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Optimal Allocation of Multistate Components

by

Emad El-Neweihi, Frank Proschan and Jayaram Sethuraman

ABSTRACT

*..- In this paper we present some results in the optimal allocation of

"" multistate components to k series systems so that some performance charac-

teristic like expected number of systems functioning at level a or higher,

the probability that at least one of the systems functions at level a or

higher, etc. is maximized. Our basic mathematical tools are majorization

and Schur functions; the methods used and some of the theorems obtained are

those of "Optimal Allocation of Components in Parallel-Series and Series-

Parallel Systems" El-Neweihi, E., Proschan, F., and Sethuraman, J., Report

(1984). In addition, we show how these results may be used to obtain fruit-

ful applications in reliability theory.
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1. Introduction.

The theory of multistate systems has been developed to describe more

adequately the performance of systems and their components each of which

operates at more than the usually assumed two levels of performance:

"functioning" or "failed". (For a recent survey of the subject see [3].)

In this paper we present some results in the optimal allocation of

multistate components to k series systems so that some performance charac-

teristic like expected number of systems functioning at level a or higher,

the probability that at least one of the systems functions at level a or

higher, etc., is maximized. Our basic mathematical tools are majorization

4 -and Schur functions; the methods used and some of the theorems obtained are

those of [2]. In addition, we show how these results may be used to obtain

useful applications in reliability theory. The present paper and reference

[2] are the only papers exploiting the elegance and power of majorization and

Schur functions to solve optimal allocation problems in reliability as far

as we know.

Preliminaries.

For vector x = (xl, ... , xn), let x > > X[n ] denote the decreasing

rearrangement of the coordinates of x. We say vector x majorizes vector y if

k k
[ X~i > for k = i, n - I1i - Y'Li]

and
n n

We say a function f: R7 - R is Schur-convex (Schur-concave) if

f(x) - f(y) (f(x) <- f(y)) whenever x y.

... .. .. .. . .. .. .

..- . '. . . . .
. . .. . . . . . . . . . . . . .
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Examples of Schur-convex (Schur-concave) functions are f l(X.) and
n 1 1

if2(xi ) , where f1 : R - R is convex (concave) and f2 : R R is log-convex

(log-concave).

A random variable X is said to be stochastically larger than a random

st
variable Y if P(X> x) > P(Y> x) for all real x; we write X > Y. For vectors,

X $t Y if f(X) s>t f(Y) for every increasing function f.

o.. A multistate series system consisting of n multistate components is a

system whose structure function is given by 4(x) min x. where x. represents
-lin 1 1

the state of component i and takes its value in a common state space S Q [0,-),

i= 1, ... , n. A multistate parallel system can be similarly defined.

2. Optimum Allocation of Multistate Components.

We review a general optimal allocation result for multistate systems

recently obtained in [2]. We also present additional related results. We

then describe in some detail reliability models in which these results can be

used.

The following theorem is basic in [2]; the proof depends on the useful

tools of majorization and Schur functions. We present an outline of this

proof; the interested reader may consult [2] for further details.

2.1. Theorem. Let PI' "' Pk be the disjoint min path sets of a parallel-

series system having path lengths ni, ... , nk. Without loss of generality,

assume that n 5 ... < nk. Suppose that there are n =n + n2 + + n

independent components with reliabilities pl, ...' Pn (at time to, say) to

be allocated among the path sets. Then the reliability of the system (at

time t ) is maximized when the n most reliable components are allocated
0

to Pit the n2 next most reliable components are allocated to P 2, ... I and

finally, the nk least reliable components are allocated to Pk"

"-,, .." • ,.'.. '., ,,. .°,,.-. • • . .. ....... ."- ," "-' .... . -. , "c .o. o."J ..- ... .... ".".- . - -.
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Proof. Let x. log TT p. i=l 1 , k. The allocation described in the

hypothesis maximizes x= (x1,.. xk in the sense of majorization. The reli-
k

ability function of the system, I - 7 (1 - Jxi) is a Schur-convex function

of x, and hence the reliability is maximized by the allocation described. 1

The following theorem shows that the allocation described above also

maximizes the expected number of working min path sets which are now viewed

as k separate series systems.

2.2. Theorem. Let Sl. ... V S~ be k series systems of sizes n <<n
k" k'

respectively. Suppose that there are n= n1 + + n~ independent components

with reliabilities p,, "** pn (at time to, say) to be allocated among the

series systems. Then the expected number of working subsystems (at time t)
0

is maximized when the n 1 most reliable components are allocated to il the

nnext most reliable components are allocated to S 2$ and finally, the

n k least reliable components are allocated to Sk

Proof. Let x =xi -.. x k be as defined in the proof of Theorem 2.1. The
[,(kk x

expected number of working systems is e which is a Schur-convex function

of x. The result thus follows.|l

Note that the optimal allocation in Theorem 2.1 and Theorem 2.2 does not

depend on the actual values of the reliabilities p1. p1.n but only on

their ordering.

The above results can be extended to cover the case of multistate components

and systems. Consider a parallel-series system as described in Theorem 2.1,

except that now each component has a common state space S[O); common

choices for S are {0, 1, ... , M} and the unit interval [0,1]. Let X()

X n (t) denote the states of the components 1, ... , n and X(t) denote the

state of the system at time t, t 0. Suppose that

. . .. Term e 1 .. , Sk be k seres systems o. sizes n 1.w.. - nk
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(2.1) <(t) st (t (t) s t
n

for each t - 0. Theorem 2.3 just below describes the best allocation of com-

ponents to path sets to maximize the system state X(t) in the stochastic sense

uniformly in t.

2.3.Theorem. Consider a parallel-series system as described above with com-

ponent states satisfying (2.1). To maximize the system state stochastically,

uniformly in t, allocate components as follows: The best nI components (those

with stochastically largest states) to Pl. the next best n2 components to
1'2

" 2 ... and finally the nk worst components to P

4r Proof. Fix a time t > 0 and state c - 0. Let P.-(t) P(Xt) c),

'  < i - n. These probabilities are in increasing order in i for any fixed

' t and a in view of condition (2.1). Since the optimal allocation in Theorem

2.1 depends only on the ordering among such probabilities, the same allo-

cation maximizes the system state stochastically, uniformly in t. I

Now let us view the above min path sets as k separate multistate series

systems and call them SI, ... , Sk. For a > 0, let N (t) be the number of

.. systems functioning at a level a or higher. We have the following theorem.

41 2.4. Theorem. Let S1, ... Sk and Nc(t) be as described above. Then the

allocation described in Theorem 2.3 maximizes ENO(t) uniformly in a and t.

k

Proof. Fix a time t >- 0 and a state a 0 0. Then E(N(t)) = PIt),
i=1 jES i

where Pa(t) P(X (t) a ), j = 1 ... , n. The result now follows from Theorem

2.2 and Condition (2.1). Ii

In the results we have considered so far, all the components are tacitly

assumed to be of the same type and thus can be interchanged freely. We now



consider a situation in which we have multistate components of m different

types. Let Xi(t) st Xj(t) s... S (t) be the states of k components of

type j at time t, j = 1, ... , m, t > 0. We wish to build k multistate series

systems each containing one component of each type. Let Na(t) be the number

of systems that function at level a or higher, where a -> 0 corresponds to an

arbitrary but fixed state. We wish to maximize either E(No (t)) or P(N (t) a 1).

-. " The following theorem gives the optimal allocation.

12.5. Theorem. Let SI -3 Sk denote the k series systems. To maximize

E(N (t)) or P(Na(t) 1) uniformly in a and t, assemble the systems as

follows:

* The best components are assembled together, the next best components

are assembled together, ... , and finally the worst components are assembled

together. Thus system S. is built with components whose states are X.(t)e!  ... t) , =1. .
Proof LetP (t) =P(X (t) ->a), j= 1, .m and i= 1, k. Let

1 1

m

i>" x. 1T lo 7 ... ,=1, k.wer are m permutations of

{,.. .,k Ltx (x', ... , ') The assembly described in the hyptei

of the theorem maximizes x in the sense of majorization. Since both E(Na(t))

and P(Nc(t) 1 1) can be expressed as Schur-convex functions ofx., the result

now follows. I

* 2.6. Remark. The model discussed just above is related to a binary model

given in []

3. Applications in Reliability.

In this section we describe models to which theorems of section 2 can

be applied. In all models the state space is {0, 1, .....M.



6

3.1. Models. Consider n independent binary components. Suppose that each

component is supported b) M- 1 functioning spares that do not deteriorate

until put into use. We say that "position" or "socket" i is in state M when

the original component of type i is still functioning and none of the M- 1

spares have been used; the position is in state M- 1 when the original com-

ponent has failed and has been replaced by a spare, leaving M- 2 spares

available for replacement; ...; and finally, the position is in state 0 when

no spares are available and the component in use fails.

i thNext let T. be the life length of the j spare for component type i,J

I !- i < n, 1 < j <- m. Note that each original component in operation at

time 0 is viewed as a member of its spares kit. Assume that for each i,

T TM are independently and exponentially distributed with parameters
I i

-respectively. Let A < A < < A be a rearrangement of
) M ( - (2) CM)

j i i=1 n. Assume that X 1 for2 n > M.
hMa tMA.A .. . for Z = _, ..., M.

Note that for each pair (i,t), the distribution of X. (t) depends on the

1

order in which we have been using the spares. However, a little reflection

shows that the following order maximizes X.(t) stochastically, uniformly in t1

for each i: Start with the spare whose parameter is X Upon its failure,

replace it with the spare whose parameter is X(2)' "''' and finally use the

spare whose parameter is X). Let Xt(t) be the random state of component i

corresponding to the above order. Then clearly X*(t) <t X-(t) < ... < Xn(t)
1 2 n

for each t. The allocation described in Theorem 2.3 maximizes stochastically

the system state uniformly in t.

Thus, employing the order described above for using the spares corres-

ponding to each socket, together with the optimal allocation of Theorem 2.3

yields the best stochastic performance of a parallel-series system formed

from the n multistate components. I

I 7 ? i .il- 1 ' - " ' "
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Similarly Theorem 2.4 gives us the allocation that maximizes the expected

number of N (t) (uniformly in a and t), where Na(t) is the number of systems

functioning at a level a or higher among a total of k series systems built

from the above multistate components.

i i i i i=1

3.2. Remark. In the example given in [21, X1  X2 = ... = MX, in.

Thus, in this case, the order in which the spares are used is immaterial.

3.3. Remark. In Model 3.1, it is assumed that for each i, TI, ... , Ti have1-M

exponential distributions with parameters satisfying certain conditions. Other

distributions can be used provided the following conditions hold: 1) For each

i, the random variables T1, T' are stochastically ordered. 2) For i <j,
i i

the smallest stochastically among T1, ... T is stochastically less than the
1 Msmallst--'* " M' T is stochas-

'--: smallest among T. TJ, the second smallest among TI, ... , Ti

tically less than the second smallest among T), ... , T), ... , and finally the1 i

largest stochastically among TI, ... , TM is stochastically less than the

largest stochastically among T., T.

3.4. Model. Consider n• M binary components forming n parallel systems

SIP ..., Sn of size M each. We now view each S. as a single multistate system

of components with M+ 1 states 0, 1, ... , M, as follows: When all the M

binary components in system S. are functioning, then the socket corresponding
i

to multistate component i is in state M. When the first binary component in

system S. fails, socket i is now in state M- i, and so on, until the last

binary component in system S. fails, and socket i is now in state 0, i= 1, .. n.

Let T'= (T1, ... , T') be the random vector representing the joint lifelengths

of the M binary components in system Si, i = 1, ..., n. Suppose that

04~ 1 st 2 st st n
. . T < T s ... < T . Let X1 (t), ..., Xn(t) be the states of components

1, ... , n at time t, t -0. Then P(X(t ) >j) P(T j) > t) for each j 0,
.......

.......................
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M- 1; i= 1, ... , n, and t > 0 where T is the Z-th order statistic
i i

amon 1 ... Clearly X1 (t) X2 (t) < (t) for each t 0.

Theorem 2.3 can now be used to provide us with the optimal allocation of the

n multistate components to the min path sets of a parallel-series system of

n components. i

3.5. Model. Consider k binary components of type j, j = 1, ... , m. The

i t h component of type j has a spares kit with M- 1 functioning spares that

do not deteriorate until put into use, i= 1, ..., k, j= 1, ..., m. We view

each binary component together with its spares as a multistate component in

the same fashion as described in Model 3.1. The life length of the ith component

of the jth type as well as the life lengths of all of its spares have exponen-

tial distributions with the same parameter X?, i= 1, ... , k; j=l, ... , m. All

° the random variables considered are independent. Assume XJ> XJ > >
1 2 "k'

j= , ... m. Now let X (t) be the state of the ith component of type i at
time t, where i=l, ... , k, j=1, ... , m, t -0. Clearly X3(t) st X (t) <

st 4J(t). Theorem 2.5 can now be used in the obvious fashion to obtain the

* . optimal assembly of k series system. I

@1

.. .. ... ..... . .

-- . .. . .. . ...-.--. <-...
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