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X Optimal Allocation of Multistate Components
by
Emad El-Neweihi, Frank Proschan and Jayaram Sethuraman
ABSTRACT
A
o
- In this paper we present some results in the optimal allocation of
.
E;" multistate components to Kk series systems so that some performance charac-

ful applications in reliability theory.
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B .. N e
-

Parallel Systems' El-Neweihi, E., Proschan, F., and Sethuraman, J.,
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teristic like expected number of systems functioning at level a or higher,
the probability that at least one of the systems functions at level a or
higher, etc. is maximized. Our basic mathematical tools are majorization
and Schur functions; the methods used and some of the theorems obtained are

those of '"Optimal Allocation of Components in Parallel-Series and Series-

Report

(1984). In addition, we show how these results may be used to obtain fruit-
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1. Introduction.

The theory of multistate systems has been developed to describe more
adequately the performance of systems and their components each of which
operates at more than the usually assumed two levels of performance:
"functioning" or ''failed". (For a recent survey of the subject see [3],)

In this paper we present some results in the optimal allocation of
multistate components to k series systems so that some performance charac-
teristic like expected number of systems functioning at level a or higher,
the probability that at least one of the systems functions at level a or
higher, etc., is maximized. Our basic mathematical tools are majorization
and Schur functions; the methods used and some of the theorems obtained are
those of [2]}. 1In addition, we show how these results may be used to obtain
useful applications in reliability theory. The present paper and reference
[2] are the only papers exploiting the elegance and power of majorization and
Schur functions to solve optimal allocation problems in reliability as far

as we know.

Preliminaries.

= 2 2 )
For vector x (xl, cees xn), let Xpp72 - 2 X denote the decreasing

rearrangement of the coordinates of x. We say vector §_majorizes vector y if

Yri] for k=1, ..., n -1

=y R

k
% Xri1 2

and
n n
§ Xri1 T % Yriy

We say a function f: R® + R is Schur-convex (Schur-concave) if

f(x) 2 f(y) (£(x) < f(y)) whenever E.E Y-
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:ﬁ Examples of Schur-convex (Schur-concave) functions are Z fl(xi) and

LR n i = 1

»
; TT f2(xi)’ where fl: R + R is convex (concave) and f2: R+ R is log-convex
g i=1
B (log-concave).

:p‘

“ . . .

~ A random variable X is said to be stochastically larger than a random

,‘.\

.l

variable Y if P(X>x) 2 P(Y>x) for all real x; we write X st Y. For vectors,

\

o st . st . X .
o X Y if £(X) > f(i) for every increasing function f.

j: A multistate series system consisting of n multistate components is a
r' system whose structure function is given by 4(x) = min x., where X; represents
8 - l<is<n

7; the state of component i and takes its value in a common state space S < [0,»),
i:i i=1], ..., n. A wmultistate parallel system can be similarly defined.
hg 2. Optimum Allocation of Multistate Components.

We review a general optimal allocation result for multistate systems
recently obtained in [2]. We also present additional related results. We

then describe in some detail reliability models in which these results can be

v v Lkl

used.

1}
AP PP AP S

,

The following theorem is basic in [2]; the proof depends on the useful

tools of majorization and Schur functions. We present an outline of this

- proof; the interested reader may consult [2] for further details.

-

:! 2.1. Theorem. Let Pl,..., Pk be the disjoint min path sets of a parallel-
t;s series system having path lengths Mys eves My Without loss of generality,
fi; assume that ny S ... Sy, Suppose that there are n = My + Ny 4+ 4N
 ! independent components with reliabilities Pys -+» Py (at time t, say) to
fﬁ be allocated among the path sets. Then the reliability of the system (at
i?; time to) is maximized when the n, most reliable components are allocated

f@ to Pl, the n, next most reliable components are allocated to Pz, ..., and
,;E finally, the n least reliable components are allocated to Pk.
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Proof. Let x5 = log TT p., i=1, ..., k. The allocation described in the
jep, J
- i
hvpothesis maximizes x= (xl, ceey xk) in the sense of majorization. The reli-
k
ability function of the system, 1 - TT (1- éxl) is a Schur-convex function
i=1

of x, and hence the reliability is maximized by the allocation described.”
The following theorem shows that the allocation described above also
maximizes the expected number of working min path sets which are now viewed

as k separate series systems.
2.2. Theorem. Let Sl, N Sk be k series systems of sizes ny < ... 5 n,

respectively. Suppose that there are n=n, + ... + n

1 independent components

k
with reliabilities Pys «++» Py (at time ty» say) to be allocated among the
series systems, Then the expected number of working subsystems (at time to)
is maximized when the n; most reliable components are allocated to Sl, the
n, next most reliable components are allocated to SZ’ ..., and finally, the

n least reliable components are allocated to Sk'

Proof., Let x = (xl, cees xk) be as defined in the proof of Theorem 2.1. The

k  x.
. . i . . .
expected number of working systems is Z e which is a Schur-convex function
i=1

Note that the optimal allocation in Theorem 2,1 and Theorem 2.2 does not

of X. The result thus follows,

depend on the actual values of the reliabilities Pys =-+» Pp» but only on
their ordering.

The above results can be extended to cover the case of multistate components
and systems. Consider a parallel-series system as described in Theorem 2.1,
except that now each component has a common state space Sc[0,=); common
choices for S are {0, 1, ..., M} and the unit interval ([0,1]. Let Xl(t),

cey Xn(t) denote the states of the components 1, ..., n and X(t) denote the

state of the system at time t, t 2 0, Suppose that
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b > st st st

:',‘:\ (2.1) Xl(t) < XZ(t) < ... < Xn(t)

\ '\

‘ for each t 2 0. Theorem 2.3 just below describes the best allocation of com-
;Lj::. ponents to path sets to maximize the system state X(t) in the stochastic sense
:T:C-_: uniformly in t.

\

'_:_:_: 2,3, Theorem. Consider a parallel-series system as described above with com-
.'-_'_. ponent states satisfying (2.1). To maximize the system state stochastically,

uniformly in t, allocate components as follows: The best n, components (those
with stochastically largest states) to Pl, the next best n, components to

j-_.j_*_ P2, ..., and finally the n worst components to Pk'

" Proof. Fix a time t > 0 and state a 2 0. Let Pg(t) = P(Xi(t) 2a),

1 <i <n, These probabilities are in increasing order in i for any fixed
t and o in view of condition (2.1). Since the optimal allocation in Theorem
2.1 depends only on the ordering among such probabilities, the same allo-

cation maximizes the system state stochastically, uniformly in t. II

Delhib e~ Ot -
a . v v «
s Lo et

Now let us view the above min path sets as k separate multistate series

systems and call them Sl’ ceny Sk‘ For a 2 0, let N%(t) be the number of

:_'. N systems functioning at a level a or higher. We have the following theorem.

.’1 2.4. Theorem. Let Sl’ ee s Sk and N*(t) be as described above. Then the

allocation described in Theorem 2.3 maximizes ENa(t) uniformly in a and t.

- k
Proof. Fix a time t = 0 and a state a 2 0. Then ENY(t)) = T P?(t),

°. - i=1 jeS;

?:-;:l where P?(t) = P(Xj (t) 2 a), j=1, ..., n. The result now follows from Theorem
2.2 and Condition (2.1). |

.I In the results we have considered so far, all the components are tacitly
" assumed to be of the same type and thus can be interchanged freely. We now
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consider a situation in which we have multistate components of m different

types. Let Xi(t) st Xg(t) s - s Xﬂ(t) be the states of k components of
type j at time t, j=1, ..., m, t 2 0. We wish to build k multistate series
systems each containing one component of each type. Let Nu(t) be the number

of systems that function at level a or higher, where o 2 0 corresponds to an

arbitrary but fixed state. We wish to maximize either E(Na(t)) or P(Na(t) > 1).

The following theorem gives the optimal allocation.

2.5. Theorem. Let Sl’ ey Sk denote the k series systems. To maximize

E(N*(t)) or P(N®(t) 2 1) uniformly in o and t, assemble the systems as

follows:

The best components are assembled together, the next best components
are assembled together, ..., and finally the worst components are assembled
together. Thus system Si is built with components whose states are Xi(t),

. x’i“(t), i=1, ..., k.
Proof. Let Pg’a(t) = P(Xg(t) 2a), j=1, ..., mand i=1, ..., k. Let
x? = log 'rer’a ,i=1, ..., k, where wl, e, wm are m permutations of
{1, ..., k}. Let x = (xg,..., x:). The assembly described in the hypothesis
of the theorem maximizes 59 in the sense of majorization. Since both E(Na(t))

and P(Na(t) 2 1) can be expressed as Schur-convex functions of§é, the result

now follows. ||

2.6. Remark. The model discussed just above is related to a binary model

given in [1]

3. Applications in Reliability.

In this section we describe models to which theorems of section 2 can

be applied. 1In all models the state space is {0, 1, ..., M},

.y e - [ P A I
e . K
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3.1. Models. Consider n independent binary components. Suppose that each
component is supported by M- 1 functioning spares that do not deteriorate
until put into use. We say that "position' or 'socket' i is in state M when
the original component of type i is still functioning and none of the M- 1
spares have been used; the position is in state M- 1 when the original com-
ponent has failed and has been replaced by a spare, leaving M- 2 spares
available for replacement; ...; and finally, the position is in state 0 when
no spares are available and the component in use fails,

Next let T? be the life length of the jlCh spare for component type 1,
l1<is<sn,123<m Note that each original component in operation at

time 0 is viewed as a member of its spares kit. Assume that for each i,

-

- Ti, cees T; are independently and exponentially distributed with parameters
- i i . i i i
= Xl' ceey AM respectively. Let k(l) < A(Z) £ ... = A(M be a rearrangement of
L i i 1 2 n
1 1 = > > > =
ﬁl S TIREEE Ao 1=1, ., . Assume that A(K) 2 A(ZJ 2 ... 02 >(£Dfor £=1, ..., M,
9

Note that for each pair (i,t), the distribution of Xi(t) depends on the

]

ey

'

order in which we have been using the spares. However, a little reflection

v

shows that the following order maximizes Xi(t) stochastically, uniformly in t

i

for each i: Start with the spare whose parameter is A(l)' Upon its failure,
replace it with the spare whose parameter is A(;), ..., and finally use the

spare whose parameter is A(;). Let XI(t) be the random state of component i

corresponding to the above order. Then clearly XI(t) st X;(t) & e & X;(t)

for each t. The allocation described in Theorem 2.3 maximizes stochastically
the system state uniformly in t.

Thus, employing the order described above for using the spares corres-
ponding to each socket, together with the optimal allocation of Theorem 2.3

vields the best stochastic performance of a parallel-series system formed

from the n multistate components. ||
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Similarly Theorem 2.4 gives us the allocation that maximizes the expected
number of Nu(t) (uniformly in a and t), where N®(t) is the number of systems
functioning at a level o or higher among a total of k series systems built

from the above multistate components.

3.2. Remark. In the example given in [2], Ai:)\;= =A§i=>\i, i=1, ..., n.

Thus, in this case, the order in which the spares are used is immaterial.

3.3. Remark. In Model 3.1, it is assumed that for each i, T;, cees T; have
exponential distributions with parameters satisfying certain conditions. Other

distributions can be used provided the following conditions hold: 1) For each
i, the random variables T;, ceey T; are stochastically ordered. 2) For i<j,

the smallest stochastically among Ti, ey T;

smallest among TJ, veey T&, the second smallest among Tl, e, T; is stochas-

tically less than the second smallest among TJ, cen TJ, ..., and finally the

is stochastically less than the

largest stochastically among Ti, cees T; is stochastically less than the

largest stochastically among Tj, oo T&.

3.4. Model. Consider n * M binary components forming n parallel systems

Sl’ cee, Sn of size M each. We now view each Si as a single multistate system
of components with M+ 1 states 0, 1, ..., M, as follows: When all the M
binary components in system Si are functioning, then the socket corresponding
to multistate component i is in state M. When the first binary component in

system Si fails, socket i is now in state M-1, and so on, until the last

binary component in system Si fails, and socket i is now in state O, i=1, ...,

Let Zl= (Ti, cey T;) be the random vector representing the joint lifelengths
of the M binary components in system Si, i=1, ..., n. Suppose that
T1 %F T2 %} ce §F I? . Let Xl(t), ey Xn(t) be the states of components

1, ..., n at time t, t=20. Then P(Xi(t) >j) = P(TEM—j) > t) for each j=0,

N




adt iUl S AR AA AN S R SN A0 RAEL Rns ol A ssnh ol A e aliviaiier Calicai i At e AR el patt e e S/ dhail i Jhet Ak Shaill dh Mial dhat Jaadh Sl ad T St Sl Sdh 20 B Wr'.'v-vT
<", -

8

., M-1;i=1, ..., n, and t 2 0 where T(z) is the £-th order statistic

among Ti, - T;. Clearly Xl(t) s¢ Xz(t) s - st Xn(t) for each t 2 0.
b Theorem 2.3 can now be used to provide us with the optimal allocation of the

n multistate components to the min path sets of a parallel-series system of

n components. ”

3.5. Model. Consider k binary components of type j, j=1, ..., m. The

ith component of type j has a spares kit with M- 1 functioning spares that

do not deteriorate until put into use, i=1, ..., k, j=1, ..., m. We view

each binary component together with its spares as a multistate component in

the same fashion as described in Model 3.1. The life length of the ith component

of the jth type as well as the life lengths of all of its spares have exponen-

tial distributions with the same parameter Ai, i=1, ..., k; 3=1, ..., m. All

o the random variables considered are independent. Assume AJ 2 AJ >...22J

" 1 2 k ?
[ 4 .

: j=1, ..., m. Now let Xi(t) be the state of the ith component of type i at

time t, where i=1, ..., k, j=1, ..., m, t20. Clearly XJ(t) st XJ (t) st
_.SE Xi(t). Theorem 2.5 can now be used in the obvious fashion to obtain the

LT?_ optimal assembly of k series system. ||
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