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Abstract

Bayes estimators are derived by means of the Dirichlet process

hyperprior approach for general empirical Bayes problems. For any

sample size, these estimators are expressed concisely as ratios of

two multidimensional integrals. A numerical example on Poisson

sampling is given.
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1 . Introduction

In the general setting of empirical Bayes problems, it is assumed that

the unobservable parameters {e i  , i I, ..., n , are taken indepen-

dently from an unknown distribution G , and that associated with each

ei , a random variable -x. is observed with known probability density

f(xile i) with respect to some c-finite measure v on the real line. It

is also assumed, given the {fe } , the observations xi , = 1, ... , n

are independent. We intend to make inferences about {e i or G from

the observations.

Several approaches to estimating G or {ei} are available. One

approach is to use the observed data to estimate the mixing distribu-

tion G and use this estimated G as a Bayes prior. To estimate this

prior, most authors assume a parametric representation of the prior with

unknown parameters estimated by the data. There is another approach to

empirical Bayes problems, namely the Dirichlet process hyperprior approach,

where the {ei} are taken independently from a random distribution G

whicn is chosen from tne Ferguson's Dirichlet process (1973) indexed by

a finite measure D . The measure cc usually represents the statisti-

cian's prior belief about G The Bayes estimator of G or {ei}

can be derived. As pointed out by Anderson and Louis (1979), this

approach is potentially superior, since the construction of estimators

does not depend on a specific form for the prior. Another desirable

feature is pointed out by Berger (1980b, p. 83): the statistician can

combine subjective information a and past data to estimate G and

{ei} , unlike the usual empirical bayes approach, where the unknown

prior parameters are completely estimated by the data.

1 ,4-/
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This Dirichlet hyperprior approach was first proposed by Antoniak

(1974) and subsequently studied by Berry and Christensen (1979),

Anderson and Louis (1979). The usefulness of this approach had been

limited in the past by-the following two deficiencies. 1. No concise

expressions for the proper Bayes estimators had been given for n > 3

due to the complex bookkeeping and labor involved in deriving them.

2. No satisfactory numerical methods had been developed in evaluating

those estimators. With the work of Lo (1978), Bayes estimators can be

derived for any n . The purpose of this note is to exhibit Bayes

estimators of { i} for arbitrary n . It can be seen from equation

S(1) of Section 2 that each of the Bayes estimators can be written as

a ratio of n-dimensional integrals. These integrals are hard to

evaluate explicitly due to the high dimensionality and the fact that

the integrands are peaked in a small region of the parameter space. In

a recent article, Kuo (1985) proposes to circumvent this problem by

1. decomposing each of the multidimensional integrals into a weighted

average of products of one-dimensional integrals and 2. approximating

each of the weighted averages by an importance sampling Monte Carlo

method. It is easy to implement this method. Moreover, the Monte

Carlo estimator has been demonstrated to work well in terms of effi-

ciency and precision. For the detailed method, statistical analysis

- and numerical examples, see Kuo (1935). A numerical example on Poisson

sampling using the method of Kuo is given here.

See Robbins (1955) for the pioneer development of empirical Bayes

methods of estimation. See Susarla (1982) for an expository article

on empirical Bayes theory which also includes some of the recent

developments in this area.

9'
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2. Derivation of Bayes Estimators

To derive the Bayes rule of {D.1 , let us make the following

assumptions:

i. Let ex be a finite measure with finite second moment on a

measurable space IR 8) with IR the real line and B the a-field

of Borel sets. An unknown distribution G is chosen from a Dirichlet

process with parameter a

ii. Given G , tne unobservable el . n  are chosen indepen-

dently from G

@1 iii. Given G and e1 en) 'the observations
n

x (xI, ..., x ) have density f(x I E) r, fi (xi ei) idependent
-~1 I1

of G , where for all i = 1, ... , n , f. is a density dominated by
1

v and fi(x I e) is measurable in C for all x

iv. The loss function is given by

L(e, a) I (e - aS- i=l

REMARK 1. Note that in Assumption iii, we allow different f. in the
1

model. This has the advantage of incorporating individual characteris-

tics of the xi's in the model, such as combining normal and gamma

components (see Berger, 1980a), or treating xi with different

@1 variances, etc.

REMARK 2. Note that given G , the x. are independently distributed

-1

4 L=according to Jfi(xile)G(d ) This is essentially the random density

considered by Lo. The main difference is that his objective is to

estimate the mixing distribution G and various functions of G ; our

objective is to estimate the ei s

• :_. / , - .. .. , .- . . . . - , . . . .. . - -. . . . .
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REMARK 3. In addition to Lo's work, nonparametric density estimation

has also been studied by Ferguson (1983). The Monte Carlo method

described in Section 1 was adapted by Ferguson to compute the density

estimator. The feasi.ility of this method and error reduction tech-

niques were further illustrated.

REMARK 4. Empirical Bayes estimation (as opposed to Bayes estimation)

of the density function f(xfG) = ff(xJe)G(de) described in Remark 2

has also been studied by Ghorai and Susarla (1982).

Before proving the main result, we first define some notation and

state a lernma. Let a and G be defined as in Assumption i. Then

P denotes the probability measure on (R,A) yielding the random

distribution G , where 0 is the space of distribution functions on

- (IR,B), and A is the o-field of Borel sets in the Levy metric. The

following lemma is from Lo (1978, 1984).

LEMA 1. Let I be chosen from G . If g(el,G) is a quasi-integrable

function with respect to the joint probability G(d5,)P (dG) defined on

(IR x , BxA), then

.(de I )
f f g(eG)G(del)P (dG) f f g(e1,G)P (dG)
B 1R R el

We are now ready to exhibit the Bayes estimator 6

03
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THEOREM 1. Given the Assumptions i through iv, the Bayes estimator is
""given by e e n where'" "' where

"] / n/ o = f (xio) 6e (dzi^R "e "" 1 i i l T1 j= J
;''- k  ~ klxl' . , xn)  -in, 1

f. .. n1 fi(xili) i [ + i-l (di)

k k A 1 1R ( )) i 1+ j ) j

for all k:1 ... , n.

Proof: Let h(x,e) denote the joint density of x and e, h(x)

r denote the marginal density of x , and PG(e) denote the joint

distribution of 6's given G Let P , (H be defined as in Lemma 1.

Then the Bayes estimator under squared error loss for ek  is given by

= E(Sk Ix) , where

f ek h(x,e)d.
":-. ( k!x)

U(&kx) = h(x)

'IR n 0k f(x-1)zG(d)P (dG)

%" R n

rn

T. -r T..r fi(xiIei)G(d--)J flRkfk(Xkl'k)G(dk )PC(dG)[.: .. ~i#k IR Pef( f

n0] f 1 fi(xi ei Gdei P,,(d
• i=I IR

i-I
n nl 1 6

.. k  Tj, fi(xi i ) , 11R" %n = i=l i= I - 1-

.-., i( ) f ni :1  + f (ej] (dr-4 ))];i.-~~~ I . ]f~i!ei) ]lJ=1di
Rn i (=) + i- 1

by repeated use of Lena 1.

,. ," - . . -," ," "" " ." .' . 'z ." , " . .- ., -' ' - " . , .- : . . - . . . -. -" - - "" - " "" -- " ". " - -
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REKARK 5. It was shown by Antoniak (1974), the posterior distribution

of G given x is a mixture of Dirichlet processes:

n
Gfx f D(ai + 6e )dF

where F is the posterior distribution of e given x It can be

seen from Theorem 1 (or Remark 2 of this paper and Theorem 1 of Lo (1978))

" that the posterior mixing distribution of e may be written as

n n
/. .; r. f (xilei) 6 (d

FOx): C i=l i~l j~l
e~x ~ n n [ i-I 6j

f n..-.f f. (xiei) p fc + (dej
Rn i=l 1 1 i=l j~1Ci

* for all C E Bn where (IR ,Bn) is the n-fold product measure space

of (lR ,)

3. Numerical Exarrple

To illustrate the use of the nonparametric Bayes hyperprior

approach to empirical Bayes problems and the way the estimates are

influenced by the prior choice, an example is given here.

The data set of this example is taken from Bayesian Reliability

Analysis (p. 626) by Martz and Waller. Suppose a 105 hour life test

has been conducted for each of the eleven production lots of a high

reliability device. The numbers of failures were observed to be

0, 1, 0, 0, 1, 2, 0, 1, 0, 0, and 0 respectively. It is assumed

- ..- . .
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that the event of failures can be modeled by Poisson point processes

with intensity rate X i for the ith lot. The objective is to estimate

5
A for each lot. Let e i = i  ) . A Dirichlet hyperprior approach

to this problem is to assume ei are distributed according to an unknown

distribution G G is chosen from the Dirichlet process with prior

M (t) ,where GO  represents the statistician's prior

guess of G , and M represents the statistician's strengths of prior

belief in G. Then the Bayes estimator of e can be obtained from
0

(1), wnere -ei xi
e ei

f1
if(x is)- Xi!

5
ter; of falue inh

Sx denotes the number of failures in the 10 hour test in the ith lot.

The evaluation of the Bayes rule (1) can be approximated by an

importance sampling Monte Carlo method proposed by Kuo (1985). If we

choose GO a gamma distribution G(aE), i.e.,

G (de) : e- > 0)

* then the single integrals (see equations (8) and (9) of Kuo, 1985)

contained in each Monte Carlo iteration can be evaluated by using

the folloving identities:

N(a + 1 i .k x i)

f f(xi)Go(d{) : .,k )
ik(a + 1 + ick X) x.

+ ) kr" I E k

and
""1 E r( + . x )

_ T f(xi  &)Go(de ) 
i k i

ick 1
+ x4' i'c) E kI " )



where k is a subset of the index set {Il, ... , ll}, Ikl denotes the

nurmber of indices in k

If we choose G a uniform distribution on (0, e0 ), then the

single integrals are evaluated by

f e i~k f(xil&)Go(dI) (k , , 2 + ik xi) 7(2 + k x i)=~ Ek id:k (2)

(2 + 7x) * x
iE k i"

and

(k o  1 + i) 1( + l xi)r fx )&)3 (de) 0' i~k i~ ,k1
ik "u 0

k  (1 + i.kxi) i x.
0o i :k 1

where I(y, r) f r - l e-t dt/T(r) denotes the incomplete gamma
0

function.

In the folic'ing tables, G is chosen to be either a gamma

G(:, ) or a uniform distribution U(O,eo) The Bayes rules (1) for

various values of a, S, e and M are computed. They are

evaluated by Monte Carlo methods with the number of iterations

NI = 4000 or NI = 16000 . Therefore, the posterior standard errors

(see equation (12) of Kuo, 1985) are included in parantheses. We

have also rearranged the order of the observations for easier visual

examination. The intensity rate Xi are estimated by X : oi/105

In Table 1, ct, B for the gamma distribution prior guess are
ma { 2/(S ) 01 an max

chosen to be a = max { (S - x), 0} , and 6 = max {x/(S x _), 01,

where =xi/1l and S2 = i - )2/10 This choice of priorX

..o -,-... -.-- ,. , - - -
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is motivated by assuming that the e's are independent and identically

distributed according to G(ct,B) , where a and B are unknown.

Considering the marginal distribution of x , we have E x. = a/B , and
1

* . V(xi) a(l + l/ )/. for all i The estimators a and a above

are obtained by the method of moments and adjusted for a > 0 and
.) > -• ..-. " >0.,

Robbins (198,) discussed two methods of obtaining empirical Bayes

estimators and proposed a method for combining the two to achieve both

consistency and efficiency. The first estimator for e. denoted by

6i , is derived from a nonparametric prior point of view. Then

(x) = (xi + 1) #(x + l)/#(xi) , where #(x) denotes the number of

l lots with x items failed. The second estimator for 8i , denoted by

" i is derived from a parametric gamma prior:

T (x) = (x + c)/(l + C) x - (/s2) N < S (x -
x X 1

where x. > 0 for all i These are Stein type shrinkage estimators.

Both types of estimators are given in Table 1. For Ti , we use the

unbiased estimator for the variance of the x's instead of the usual

sample variance estimator suggested by Robbins. Otherwise, the

shrinkages of the data will pass the origin without the positive part

corrections given in the T expression above.

For the Dirichlet hyperprior approach, with the G chosen as

G(a,Q) above, we would expect the proper Bayes estimators to approach

to the T's as M -> . This is confirmed by the estimators shown

in Table 1.
L

;'2-........ .- ........... ......... ....-

. . .. - ... 'u, --, ", d' n i | ' -
- '

<.-", " '" . ' ;, ; - .- - L q -, ,, ,. Z . . . I- ., - .
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In Tables 2(a) and 2(b), a different shape of the gama distribution

is chosen. The mean of G in Table 2(a) is the same as before, i.e.,

0x H owever, the variance of GO  is 4.54544 which is much larger than

0.01I817, the one used in Table 1. It is interesting to observe that

the estimators are closer to the maximum likelih-od estimator as M -> .

This reveals that chooking the prior on a mixing distribution is quite

different from the usual nonparametric prior situation without the mixing

situation. As M -> , we expect the 6's are more distinct. When
11

M=5QO, P(all e's are distinct) : iLI  (1 - (i-l)/(M+i-l)): 0.897.

Therefore, the estimator e. can be approximated by using x. alone and

the prior. When M is small, many of the e's are identical with high

probability. This explains the phenomenon exhibited in Table 2(a) and

2(b).

The G. s in Tables 3(a) and 3(b) have the same mean and different

variances. Different means and different variances are selected for

Tables 4(a) and 4(b) to examine how the estimates are influenced by the

prior guess.

In Tables 5(a) and 5(b), the Go 'S are chosen to be the uniform

distributions U(0,0.3) and u(0,1) respectively. The incomplete gamma

distributions described in (2) are evaluated by the MDGAM subroutine of

the International Mathematical and Scientific Library (IMSL).

..-.. . **.



STABLE 1

Bayes and Empirical Bayes Estimates

for' {e i } with Go ~ G(a, )
AA

a 11.3636 5 25 NI = 40CO 0

X. = e= ) (M=50), i O4= l00) ei (M= 500) i i
1- 1 *1i 1i1

0 0.4441 (0.0005) 0.4372 (0.0002) 0.4372 (0.0001) 0.4370 (0.0001) 0.4286 0.4371
40.4-3 (0.C05) 0.4372 (00002) 0.4371 (0.0001) 0.4370 (0.0001) 04236 0.4371

0 0.4449 (0.0005) 0.4371 (0.0002) 0,4371 (0.0001) 0.4370 (0.0001) 0.4286 0.4371

0 0.4440 (0.0005) 0.4373 (0.0002) 0.4370 (0.0001) 0.4369 (0.0001) 0.4286 0.4371
0 0.4453 (0.0005) 0.4372 (0.0002) 0.4371 (0.0001) 0.4370 (0.0001) 0.4286 0.4371

0 0.4451 (0.0005) 0.4373 (0.0002) 0.4369 (0.0001) 0.4369 (0.0001) 0.4286 0.4371

* 0 0.4451 (0.C005) 0.4375 (0.0002) 0.4372 (0.0001) 0.4369 (0.0001) 0.4286 0.4371

0 0.4-55 (0.0005) 0.4375 (0.0002) 0.4372 (0.0001) 0.4369 (0.0001) 0.4286 0.4371

1 0.4635 (0.0005) 0.4743 (0.0002) 0.4749 (0.0001) 0.4754 (0.0001) 0.6667 0.4755
".. 1 0.464 (0.0005) 0.4749 (0.0002) 0.4753 (O.OOGI) 0.4753 (0.001) 0.6657 0.4755

1 0.4619 (0.C005) 0.47h2 (0.0002) 0.4751 (0,0001) 0.4754 (0.0001) 0.6667 0.4755

2 0.4336 (0.0034) 0.5125 (0.0001) 0.5132 (0.0001) 0.5133 (0.0000) 0.0000 0.5140

...."-"

. . . . . . .
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TA3LE 2

Bayes Estimates for {e i }

"- " with G G(a, 5)

( =) ~ O 4 3 0.1 NI : 16000

i .. (Y':) - M=30) S (M~O0) e (M=500)
_ (C. 01 , 0O0 10- O' r C2

O 0..E32 0.. ... 0.C% (0.0017) O.C512 (0.0012) 0.0420 (O.CC2)

o0 c 2 (u.cc7) o.05;7 (0.0019) 0.05' ( 0.0"7) 0. C3D (0,0002)

0 0.:;: (2.022) 2.06,4 (C.0021) 0.04;9 (0.0006) 0.0433 (0.0002)

0 0., (,203. ) 0. C6, (0.0013) 0.0'93 (0.0026) 0.0433 (0.c02)

0." --3 (.D13) 0.06> (9.0017) 0.0513 (0.0012) 0.0432 (0.0002)

0 0 -22- (0. ) 0.0576 (3.0015) 0.0511 (0.0012) 0.0430 (0.0002)

0 023 (002) .0563 (0.0014) 0.0514 (0.0007) 0,0129 0002

1 0.7376 (0.0128) 0.9771 (0.0067) 0.9624 (0.0024) 0.9573 (0.0019)

1 0.7354 (0.0129) 0.9715 (0.CC69) 0.9647 (0.003)) 0.9534 (0.0011)

I 0.7737 (0.0130) 0.9751 (0.0067) 0.9617 (0.0023) 0.9545 (0.0012)

2 0.3134 (0.0113) 1.6952 (0.0111) 1.7753 (0.0040) 1.8329 (0.0020)

(b) 0.1 0.01 NI = 16000

(.(50 )e ( :1O0) j(M 500)

.W 0 0.312, (0 C 31) 0.1156 (0.0012) 0.1076 (0.0008) 0.1004 (0.0002)

o 0.3227 (00081) 0.1163 (0.0013) 0.1084 (0.0007) 0.1004 (0.0003)
0 0.3'43 (0.0082) 0.1175 (0.0014) 0.1070 (0.0006) 0.1006 (0.0003)

0 0.313 (0.0081) 0.1170 (0.001) 0.1070 (0.006) 0.1007 (0.0003)

0 0.3258 (0.0084) 0.1174 (0.0012) 0.1080 (0.0008) 0.1003 (0.C003)

0 0.3194 (0.0079) 0.1I43 (0.0011) 0.1077 (0.0003) 0.10,-4 (0.0003)

0 0.3268 (0.0081) 0.1138 (0.0011) 0.1083 (0.0007) 0.1002 (0.0002)

1 0.7163 (0.0115) 1.053% (0.002) 1.0733 (0.0016) 1.0860 (0.0009)
1 0.7123 (0.0116) 1.056J (0.0027) 1.0743 (0.0017) 1.0344 (0.0007)

1 0.7073 (0.0116) 1.05.35 (0.0020) 1.0715 (0.0017) 1.0,-;50 (0.0008)

0 . 8;3 (0.0094) 1.9243 (0.,c51) 1.9947 (0.0029) 2.0552 (0.0014)



T.'SLE 3

~ Esti-ates fcr{&

with Go -)

( ) ". 22.' 3 =5, NI 4200

xi.... ) &, . ,,-.,,) : (:,':122

....Z~ (:.... 0..,45"5 (0.0001) 0,,,-,5 (.0.o_"1)

0 o..2- (>-2; 0.447 (o.Cool) 0.44 1- (3.0,01)

0 0.4-" ( 0 :3) 0. 457 (,0.0001) 0.4455 (0.01)

0 .47 (020) .Z5 0.C221 0.42 (C001

0 04 (.03) 0.4;Z-5 (2,.001- 0.42 .:)
o 0.4 (.0,,) 0.,- (0.50:1) 0.44 5 (0. C'01)

0 0.4-'.3 (0.1"C03) 0.4456 (0.0001) 0. 44 " (0.0C0)

0. 459 , (0.000' 0.4649 (0.0001) 0.4649 (0.0001)

- 0.4S4 (0.0:03) 0.4957 (0,0001) 0.4651 (0.0001)

S 0.45C- (0300.2) 0.459 (0.0001) 0.4649 (0.0001)

2 0.533 (6. C:) 0.42,1 (0.001) 0.4214 (0.0001)

0 0.451 (00C0 ) 0.4213 (0.0OO) 0.4213 (0.CGC)

C 0.4372 (0.0CG) 0.421 (0.003i) 0.4212 (0 .0oo)
0 .7 S (GO, =) 0.4215 (0.00403)0.0

0 0.4252 (5. r r.- 0.4210 (0.003) 0.4210 (0.00)

0 0.453,3 (0. 009) 0.421) (0.0003) 0.421D (0.00-2

0 0.432 (0 .0C-) 0.4211 (0.0C03) 0.4230 (O.0C'2)

0 0.4373 (0.0,:C) 0.4211 (0.003 0.4213 (0. ,C%,)

1 0.47'1 (0.0010) 0.4)41 (0.0003) 0.49.0 (0.0002)

1 0.4744 (0. 00) 0.4)15 (0.OC03) 0.49" (0.0003)

1 0.4757 (0.0010) 0.4941 (0.0003) 0.4942 (0.0002),.,- 1 0475 'C0 0) 0 '4 (0.0002) 0,92(0.0002)

2 0-'' 20.91 (0 .,a 0.56-.2 (0 .0 C 2 0.5674 (0.0002)

I ,8-
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TABLE 4

Bayes Estimates for {ei }

with Go ~ G(cx, F)

(a) = 11.3636 B 12.5 NI 4000

, "A •A A

, Zx i  8i  (M=I) ei  (M=50) ei  (M=100)

0 0.7493 (0.0012) 0.3366 (0.0004) 0.8394 (0.0003)

0 0.7502 (0.0012) 0.8371 (0.0004) 0.8392 (0.0003)

0 0.7500 (0.0012) 0.8366 (0.0004) 0.8391 (0.0003)

0 0.74a6 (0.0012) 0.8358 (0.0004) 0.8389 (0.0003)

0 0.7496 (0.0012) 0.8361 (0.0004) 0.8391 (0.0003)

0 0.7495 (0.0017) 0.8364 (0.0004) 0.8389 (0.0003)

0 0.7501 (0.0012) 0.8362 (0.0004) 0.8391 (0.0003)

1 0.7851 (0.0015) 0.9093 (0.0004) 0.9120 (0.0003)

1 0.7846 (0.0015) 0.9085 (0.0004) 0.9128 (0.0003)

1 0.7871 (0.0015) 0.9091 (0.0004) 0.9122 (0.0003)

2 0.8232 (0.0018) 0.9818 (0.0004) 0.9857 (0.0003)

(b) c 10 : 50 NI 4000

. ei (MI=1) ei (M=50) ei (M=100)

0 0.2224 (0.0004) 0.1972 (0.0001) 0.1968 (0.0001)

0 0.2227 (0.0004) 0.1973 (0.0001) 0.1968 (0.0001)

0 0.2229 (0.0004) 0.1974 (0.0001) 0.1968 (0.0001)

0 0.2225 (u.0004) 0.1972 (0.0001) 0.1967 (0.0001)

* 0 0.2226 (0.0004) 0.1972 (0.0001) 0.1967 (0.0001)

0 0.2221 (0.0004) 0.1972 (0.0001) 0.1966 (0.0001)

0 0.2227 (0.0004) 0.1972 (0.OG01) 0.1968 (0.0001)

1 0.2331 (0.0003) 0.2166 (0.0001) 0.2161 (0.0001)

1 0.2333 (0.0003) 0.2165 (0.0001) 0.2163 (0.0001)

1 0.2333 (0.0003) 0.2167 (0.0001) 0.2162 (0.0001)

2 0.2422 (0.0002) 0.2358 (0.0001) 0.2356 (0.0001)

"I ' - " " . ; - "- . . . .- ' -- .- ' : " =_ '. _, : - i ' _: : " ,
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TABLE 5

Bayes Estimates for le

with Go - U(O, eo)

(a) e. = 0.3 NI = 4000

: x. a. (M=I) e. (M=50) . (M=100)
0 1 (1

0 0.2003 (0.0008) 0.1455 (0.0002) 0.1442 (0.0002)

0 0.2007 (0.0008) 0.1457 (0.0002) 0.1442 (0.0002)

0 0.2013 (0.0007) 0.1458 (0.0002) 0.1442 (0.0002)

0 0.2007 (0.0007) 0.1456 (0.0002) 0.1441 (0.0002)

0 0.2005 (0.0008) 0.1455 (0.0002) 0.1441 (0.0002)

0 0.1997 (0.0008) 0.1454 (0.0002) 0.1439 (0.0002)

0 0.2008 (0.0007) 0.1455 (0.0002) 0.1443 (0.0002)

1 0.2222 (0.0004) 0.1965 (0.0002) 0.1956 (0.0001)

1 0.2225 (0.0005) 0.1963 (0.0002) 0.1958 (0.0001)

1 0.2224 (0.0004) 0.1966 (0,0002) 0.1957 (0.0001)

2 0.2323 (0.0002) 0.2223 (0.0001) 0.2219 (0.0001)

(b) eo 1.0 NI = 1bO00

x. ei (M=I) ei (M=50) e. (M=100)
0 0.4601 (0.0015) 0.4192 (0.0004) 0.4185 (0.0003)
0 0.4627 (0.0014) 0.4195 (0.0004) 0.4188 (0.0003)

0 0.463 (0.0015) 0.4194 (0.0004) 0.4183 (0.0003)
0 0.4615 (0.0015) 0.4195 (0.0004) 0.4185 (0.0003)

0 0.4639 (0.0014) 0.4194 (0.0004) 0.4182 (0.0003)

0 0.4625 (0.0014) 0.4189 (0.0004) 0.4183 (0.0003)

0 0.4625 (0.0014) 0.4185 (0.0004) 0.4183 (0.0003)-_...0 0.4E35 (0.0014) 0.4185 (0.0004) 0.4187 (0.0003)

1 0.5679 (0.0011) 0.6059 (0.0003) 0.6067 (0.0002)

1 0.5673 (0.0011) 0.6056 (0.0003) 0.6069 (0.0002)

1 0.5661 (0.0011) 0.6059 (0.0003) 0.6066 (0.0002)

2 0.6301 (0.0008) 0.7058 (0.0001) 0.7072 (0.0001)

........' ..-.--.'-'--1 "."-,- . " . ''.-- - . . .
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