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ABSTRACT

In this paper, a new software availability/reliability model is developed where life-
times and repair times have general system-state-dependent distributiors. Multiple errors
may be introduced or removed through repairs. The model is formulated as a multivari-
ate Markov process and contains many other models appeared in the literature as special
cases. The exponentiality assumption prevalent in the literature is totally eliminated.
Expressions of various performane measures of practical interest combining availability
and reliability of the software sysfem at time t are derived. Using the matrix Laguerre
transform of Sumita(1984), corre ;ponding computational procedures are also developed.
A numerical example is given, dernonstrating speed, accuracy and stability of these pro-

cedures.
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§.0 Introduction

The price performance revoiution of computer hardware has been dramatic. wio e
cost of labor has been steadily increasing. Consequently the production and maintenance
cost of software, in contrast to that of hardware, has been rapidly growing and has become
one of central issues in system design. Dating back to the late 60’s substantial research
efforts have been devoted to the study of software failure phenomenon and the prediction
of software performance. Two recent survey papers by Ramamoothy and Bastani(1982)

and Shanthikumar(1983) contain approximately 150 refereneces on the issues.

Until recently, however, the effect of multiple error generation and removal from the
system during the repair has not been properly incorporated in the literature. Kre-
mer(1983) has derived a software reliability model where the number of software system
increases or decreases by at most one during repairs. He has provided performance mea-
sures for this model using the results available for non-homogeneous birth-death proces:z.
Sumita and Shanthikumar(1984) have developed a general Markov chain model where
multiple errors r'n‘ay be introduced or removed from the system during repairs. Assuming
that the software failure rate is propotional to the number of software errors present in
the system, expressions for various software reliability measures of interest are derived

and corresponding computational procedures are developed.

The exponentiality assumption employed in the model of Sumita and Shanthiku-
mar(1984) is rather restrictive. To preserve the Markov chain property, for example,
the software repair time is assumned to be negligible, ignoring the availability of software
svstem at time t. The problem of a combined availability /reliability analysis of software
svstermn was addressed by Shanthikumar{1984) in a limited model where the number of

!
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software errors is either unchanged or reduced by one during the repairs. The purpose
of this paper is to develop a general multivariate Markov model for a software system
with multiple software error generation and removal during the repairs. The exponential-
ity assumption is totally eliminated and general repair time distributions are explicitly
incorporated. E- .essions of various performance measures combining availability and
reliability of s¢ ¢ware system at time t are derived. Using the matrix Laguerre transform
of Sumita(.984) as a key tool, corresponding computational procedures are also devel-
oped. Many other models appeared previously in the literature can be treated as special
cases of this- model.

In Section 1, we develop a new software availability /reliability model having system-
state-dependent lifetimes and repair times. Multiple errors may be introduced or removed
through repairs. The model is formulat:ed as a multivariate Markov process and does not
require exponentiality at all. By studying the probabilistic flow in the corresponding state
space, various time dependent entities are analyzed. In Section 2, expessions of many
performance measures are derived in terms of these probabilistic entities. Performance
measures combi‘ne time dependent availability and reliability of the software system.
Computational procedures for evaluating these performance measures are developed in

Section 3, using the matrix Laguerre transform of Sumita(1984). Section 4 is devoted

- to numerical implementation of the procedures demonstrating their speed. accuracy and
stability.

N X

h_-v:'

el

r,:.rj

.-\.r\‘

rxjf

e

)

.

r

]

i 2
r

o

ol

o

.l

- - TR e i A et e - Lo LT .. . . “a ~ R - T TR W

| R AR AR S AT T SRR L T ¥ W « PR RS e e T T T T T TS T T DIRTI
N PR AT % PP R PR PV VO L TR W VAR UL WL UPIARUAK o9 g P SN SRR S R S SR POV SUE B




PR A A R R AT AN e A aR Al el il afd abd o o0 -aad ol aid ata oid oAh ol ats ol
. - D A ek A RN A A A A AN AV P A I a4 - 5.4 Al fad\ e AU ate Ava pig o8 sas anl ged o0 s 0 ia s gyt 2
- - - - A A A 4 v o

§.1 Model Description and Analysis

We consider a software system which contains several software errors. These software
errors cause software system failure time to time. Upon failure, the software system is
repaired. During repairs, multiple software errors may be introduced or removed. More

formally, the following assumptions are incorporated in our model.

(AS1) The maximum number of software errors in the software system is limited to
K, 0 < K < oo.(If the maximum number of errors exceeds K, then the performance of

software system becomes untolerable and the system would be discarded.)

(AS2) At time t = 0, the software system starts functioning and there are .\ errors in
the software. Here N is a discrete nonnegative random variable with probability vector
67 = (bo,...,bx) where b, = PIN =i],i=0,1,..., K.

(AS3) If there are n software errors upon completion of a repair, then the time until
next software system failure has c.d.f. Ap(z),n =0,1,2,...,K. In particular Ao(z) =0,
z > 0, i.e. if there is no error in the software system, then there will be no software
system failures. It is assumed that, for n > 1, An(z) is absolutely continuous with p.d.f.

an(z) and hazard function nn{z) = an(z), Ar(z) where An(z) = 1 - Ap(2).

(AS4) If there are n errors at the begining of a repair. then the repair time has a

c.df. Rn(z).n = 1,2....,K. It is assumed that R,(z) is absolutely continuous with

’

p.d.f. r,(z) and hazard function ¢a(z) = ra(z); Rn(z).

(AS5) The probability that there are n errors remaining in the software system im-
mediately after a repair given that there were k errors in the software system just before

the begining of the repair is pg,. For notational convenience, we define pog = 1, pon = 0,
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(AS6) All software system lifetimes and repair times are mutually independent.
This model can be expressed as a multivariate Markov process in terms of the follow-

ing stochastic processes:

0, if the software system is under repair at time t.
(1.1) I(t) =

1, if the software system is functioning at time t.
(1.2) M(t) = the number of software system failures occured in [0, ¢).
(1.3) N(t) = the number of errors in software system at time t.
(1.4) X(t) = the elapsed time since the last transition of I{t),i.ec..

X(t) =t -7, where r = oi‘igt{r I (z+) - I(z-)] =1}

From {AS2), one has X(0+) = 0. For notational convenience we assume that 1(0-) = 0
and I(0+) = 1. Clearly the multivariate process 'T(t), M(t), N(t), X(t)} is Markov. The
state space of the multivariate process and its typical transition behavior are depicted in

Figure 1.1.

I(t) =0 I(t) =1

S
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Let
(1.5) Fomn(z.8) = PUI{) = i, M(¢) = m, N(t) = n. X(1) < 2,
and define
Jd
(1.6) fimn(z,t) = —F ma(z.t).

oz
The partial differentiability f, m.n(z,t) = %F,'m‘n(r,t) can be shown through a renewal
argument (see, e.g., Cinlar(1969)), except the case m = 0 for which generalized densities
fion(z,t) = bp6(t — z)An(z) are involved. As we will see in Section 2, all performance
measures o-f practical interest for the study of availability/ reliability of the software
system can be expressed in terms of (1.5) and (1.6). In the remainder of this section,
we derive transform results of (1.6) by applying the state space method of Keilson and
Kooharian(1960, 1962). The corresponding computational procedures will be discussed
in Section 3.

We observe from Figure 1.1 that for the process to be at (1,m,n, z) at time t where
0 < z < t, the process must have entered (1,m,n,0) at time ¢t — z and has remained
in the state (1,m,n,-} for the length of z. We note from (AS3) that Ag(z) =0, z > 0.

Therefore once the process enters (1,m,0,-), it remains there. Hence one has

(17) fO,m.n.(I~t) - fO‘mvn(O*‘,t - I)]fn(l'), m,n 2 1
and

~o _

:~ (1‘8) fl.m.n(r\t) = fl,m,n(0+,f - I)An(l‘), m,n > 0.

e

gl

L By a similar argument, boundary conditions can be found as

&

o .

b (1.9) fima(2.0] =0, 1=0,1, m,n >0, >0,

5
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and

(A

t
(1.10) fomn(0+.t) =/0 fim-1n(z t)a(z)dz.  m,n
Futhermore one has

(1.11) {fl.m,n(0+,t) = Tk pen JE fomu(zit)sk(z)dz,  m>1,n2>0,
1.1

fr.om(0+,t) = 0a6(t), n>0.

Substituting (1.7) and (1.8) into (1.10) and (1.11), one obtains fort > 0,

t
(1.12) . fO,m,n(O‘“,t) :/(; flvm_1|n(0+.t — .’I:)an(:z:)d_r, m>1, n>1,
and
(1.13) {fl‘m,n(o*»t) =Sk Pin JS fomi(0+,t — z)rg(z)dz, m>1,n2>0
fl.O,n(O"'vt) = bné(t), n > 0.
Let
( 14) {@t,m,n(o*vs) fo € “Lmn(O* t)dt
1' -
‘;Qt,m,n(w, 5) = fooo fooo C_wz_Stf‘,m‘n(I,t)dIdt,

Equation (1.12).a.nd (1.13) can be best described in terms of the transfrom of (1.14) using

the matrix notation. For notational convenience, we introduce

(1.15) formolz,t) 0, m

(A"
o

z,t >0

and define the transform vectors

Q‘T:m(0+,s) = [¢,'mlo(0«,s), e Pem K (0+,5) ]
(1.16) . ) .
_;Zx m(w’s) = [@:,m,o(w»s)» “ee vp:,m,K(w, S) ]

Let diag{co,...,cx} bea (K+1)x (K +1) diagonal matrix whose n-th diagonal element is

1- Wedefinea(s) = diag{0,ai(s),... ak(s)} and gD(S) = diag{0.py(s),...,oK(s)}
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where an(s) = [§° e7*%a,(z)dz and pn(s) = [$° e **ra(z)dz. One then sees from (1.12)

and (1.13) that

(1.17) el (0+,s)=p] _(0+,8)ap(s), m21,
and

CDT (0+,s) = ggm(0+,s);_> (s)P, m>1
(1.18) \ ' =

(119) &l (05,5 =" (ep(s)p ()B)" apls)  mz1,
and
(1.20) g{lm(O%—,s) =T (gD(s)gD(s)g)m, m > 0.

Finally from (1.7), (1.8), (1.19) and (1.20), one has

(1.21) fc_:m(u,,s) =8_:wigm(0-,s)(£—g (w + s)), m>1
and
AT 1 .r
(1.22) @) o (w.s) = T 21 .m0 )L - ap(w ~s)), m > 0.
We note that the spectral radius of (é (5);_30(5)2) 1s strictly less than one for

Re(s) >0 and &% (nD(s\p

iem =0 by —D ~

o
(1.23) ST (0-s)=bT I —ap(s)e (s)P " a(s),
m=1
and
o -
(1.24) Zrm(0-v8) =87 1= ap(s)o (s)R17",
m=u

-3

....................
................

.....



Let 1 be a vector of length (K + 1) having all elements equal to one. It can be readily

seen from (1.21) through (1.24) that

S {8 s (o901 + B (w2 5)1 ] o
=7 (L~2p(s)p, () B) ML - ep()p,(s)) 1
== b7(L - ap(s)2,()R) ML~ ep(s)(9) )1
Lyt

as expected.

- This model contains the model of Sumita and Shanthikumar (1984) as a special case
F’i where 4,(z) = 1—e "™ and Rn(z) = 1for z > 0. Hence many other models contained in
}
< Sumita and Shanthikumar(1984) are also contained in this model. Shanthikumar(1984)
e
éh has discussed another special case of this model where p,; > 0 if and only if ;

- J=1-1.
h:..
2
8
e N B I e NN T e e e
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§.2 Performance of the Software System: Availability 'Reliability Measures

In this section we introduce various availability reliability measures for the study of
performance of the software system. Based on the analytical results of Section 1, we
derive explicitly expressions of these availability /reliability measures.

A natural availability ‘reliability measure is the joint probability of /(¢) (whether the
software system is working or not at time t), M(t) (the number of software system failures

occured in 10.t) ), and N'(t) (the number of errors in the software system at time t). One

has
(2.1) P It)=1, M{t)=m,N(t) =nl=F pa.(+oc.t).

The joint probabiiity of I{t) and N (t) is also of interest. For notational convenience, we

define Fyon(—oc.t) =0, n > 0,t > 0. One then sees that
, o
(2.2) PIt)=1,N(t)=n =Y Foma(+oc,t).

The availabilitv(unavailabilitv) measure is the probability that the software svstem is

functioning(not functioning) at time t, given by

K
(2.3) PU(t) =1 =3 3 Fmal(+oc.t).
n=u

."‘1—____‘“
The time until complete debugging is an important performance measure. Let X, -
be the time required for completely eliminating all errors in the software system given
that N(0—) = k with probability bs. We denote the distribution function of X'y .. i

i

Sn(0) o(z) = P{XN(O).O < z,. Since the states (1,m,0,-) are absorbing, one finds tha:

(2.4) Sxieya(t) = PIN({) =0 = > Fimo(~2.t).
m="!

9
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In the study of performance of software systems it is of more practical interest to
predict the software availability/reliability based on the past observation of the system.
In orde: to obtain performance measures in this context, we impose the following history
of the system:

(CD) A repair has just been completed at time iy and there
have been m software failures in {0, to].

The probability distribution of the number of errors remaining in the software system
at time tp given (CD) plays a crucial role in this analysis. Let By, m = P{N(to) =

ki(CD), and define éiu.m = [Boity.m» Prjtasmo - - -+ PKlty,m |- One then finds that

(2.5) 8l =11 .0t0)/ 1 (0,t0)1.

—Jt{),m

The vector ,_37;‘ m fully describes the state of the system at time tg under (CD), which
then provides an initial state probability vector for the system behavior after time to. To

emphasize the dependence of F, ,, ,(z,t) on the initial distribution b7 we write
(2'6) Ft,m.n(rvt} !_7) =
PI(t) =+, M(t) =m, N(t) = n, X(t) < z|N(0-) = k with probability b;].

Given (CD), the joint probability of the system availability /unavailability and the num-

ber of errors in the software system at time to + 7 is then obtained as

(2.7) PiI{ty~7) =1, N(to = 7) = nl{{CD)| = 3_ F, ,n(~oc.7{3

7=0

‘t..,m)‘

Similarly the joint probability of the system availability /unavailability and the number

of software failures that may occur in {tp,to + 7) under (CD) is given by

K
(2.8) Pi(to+71) =t M(to +7) =m =7{(CD)] = 3" K, (+00,7|8

n—y

!l“‘m)'
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Let Yy(,,)0 denote the random duration required for completely eliminating the software
errurs given (CD). The corresponding distribution function is defined by Gnys,)0(7) =

P[Y‘\;(,“)'O < r1. It can be readily seen that

0
(29) Gz\'(fn),@(r) = Z FIJ‘O(":'OC, T}éffn.m )
7=0

Finally an important reliability measure is the time until the next software system failure
given (CD). We denote this random variable by Ty, .. The survival function Witu'm(f) =

P\Ty,m > 7] is then given by

K
(2.10) Wiam(7) = 2 Brjepm Ak (1)
k=0

We note that T}, is dishonest and Wy, m(7) — Bojey,m as 7 — oo.

It should be noted that the marginal process N(t) is absorbing and all the perfor-
mance maesures described above are time dependent. One time independent performane
measure of interest is the distribution of the number of software system failures that
occur before all software errors are completely eliminated. We denote the correspond-
ing randon variable by D. One then sees that dp, = PiD = mi = Fy mo(+oc.+00) =

lim;—o+ sf:l_m'o(O.s). Hence one has
(2.11) dm = 6T(I'P) ey, m > 0.

where [ = diag{0,1,1,...,1}, and ] = (1,0.0....,0).

11
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a ‘ §.3 Computational Procedures

Y We have seen in Section 2 that all performance measures can be obtained if _E?:m(+oo.t)

and i{m(0+,t) are computed. In this section, we develop numerical procedures for eval-

S——

uating these probabilistic entities. We assume that both an(z) and rn(z) belong to the

class of rapidly decreasing functions of Dym and Mckean(1972), so that the corresponding
Fourier-Laguerre coefficients are also rapidly decreasing, see, Keilson and Nunn(1979).

T
The Laplace transform of Ez:m(+oo,t) denoted by ¢, . (s) = [5° e"‘EZm(-’roo.t)dt can

be found from (1.21} and (1.22) by setting w = 0+, that is

- ) QTm(s) = (1‘,/5)£§m(0f,s)(£ - gD(s)), m>1,
& 1 n(s) = (1/9)2T (0=.)(L - ap(s), m>0

:\-_, The entities Eg'm(0+,5) and g{m(0+,s needed here are given in (1.19) and (1.20). The

inversion of these transforms require multiple convolutions of matrix functions in the
time domain. The matrix Laguerre transform developed by Sumita(1984) provides a
computational vehicle for this purpose.

The Laguerre transform, introduced in Keilson and Nunn(1979) and Keilson,Nunn
and Sumita(1981j and further studied by Sumita(1981), provides an algorithmic frame-
\ work for the computer evaluation of multiple convolutions and other continuum opera-
...; tions. The transform based on generalized Fourier series employs the Laguerre functions
as a basis, and maps the functions f(z) in L2 into discrete sequences (f*)>%. Corre-

spondingly, various continuum operations are mapped into lattice operations, thereby

providing the desired algorithmic basis. Recently the formalism has been extended to

S the matrix form for the study of semi-Markov processes by Sumita(1984) which is the
;;;;
o crucial numerical tool employed here. For the reader’s convenience a concise summary of

the matrix Laguerre transform is given in the Appendix. The notation there is employed

12
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throughout the rest of the paper.

Let an(z) and r,(z) have the Laguerre sharp coefficients (an"@‘ik)ﬁt"’z0 and (’f;k)iio- One

then has
z ) k #
(3.2) cn(z) :/O an(z = y)ra(y)dy — ¢, = Z a;l:k_]»rﬁ] .
J=0
Let z(z) be the matrix function defined by
e 0]
(3.3) /D e™*z(z)dz = @p(s)e, () B.

IA

(3.4) z:l):p,]cfk, 0<1,7<K, k=0,1,....

We note that as(z) = ro(z) = 0 so that a;':k = rgfk = 0 for ¥ > 0 and hence cgfk =
0, k >0.If z*™(z), having the Laguerre sharp coefficint matrices (gf(m)) corresponds

to (ap(s)e (s)P)™, one has

=p\W/Ep
_ k
» x k-3
(3.5) (m+1) = ng*](m)gj .

1=0
E" Hence the Laguerre sharp coefficient vectors of LTm(Of,t) can be easily computed us-
p . : T ; i i
- ing (1.20). Those corresponding to fo,m~1(0+.t) can then be obtained by convolving
L.
) .. N . N
o the resulting sharp coefficient vectors for j_'lrm(O*.t) with the Laguerre sharp coefficient

¢ #
. matrices (ap,, )¢° for a,(z) corresponding to a(s). It should be noted that a}, is a diag-
o ) ) "
o onal matrices whose n-th diagonal element is a/_, ;. Once the Laguerre sharp coefficient
{. vectors are found, the function values of LTm(O.t) can be computed straightforwardly
o |
E.::j following the inversion procedure described in the Appendix.
-
oo 13
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Evaluation of the function values of F, ,,(+0c,t) requires more caution since F; m n{
+ 00,t) may not be in L. In particular F} no(+00,t) converges to a positive constant
(see(2.11)) as t — oo. From (3.1), one sees that E,T:m(+oc.t) is differentiable with respect

to t for all m > 0. Let

(3.6) T (1) = 2FT (+o0.t)
9im 3t
and define
- T . e -st T
(3.7) - 5T (s) _/0 e=*gT_(t)dt.

-

It should be noted that 47 (s) = s &, p(s) = E[n(+00,0). Clearly F{(+00,0) = 0T

fori=1,m>1ori{=0,m >0 and F, 3(+90,0) = b. Hence from (3.1) one obtains

(33) A m(s) = 25, (0+,9)(L = 2 (s)), m> 1,
| 37 () = 27 (0+,8)(L - 2p(s)) = fombT. m 20

Here éom = 1 if m = 0, ém = O otherwise. It can be readily seen from (3.8) that

ngm(t) are Laguerre transformable (see Remark 3.1) and the corresponding Laguerre

sharp coefficient vector denoted by (gfm:k)i"zo can be found as before. Let

S L "N
PR LR b

F)

(3.9) Glnlt) = [ o7 (1)dr

Eall o 2. 4
RY]

We note from (1.20) that

Yo

5

. T Ty ~1ge -

S gg:mzfooof,m(()*’t)dt—é (£ _—Iz)m l£ -:lr* m 2> 1,

A (3.10) T oo T (1 pym < T

i ol =l L 0 )t =6 (P <1, m>0

g

[“ Here the n-th conponent of ggm is the probability that upon the occurence of the m-th
fj failure there are n software errors in the software system. Since there may be positive
e

::: probability that all software errors are eliminated before reaching the m-th failure, it is
: 14
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possible to have qTﬂL < 1. The vector ngm has a similar probabilistic meaning. One now
sees from (3.8) and (3.10) that since g: o = 0,

[ T 0y =0,0....,0, m>1
—u.m .

(3.11) ’ ‘
1 j{lm(m = 91mu,0....,0: ~ 5ombT. m > 0.

Hence G. (0) = %Tm(O) < oo and Equation (3.9) is well defined. By applying one of

=i, m\ i,

the operational properties of the matrix Laguerre transform (see (A13)), the Laguerre

. =T ; )
sharp coefficient vectors of G, (t) can be generated from (q:m:k)fc:o for Q;Tm(t)' O..e then

finally has
(3.12) El(~0c.t) = G, (0) = G/ mlt) = bmubiibT.
Remark 3.1

We note from (3.8) that g{o(t) 1s a generalized vector function involving the delta
function 6(z). Hence the components of Q1T,o(t) are not in L2. In a recent paper by Keilson
and Sumita(1984), it has been shown that the Laguerre sharp transform exists for any
finite signed measure preserving all basic operational properties. The Laguerre sharp

SR coefficients for gfg(t) therefore exists.
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§.4 Numerical results

In this section, we demonstrate the efficiency of the computational procedures devel-
oped in Section 3 through a numerical example. Tables and graphs illustrating numerical
results are given at the end of this section. We consider a software system with the

following features corresponding to (AS1) through (AS5) of Section 1.

(4.1) AR = 4.
(4.3) b = 0.2, 0.2, 0.2, 02. 0.2)
z 95-n .
. A =0 and A4 z:/-—— ne T dy, 1<n<4
(4 3) ](I) an n( ) 0 (4 _ ”')!y € y n
b4 35"’1 4

4.4 Rz:=/ T"eTVdy, 1<n<d4

( ) ’1( ) 0 (4 _ n)'y Yy
1.000 0.000 0.000 0.000 0.000°
0.700 0.150 0.100 0.030 0.020

(4.5) P =10300 0425 0.150 0.100 0.025
0.125 0.225 0.400 0.150 0.100
0.075 0.125 0.200 0.400 0.200

We note that the lifetime and the repair time of the system when there are n software
errors in the system are the sum of (5 — n) independent exponential random variables

with parameter 2 and 3 respectively.

The Laguerre sharp coefficients (a¥)5° of an exponential function an(z) = fe=?7,
:'.:: # > 0. can be found analyticaly (see Keilson and Nunn(1981)) as
~1
& 6 o [6-1\"
: # # 2
e (4.6) gy = v % T 7 1:( f) I (=
.'. This formula enables one to generate the Laguerre sharp coefficient matrices correspond-
b .
'[:.:.-_ ing to ap(s) and ,_;D(s) via discrete convolutions. In actual computation, the first 101
o ) i
\\:., 16
Fa”
k
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coefficients were used. Using equation (1.17) and {1.18), the Laguerre sharp coefficient

vectors of fle(Oﬂt). t = 0,1, can then be obtained via discrete vector-matrix convolu-
tions. As discussed in Appendix. the moment formula of the matrix Laguerre transform

provides a huristic tool for checking accuracy. Let

o0
(4.7) ul (k) :/0 t5 /T (0-,t)dt. 0 <k <2

-—1,m

By differentiating (1.17) and (1.18) with respect to s at s = 0, one then finds the following

recursion formulas:

wl (1) = (el (I +p] (0)Mppp ()P
(4.9) wl (1) =0
pl () =p, L= ul(0)3, (1)
pl (2 = (T @ =207 (DM e (1) = a1l (00M ppp(2)) F
(4.10) ul (2) =0
T

B2 = g (M =20 (M (1) + ul 00N, (2)
Here M, (k) = diag{0. [§° z*ai(z)dz, ..., [§° z*aq(z)dz} for 0 < k < 2and M, (k)
is defined similarly for repair time distributions. Using (4.8) through (4.10), Ezm(k) were
calculated fort = 0,1, 1 <m < 41 and 0 < k < 2. These values were then compared
with the values obtained from the Laguerre sharp coefficient vectors of j_':m(of,z) and
the moment formula of (A15). The relative errors were found to be bounded by 1 x 1071°
in this range of 1, m, and k, providing excellent accuracy. In Table 4.1, this comparison

is exhibited for 1 = 1 and m = 10. The value rn = 10 will be used subsequently for

evaluating conditional performance measures.

17
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The Laguerre sharp coefficient vectors of Q:T:m(t) in (3.6) can be found from those of
LT:m(O+,t) with one additional discrete vector-matrix convolution using (3.8), which in
turn lead to Laguerre dagger coefficient vectors of QTm(t) of (3.9) via the operational
property of the matrix Laguerre transform given in (A13). The values of E?:m(+oc.t)
needed can then be calculated from (3.12). Since most of the performance measures
involve the expressions Y7, F n(+00,t) and ©X_, F| n(+0c.t), we generate the La-

gucrre coefficient vectors of S?j‘\,(t) defined by
M
=T =T
(411) : —St,AI(t) = Z —Qt,m(t)'
m=1-1

Both the Laguerre transform and the tail integral operation are linear and this can be

accomplished by merely adding the Laguerre sharp coefficient vectors of ngm(O-;—,t) over

5]

m, 0 < m < M, and then applying the operational property of (A13) to the resulting

sum.

To check the accuracy of the truncated Fourier-Laguerre transform representation of

S, as(t), one again uses the moment formula of (A13). Let

. T ok T
o (4.12) o7 (k) = /0 tgT_(t)de.
-
;'.1 By differentiating (3.8) with respect to s at s = 0, one finds that:
- - .
o T al0) = 4T (0L~ 1)
o (4.13) T T ‘
'::'_:: T, m(o) :Elm(o)(i_i ) —6Omb
o '
L2 ar Reml) =uf ()L =L) =] (0)Mppp(1)
L 4.14 .
& (1) = u] W (U= 1) = 1] (0)Mpp(1)
o
. -
P-’. _..T Ty _ T
- g [R5 00 () < (O ()
L - 15
el . T
:I-_..Z: Zme(Q) = Eme(g)(L -I') - 2y (1)'!LFD(1) = 4 ,,(0) M rp(?)
o 18
po
)
?v.\.
-
"
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It should be noted that

=T %{\ T * = M T (4
(4.16) [Tshd = S a2 [ iSadode= 3 L)
m=1-t : m=1-1

The zero-th and the first moment of S, y¢(t) were calculated using the Laguerre sharp
coefficient vectors and the momemt formula of (A15). These values were then compared
with values of ©M_,_ r, (1) and oM r7: (2) generated from the recursion formu-
las in (4.13) through (4.15). Both the relative and absolute errors decrease in M and
those errors were found to be bounded by 1 x 10™7 and 3 x 107° respectively for M = 41.
This comparison is summerized in Table 4.2. The truncation level M has cross examined

using the sequence

Af
(4.17) ear(t) = S {EL moi(+ocit) + ET (+oc,t)} 1.
m=u

which converges to 1 as M — oc for all t > 0. For the value M = 41. (1 — vas(t)) was
found to be bounded by 1 =« 107! for 0 < t < 20. as exhibited in Table 4.3.

The time independent performance measure, dm, of (2.11) describing the probability
of having m software failures before complete debugging is depicted in Figure 4.4. In
Figure 4.5, the compound availability/reliability measures P I{t) = 1, M(t) = 3, N(t) =
n] = Fi3n(+o0,t) are plotted for 0 < n < 4 and 0 < t < 20. One observes that
limtmoo Fia0(+0c,t) = d3 = 0.14259 and limiwoo Flan(~oc.t) =0.1 < n < 4, as
expected. The joint probability P{I(t) = ¢, N(t) = n! of (2.2} are exhibited in Figure
46 and 4.7fort =0,1 <n<4andt =1,0 < n < 4 respectively. It may be noted
that these joint probabilities are all unimodal for 1+ = 0. For1 = 1, P[I(t) =1, N(t) = 0.
approaches one monotonically as t — oc. We note that this joint probability is also the
distribution function Sy(q)q(t) of the time required for completely eliminating all errors

19
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in the software system, as showm in (2.4). After certain initial period, all other joint
probabilities with 1 = 1 decrease monotonically to zero. Figure 4.8 depicts P[I(t) = 1]

for 1 = 0,1. This probability with ¢+ = 1 is uninodal having the peak approximately at

time ¢t = 2 and decreases to zero as ¢ — oc. Correspondingly, P{I(t) = 1} has minimum
around ¢ = 2 and goes to one as t — oo.

We next turn our attention to the software system availability/reliability measures
based on the past observation. We assume that at time t = 20 a repair for the tenth
software failure is completed. In other words we choose m = 10 and t, = 20 in the
condition (CD) given in Section 2. The associated probability vector Jip . of (2.3) can
be calculated using the Laguerre coefficient vectors of iT‘G(Ov. t) as
(4.18)

QzT m = (0.4185245993, 0.2485688683, 0.1781236373. 0.1040555505. 0.0507 2045497,

software system at time t, + r given (CD). It should be noted thar the e (e
in Figure 4.10 is the distributior function Gy, ;+(7) of time until comprte denugp s

under (CD) given in (2.9). The joint probability of I{t) and Mt) given (CD e

in Figure 4.11, corresponding to the formula in (2.8) with ¢ = 1 and ;3 Finals oo
survival function of the time until the next software faijure denoted by i o in (210
is exhibited in Figure 4.12. We note that lim,_ W (7)) - It m = 0A1NH2 40

i.e. with this probability all errors in the software system have been climinated by time

‘& t- = 20 and there will be no software failure.

}::; Ali computations were done in DECZ20 in a time sharing mode using APL as a pro-
P
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. gramming language. The DEC20 APL implementation is the double precision system
which uses a precision of 18 decimal digits. Relevant formulas were usually coded in a
straightforward way with no attempt made to optimize the subroutines for speed and
accuracy. Evaluation of all performance measures presented in this section required
approximately several minutes of CPU time. No evidence of numerical problems were

observed through the entire procedure.
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Table 4.1 Moment of f, ,, ,(0

~,t), t=1 m=10

Oth moment

lst moment

0.003568327

0 0.00356832743960682
43960683

|
|

0.07572635917463385 J
0.07572635917463717 !

] 2nd moment
1.68068784447817074
1.68068784447949448

1 0.0021064861553820%
0.002106-48615538209

0.04302096760275793
0.043020967602

75967

0. 9253'8993277655255

2 0.00153425632614903
0.00153425632614904

0.03061996083817533
0.03061995083817608

0.6434395155-
0.64343981552769234

739176

3 0.00091263323266573
0. 00091”63""3”66573

0.01777617904156510
0.01777617904156599

0.36542344506696303
0.36542344506731721

4 0.00044773521740952 |
J.00044773521740952 |

0.00868505502743937
0.008658505502745974

0.17791002799323507
0.17791002799338249

upperline: values via recursive formula

lowerline: values via Laguerre sharp coefficients

Table 4.2 Moment of S, ar.(t).

M =41

n

Oth moment

1st moment:= 2

5.2021934394
5.2021934383

!

50.9448926126
50.9448921478

|

-1.4812521192
-1.4812521199

-15.442055608%

)
“

-0.9621601960
-0.9621601971

-8.1396683807
-8.1396688012

|
|

-0.5022338213
-0.5022338215

-3.1119079053

1
|
-15.4420558898 !
{
-3.1119079793 }

4 |
l

-0.1756699416
-0.17566099420

-0.7508504584 |
-0.7508505963 '

upperline: values via recursive formula

lowerline: values via Laguerre sharp coefficient

Table 4.3 1 — L'A{(t), AM =41
| time 1 — var(t) !
0 0
l 4 6.505 x 1071¢

8 6.505 x 10719

12 | 6.505 x 1071°

16 I 8.674 x 10717

%0 6.505 x 1071°
22
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Appendix
In this appendix, we provide a concise summary of the matrix Laguerre transform.
The reader is refered to Sumita(1984) for more detailed discussions. The Laguerre poly-

nominal Ln(z) of degree n is defined by the Rodrigues formula

1 d\"
(A1) La(z) = (;) et (3;) "e™*, n=0,1,2,....
The corresponding Laguerre functions £,(z) = e"%’Ln(x), n=0,1,2,..., for an orthog-

onal basis of L2(0.oc) = {f : R~ — R : [§° [*(z)dz < oc}. The Lapace transform of

£,(z) is given by

o 1 s—1\" 1
(A2)  Aq(e) :/ e T (z)dz = —1), n=0,1,2,..., Re(s)>—3.
0

S - S+ 5

o

We define the linear space L, of A x A matrix functions by

(43)

[la)

2 = {2(1) = (ax] (I)) | a,](I) S Lyforalll <1,5< }\'}_

It can be readily seen that the matrix Laguerre functions £ (z) = £n(z) ] provides an

orthonormal basis of L, where [ is a A « A identity matrix. Then for any a(z) <

Ji

2 one

has the Fourier-Laguerre series expansion

(A4)

[is]

o
+ + oe
()= Y alf,(e) ol = [ ala)f (2)dx.
n=y 0
The pointwise convergence of (A4) can be assured under certain conditions regarding the

smoothness and the rapidly decreasing property of a(r). Let

+ 4 +

n Ln—1

e
#
I
)
A

1
i)

n 21,

(45)
4
. . . +
and define the two matrix generating functions T; = £ qa u™ and T} = T2, a7 u"
We note that

(A6) T, (u) = (1 - )T

1t




2

o B Lt
. :
PRI
R
. PEI

a s

IO N A
PP R e 4
PN .
AR N

Y

RERER
[

.

P
[

s 8 a
.

UL M N Y

a Y

Al e S A
L R R N

)
.

n
(A7) t= S a®., n=0.12....
n PRSI <1
m=u

IR

From (A2) and (A4), one sees that

20 o . 5 — % n
(A8) afs) :/7 e **a(r)dzr =) a ! ( ) , Re(s) > -1

= s 4 s g 2
=1 .
By letting u = h‘_ <:‘) . this leads to
1 1~+~u
=/ = —
(49) Tg\u)—g<2 1—u>'

Equation (A9) is the key formula for the matrix Laguerre transform, providing a bridge
between continuum operations and lattice operations. For the matrix convolution ¢(z) =

J& a{z — y)b(y)dy with a(z), b(z) € L,, for example, it can be readily seen that
(A410) TZ(u) = T ()7, (u).
or equivalently,
4 _ v '
(All) & = Z_g.n—JQ] ’

The matrix Laguerre transform maps matrix functions a(z), b(z) € L, into the matrix

It~

sequence {a”)3° and (b )5°. Correspondingly the matrix convoiation on continuum is

mapped into the lattice convolution. The resulting sharp matrices (¢?)$° can be converted

to the Laguerre dagger coefficient matrices (cﬂ\”o using (A7). The values £,(1) can be

=n/u

generated efficiently via the recursive formula

— 1{(271 +1=1)fa(z) —nébny(z),, n>1

(A12) bnei(1) =

starting with £o(r) = e"#%and bi(z) = (1~ z)e 17, Hence the Laguerre dagger coefficient

matrices (CI)SO can be inverted back onto continuum via the series representation (A4).
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Other continuum operations arc mapped into lattice operation in a similar manner. We
list only a few operational properties below.

Integration

Let g(r) = [;° a(y)dy. Then

oc
® m =
(A13) 9" = -2a] -4 Z(—l) a” .
m=u
S Multiplication by polvnominals
S
E"_-lf Let g(z) = za(z). Then
- Z
»'_::
] (Al4) g7 = =A% (n~-1)a’ I, n=>0
b =n =
. where Aa_ =a_ —a__,.
=n =n =n-1

The first two moments of a(z) can be also evaluated in terms of (¢7)7% .

Moment formula

(A13) j fa{z)dz =4 > (-1)'n'a’, 0<1<2.
0 a

The higher morhénts can be comuputed by combining (A14) and (A1l5) repeatedly. The
moment formula (A13) provides a emperical tool for deciding the truncation point of
the series representation (A4)., when the moment values are known. Extensive numerical
experiments suggest that if the truncation point is chosen to satisfy a given accuracy for

the moment value in (A13), then the series representation (A4) also satisfies the same

accuracy.

It should be noted that for many of matrix functions of interest in applied probability

-_"
<
.
"
LN
-

and statistics. the Laguerre coefficient matrices can be obtained either numerically or via

certain numerical procedure based on (A9).
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