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ABSTRACT

In this paper, a new software availability/reliability model is developed where life-

times and repair times have general system-state-dependent distributions. Multiple errors

may be introduced or removed through repairs. The model is formulated as a multivari-

ate Markov process and contains many other models appeared in the literature as special

cases. The exponentiality assumption prevalent in the literature is totally eliminated.

*.,- Expressions of various performane measures of practical interest combining availability

and reliability of the software system at time t are derived. Using the matrix Laguerre

transform of Sumita(1984), corre .ponding computational procedures are also developed.

*r A numerical example is given, demonstrating speed, accuracy and stability of these pro-

* -cedures.
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§.0 Introduction

The price performance revoiution of computer hardware has been dramatic, .Ai,

cost of labor has been steadily increasing. Consequently the production and naint1nd

cost of software, in contrast to that of hardware, has been rapidly growing and has become

one of central issues in system design. Dating back to the late 60's substantial research

efforts have been devoted to the study of software failure phenomenon and the prediction

of software performance. Two recent survey papers by Ramamoothy and Bastani(1982)

and Shanthikumar(1983) contain approximately 150 refereneces on the issues.

Until recently, however, the effect of multiple error generation and removal from the

system during the repair has not been properly incorporated in the literature. Kre-

mer(1983) has derived a software reliability model where the number of software system

increases or decreases by at most one during repairs. He has provided performance mea-

sures for this model using the results available for non-homogeneous birth-death procez:.

Sumita and Shanthikumar(1984) have developed a general Markov chain model where

multiple errors may be introduced or removed from the system during repairs. Assuming

that the software failure rate is propotiona! to the number of software errors present in

the system, expressions for various software reliability measures of interest are derived

and corresponding computational procedures are developed.

The exponentiality assumption employed in the model of Sumita and Shanthiku-

mar(19S.1) is rather restrictive. To preserve the Markov chain property, for example,

the software repair time is assumed to be negligible, ignoring the availabilty of software

svstc;n at time t. The problem of a combined availability /reliability analysis of software

syvstem was adtress,,ed Ly ShanthiikIurnar 194) in a limited model where the number of

- " . . :,45-". .:" ,.." - .".. . - "
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software errors is either unchanged or reduced by one during the repairs. The purpose

of this paper is to develop a general multivariate Markov model for a software system

" -with multiple software error generation and removal during the repairs. The exponential-

- ity assumption is totally eliminated and general repair time distributions are explicitly

incorporated. E .essions of various performance measures combining availability and

reliability of s, cware system at time t are derived. Using the matrix Laguerre transform

of Sumita(±984) as a key tool, corresponding computational procedures are also devel-

oped. Many other models appeared previously in the literature can be treated as special

cases of this model.

#. In Section 1, we develop a new software availability/reliability model having system-

state-dependent lifetimes and repair times. Multiple errors may be introduced or removed

through repairs. The model is formulated as a multivariate Markov process and does not

require exponentiality at all. By studying the probabilistic flow in the corresponding state

space, various time dependent entities are analyzed. In Section 2, expessions of many

performance measures are derived in terms of these probabilistic entities. Performance

measures combine time dependent availability and reliability of the software system.

Computational procedures for evaluating these performance measures are developed in

Section 3, using the matrix Laguerre transform of Sumita(1984). Section 4 is devoted

to numerical implementation of the procedures demonstrating their speed, accuracy and

stability.
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§.1 Model Description and Analysis

We consider a software system which contains several software errors. These software

errors cause software system failure time to time. Upon failure, the software system is

repaired. During repairs, multiple software errors may be introduced or removed. More

formally, the following assumptions are incorporated in our model.

(AS1) The maximum number of software errors in the software system is limited to

K, 0 < K < oc.(If the maximum number of errors exceeds K, then the performance of

software system becomes untolerable and the system would be discarded.)

(AS2) At time t 0, the software system starts functioning and there are N errors in

the software. Here N is a discrete nonnegative random variable with probability vector

J (bo,... ,bK) whereb, = P[N =i], i= 0,1,... ,K.

(AS3) If there are n software errors upon completion of a repair, then the time until

next software system failure has c.d.f. A,(z), n = 0, 1, 2,. ,K. In particular Ao(z) 0,

x > 0, i.e. if there is no error in the software system, then there will be no software

system failures. It is assumed that, for n > 1, A,(z) is absolutely continuous with p.d.f.

a,(x) and hazard function 7l(z) a,,(-)"A,'(x) where A (z) 1 - ,(x).

(AS4) If there are n errors at the begining of a repair, then the repair time has a

c.d.f. R,(z), n = 1,2,... K. It is assumed that R,(.r) is absolutely continuous with

p.d.f. r,(r) and hazard function , = r,(Z)

(ASS) The probability that there are n errors remaining in the software system im-

mediately after a repair given that there were k errors in the software system just before

the begining of the repair is Pk,. For notational convenience, we define P00 = 1, P0, 0,

n>1.

3



(AS6) All software system lifetimes and repair times are mutually independent.

This model can be expressed as a multivariate Markov process in terms of the follow-

ing stochastic processes:

{ 0, if the software system is under repair at time t.
(1.1) (t) 1, if the software system is functioning at time t.

(1.2) Al(t) = the number of software system failures occured in [0,t).

(1.3) N(t) the number of errors in software system at time t.

(1.4) X(t) the elapsed time since the last transition of I(t), i.e.,

X(t) =t - r, where r = sup {x: II(x+) - I(z-)l 1}
O<z<t

From (AS2), one has X(0-) 0. For notational convenience we assume that 1(0-) 0

and 1(0+) = 1. Clearly the multivariate process 'rT(t),M(t),N(t),X(t) is Markov. The

>state space of the multivariate process and its typical transition behavior are depicted in

Figure 1.1.

1(() =0 (t)

K 
X) 

K

7 ". (r) N(t) k -

n--I I x1'
,__ __(t) X(t)

N(t): N(O) k' 'I kf -'k M~t N

1-Pkn (Y)1
0

Figure 1.1
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Let

(1.5) F, (i, 0 P I N(t , Af(t) Tfl N(t) n2. X(t) < Z~

and define

ax

The partial differentiability f,m,(x,t) = F ~(z, 0 can be shown through a renewal

argument (see, e.g., Ginlar(1969)), except the case mn 0 for which generalized densities

f 1 ,o,(x, t) b,6 (t - ),A,(x) are involved. As we will see in Section 2, all performance

measures of practical interest for the study of availability/ reliability of the software

4' system can be expressed in terms of (1.5) and (1.6). In the remainder of this section,

we derive transform results of (1.6) by applying the state space method of Keilson and

Kooharian(1960. 1962). The corresponding computational procedures will be discussed

in Section 3.

We observe from Figure 1.1 that for the process to be at (zi1rn,n,x) at time t where

* 0 < x < t, the process must have entered (i*,m,n,O) at time t - x and has remained

in the state (z*, rnzn-) for the length of x. We note from (AS3) that Ao(z) -0, x > 0.

Therefore once the process enters (1, M, 0,.) it remains there. Hence one ha-s

(1.7) f 0 ,r,n(-,t) fO,m,n(0-,t - )I?,(z), M, ? > 1

and

(1.8) fimY,n(2:.t) fi,m,n(0it - )~x. mn>~0.

By a similar argument, boundary conditions can be found as

(.)film"n(i.0) 0, t 0, 1, mn,n >0, X:> 0,



m . - ."- 
'r ,-~

- - .- --"

* and

(1.10) f0 ,mn (0,) Jo t fl,mrn- , n(, i,t(x) dx, m, n 1

'-° ,

Futhermore one has

(1.11) { fm~n1,(+,t) = k pkn fo, m,k(z,t) k(z)dZ, m > 1n >0,

-. f1 ,0 ,n(0 ,t) = b (t), n > 0.

Substituting (1.7) and (1.8) into (1.10) and (1.11), one obtains for t > 0,

(1.12) f 0 ,mn,(0,'t) 0 fi,,-I,n(0+.t -X)a,(x)dx, m > 1 n > 1

and

(1.13) { flm,E(_t) k pknft fO,m,k((0-- tx )rk(x)dz, m > n > 0

.- f 1 ,(0-,t) = bn(t), n > 0.

Let
>'-'"£'2:'" "' (1.14) { ,,m,n (0-, s) =foe e-C ,mnO.td

(1.14) ,m,n(W, s) f, fj, e-z-tft,m,,(z, t)dzdt.

Equation (1.12) and (1.13) can be best described in terms of the transfrom of (1.14) using

the matrix notation. For notational convenience, we introduce

(1.15) f 0 ,m,o(X, t) df 0, X t > 0

and define the transform vectors

T ~T (0 ' .S) (0 s),. , K (0 s)
(1.16) 7

m(w , S) = [ tM, O.(W , s),... , K( W, ) 1.

Let dtag{co,... ,cK} be a (K-I- 1)x (K+1) diagonal matrix whose n-th diagonal element is

* . , We define o(S) diag{ 0, al(s),. .,K (S) and D (s) -= diag{0, p,(s),. . . , PKs)}

6
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where a,(s) = f a esza,(z)dx and p.(s) = fo e-zrn(x)dx. One then sees from (1.12)

and (1.13) that

(1.17) ~ m(0±~S) n1" ( S oD( (S)' M > 1

and

S(1.18) {) 7 ( >

:!:.:.1: (0+ , s) = b~r

where P (p,j). Hence one concludes that

'T (0S) br pn-I
(1.19),s (~) , = (s (s) aD(S) m 1,

01 and

(0 .5-TM .0

(1.o)_,°+'s) = _QD(sb D(S) , m >0.

Finally from (1.7), (1.8), (1.19) and (1.20), one has

T T
"(1.2.1) ) =-p (tv+s)), >1

+ -D,(o-,)(I _ D

and

T1
(1T22) (' , Im-~r - +I U,,( -) _,, (o--, )( - 2D(W. S)), M > o.

,@4

We note that the spectral radius of (1D (S)P (s)P) is strictly less than one for

-'-. Re(s) > 0 and S) (s) = ( - D(s) (s Hence

(1C3 Z Tm(0 's) b 6 T I D~~ (S) P;-a (S),

Dm~ D -DD

m= I

and

e00
(1.24) ( .s)(,s) b b -_D ( ,s)PV-.

.. :: . . .. A . .: . .. A.. t . ~ . t A .. n ,-:-.: -:-:.: . L. . . . . . -S . .... .. . . . ... .A .. . .



Let 1 be a vector of length (K + 1) having all elements equal to one. It can be readily

seen from (1.21) through (1.24) that

m=l

%° WI,- -1 br  (Z -g- (S)0 =D (S) _ -( -q- ( D (;)

_I_ T( _ p=D (S) p_ _l= _D D(S) _D(S)P )

1 b = 1

S S

as expected.

This model contains the model of Surnita and Shanthikumar (1984) as a special case

where .4,(z) = 1 e-nAz and R, (x) 1 for x > 0. Hence many other models contained in

Sumita and Shanthikumar(1984) are also contained in this model. Shanthikumar(1984)

has discussed another special case of this model where pj > 0 if and only if j i or

j -- i-81.

V2
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§.2 Performance of the Software System: Availability 'Reliability Measures

In this section we introduce various availability reliability measures for the stud%- of

performance of the software system. Based on the analytical results of Section 1, we

derive explicitly expressions of these availability "reliability measures.

A natural availability :reliability measure is the joint probability of I(t) (whether the

software system is working or not at time t), M(t) (the number of software system failures

occured in 0, t) ), and N(t) (the number of errors in the software system at time t). One

has

d (2.1) P' I(t) = , M (t) =m, N (t) n I = ,,,],,(- , t).

The joint probability of I(t) and N(t) is also of interest. For notational convenience, we

define Fjc, (--c.t) 0, n > 0, t > 0. One then sees that

(2.2) P1I(t) i, N(t) Z F
m= U

The availabilitv(unavailabilitv) measure is the rprobabilitv that the software svstem is

functioning(not functioning) at time t, given by

K oo
• (2.3) P I (t) i ,=~~S ,,. -- c )

6 n=U mn=0

The time until complete debugging is an important performance measure. Let X.-

be the time required for completely eliminating all errors in the software system given

that N(0-) k with probability bk. We denote the distribution function of X.. ,,

s,(0),,(x) = NpX.N(o),o < r,. Since the states (1, r, 0, .) are absorbing, one finis tl.ia

(2.4) Sy,,,(t) PKY(t) 0 Z: F.rn,(- ct)

9



%. In the study of performance of software systems it is of more practical interest to

predict the software availability/reliability based on the past observation of the system.

In orde: to obtain performance measures in this context, we impose the following history

of the system:

(CD) A repair has just been completed at time to and there

have been m software failures in jo, t0].

The probability distribution of the number of errors remaining in the software system

at time to given (CD) plays a crucial role in this analysis. Let 3 kjt,, P[N(t0 ) =
k[(CD)' and define 3 r  

[KItm ]. One then finds that

ID':(2.5) 3 T  = T, m , To/ f (Otol

The vector ;3 ,T fully describes the state of the system at time to under (CD), which

then provides an initial state probability vector for the system behavior after time to. To

emphasize the dependence of F,m,,(z,t) on the initial distribution bT we write

(2.6)

-.. PTI(t) z, M(t) rn, N(t) n, X(t) < x!N(O--) k with probability bk[.

Given (CD), the joint probability of the system availability /unavailability and the num-

ber of errors in the software system at time tn + r is then obtained as

(2.7) PI(t'- r) i, N (t - r) = n (CD) = F,.,,,(-.oc, ,1 ,,, )
• 1=0

Similarly the joint probability of the system availability/ unavailability and the number

of software failures that may occur in [to, to +- r) under (CD) is given by

K
(2.8) PI(to -t- r)=i ,M(to + r) - mn j (CD)= 1 F rj 3_w..,m).

10



Let Y, denote the random duration required for completely eliminating the software

errurs given (CD). The corresponding distribution function is defined by G.(t),o(r) =

*" P , < r . It can be readily s 'en that

(2.9) G(t(),o(r) = l F12 o(+oc, r! m )3
;=0

Finally an important reliability measure is the time until the next software system failure

given (CD). We denote this random variable by Ttt,m. The survival function - tm(r)

- P T1j,m > ~]is then given by

K(2.10) IF I,,o, r = kt,,n-
k=O

We note that T7 o,m is dishonest and WI"tm(r) - 3 Olto,m as 7- -. 00.

It should be noted that the marginal process N(t) is absorbing and all the perfor-

mance maesures described above are time dependent. One time independent performane

measure of interest is the distribution of the number of software system failures that

occur before all software errors are completely eliminated. We denote the correspond-

ing randon variable by D. One then sees that dm P[D = Fimo(-'c. +00)
lim,-0 s ,mo(0.s). Hence one has

.. (2.11) dm bT(p)m rn > 0,

where " = diag0,1,1...,1}, and erT (1,0.0'. 0).

1.
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§.3 Computational Procedures

We have seen in Section 2 that all performance measures can be obtained if F"m(+oot)

and f,,(04-,t) are computed. In this section, we develop numerical procedures for eval-

uating these probabilistic entities. We assume that both a,(x) and r,(z) belong to the

class of rapidly decreasing functions of Dym and Mckean(1972), so that the corresponding

Fourier-Laguerre coefficients are also rapidly decreasing, see, Keilson and Nunn(1979).
T T

The Laplace transform of Ftm(+o, t) denoted by ,,m(S) f0" e-stFTm(+oot)dt can

be found from (1.21) and (1.22) by setting w = 0+, that is

s) (1/s) T(0--,S)(I -P (s)), m > 1,
(3.1) -,,,,(s) r ('I-0 s I s) n> 0.

The entities T_ m (0-,s) and kT (0, s) needed here are given in (1.19) and (1.20). The

inversion of these transforms require multiple convolutions of matrix functions in the

time domain. The matrix Laguerre transform developed by Sumita(1984) provides a

computational vehicle for this purpose.

The Laguerre transform, introduced in Keilson and Nunn(1979) and Keilson,Nunn

and Sumita(1981) and further studied by Sumita(1981), provides an algorithmic frame-

work for the computer evaluation of multiple convolutions and other continuum opera-

tions. The transform based on generalized Fourier series employs the Laguerre functions

as a basis, and maps the functions f(x) in L2 into discrete sequences f Corre-

spondingly, various continuum operations are mapped into lattice operations, thereby

providing the desired algorithmic basis. Recently the formalism has been extended to

the matrix form for the study of semi-Markov processes by Sumita(19S4) which is the

crucial numerical tool employed here. For the reader's convenience a concise summary of

the matrix Laguerre transform is given in the Appendix. The notation there is employed

12



VTIrK

throughout the rest of the paper.

Let aft(x) and r,(z) have the Laguerre sharp coefficients (a-#k)00 and (r~k)~' 0. One

then has

(3.2) Cn(x) =o a,(x -Y)rn(y)dy nk ak)nj
I=0

Let z(x) be the matrix function defined by

(3.3) e- atz(x)dx aD(s)PD(S) P.

It can be re tG:-seen that z(x) has a sequence of Laguerre sharp coefficient matrices

(3.4) 0 Q< j K, k=01

We note that an(-) rc(z) 0 so that a' 0 for k > 0 and hence c#
O:k rO:k O:k

0, k >0. Ifm zf)( having the Laguerre sharp coefficint matrices (z*(mn)), corresponds

to (2D(.S)=P (s)P)'n, one has

k

(3.5) -1)=Z ,(m) z'

*Hence the Laguerre sharp coefficient vectors of fT (0--r,t) can be easily computed us-

ing (1.20). Those corresponding to Lfm,,(0 t) can then be obtained bynvovn

the resulting sharp coefficient vectors for fT .(0-, t) with the Laguerre sharp coefficient

matrices (qg)J' for a (x) corresponding to aD~) It 6hould be noted that a'k is a diag-

onal matrices whose n-th diagonal element is a 1k' Once the Laguerre sharp coefficient

*vectors are found, the function values of fTm(o, t) can be computed straightforwardly

following the inversion procedure described in the Appendix.

13



Evaluation of the function values of Fim.(+oc,t) requires more caution since F,,r,,(

+ oo, t) may not be in L 2 . In particular Fim,,(4o, t) converges to a positive constant

(see(2.1 1)) as t -~ oc. From (3. 1), one sees that FT,, + C, t) is differentiable with respect

to t for all m > 0. Let

and define

(37) 2~T (s)St egT_ (t)dt.

4 ~It should be noted that 2-;(S) S .TimS)-Bm(o,) Clearly F~m±oO

fort' = 1,rn > 1 ort'=0, m > 0 and FEO(+oo,0) b. Hence from (3.1) one obtains

(38){ M(S) = LJm(O S)(IU (s)), m > 1,

(3.8) imT ~S( r D 60))- m > 0.

*-Here 
6 3, 1 if rn 0, b6r, 0 otherwise. It can be readily seen from (3.8) that

T '(t) are Laguerre transformable (see Remark 3.1) and the corresponding Laguerre

sharp coefficient vector denoted by N m)= can be found as before. Let

(3.9) G T~t gT ~(

W~e note from (1.20) that

( , T iO ffT (0 - t)d = bTp)mlLj- IT n m 1i,
*6(3.10) Tor 0c0ern jd T(I) < IT, m > 0.

Here the n-th conponent ofq is the probability that upon the occurence of the m-th

failure there are n software errors in the software systemn. Since there may be positive

probability that all software errors are eliminated before reaching the rn-th failure, it is

14
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possible to have q' I < 1. The vector qT has a similar probabilistic meaning. One now

sees from (3.S) and (3.10) that since q,. ,,.,, 0,

(0) = 0,-0,. 0 = " m > 1
-." ,-" ~(3.11)' r (t i , , , i- ~ .  m > O

:, 0o) = r. 0.. 6, n m 0.

Hence (r i = T (0) < oo and Equation (3.9) is well defined. By applying one of

the operational properties of the matrix Laguerre transform (see (A13)), the Laguerre

sharp coefflcient vectors of C7 (t) can be generated from ( for _,(t). O,,e tnenl

finally has

FT-T -TT
(3.12) FT, 0 ( t) ,i n(0) lb

Remark 3.1

We note from (3.8) that g' 0 (t) is a generalized vector function involving the delta

function 6(x). Hence the components of gT(t) are not in L2 . In a recent paper by Keilson

and Sumita(19S-1), it has been shown that the Laguerre sharp transform exists for any

finite signed measure preserving all basic operational properties. The Laguerre sharp

coefficients for gT (t) therefore exists.

-1,5

... ,--.
o



.' §.4 Numerical results

In this section, we demonstrate the efficiency of the computational procedures devel-

oped in Section 3 through a numerical example. Tables and graphs illustrating numerical

results are given at the end of this section. We consider a software system with the

following features corresponding to (AS1) through (AS5) of Section 1.

(4.1) K 4.

(4.3) b -= 0.2, 0.2, 0.2, 0.2. 0.2)

(4.3) A3 (r) 0 and A,(z) e-, - -y 1 < n < 4.
r o (4 -n)'

(4.4) R, (z) = 3o(4- n)!y e- dy, 1 <_ n <_ 4.

(1.000 0.000 0.000 0.000 0.000,
0.700 0.150 0.100 0.030 0.020

(4.5) P= 0.300 0.425 0.150 0.100 0.025
0.125 0.225 0.400 0.150 0.100
0.075 0.125 0.200 0.400 0.200

We note that the lifetime and the repair time of the system when there are n software

errors in the system are the sum of (5 - n) independent exponential random variables

with parameter 2 and 3 respectively.

* -:"The Laguerre sharp coefficients (a')' of an exponential function a,(x) Oe -° ,

0 > 0. can be found analyticaly (see Keilson and Nunn(1981)) as

0 0 _ n-

(4.6) 0- " (a n) 0)+

This formula enables one to generate the Laguerre sharp coefficient matrices correspond-

ing to and p (s) via discrete convolutions. In actual computation, the first 101

16
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coefficients were used. Using equation (1.17) and (1.18), the Laguerre sharp coefficient

vectors of fT(O= ,t), i 0, 1, can then be obtained via discrete vector-matrix convolu-

- -. tions. As discussed in Appendix, the moment formula of the matrix Laguerre transform

provides a huristic tool for checking accuracy. Let

(4.7) UT (k) = tfT (0-,t)dt. 0 < k <2.

By differentiating (1.17) and (1.1S) with respect to s at s 0, one then finds the following

recursion formulas:

- "~I (4s . ,(o) = i_ e~~'

'0 o) iT _(o)z ' •

T ) T (()' + j.T(0o)-"RFD(1))hj

(4.9) (1) o

T. T(1) D1[ T 
(2))

_ --1, { () __ L _ _

(4.10) (2)
T o T T

PE5., (2) = i ,,-(2 ) " 1 ' 2g- , -(1) R LFD (1) 1 T - (O ) tl f LF D ( 2 )

Here MLFD(k) dzag{ 0, fJ za(x)dx, fo .ka 4(z)dz} for 0 < k < 2 and MRpD (k)

is defined similarly for repair time distributions. Using (4.8) through (4.10), nT (k) were

calculated for? =011< n <41 and 0 k < 2. These values were then compared

with the values obtained from the Laguerre sharp coefficient vectors of fT (0--,t) and

the moment formulaof (A15). The relative errors were found to be bounded by I x 10 0

in this range of i, m, and k, providing excellent accuracy. In Table 4.1, this comparison

is exhibited for z I and m 10. The value rn 10 will be used subsequently for

evaitating conditional performance measures.

17
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-.- The Laguerre sharp coefficient vectors of gT (t) in (3.6) can be found from those of

LT (0+,t) with one additional discrete vector-matrix convolution using (3.8), which in

turn lead to Laguerre dagger coefficient vectors of G,,(t) of (3.9) via the operational

property of the matrix Laguerre transform given in (A13). The values of F,, m(+oc,t)

needed can then be calculated from (3.12). Since most of the performance measures

inv ove the expressions +oot) and Flm (+ oc, t), we generate the La-

-Tguerre coefficient vectors of S,.A!(t) defined by

Both the Laguerre transform and the tail integral operation are linear and this can be

accomplished by merely adding the Laguerre sharp coefficient vectors of gT (0-r, t) over

rn, 0 < rrz < Al, and then applying the operational property of (A13) to the resulting

sum.

To check the accuracy of the truncated Fourier-Laguerre transform representation of

-TS(t), one again uses the moment formula of (A15). Let

".';(4.12) rT (k) =fo t I g T ' (t) dt.

By differentiating (3.8) with respect to s at s 0, one finds that:{r. m(0) u T (0)(L P)
(4.13) m(O) = PVO)(L- - L) T " - T, .. ... .-. -,r,, () P .(0 ( I ') - bo, br

(4.4){ n(1) =r ()

- F) -__;,(O),XfLD(1)
(4.(9) tiT -(1) RT 1T

-, = 1,. (0)_' LRPD (1)

>. ~~(4.14) -, _,

(4.1~)T m() Tr (2)(_ - P) 2.r (1).L (1) T

" . . -. '. .



It should be noted that

foo2 , M=1-

The zero-th and the first moment of W,(t) were calculated using the Laguerre sharp

coefficient vectors and the momemt formula of (A15). These values were then compared

with values of , f I-,,(1) and 1:[' , J(2) generated from the recursion formu-

las in (4.13) through (4.15). Both the relative and absolute errors decrease in .11 and

those errors were found to be bounded by 1 x 10- - and 3 x 10- respectively for .11 = 41.

This comparison is sumrnmerized in Table 4.2. The truncation level Al has cross examined

using the sequence

ML ~ (4.17) VN!(t) : F +nIot c )1

which converges to I a-s M - oc for all t > 0. For the value A\ = 41. (1 - t.\ 1 (t)) was

found to be bounded by 1 -1 10- 1 for 0 < t < 20, as exhibited in Table 4.3.

The time independent performance measure, din, of (2.11) describing the probability"

of having rn software failures before complete debugging is depicted in Figure 4.4. In

Figure 4.5, the compound availabiity/reliability measures PIl(t) = 1, M(t) = 3, N(t) -

n] = F1 ,3,(+C,t) are plotted for 0 < n < 4 and 0 < t < 20. One observes that

limt-.. F1 ,zo(--oc,t) = d 3 = 0.14259 and limt.. FI,3,(-c-t) = 0, 1 < n < 4, as

expected. The joint probability P'1(t) i, N(t) = of (2.2) are exhibited in Figure

4.6 and 4.7 for i = 0, 1 < n < 4 and i = 1, 0 < n < 4, respectively. It may be noted

that these joint probabilities are all uniniodal for i = 0. For i = 1, P[I(t) = 1, N(t) = 0.

approaches one monotonically as t -- oc. We note that this joint probability is also the

distribution function S,,(r),ot) of the time required for completely eliminating all errors

19
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in the software system, as showm in (2.4). After certain initial period, all other joint

probabilities with i 1 decrease monotonically to zero. Figure 4.8 depicts PI(t) I]

for ' = 0, 1. This probability with i 1 is uninodal having the peak approximately at

time t = 2 and decreases to zero as t - oc. Correspondingly, P1I(t) 1] has minimum

around t 2 and goes to one as t -- o.

We next turn our attention to the software system availability/reliability measures

based on the past observation. We assume that at time t = 20 a repair for the tenth

software failure is completed. In other words we choose rn = 10 and t. = 20 in the

condition (CD) given in Section 2. The associated probability vector 3,, of (2.5) can

* be calculated using the Laguerre coefficient vectors of T (0-- t) a-

(4.18)

(0.4185245993, 0.24856886b , 0.1781236373, 0.0 , 0.(]J7"*I>:

The counterparts of Figure 4.6 and 4.7 are given in Figure 4.9 a, 1 () ... ..

joint probability of the system availability, unabailabili, ani r','i. , - ; ,

software system at time tc, + r given (CD). It should be nowei :'-,

in Figure 4.10 is the distribution function G\~t(r) of tim, u' (, ... .

0 under (CD) given in (2.9). The joint probability of R.') and .%,f g:\,'.i ( :,

Li:: ~in Figure 4.11, corresponding to the formula in (2,s) wj'_ 1 an 1>:

-'. survival function of the time until the next software failure den,,ted lv . . I2 l(,

S.is exhibited in Figure 4.12. We note that lim ,m F-t,n(r 3 0. .1 , .

i.e. with this probability all errors in the software system have been elimienate b t I,

- t 20 and there will be no software failure.

All computations were done in DEC20 in a time sharing mode using APL as a pro-

20
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gramming language. The DEC20 APL implementation is the double precision system

which uses a precision of 18 decimal digits. Relevant formulas were usually coded in a

straightforward way with no attempt made to optimize the subroutines for speed and

accuracy. Evaluation of all performance measures presented in this section required

approximately several minutes of CPU time. No evidence of numerical problems were

observed through the entire procedure.

4-
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Table 4.1 Moment of fim,n(0-,t), t' 1, m = 10

n Oth moment 1st moment 2nd moment

0 0.00356S327439606S2 0.075726359174633S5 1.6S068784-14781707.t
0.00356S327439606S3 0.07572635917463717 1.68068784447949448

1 0.0021064861553820- i 0.04302096760275793 0.9223S99327765S25S

0.00210648615538209 0.04302096760275967 0.92238993277757633

2 0.00153425632614903 0.030619960S3817533 0.64343981552739176

0.0015342563261490.4 0.0306199G08381760S 0.64343981552769234

3 0.00091263323266573 0.01777617904156510 0.36542344506696303
_____ 0.00091263323266573 0.01777617904156599 0.36542344506731721

I 0.00044773521740952 1 0.0086S505502745937 0.17791002799323507
J .. 00044773521740952 0.00S6S505502745974 0.17791002799338249

upperline: values via recursive formula

lowerline: values via Laguerre sharp coefficients

Table 4.2 Moment of S..f,(t), Al 41

Sf n 0th moment 1st moment'. 2

0 5.2021934394 50.9448926126

5.20219341 s3 50.9448921478 I

1 -1.4812521192 -15.4420556088
" "-1.4812521199 -15.4420558898 1

2 -0.9621601960 -8. 1396683807
-0.9621601971 -8.1396688012

3 -0.502233S213 -3.1119079053
I -0.502233S215 -3.1119079793

1 4 -0.1756699416 -0.7508504584* [ -0.1756699420 1 -0.7508505963

upperline: values via recursive formula

lowerline: values via Laguerre sharp coefficient

Table 4.3 1 -t(t), Al 41

time 1 - W t,(t)

0 0

4 6.505 x
V,"- 8 6.505 x 10-19

12 6.505 x 10-19

16 8.67.4 x 10-1 -1

"2 0  6.505 x 10- 10

22
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Appendix

In this appendix, we provide a concise summary of the matrix Laguerre transform.

- .The reader is refered to Sumita(1984) for more detailed discussions. The Laguerre polv-

nominal Lft(z) of degree n is defined by the Rodrigues formula

(A 1) L, (z) /I e /d\ T x1 n-,1,2...

*The corresponding Laguerre functions f, (x) e x L,(x), n =0,1, 2,., for an orthog-

onal basis of L 2.(,o) {f R_. R f,) f 2(x)dz < oc}. The Lapace transform of

t,(r) is given by

(A2) A,(,,) e 7 ()dx i ) n 0,1,2,..., Re(s) >
f(X S - \S 2

We define the linear space L, of K x K matrix functions by

(A3 {(x) (a,, (zr)) a,~ (z) L L2 fo r all 1 1 <~ < K}

It can be readily seen that the matrix Laguerre functions -~x ~x)Ipoides an

orthonormal basis of L, where I is a K K Kidentity matrix. Then for any a(x) L, one

has the Fourier-Laguerre series expansion

(A4) a~r af (z): aq (.)(.4

The pointwise convergence of (A4) cdii be d_,,ured under certain coiiditioxib regarding the

smoothness and the rapidly decreasing property of a(z). Let

(A5) a-n.>)1

and define the two matrix generating fntosT, 0 n T ca :

We note that

(A6) T(u) (-t)T 1 (U), u < 1

-17.
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and

An

(A7) a = a n - O, 1 2,
_m .

-"- From (A2) and (A4), one sees that

c--" c * s - 1

(AS) q (s) fO e--za(x)d: Y a Re(s) > 2

By letting u = . this leads to

(AO) T( 2 1-

Equation (A) is the key formula for the matrix Laguerre transform, providing a bridge

between continuum operations and lattice operations. For the matrix convolution c(x)

fo a(z - y)b(y)dy with a(x), b(z) G L, for example, it can be readily seen that

S(A10) Tc (U) =T(u)Tj(u).

or equivalently,

TI

(A411) i

The matrix Laguerre transform maps matrix functions a(z), b(z) G L, into the matrix

sequence (a')' and ( Correspondingly the matrix convoiation on continuum is

mapped into the lattice convolution, The resulting sharp matrices (c')' can be converted

to the Laguerre dagger coefficient matrices() using (AT). The values (x) can be

generated efficiently via the recursive formula

(A12) i ((2n - 1 - )n(z) - n ,-l()', n >

starting with o(.) = e-  and ii(x) (1 -z)c-. Hence the Laguerre dagger coefficient

matrices (ct) can be inverted back onto continuum via the series representation (A4).

, .I
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Other continuum operations are mapped into lattice operation in a similar manner. We

list only a few operational properties below.

Integration

Let g(x) = a(y)dy. Then

(A13) g -2a 4 (-1)ma_n.
rn=L

Nultildication bv po!vnorri als

Let 9(z) = za(). Then

(A14) -. 1'9 (n 1a= n > 0.

where Aa= a -a

• The first two moments of _) can be also evaluated in terms of (a')',=

Moment formula

(A 15) x'a(x)dz =4t 1-(_) n'a 0 < I<'

n=O

The higher moments can be comuputed by combining (A14) and (A15) repeatedly. The

moment formula (A15) provides a emperical tool for deciding the truncation point of

the series representation (A4), when the moment values are known. Extensive numerical

experiments suggest that if the truncation point is chosen to satisfy a given accuracy for

the moment value in (A15), then the series representation (A-1) also satisfies the sarne

4
accuracy.

It should be noted that for many of matrix functions of interest in applied probabiltv

and statistics, the Laguerre coefficient matrices can be obtained either numerically or via

certain numerical procedure based on (A9).
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