = 500, for Simulation 
1. The total system length is 1024. 



f(x,v) 

'JO 

FIG. 8.    Perspective view of the beam distribution function in Area 1 of Fig.(7).  Note 
the plateaus which have formed in the distribution function. 
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FIG. 9.    Perspective view of the beam distribution function in Area 2 of Fig.(7). 
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FIG. 10. Comparison of the numerical and analytic C(0,«_) for Simulation 1, for the 
mean velocity i'+ = 1.745, at t = 500. 
FIG. 11. Comparison of the width in t;_ of the function C(0, v_) (the separation of zeros 
at the base), plotted as a function of the mean velocity, for Simulation 1, t = 500. The 
analytic results are obtained with 6vtt = 4.32At;tt- 
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FIG. 12.    Peak values C(0,0) obtained in Simulatipn 1, t = 500. 

FIG. 13.    Plot of C(i_,0) for v+ = 1.745, Simulation 1, t = 500. 
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FIG. 15.    Comparison of numerical and theoretical spatial decay lengths for C(i_,0) from 

Fig.(13), The analytic result is obtained with /,< = l/lk+*I>'/^. 
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FIG. 17.   The amplitude spectrum \E'^\ in Simulation 2, a) at t = 0 and b) at 
t = 2875. The dashed line denotes the Fourier amplitudes at t = 0. 
FIG. 18.   The initial and final average distribution function, as obtained in Simulation 2. 
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FIG. 19.  Evolution of the quasilinear growth rate of the Fourier component 
k = 1.0, Ufc = 1.0, in Simulation 2, as calculated from eq.(50). 
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FIG. 20. Evolution of the ratio Tfc/7fc' in Simulation 2, for Jfc = 1.0. The two 
vertical numbers indicate the approximate number of e-foldings undergone by 
the field at a given time. 
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FIG. 22.   Same as Fig.(5), but for t = 2875. 
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