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1. Introduction

Considera general factorial experiment with the design con-

sisting of t treatments and corresponding to the uth treatment there

t
are n (> 1) observations and E n = N. Let YuV be the observation

U=l  U
corresponding to the uth replication of the vth treatment and y be

the mean of all observations corresponding to the uth treatment. The

model for this experiment is

E y) = X1 AI + X2 0,

V(y ) = o21, (I)

Rank X, W V

where 81(vixl) is a vector of specified lower order interactions and

2(vaxl) is a vector of some or all of the higher order interactions,

XI(Nxv1 ) and X2 (Nxv2 ) are known matrices. It is known that K (very

small compared to v2) elements of 0 are nonzero and the other are

zero; however the value of K and the nonzero elements of 02 are

unknown. The problem is to search the nonzero elements of 02 and

draw inferences on them in addition to the elements of 01. Such

a model is called the search linear model and was introduced in

Srivastava (1975). Suppose Ki is an initial guess on K. Note the

three possibilities K, > K, K K and K, < k. We consider (2)

models

ECy) x , + X4 i)di , .. (I)

V(Y) - 2 1 (2)

(I)Rank[X,X 2 ] v, + K1 ,

AIR PC,;- - -A.S..
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where X(t)(NxKl) is a submatrix of X2 and _t2 (K~x) is a subvector

of P2. It can be seen from Srivastava (1975) that we in fact need

Pank [X,, x2t), x i')] = ( v + 2Kj), for all i * i'. This Implies

that N > (0 + 2K,). Tn case K, = K, one of ( models is the
P ,,

correct model. If K, > K, then 2- models out of models

Include the true model as a subnodel in the expectation forms of theII models. The methods discussed in this paper will not only identify K

nonzero parameters but also find how many of them have significant

effects and, finally, rank the significant nonegligible parameters in

the order of their influence on the fitted values. In case K1 ( K,

the rmethods will identify from K, parameters the parameters which are

significant and influential. We also propose an estimator of K in the

Section 3.

In some industrial experiments, It Is often easy to find replica-

cations (n > 1) in observations corresponding to a particular (the

uth) treatments, see Taguchi and Wu (1985). There are also situations

in industrial experiments where it is impossible to get replication in

observations for a treatment, see Daniel (1976) and Box and Meyer

(1985). The methods discussed in this paper consider both situations.

In all Taguchi design methods, the higher order interactions (2-factor

and higher order In most plans) are assumed to be zero. A few of

those higher order Interactions may be nonnegligIble, significant and

influential. The use of the search linear models may be a potential

tool In Improving upon the Taguchi design methods.

y Codes071 1 ridCrpyilt



2. Influential Nonnegligible Parameters.

Let ZM ((N-v -KI) x N) be such that Rank Z ( ) = (N-V -KJ),

S I and Z(') [X, X(')] = 0. Let Z(')(Ki x N) be such that

Rank (i) = (N-v1 ), Z)z(I)' I, Z(t)Zli)'= 0 and ZM x
I - 0.

Lz IJ
It can be seen that under the ith model In (2), the minimum variance

unbiased estimator (MVUE) of _i) is

42 V- Y2. ~ (3)

4.,.9

In fact we can write Z = P1 X2  D where D Is a nonsl:igular

(and triangular) matrix so that Z (Z )  I and P

I - X1(X1X - X1. From the ith model in (2), the MVUE for 01 Is
. ( X) ,X ) -I 1 t

" (XlX)'X'iY - (XiX)-lxx 2 "  (4)

The fitted value of y from the Ith model in (2) is

- M.,(I +'.M 5
* j~ix = X, 6 2 0-ii(5

The residuals from the ith model in (2) are

' ~ ~~_(i) : - .(i). ,zx/g )
()) (1)(M)

R _ Pu (Y-X 2 -05

- p [ I(i)X(i)' pX(i)) 1)' ]p(6)

The sum of squares due to error under the Ith ( -,...,(V}}

model in (2) Is

SSE ') = RiR i yz()'z(i) y (7)

',_

16



I The rk-sidtials under the nodel (1), when .2 -o, are

R(0 (0y . Ply. (8)

It can be seen that

Therefore, for i

SSE~o Ro) R~o SSE~~ + _1 z (10)

For 1 - ,.(2), we define

F' (()11)K

SSE /(N-v1 -K1 )

Let ybe the fitted value of the observation corresponding to the

uth (u 1,...,w) treatment under the Ith model In (2). We write the

sum of squares due to lack of fit as

wi 
2

SSL0F(1 ) - I n u~ -(M) (12)

and the sum of squares due to pure error as

SSPE- I I (Y V-2 (13)

For I 1,.,2) we define

F(i) SSL0F (I)/(v-V1--K1 ) (14)
FLOF sPINw
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STheorem1. For ! £ {I,.-.,(K2I)J, the following statements are

'e equivalent.

(a) SSE (  is a minimum,

(b) FM is a maximum,

(c) SSLOF (1) is a minimum,

(d) F(L) Is a minimum,( LOF

(e) The Euclidean distance between I and is a maximum,

(f) The square of the (sample) simple correlation coefficlent 
between

the elements of R and R(0) Is a minimum.

Proof. We have from (10) and (11) that

(K F(1) +1 SSE(O)
An K) SSE (I)

Noting that the numerator on the RHS of the above expression does not

depend on i, we get the equivalence of (a) and (b). Again,

SSE )  SSPE + SSLOFM I

and SSPE does not depend on i. Therefore (a) and (c) are equivalent.

- From (14), the equivalence of (c) and (d) is clear. From (3), (6),

(8) and (9), it follow that

y9Z (I)# iM Iv -, x( MIZ(i) M- )

-M C_(I ), M-M) o)

X' 2 P.. A i

.- R ( -) )

.Ps.
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The equivalence of (a) and (e) is now easy to see from (10) and (15).

It follows from (10) and (15) that RiR ( )= R(i)R(O). We thus

haveha eSSE (i )  R_ R( '_ i )  R(1 ' ()) 2

R(}R() R~)= RO -- i}_ - __R_- _ (16)

R RR R R ( R () (R()

= the square of the (sample) Simple correla-

tion Coefficient between R ( 1  and R (0) .

The equivalence of (a) and (f) is now clear from (16). This completes

the proof of the theorem.

Propostlon 1. Under the ith model in (2),

z =0. (17)

Proof. It follows from (3) and (5) that

z (i)y = zi i)A(i) (i)A(i).',_ 2 Z2 Y

This completes the proof.

We have

V(1(1)) 02Pj -X,, }(XMI Pj^2)_ 2 (18)

The residual in R( t  are correlated and the question may be asked

about the appropriateness in combining the elements of R( I) in SSE (M.

If we take the transformed residuals as Z R we then have

E(Z (I) R(i)) and V(Z~i)R (1)) 02 1. (19)

The sum of squares of these transformed residuals is
L R~( i ) 'z (1 ) Mi

R

r5
4q

at



Proposition 2. For i I,..., KI

SSEMi _ _ (20)

Proof. We write the RHS using (9) as

R(1)' (1),ZIRi M M R(i)'- (i)- Ri(i)i(i)i) ) M ( 2I

R zi Z1  R =R PR R Z Z R . (21)

A It can be checked that PR )  R t  By using the Proposition 1-, the

rest of the proof fs clear. This completes the proof.
2 thushe

litProposition 2 thus supports the use of SSE M ) .  Theorem I gives

,, 1various Interpretations of a search procedure, discussed in Srivastava

(L)
(1975), of selecting . as the Influential set of K, nonriegligIble

parameters.

We now denote

2 -[21 2j-% -- 2K,,
Si) M _ (i)
"2 21 '12j "''2KJ'

(iJ) MI
X2 - the matrix obtained from X2  by

0'* 
(1)

deleting the jth column of X2 "

(iJ) I x(iJ)jIC12 
I X2

(ij) (ij) (ij)' (ij)) 1  X(i' (22)

P12 - X1 2  \X 12  X12  X12

.0P (ij) (i)

12 - 2j~-,
X /(1)'1 P(IJ) Mi

-2j 12 -2j

Z (1)'
0 1 " ,-tj ,"",£K

, .,

. , .;

*1
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It can be seen that

Rank [z(i) = (N-1v - KI + 1),

- Z( I) 1,(I  Z o', (23)
°M ]

ZU J X12  0, Rank•Z KCIj
i"i
There exists a nonsingular (triangular) matrix DM such that

Z( i) = D(i)zs t ) .  (24)

From (3) and (24), we have
5: -M) (() (i),-] (i)

"2 = Zo x2 0 Y. (25)

.1 eNow

) = diag X ...(Z M. X_ ) Z .1)) _( )) (26)
0 2 -11 21 ''-2j ''j -IK -2K

is a diago:nal matrix. Thus

i(i) -=- (27)

2j (i)' (j)

L)j _x2j

Let R j i= 1,..., (V2 ), j = 1,...,K,, be the residuals obtained

from ith nodel in (2) assuming 0") = 0. Then the sum of squares
2j

due to error is

.., SSE(ij) R(iJ)'R (iJ) = (z(i)' )2 + SSE M. (28)
" ' = -- - -iJ "

We now define, for I,...,2) and j
K ,

* % . %~' .-. ,V
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_(i)'[ t~lj )  -lJ -Y

t (29)

SE~~
(N-v--Zl)

__o poslt o n 3. Fo r a fi xd n ... . aId in ,

the following statements are equivalent.

(a) SSE(1 m) is a minImum,

(b) t(2m ) is a maximum.

'S

Proof. The proof can be easily seen from (28) and (29).

In the set )2 of influential nonnegligible parameters, is the

most Influential nonnegligible parameters. The Influentlal non-

negligible parameters may or may not have significant effects on

observations.

%.:

%% " " ", . . , . . -% . - . . S. *, S . " " . % " - % - ", "- . ". " , , " %" """ .
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3. Influential Significant NonnegligIble Parrmeters

We now assume the normality in (2) and therefore for

i,...,V2), . yindependent N(X,61 + x(1) aK M 21)

0. (1)Under the null hypothesis HO: _ = 0, F hs the central F distri-

bution with (K,, N - v, - KI) d.f. and under the null hypothesis
HO: B~i)(ij)
H0 : S2j = 0, t has the central t distribution with (N - 1 - K1 )

d.f. We now present a further development of a procedure suggested in

Srivastava (1975).

Case I. If max F ()< F we then conclude that there

is no significant nonnegligible parameter. (F KNVK is the

upper a percent point of the central F distribution with

(K 1 ,N-v1 -Kl)d.f.).

! '-' Case II. Suppose for I = i I , . . , is, we have F > F , K

We denote for j = 1,... ,v2 1

a the number of I in fil... 1 for which Itj > t
•j I s 2' N-V1 -K.

Note that 0 < a. < s. We now arrange Z is in decreasing order of mag-

nitude and write a > a> a2> a( . If there are at least K,(1 ) - (2) - "' (-v2)

nonzero a 's, we select the influential significant parameters as
(j)

6 otherwise we pick the influential )s corresponding
0)ze ()') Q)

to Znzero ~ s (Note that the number of Influential parameters is

then less than K,). The parameter B(, ) is the most Influential

significant nonnegligible parameter. An estimator of the unknown K is

K = the number of nonzero .S,J = ,. 3 ' j

'I,-. , , - . - . . . - - - - - . , . " . " . " - . v . : " ' ' , . * " : , ¢ ' ' ' V ' ; ,
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4. Miscellaneous Results

4.a. Let us denote the unknown nonzero elements of 82 in (1) by

2 (Kxl) and the zero elements of S by 8 ((v -K)XI), the cor-
- c--2 -2d 2

responding columns In X matrix are X and X The unkn-own
2 2c 2d*

true expectation form of (1) is thus

E(y) = 1 +X 8c. (30)
II +- X2c7-2c-

P % The expectation form of the ith model in (2) can be written as

E~y = 0+ X(1)0 1) X(1) 0(1) (1
E1y) = X 1 + X2  -2c 2d -2d , (31)

where X ()xMY )is a submatrix of X X d (Nx(KI -Y)) isa

2C 2c' 2d I I(1',' i) 8and .(i)

submatrix of X2d' A2c (Y 1x) is a subvector of -2c and -2d

(K1 -Y )XI) is a subvector of 0 2d. Let - Is the vector

of elements In _82c which are not in a and X* is the
-22 -c 2c

8()ad(I) i h

matrix whose columns are in X2c but not In X 2c The following

result, a counterpart of the result in (10) for the population,

can be verified very easily.*-'

Proposition 4. Under (30),

'4 E(SSE( 1 ) ) = E(SSLOF ( i ) ) + 02(Nw)

= 2 x'- 8 1 ( ) 1
1- 1 i2 Z1 ) X2c-2c

F2(- K(I), (I)'(I), z(I) X*(i) R*(1) (32)

% I(N-v1 -K 1 ) + Ec XIC Z, ZI X 2  C

R u . ( 0 ) [ 0+ 8 ' ' zx
E(SSE ) [ + 2 .

AC
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4.b. The rmodel obtained from (2)

CM) )2()

% is called the pure search model (Srivastava (1976)). Tn fact,
Srivastava (1976) considered a special form of Z

4.c. The influential nonnegligible parameter may depend on noise,

i.e., a parameter may be influential under one noise but may

not be influential under another noise.

4.d. The replicated observations will surely improve the chances of

detecting the correct Influential nonnegligible parameters.

' 4.e. In presence of outliers in observations, one may combine

residuals with unequal weights, or in other words, may use

transformed residuals (see, Cook and Weisberg (1982)).

4.e.l. An example of transformed resIdualais the vector

M()R (1 ) where M(M)(hxN) Is a diagonal matrix whose uth

diagonal element is i/ Ci) with M' being the uthdiagnal lemet isl/ mLuu
V UU 'U

diagonal element of a- 2VR() .

4.e.2. Suppose the underlying design is robust against the

N:, unavailability of any single observation [see, Ghosh

(1980)] in the sense that the estimation of _1 and

is possible under (2) when any single observation is

V' unavailable. We find the predicted value of the lth

observation from the remaining (N-1) observations (i.e.,
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by deleting the Lith observation). The difference between

the uth observation and its predicted value is called the

uth predicted residual (using the Idea of cross valida-

lion). It can be verified algebraically that the vector
of predicted residuals is [M (i)]j The predicted

residual sum of squares (PRESS) from the ith model under

(2) is

PRESSM =R (j)'[M(i) R(')

In presence of outliers, one may take PRESSM as an
. alternative to SSE~ t

:7

',to

*,°-, .,.. .. +. .,:.+++-,,.+ .. + ,+++ ++
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