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1. Introduction

Consider a general faciorial experiment with the design con-

sisting of t treatments and correspoading to the uth treatment there

. are D (Z 1) observations and ; nu = N. Let Yyv be the observation
corresponding to the uth repli:;:ion of the vth treatment and ;u be
the mean of all observations corresponding to the uth treatment. The
model for this experiment {is

E(y) =X, 8, +X; By
V(y) = o%I, (1

Rank X, = v,
where B,(v,x1) {s a vector of specified lower order fnteractions and
Bo(vyx1) 1s a vector of some or all of the higher order interactions,
X,(Nxv;) and X(Nxv,) are known matrices. It is knowa that K (very
small compared to vz) elements of B, are nonzero and the other are
zero; however the value of K and the nonzero elements of B, are
unknown. The problem is to search the ponzero elements of B, and
draw inferences on them in addition to the elements of B,. Such
a model is called the search linear model and was introduced in

Srivastava (1975). Suppose K, is an initial guess on K. Note the

v
three possibilities K; > K, K; = K and K; < k. We consider (Kf)

models
E(y) = X, B, + xgi)—gi) 121““(;?)’
Y - o (2)
Rank[xj,xgi)] -y, 4Ky,
AIRF{\P«‘ e mrmamen
I i, e S
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where Xgi)(NxK‘) 1s a submatrix of X, and‘Egi)(K‘xl) is a subvector

of B,. It can be seen from Srivastava (1975) that we ia fact need
rank [X;, 3510, x{1")) = (v, + 2K,), for all 1 # 1'. This tmplies
that N> (v; + 2;). In case K; = K, one of (:f) models is the
correct model. If K, > K, then (;f:i) models out of (]‘éf) models
include the true model as a submodel in the expectation forms of the
models. The methods discussed in this paper will not only identify K
nonzero parameters but also find how many of them have siénificant
effects and, finally, rank the significant nonegligible parameters in
the order of their influence on the fitted values. In case K, <K,
the methods will identify from K, parameters the parameters which are
significant and influentfal. We also propose an estimator of K in the
Section 3.

Ia sowme industrial experiments, it is often easy to find replica-
cations (nu 2 1) ia observations corresponding to a particular (the
uth) treatments, see Taguchi and Wu (1985). There are also situations
1n industrial experiments where it is fmpossible to get replication in
observations for a treatwent, see Daniel (1976) and Box and Meyer

(1985). The methods discussed in this paper consider both situations.

In all Taguchi design methods, the higher order interactions (2-factor ’
O
a

s c.
N 3

el

e St

»

v

o

and higher order in most plans) are assumed to be zero. A few of

’I

q
<

e

those higher order interactions may be nonnegligible, significant and

i
ﬁ

influential. The use of the search linear models may be a potential

:$ ,......-o—-—.——-._.*‘
e tool in improving upon the Taguchi design methods.
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2. Influential Nonnegligible Parameters.

Let 2{1) ((N-v,-K;) x M) be such that Rank 2z{1) = (N-v,-K,),

z{P2{" 2 1 ana 2{D[x,, x{] = 0. Let z{1) (K, x N) be such that

(1)

A ,
Rank [z(i) = (N-v,), 202" g 2D g ang 2y, < 0.
It can be seen that under the ith model in (2), the minimum variance

unblased estimator (MVUE) of Qéi) is
-~ -1 .
B L (21 z(ii. (3)

v
In fact we can write Z(i) = P,xgi)n(i), where D(i) is a nonsiagular

(and triangular) matrix so that 2(1)2(1)' =1 and Py =

I - X,(XTXJ)‘IX;. From the ith model in (2), the MVUE for 8, is
B - xix My - ooxy exdDEEY (4)

The fitted value of y from the ith model {n (2) is

FO - g3 4 (D) ()

The residuals from the ith model in (2) are

5(1) -y - i(i) . P;(z-xgi)ﬁgn)
- Pl[I‘xgi)(xgi)'Plxgi))-lxgi)' Jpyy - ©
The sum of squares due to error under the ith (1 = 1....,("3))
model in (2) 1s
sspfd) . B(i)'ﬁ(i) ,.z.zgi)'zsi)z' 7
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5(0) - Zﬁ:(O) - P,y. (8)
It can be scen that
‘ P, = zfi)'zf“ » 27, (9)

Therefore, for 1 = l’°"'(:f)'

o sse(® = g0 R(O) L geptd) 4y (1)1, (10)
0%
o V2
= = 1,..0, , defi
&Ji For 1 = 1, (Kl) we define
' (1), (1)
P AR Aie"Y} ¢
g L C Y (11)

sSEXD) /(N-v, K, )
(1)

u

uth (u = 1,...,w) treatment under the ith model in (2). We write the

Let ¥y be the fitted value of the observation corresponding to the

sum of squares due to lack of fit as

w 2
1 . = _o(d) 12
SSLOF I o (yu ¥, ), (12)
u=] .
and the sum of squares due to pure error as
v nu = 42
SSPE= I I (yuv-yu) . (13)
u=] v=]
V2
For { = l,...,(K ), we define
4
(1) ssLoF{!?/(w-v, k) (16)
LOF SSPE/(N-w)
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Theorem 1. For R € {l,...,(;ﬁ)}, the following statements are

e e e

equivalent.

(a) SSE(l) is a miniwounm,

v .- x -y -
s AANANI- S ARSI

' (bv) F(z) is a maximum,
g (c) ssLoF™*? s a minioum,
<
: (2)
(d) F, ¢ 1s a minfuum,

(e) The Euclidean distance between iﬁl) and 2‘0) is a waximum,

(f) The square of the (sample) simple correlation coefficient between

(2) (o)

the elements of R and R is a minimum.
Proof. Ve have from (10) and (11) that

(o)
p(1)) 4 - SSE

Noting that the numerator on the RHS of the above expression does ol

K,

depend on 1, we get the equivalence of (a) and (b). Again,

SSE(i) = SSPE + SSLOF(i),
and SSPE does not depend on i, Therefore (a) and (c¢) are equivalent.
From (14), the equivalence of (c) and (d) is clear. From (1), (6),
(8) and (9), it follow that

ORI N NSO CR Q
0 9] OB
U ' -
- B0 p 1B (15)

- (5(1)’5(0) ) ' (E(i)_B(O))

- (72(1)fi(0))' (fifi)fi(O))'

DTN I JVR By Sy SL I S & )
PO T T DR RL et it RN s e e
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The equivalence of (a) and (e) is now easy to see from (10) and (15).

]
It follows from (10) and (15) that RUI'RIL) o g1 g(0) o rhe

have

' ' 2
SSE(i) 5(1),6(1) i (5(1).5(0))

— = = —_ T = (16)
5(0)'}2(0) B.(0)'3(0 (5(1) B(i)) (B_(O) 5(0))

the square of the (sample) Simple correla- i

tion Coefficient betwcen_g(i) and_g(o).

The equivalence of (a) and (f) is now clear from (16). This completes

the proof of the theorem.

<B§QRE§5123~1' Under the {th model in (2),
Z(izg(i) = o. a”n

Proof. 1Tt follows from (3) and (5) that

i i 1M1 i i

Ve have

' -1 '
(C IR PRI P I C0) PSS

i
The residual inlg( ) are correlated and the question may be asked

i i
about the appropriateness in combining the elements of‘gf ) in SSE( ).

1f we take the transformed residuals as Zfi)ﬁfi), we then have

B(2{VRM) = o ana v(2{PRD) . o1

(19)

The sum of squares of these transformed residuals is

R 0,

—
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Proposition 2. For i = },..., (Kf}'

Proof. We write the RHS using (9) as ﬁ

5(1)'zfi)'2§i)§(” _ ~!3(1)'1,@}1)“ 5(1)'2(1)'2(1)5“), (21) |

It can be checked that PLE(i) = 5‘1). By using the Proposition I, the

rest of the proof {s clear. This completes the proof.

,‘% Proposition 2 thus supports the use of SSE(i). Theorem 1 glves
%)
W .
‘: various interpretations of a search procedure, discussed in Srivastava
}g (1975), of selecting _@2(” as the influential set of K; nonnegligible

paraneters.

We now denote

821 ""’SZj ’.."BZKI

(1) (1) (1) (1)
X, -[x X ,...,_gZKJ,

S0 [ W (1)}
=2 '

=21 070t

x§117 = the matrix obtained from Xgi) by

i
deleting the jth colum °f.§§j)‘

1
1P - [x,, xz(”)].

. . ~1 . (22)
P39 . - (P E) T R,
(13) 1)
;) STREPT
2y 7 ’
(1)' _(131) (1)
v[(-zj P12 Xpy
(1) (1) (1) 1)
ZO .[Ell ""'Elj "“’—Z-IK}]'

R ARSI
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It can be seen that
2D
Rank (1)' =(N-v, -k +1),
\ NEORM¢EY (10,0 _ . \
-*lj _ZLU =1, le 1 ’.9 ’ (23)
(1)
(D x(ij) = 0, Rank z(i) = K, .
12 - 0 1
There exists a nonsingular (triangular) matrix Dgi) such that
z(1) - p{ (1), (24)
From (3) and (24), we have
_§§i) - (z§ (1) (i)) -1 (1) (25)
Now
(1) (1) _ () (i) (i)' (1 (1 (1)
Zy X, g (2] %Xy s-er2 5 %oy 0ot Zix Xox ) (26)
is a diagonal matrix. Thus
(i)'
gD N U (27)
F23 2 (D' (1)
=13 =2j
Let R(ij) i=1 (vz) =1 K;, be the residuals obtained
= 2 - ge ey Kl » [ ) 1’ .

from 1th model in (2) assuming Bg;) = 0. Then the sum of squares !

due to error is

sset13) o gDRUD | (5 (;) y)? + ssett), (28)
We now define, for i = 1,...,[:2) and j = 1,...,K},
1

S A . TR A S S TRy
Y PLeY ~ W . SANEANAY \ .“\:'.\‘\ '\‘.\' ” '\‘k X
( [ ' L&' f . . RN L.
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Proposition 3. For a fixed £ in {1,...,(:?)} and an m in {l,...,K‘},

the following statements are equivalent.

(a) ssgt™

is a minimum,

(b) t(lm) is a waxinum.

Proof. The proof can be easily seen from (28) and (29).
In the set 8( ) i (L)

of influeantial nonnegligible parameters, BZm is the
most influential nonnegligible parameters. The influential non-

rnegligible paraneters may or may not have significant effects on

observations.
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3. Influential Significant Nonnegligible Parameters
We now assume the normality in (2) and therefore for

N(x,8, + xs 085, Py,

1 =1, ..’(vz)’ independent

K‘l X\J\
C:? . Under the null hypothesis HO:.Qéi) =0, F(i) has the central F distri-
N
‘.;ri;f bution with (K;, N - v, - K;) d.f. and under the null hypothesis
ot
nt O NN L) )
HO' sz =0, t has the central t distribution with (N - vl - Kl)

d.f. Ve now present a further development of a procedure suggested in

v,
i
.

'lz
. 3
-

Uii,
E&{- Srivastava (1975).
N
= Case 1 If F(i) < F we then conclude that there
. max . en cof ¢ 2

is no significant nonnegligible parameter. (FQ;KI,N—V)‘K‘ is the

»
Vs
'

upper a percent point of the central F distribution with

2
Phliy e
ST

(Ky K-v,-K,)d.£.).

(1)

Case 1I. Suppose for i = Liseeesly, we have F > FQ;K‘,“—vJ'Kl’
We denote for j = I,e00,vp,

3, = the number of i in {1 _,...,1 ]} for which 't I >t
j 1 s ij ‘_21” N‘vl’Kl *

Note that 0 ¢ 3j € s. Ve now arrange 9.'s in decreasing order of mag-

j
(1) 2 %2y 2 o 2 3y

nonzero a(j)'s, we select the influential significant parameters as

nitude and write 2 If there are at least K1

B(l)""’B(Kl)’ otherwise we pick the influential B(j)'s corresponding

. * » 3
) : IR AL .
P S R LR
e W . 3
\ P T o
LI N L

to nonzero B(j)'s {Note that the number of Influential parameters is
:i} thea less than K;). The parameter 8(1) is the most influential
e
:ﬁ% significant nonnegligible parameter. An estimator of the uanknown K is
e ~
.f K = the number of noazero aj'S,j = l,...,vz.

/ " I -~ . . L L T L ) "R TN . ., .’.-,_-“ ~‘_‘.._ '-'.'~.:’},.J'{-‘\
W T N T e AT T R T e ™ R DA, SRR P _-)__. o _ﬂ-‘.‘.{‘_‘ IR AN CETNEION . 5 ,
28 AN A EART M & T e O e MN-.Q.\:-}&;:-.:;:M,:.:&::.; NI AP I R IR ST W I I I8 SEN RS S Y
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4, Miscellaneous Results

AT X
5')’.'- RN AP

4.a. Let us denote the unknown nonzero elements of By 1in (1) by

‘ B c (Xx1) and the zero elements of B by EZd((vz-K)Xl), the cor-

% ‘ L 2
E&i responding columns in Xz matrix are ch and x2d' The unknown
FY

true expectation form of (1) is thus

[ = + . 30)
E::}: E(D = X8, + X, 8o (
o
ﬁ;ﬁ The expectation form of the ith model in (2) can be written as
2
_ (1), (1) (1) _(4)
:\ﬁ E(Y) = X8, + X) "By *+ X9 Bog™s (31)
ke .
N . (i), (1) ,,, _
v where ch (hxyi) is a submatrix of ch, XZG (hx(Kl Yi)) is a
(1) . (1)
submatrix of X2d, §2c (YiXI) is a subvector of EZc and ﬁZd
((KI-Yi)X!) is a subvector of §2d' Let §3£i) is the vector
of elements in B which are not in B(i) and X*(i) is the
—2¢ —2c 2c

2 ;c « The following
result, a counterpart of the result in (10) for the population,

matrix whose columns are in X c but not in X 1)

can be verified very easily.

Proposition 4. Under (30),

(i)) (i))

+ o2(N-w)

v e L)' (1)
KD+ B3 %% B %acBye

2, (1) ()" (1) (1) *(i) *(1) (32)
=9 (h_vl—xl) + Eic ch z1 zl x2c ~2¢

E( SSE = E(SSLOF

2
o (N vl

(1)*, (1),

(0)) 2

= E(SSE

- 142 N
[o K, + 85 X).2

ZCEZC] *

-y . S AW O 0
FILIC, T TAT AR VAL YT s SRS BTN Y
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4.b. The vodel obtained from (2)
o £02y) - XOADLD,

) = 021,

W2y

1s called the pure scarch model (Srivastava (1976). In fact,

Srivastava (1976) considered a special form of Z(i).

4.c. The influential nonnegligible parameter may depend on noise,
i.e., a parameter may be influential under one noise but may
not be influential under another noise.

4.d. The replicated observations will surely improve the chances of
detecting the correct influential nonnegligible paranmeters.

4.e. In presence of outliers in observations, one may combine .
residuals with unequal weights, or in other words, may use
transformed residuals (see, Cook and Weisberg.(1982)).

4.e.l. An example of transformed residuals is the vector

M(iag(i) where M(i)(NxN) is a diagonal matrix whose uth

4 N\
diagonal element is/ 1/ m(i)’ with mﬁt) being the uth

\ uu

diagonal element of O’ZV(E(i)).

4.e.2. Suppose the underlying design 1s robust agaiast the
unavailability of any single observation [see, Ghosh

(1980)] in the sense that the estimation of B; and féi)

is possible under (2) when any single observation 1s

unavailable. We find the predicted value of the th

observation from the rvemainiang (N-1) observations (i.e.,

e s e
AT A AT 2 M
Su g v e e

- PR L X VU S S P T S
PR AL S ARy

O R e )
F\I,Q' ‘w.*'

CRRT RN

et et -.' (A
SRR }.f At
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AN R

b
L4 8

4

by deleting the Uth observation). The difference between

a8 b .'
"n‘../

P A

the uth observation and its predicted value is called the

uth predicted residual (using the fdea of cross valida-

L L
%

tion). It can be verified algebraically that the vector

- S
h 3
a
)
P

"
5%

2
of predicted residuals is [H(i)] E(i). The predicted

residual sum of squares (PRESS) from the ith model under

(2) is

“':.‘l,‘r'
2o R g

L'
F)

-
)

' 4
press(1) 315(1) [M(i)] El.(i)

i

In presence of outliers, one may take PRESS(i) as an

a R

20

(1)

alternative to SSE .

T,
’ 27
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