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Easily-Stated But Hard Statistical Problems 

Myles Hollander1 

The Florida State University 

1.     INTRODUCTION 

This paper was written in response to an invitation to deliver a non- 

technical  talk at the 1986 Annual Statistical Meetings.    Dr.  Robert L.  Mason, 

the session organizer, charged the speakers with encouraging "interest in 

statistics among non-statisticians."      I have chosen to describe three problems 

of current research interest.    The problems have the feature that they can be 

stated in a relatively easy fashion.    The solutions however are difficult. 

References to partial solutions are given; all three problems have aspects that 

remain unsolved and are currently under study.    The problem of Section 2 deals 

with survivorship data and concerns estimation of average remaining life. 

Section 3 considers a problem that pertains to assessing the degree of similarity 

between species'   presence or absence on islands.    Section 4 presents a problem 

in geometrical probability. 

To conform to the spirit of the session,  I have chosen to describe the 

problems in words,  de-emphasizing symbols and mathematics and aiming for the 

non-statistician. 

2.     HOW MUCH TIME IS  LEFT? 

Table 1 gives estimated values of the average remaining lifetime for the 

female population of the United States corresponding to the 1969- 1971 era. 

For example,  the entry 56,59 corresponding to the age interval  20- 21 is the 

teebr.lcTl rcpo-1 h >r> hcoa revip*od and i; 
Research supported by the Air Force Office oT^Ä^lfie-^söiÄihf twdfeW-AFR 190-12. 
Grant AFOSR F49620-85-C-0007 to Florida StaÄl:lfcßW»Wi>ly^•', uriimited. 
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remaining number of years of life a female may expect to live on the average as 

she celebrates her twentieth birthday. 

Table 1.    Estimated average remaining lifetimes for females. 
United States,  1967-1971. 

Age Interval A\'crage Number of 
Years of Life 
Remaining at Begin- 
ning of Age Interval 

Age Interval Average Number of 
Years of Life 
Remaining at Begin- 
ning of Age Interval 

Days 

0-1 
1-7 
7-28 
28-365 

Years 

0-1 
1-2 
2-3 
3-4 
4-5 

5-6 
6-7 
7-8 
8-9 
9-10 

10-11 
11-12 
12-13 
13-14 
14-15 

15-16 
16-17 
17-18 
18-19 
19-20 

20-21 
21-22 
22-23 
23-24 
24-25 

74.64 
75.21 
75.50 
75.54 

74.64 
74.97 
74.05 
73.11 
72.16 

71.19 
70.22 
69.25 
68.27 
67.29 

66.31 
65.33 
64.35 
63.36 
62.38 

61.41 
60.44 
59.47 
58.51 
57.55 

56.59 
55.63 
54.67 
53.71 
52.75 

Years 

25-26 
26-27 
27-28 
28-29 
29-30 

30-31 
31-32 
32-33 
33-34 
34-35 

35-36 
36-37 
37-38 
38-39 
39-40 

40-41 
41-42 
42-43 
43-44 
44-45 

45-46 
46-47 
47-48 
48-49 
49-50 

50-51 
51-52 
52-53 
53-54 
54-55 

51.80 
50.84 
49.88 
48.92 
47.97 

47.01 
46.06 
45.11 
44.16 
43.22 

42.28 
41.34 
40.41 
39.48 
38.56 

37.64 
36.73 
35.82 
34.91 
34.02 

33.13 
32.24 
31.37 
30.49 
29.63 

28.77 
27.92 
27.08 
26.24 
25.41 



Table  1 (continued). 

Age  Interval 1                                                1 |        Average Number of         \ Age Interval       ! Average Number of 
!j        Years of Life                | Years of Life 

Remaining at Begin- i Remaining at Begin- 
ning of Age Interval    j ning of Age Interval 

Years Years 

55-56 24.59 85-86 5.63 
56-57 23.77 86-87 5.28 
57-58 I                       22.97 87-88 4.96 
58-59 I                       22.17 88-89 4.67 
59-60 !                        21.38 89-90 4.40 

60-61 20.60 90-91 4.14 
61-62 |                       19.83 91-92 3.90 
62-63 j                       19.06 92-93 3.69 
63-64 18.31 93-94 3.50 
64-65 |                       17.56 94-95 3.33 

65-66 j                       16.83 95-96 3.18 
66-67 j                       16.11 96-97                1 3.06 
67-68 15.40 97-98 2.95 
68-69 j                       14.70 98-99                | 2.85 
69-70 14.02 99-100 2.77 

70-71              | 13.35 <         100-101             i 2.69 
71-72 12.70 101-102 2.62 
72-73 12.06 |         102-103 2.56 
73-74 11.44 103-104 2.51 
74-75             [ 10.84 104-105 2.46 

75-76             * 10.26 105-106 2.42 
76-77             f 9.70 106-107 2.38 
77-78 9.16 107-108 2.34 
78-79            I 8.64 108-109 2.30 
79-80 

80-81             ji 

8.15 109-110 2.27 

7.68 
81-82             1! 7.22 
82-83 6.80 
83-84 6.39 
84-85 6.00 



Insurance companies use estimates of average remaining lifetimes to deter- 

mine the premium to be  charged corresponding to the age of a new purchaser of 

life insurance.    Actually,  companies base their rates on much more detailed 

information about the individual.    Not only would age and sex be relevant, but 

also other variables including occupation, health history, marital status, and 

so on.    Other groups interested in average remaining life include pension 

planners, governmental planners,  industrial market specialists, economists, 

and a variety of other analysts. 

How do statisticians derive estimates of the average remaining lifetime? 

To illustrate a standard method, we use the following data of Bjerkedal   (1960). 

These data have also been analyzed by Hall  and Wellner (1981).    Bjerkedal 

studied the life lengths of guinea pigs after injection with different amounts 

of tubercle bacilli.    Guinea pigs are known  to have a high susceptibility to 

human tuberculosis, and that is one reason for choosing this species.    Table 2 

gives estimated average remaining lifetimes  for study "M" in which animals in 

a single cage are under the same regimen.    The regimen number is the common log 

of the number of bacillary units in 0.5 ml of the challenge solution.    Here we 

focus on regimen 5.5. 

Table 2.    Estimated average remaining life in days at the unique 
times of death for the 72 guinea pigs under regimen 5.5. 

Estimated Average 
Number of Deaths Time of Death Remaining Life 

0 0 141.85* 
43 100.24 
45 99.64 
53 92.97 
56 92.66 

57 93.05 
58 93.46 
66 86.80 
67 87.16 
73 82.47 



Table 2 (continued). 

Number of Deaths 
Estimated Average 

Time of Death Remaining Life 

74 82.80 
79 79.10 
80 80.79 
81 84.15 
82 84.69 

83 86.90 
84 87.59 
88 85.26 
89 85.98 
91 87.55 

92 90.40 
97 87.34 
99 89.40 

100 92.83 
101 94.18 

102 100.94 
103 102.80 
104 104.79 
107 104.88 
108 107.13 

109 109.55 
113 109.07 
114 111.79 
118 111.64 
121 112.67 

123 114.92 
126 116.40 
128 119.17 
137 114.96 
138 119.14 

139 123.76 
144 124.70 

.    145 130.21 
147 135.33 
156 133.76 

162 135.75 
174 132.00 
178 137.14 
179 146.62 
184 153.42 

191 159.73 
198 168.00 
211 172.22 
214 190.38 
243 184.43 



Table 2.   (continued) 

Number of Deaths 
Estimated Average 

Time of Death Remaining Life 

249 208.17 
329 153.80 
380 128.50 
403 140.67 
511 49.00 

522 76.00 
598 0.00 

*A1 though 0 is not a time of death, we have included the estimated mean residual 
life at time 0. 

To illustrate how the values in column 3 of Table 2 are computed,  consider 

the specific time of death 403.    The remaining lifetimes of the three guinea 

pigs still alive right after the death at time 403 are 511-403= 108,  522-403=119 

and 598- 403= 195.    Thus the estimated average remair ing life of a hypothetical 

guinea pig who has survived regimen 5.5 for 403 days is 

108 ♦ 119* 195        ...  ,_ 
     =   140.0/ . 

3 

Similarly the estimated remaining life of a hypothetical guinea pig who has 

survived regimen 5.5 for 511 days is 

(522-511)  ♦  (598-511) 
     =  49 . 

2 

We can use the sample of 72 lifetimes to estimate average remaining life 

at any time   t,   not just at those times corresponding to times of death in the 

sample.    For example, at time 440, the estimated average remaining life would 

be 

(511-440)   ♦  (522-440)  +  (598-440) 
    = iU5.o/ . 

3 

For all tiroes greater than 598  (the time of death of the  longest surviving 

guinea pig in the sample), the estimated average remaining life is taken to be 0. 



Note that the estimated values of column 3 tend to decrease up to time 

90 days, and then tend to increase up to about time 249, :md then begin to 

decrease again. Even before conducting this experiment, it is not unreasonable 

to conjecture that the injection of tubercle bacilli would cause an adverse 

stage of aging where average remaining life decreases and then after the 

hardier guinea pigs have survived this adverse stage, the guinea pigs' natural 

systems recoup to yield a beneficial stage where (for a while) average remaining 

life increases. 

Keep in mind that the Table 2, column 3 values computed from the sample of 

72 guinea pigs are estimates  of the true average remaining lifetimes  of a 

hypothetical population of guinea pigs that could be subjected to regimen 5.5. 

This raises two related questions. 

A. How can the sample be used to "test" whether there is a trend 

change in the true average remaining life? 

B. Suppose it is known a -priori  that there is a change in trend (either 

a decreasing trend changing to an increasing trend or an increasing 

trend changing to a decreasing trend) in the true average remaining life, 

How can that prior information be utilized to yield better estimates of 

the average remaining lifetimes? 

There are many situations where the type of prior information mentioned 

in B above would be available.  They include: 

(i) Length of time employees stay with certain companies:    An 

employee with a company for four years has more time and 

career invested in the company than an employee of only two 

months. The average remaining life of a four-year employee 

is likely to be longer than the average remaining life of a 

two-month employee. After this initial increasing trend (this 

is called "inertia" by social scientists), the processes of 

aging and retirement yield a decreasing period. 



(ii)    Length of wars:    In the initial stages as negotiations 

deteriorate and conflict escalates, we expect the war 

to be  longer as time  goes by.    Eventually, a decreasing 

trend will be applicable as resources and lives  are expended. 

(iii)    Life of certain television shows:    Many shows will initially 

be cancelled.    The longer a show   lasts  the longer we expect 

it to continue.    After this  increasing period of average 

remaining   life,     it is reasonable to postulate a decreasing 

trend for the waning period. 

(iv)    Life  lengths of humans:    High infant mortality explains the 

early interval of increasing average remaining life.     (Note 

the  first four rows  of Table 1.)     Deterioration and aging 

explain the  later decreasing stage. 

Guess, Hollander,  and Proschan (1986)  provide methods pertaining to 

Question A.    Question B is harder, still open, and leads  to our first easily- 

stated but hard problem, namely, 

I. Determine "optimal" estimates of true average remaining 

lifetimes when it is known that these lifetimes exhibit 

a reversal of trend. 

2.    SIMILARITY OF SPECIES'  PRESENCE ON ISLANDS 

Table 3 contains presence-absence data of the six species of ground 

finches in genus Geospiza on 23 Galapagos islands.    The data are taken from 

Meeter (1986) who cites D. Simberloff (personal communication).    Simberloff 

compiled the data from Abbott,  Abbott, and Grant (1977), Grant (personal 

communication)  and Harris (1973) . 
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In Table 3,  a "1" entry denotes presence,  a "0" entry denotes absence. 

For example,  the "1" in the first row, second column of the table means difficilis 

is present on Wolf islano whereas the "0" in the second row, second coluiin sig- 

nifies conirostris is not present on Wolf.    One method of assessing the simi- 

larity of two species is to count the number of "1 - 1" matches between their 

respective rows in Table 3,  and then determine if this number is significantly 

higher (or lower)   than would be dictated by chance.    As we shall soon see,  the 

calculation of the relevant chance depends on the probability model used.    A 

significantly low number of "1 - 1" matches between two species could indicate 

species competition, whereas a significantly high number could indicate that 

the colonization patterns of these two species are related (Simberloff and 

Connor,  1979). 

REMARK 1:      Simberloff and Connor (1981) and others also point out, however, 

that low numbers of "1 - 1" matches may be a consequence of different species 

having different habitats — rather than a consequence of direct competition—and 

high numbers could signify the presence of habitats favoring both species — rather 

than mutualism. 

Consider the comparison between difficilis and foliginosa.    There are three 

"1 - 1" matches in this comparison as Table 3 shows that both species are found 

on Pinta,  San Salvador,  and Santa Cruz islands.     Is this value of three matches 

significantly small?    That is, what is the probability of having three or less 

matches  if the entries  in Table 3 are filled at random?    One must be precise 

about the term "at random" because the probability in question depends on the 

model  chosen. 

Meeter  (1986)   shows how to calculate probabilities for the number of 

matches  in various models including the model where the row totals corresponding 

to the two species  under consideration are  fixed.        Fixing the row totals 

10 



corresponds to conditioning on the relative rarity of the species.    In other 

words, after allowing for the fact that some species are more "successful" than 

others, is there any evidence that they are "avoiding  coexistence"?     Note 

from Table 3 that the row totals for difficilis and foliginosa are 6 and 19, 

respectively.    Meeter points out that row matches are more likely in rows 

having higher row totals and hence probabilistic models should reflect this. 

One model he considers which does reflect this property is the model in which 

the rows totals are fixed at 6 and 19.    In this model, methods of Mosimann 

(1968)  can be used to obtain 

Probability of exactly 3 matches between difficilis and foliginosa 

17] 16j 20x17 CMJI) ^ 
l'23> 8,855 

,0384 . 

19 

(The symbol^),  for example, denotes the number of different choices of 3 

distinct objects chosen from among 6 distinct objects.    It is one of a general 

class of such symbols more formally called binomial coefficients.)    The proba- 

bility is obtained as follows.    The elements in the row corresponding to 

difficilis are regarded as fixed.    The number of ways to get exactly three 

matches is equal to the "number of ways     ( , )    of placing 3 ones in the foliginosa 

row among the 6 columns  containing ones in the difficilis row"    multiplied by 

the "number of ways    (1ft J    of placing the 19 - 3 = 16 remaining ones in the 

remaining 23 - 6= 17 columns."    To find the desired probability we divide by 

[ ^p ],  the  total number of ways of putting 19 ones in the foliginosa row among 

23 available positions.    Readers familar with probability calculations will 

recognize Display (1)  as a probability obtained from the hypergeometric distri- 

bution.    Similarly, 

11 



Probability of exactly 2 matches between difficilis and foliginosa 

=    -i ii-    =    m± =   .0016 . 
(25} 8,855 

The reader is asked to convince him/herself that, given 19 ones in the foli- 

ginosa row and 6 ones in the difficilis row, the probability of exactly 1 

match in the 23 columns is 0 and the probability of exactly no matches is also 

0. The probability of having three or less matches is then .0384+ .0016* .040, 

obtained by adding the values given by Displays (1) and (2). 

Meeter considers other models. He notes that the probability model might 

also be selected to reflect the fact that matches between two rows are more 

likely in columns with high totals. Compare San Salvador with La Tortuga! Thus 

Meeter considers the model where column totals are fixed. Fixing the column 

totals can be viewed as conditioning on the species richness of islands. He 

shows that the chance of three or less matches between difficilis and foliginosa 

when the column totals are fixed (at those column totals given in Table 3) is 

.156. Both the "row totals fixed" and the "column totals fixed" models seem 

to support evidence of competition between difficilis and foliginosa, with the 

"row totals fixed" model showing stronger support.  (But recall Remark 1!) 

Another model considered by Meeter is the one in which all column totals 

and two row totals are fixed. For this model, Meeter calculates the probability 

of three or less matches between difficilis and foliginosa to be .042. Meeter 

also mentions the model in which all column totals and all row totals are 

fixed. This model is being studied by A. Zaman and D. Simberloff, and is the 

basis for our second easily-stated but hard problem. 

II. Determine the probability distribution of the number 

of "I - 1" matches between two rows when all column 

totals and row totals are fixed. 

12 



Except for small tables (i.e., when the number of rows and columns is small). 

Problem II is unsolved. 

For more information about the pairwise comparisons of species in Table 3, 

see Meeter (1986). Meeter's results are described in terms of an ecological 

problem, but, as he points out, his results are applicable in a variety of 

situations in which "individuals" are scored as to the presence or absence of 

certain "characteristics", and it is of interest to assess the degree of 

similarity between pairs of individuals. 

3. THE CHANCE OF COVERING A CIRCLE BY RANDOMLY PLACED ARCS 

We begin with a simplified version of the problem. Consider a circle whose 

circumference is of length 1. Consider also four arcs, with each arc of length 

.35. The four arcs are thrown independently and uniformly on the civavanferenae. 

The proceeding italicized phrase can be interpreted as follows. Imagine a dial 

which is flicked and comes to rest at some point on the circumference. Put the 

midpoint of the first arc at the point where the dial stops. Now spin the dial 

again. Use enough energy so that it is reasonable to assume that the dial's 

starting point does not affect its ending point, and place the midpoint of the 

second arc at the position on the circumference where the dial comes to rest. 

Repeat this process two more times, thus placing all four arcs on the circum- 

ference. What is the chance that the circumference is completely covered by 

these four arcs? 

The previous question has been answered for the case of any number of equal- 

length arcs by Stevens (1939) who gave an explicit formula for calculating the 

desired chance. For simplicity here we took the number of arcs to be four and 

the common length to be .35. In this case, Stevens' formula shows the chance 

is .0635. The interpretation of this probability is as follows. Suppose the 

process consisting of four spins—with an arc placement after each spin — was 

13 



repeated a large number of times. In about 6 percent of the replications of 

the process, the circumference would be completely covered and in about 94 

percent the circumference would not be covered. The non-statistician reader 

will naturally ask: What do you mean by "a large number of times?" Do you 

mean 100 replications, or 1,000 or 10,000, or just how many replications? 

Probability theory provides a precise answer. Here we will crudely state that 

roughly speaking, the greater number of replications, the more likely it is 

that the percentage of times the circumference will be completely covered by 

the four arcs is close to 6,35%. 

We started with the case where the arcs had the same length. An explicit 

solution for the case of general number of arcs and general arc lengths is at 

present unavailable. Huffer and Shepp (1987) [hereafter denoted as HSC1987)] 

state "It seems hopeless to give a simple formula for the case of general arc 

lengths." Thus our third easily-stated but hard statistical problem is: 

III. For the case of general number of arcs and general arc 

lengths, provide a simple formula for the probability of 

complete coverage. 

Although HSC1987") do not solve Problem III, they present results which yie 

inequalities concerning the probability of complete coverage. To give an indi- 

cation of the nature of the HS(1987) results, we return for simplicity to the 

case of four arcs. We initially discussed the case where the four arcs were 

each of length .35; let us call that configuration 1. To illustrate the 

Huffer-Shepp results we will introduce two other arc configurations, where the 

arc lengths are not equal, but where the total length of the four arcs is 1.4 

as it is for the equal-lengths configuration 1. 

The concept of majorization is critical to the HS(1987) development. Fo 

two configurations of four arcs each, configuration 2 is said to majorize cor 

figuration 1 if the following four conditions hold: 

14 



(i) The length of the longest arc in configuration 2 is greater than 

or equal to the length of the longest arc in configuration 1. 

(ii) The sum of the lengths of the longest and second-longest arcs 

in configuration 2 is greater than or equal to the sum of the 

lengths of the longest and second-longest arcs in configuration 1. 

(iii) The sum of the lengths of the three longest arcs in configuration 

2 is greater than or equal to the sum of the lengths of the three 

longest arcs in configuration 1. 

(iv) The sum of the lengths of the four arcs in configuration 2 is 

equal to the sum of the lengths of the four arcs in configura- 

tion 1. 

Now consider configurations 1, 2, and 3 below. 

Configuration 1: .35, .35, .35, .35 

Configuration 2: .40, .35, .35, .30 

Configuration 3:  .40, .38, .32, .30 

From the definition of majorization, one can check that (a) configuration 2 

majorizes configuration 1, and also (b) configuration 3 majorizes configura- 

tion 2. 

HS(1987) show that the probability of complete coverage preserves the 

"partial ordering of majorization." This means that if a configuration of 

arcs, say configuration A, majorizes another configuration of arcs, say con- 

figuration B, then the probability of complete coverage using the configuration- 

A arcs is greater than or equal to the probability of complete coverage using 

the configuration-B arcs. For our little example with three configurations, 

the results of HS(1987) show that the probability of complete coverage using 

configuration 3 is greater than or equal to the probability of complete 
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coverage using configuration 2 which in turn is greater than or equal to the 

probability of complete coverage using configuration 1,    Recall the latter 

probability is known to be  .0635. 

More generally,  the results of HS(1987) provide many inequalities.    For 

configurations ordered by majorization, HS(1987) yields a comparison of the 

respective coverage probabilities without necessitating actual calculation of 

the probabilities.    Furthermore, since every configuration of n arcs having a 

specified total arc length L,  say, majorizes the configuration of n arcs with 

equal arc lengths having total  length L, HS(1987)  yields,  for any configura- 

tion, a lower bound to the probability of complete coverage.    The lower bound 

is obtained from Stevens'  formula. 
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