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ABSTRACT

We present a new approach toward robust although it is possible via the approach of

signal detection which is based on techni - [2 ]to obtain general representations of the

ques rooted in differential geometry. noise model via Choquet capacities (31, it

These methods, as opposed to the commonly has yet to be seen if such elegant methods

employed classical saddlepoint criteria, are capable of enhancing the denseness of

readily admit the quantitive measure of the the class of noise models beyond the

degree of robustness over very general relatively few standard models (see, for

classes of admissable noise distributions, example, [1]). In addition, the saddle -

Our approach thus is seen to make possible point criterion is inherently a nonquanti-

investigations of the quantitative tradeoff tative approach toward imparting robustness.

between optimal performance and robustness, We intuitively might suspect that robust -

and we illustrate the application of this ness is obtained by a judicious tradeoff

differential geometric approach via various with optimal performance, and we thus might

specific examples. desire a way to quantitatively measure the

I. Introduction degree of robustness in order that a

weighted combination of robustness and per-
It is well known that there is formance could be considered subject to

increasing interest in the employment of
some cost criterion. In this paper we

robustness techniques for thediscrete time present an entirely different approach
detection of signals in imperfectly known which views the robustness question not

noise. The traditional approach toward from the saddlepoint perspective but from

addressing questions within this rather one which is rooted in differential

broad area of research has been to rely geometry.

heavily on the classical saddlepoint

criterion of Huber (see, for example,Il). II. Development

A variety of work appearing in the engi - Viewing the robustness problem from a

neering literature has verified that such slightly different perspective, let Vn

an approach can lead to tractable results. denote the class of n-dimensional distri-

However, it may be argued that the degree bution functions. From this point of view,

of robustness obtained owes much to the
the performance of the detector is thus

types of noise models admitted by the expressed by considering the performance
method. In reality It may not be easy to functional

funtioalP:Vn+R; we then simply wish to

verify that the types of models appropriate choose the detector so the P is reasonably
to the saddiepoint robustness approach high and doesn't vary much near the nominal

sufficiently represent the full extent of element of Dn" Viewing P as a height

variation of the unknown perturbation of a
function over Vn' we could say that adistribution around the nominal. Moreover, robust detector would yield a "surface"

Ptesenbted at the 1986 Coiife'tnce on Info.mation Science. and Systms, March 19-21, 1986;

to be pubtished in the pkoceedng6 of the confekence.
Approved for publia relense;
di stribut ton unlimited.

" ' ' 'e " ' " . - ' " " ' -. '. - ' . . . - - . . . . . . . , . - . . - . . . . , . . ' ' , . . -. . . - . . . -



which above the nominal element is both with the cosine of the angle of the unit

relatively high and not strongly sloped, normal to vertical (with $ immersed in Rm+0

Such a perspective thus would indicate it is then straightforward, although some-

that a geometric approach to robust detect- what lengthy, to show that at the point

tion might be appropriate. What would be corresponding to the nominal distribution

needed would be to provide a differentiable this cosine is given by

structure to D so that the concept of slope m 2 -1/2

would have the proper meaning. We would cos Ym=(l+ (5--)

then be considering a height function over

a differentiable manifold M which would Note that ym provides a measure of local

result in a new manifold MI for which the "first order" robustness; smaller values of

* Riemannian metric would yield a norm. Ym suggest less variation in a or 6 near the

In this paper we present some specific nominal distribution.

applications of the above observations. Consider now the discrete time detec-

Noting that a Neyman-Pearson approach in - tion of a constant signal s in additive

volves comparing the sample vector to the i.i.d. Gaussian noise with mean V and
2appropriate n-dimensional Borel set Bn in variance a . We note that there may be

nn
Rn , where n is the number of samples, we some uncertaintly in all of the values of

2
then observe that in this robustness appli- s,W and a . Employing first the linear

cation we could in practice regard 8 as detector, we then choose h(.) to correspond
n

specified via the choice of nominal distri- to B and then straightforwardly obtain (for
bution under H0 ; we then would be interest- n samples)

ed in analyzing the degree of variation in dB dB . /(2oa2 exp(_[n( +s)_T]2/(2n )

the false alarm probability a and/or detec-

tion probability 6 as the underlying distri- dB
bution varies about the nominal, thus fix - 2 6(n(+s)T2/2n2 6

.exp(-(n(W+s)-T] /(2no )/(EiTnO

Ing a choice of height function h:Rm-R for where the threshold T is specified for a

some natural number m, where h(.)corres - given false alarm rate a by evaluating the

ponds to the value of a or B for some fixed detector at the nominal values of s, 2 ando2

detector of interest. We next employ the robustified version of

Consider first the case where the the linear detector, which replaces the

class of n-dimensional distribution func - identity function of the linear detector

tions is parameterized by m parameters; with the nonlinearity g(-) defined by

this class can then be identified with a I k2  if x > k

subset of R , and the corresponding mani - g(x) - x if kl< x < k
fold+ is Rn th2 i ~

fold MI is a surface in Rn m. An appro.priate k if x < k

metric tensor g(.,.) is inherited from the

sm +1 with the It is well known that this detector resistsstandard inner product onR itth

the tractable development of closed form* obvious choice of coordinate system

h expressions for xorB in the Gaussian case.

il, 12 .... im,.X, leading to the In order to numerically compare the robust-

components of the metric tensor eiven by ness of this "censored" version of the

)h )h linear detector we therefore employ a large
4x -x' if i#J sample Gaussian approximation of the test

,- ~statistic. The resultant lengthy analysis
9ij= vI 'Y- -- h 2 shows, for example, that with n-50, 1-0.05,

,kl-0.4, k2-0.6 and nominally O.t,-a.c ,(.>

Associating the slope of the unit normal =, we have .. *which canbeca ,

pared "ra) 3 68.8 0 for the linear detector.

2
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The robustness of the detector which tions f(.)). Now let

employs censoring is thus quantitatively a + B {(Xl,X 2 ... ,xn):there exists c>O

demonstrated.
such that

III. The General Case (X i  .... Bi-,Y,Xi+1 . ... Xn)t

It would also be important to consider for y e (xi-, x i) and

more general classes zf distributions;

ideally we would wish to place virtually (xl.....x i-1 zxi+l,.... Xn )e n

no constraints on the admissable distribu- for ze (xi,xi+c)}

tion function. Such an approach is actu -

ally feasible in the i.i.d. case. Since B { (x,x 2.... xn):there exists c>O
*i n 1x'2 ... n)

a and 8 are expressed via an integral over such that

a Borel set 8 with respect to the appro- (xs

priate n-dimensional distribution under n
H and H respectively, we can without loss for y e (x i-, x )

of generality note the independence of the and

observations and investigate perturbations (xl,...,x i 1 ,z ,x i+l,...,xn)t n

in a and B by limiting consideration to for z e (xi,xi +C)

the class of those univariate distribu j Bn" { (xl ..... i-lXi+1 .... lyl ....

tions given by step functions, i.e. those Yj~,Yjl,..,y) :there exists w such that

functions of form j j n
ml(x I ..... xil,W,Xi+l,...,xn) + and

m+li n and

T(') - E ai 1 Ai ( , where the inter- ..i-O (Y l. .' Y yj-I'w 'yj+I ' "  'Y n )  
e• j 8n

vals A partition R and we take a 0 and Similarly, we define 3 +J by replacing ;

i i

aM+l i. For a fixed finite partition P in the D ij expression with 3 -. In an

of R, we note that the corresponding class -+
analogous manner, we also define 3 J and

of step functions can be viewed as par -
a yWe then can establish the following

ameterized by elements of R. Letting iJ.

result, which provides a closed form exF(.) denote the nominal univariate distri-

bution of the observations, we then can pression for cosy:

employ the aforementioned methods to obtain Theorem: Suppose that if

an expression for cos y where for each xERn. , + B +B ... 0BA +A A2B ... e
*m, 1 n 2 n n n 1 n 2 n n n
partition a StieltJes approximation to then x int (B)vnt (T). We then have

F( ) is chosen and regarded as nominal for n n

the parameterized case. We then define cosy-(l+A2 +1) - , where

"-lim" ,whenever the limit exists. The A2  n
.IFI 0 m A Zi dF(Yl) .. "dF(Y, -)dF(Y,+ I)

, Bnnumber t may be thus be interpreted as the .. "dF(y n)-

angle of the unit normal to vertical for dF(y 1 )... dF(y 1 )dF(y 1 ) ... dF(y) 12
the general (nonparameterized) distribution in

case, and as before, we would like this f. x(x+) dx".,f F(xl) ... dF(Xi_l)dF x, ) ... dF(x ?)

angle to be small for robustness. We also ioj [4+

have ij n
m 2-

cosv-lim (1+ a , dF(Yl) ...dF(y )dF(y ) .. . dF(y ) +A-0 i-I aiJ- ~ n

where, as before, we limit consideration + fdF(xl) ... dF(xi 1l)dF(x i+l) ...dF(x )dF(Y) 3

to the situation where the height function._ n

*() is i or .- (with the corresponding ij Bn ""dF(Y J-1 )dF(YJ+I.) ..dF(yn

univariate distribution of the observa -

3 I 0 --
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of B to its interior, whereas 38 n is

formed in an analogous manner with the rays

-fdF(x) .. dF(Xi )dF(xi+ 1 ... dF(Xn)dF(y) moving in the negative direction from the

J11%~n  exterior of B to its interior. In addition,n
..'dF(yI 1 )dF(yJ+I) ... dF(y n)- we note that the Theorem's hypothesis is

F simply a mild condition on the regularity-IdF(Xl) . .dF(xi)dF(x dF(X)dF(y )

h +-1 i+l n of B which is frequently easy to satisfy~ B n
ij n 1 in this detection context (wherein 8n arises

..dF(yJ-l)dF(yJ+l)... dF(Yn-1whenever the by way of a threshold comparator). Moreover,

integrals exist. the existence of the integrals in the

Theorem is very often easy to verify sinceProof: Recall the step function approxi - tebudr fBi ufcetywl e
the boundary of 9 is sufficiently well be-

mation F(-) to the nominal univariate n
m+l haved in such cases.

tbi F('),7(')-EiIA('), where As an example of an application of the

Theorem, consider again the linear detector.aoOand am+ I =1. The associated approxi-
For n-2 it then follows that (where the

mate measure of performance is given by detector threshold is T)

dT(y,) .. dF(y ), and thus (x, y yT-Xl 38
nn dl 2. 22_ '~)12- '2n

. m m , ++B ++

- ... I ai(1 8 (xi-lxi ... x)- 1282' 2182. (x,y) y.-x }
a , ' 2= 0 i = 0 n 2 n .+ - 8

-2 n~ 1282. 3221 2122= 21 2- 12 2-321 2 - 0 "

B n .. i We therfore have

m m m * cosY-l/(l+l+l+O)1/3 , i.e. y-5 4 .7 , re-+ X ..'" a2 (1 (xilXi I xi3,.,x

20(x0 1 0 1 . i gardless of the nominal distribution. This
n n

may be generalized to show that for n sam-

-1B (xixi
'x .... ,x. )) ples

n 1 n cosy-(l+n)--, regardless of the nominal

m m , distribution. Note that lim cosy=O,i.e.
+...+L. . a (I (xi ... ,xi  ,x ) _n

i i 9 n B n 1 n-l the linear detector becomes completed un-

robust (as measured by y) as the number of

( 1 I x n ) samples approaches infinity.

r aOn the other hand, consider the class-
k + -a, ' +1 - ical robustified version of the linear de -l k-l k-l

tector, wherein a "censored" detector non-1ak+ 1.(a -a)adxis p Aifor
(a +-a (a -a, ) and x1 sup linearity g(') of form

k+l k+l n n

m( 2 x if IxI<k
i-0,l....m. Expanding the - ) ex -

i-1 Sa g(x)- k if x >k is used.

I-k if x <-k
pression, we observe that as the norm of

It then can be shown that
the partition approaches zero, the squared + 1B ={(xy):xT-k'y>k; or yT-x,

terms collectively reach A2 as a limit, 1 2 T-k<x<k

whereas the cross products y ield r. + B -{(x,y) :y-T-k,x k; or y-T-x, -
2 2 T-k<x<k}

QED 12 i -82

We remark that from an intuitive per- = =_
spective consists of those elements 12 2 xy):x>k and y>k, or yx and' i n o of 2o 21 2-

of the boundary of B which are intersected T-k<x<k I
n

by rays parallel to the i axis and moving BA+B 4_ 21+ B -+ 22B-- --

in the positive direction from the exterior 12 2212122212 12 2-21

For this case the exact value of cosY

4



depends on the values of k.T, and the tures; we are therefore simply accumulating

choice of nominal distribution. However, ordinary two dimensional Gaussian curvature

we can make some general conclusions when it all possible orthogonal directions. For

the amount of censoring approaches maximal the parameterized distribution case it

(k-O). In this case we have, when n-2, would then be possible to generate numer -

lim cosy .(l+2(l-F(O))
2+2(-F(O))

2 ) ical values for the "second order" measure

k-O of robustness provided by scalar curvature,

For the common case where F(O)< , we then which from [4] is given by (where here the

obtain Einstein summation convention is used)

0lim cosy < 1/2 ,i.e. limy> 45 , which i
-- k-0 - R ikIr ik + k s _ Z£ rs

may be compared to the linear detector's m Z. 3xk  + s ik sk i ]

f=54.70 for n-2. This may be generalized (m not summed), where the Christoffel

through a lengthy analysis to conclude symbols r are given by
ii

that for n samples, g gui

lim cosy -(l+n(l-F(O)) 2(nl)+n(n-l). k I ku ( + ) , in

k-O n -F ) 2 g Dxi xj u
whih(Ii-F(O))).Alhoghth aov

Note that for F(O)>O we have lim(lim cosy) which (g (gij) Although the above

n-w k-O equations regarding scalar curvature appear

1 1, that is, the detector approaches rather compact, numerical calculatiogg in-

possessing complete robustness (as measured volving them can be quite tedious (but not

by ') as the number of samples tends to difficult), especially for large m.

III. Conclusion
infinity. For F(O)< we have

We have presented a new approach to-

lim cosy <(l+n.2-2(nl)+n(n-l)2n) ward robust signal detection which is

k-O based on differential geometric methods as

Note that the upper bound can be approach- opposed to classical saddlepoint criteria.

ed arbitrarily closely for F(0) near . These techniques are seen to admit a quan-

For n-3 this upper bound becomes 0.8 titative measure of robustness through the

(corresponding to "-36.9 ), whereas for geometric concepts of unit normal slope

n-l0 it becomes 0.96 (corresponding to and scalar curvature, thus allowing the

-16.3° ). This can be compared to the case consideration of a weighted combination of

of the linear detector, where for n=3 we performance, first order robustness (via
ha0 pefomace firs orde robstes w(hvei-a5

have 600 and for n10 we have y-72.5 " unit normal slope), and second order ro-

For the larger values of n the robustness bustness (via scalar curvature) subject to

advantages of the classical robustified some cost criterion of interest. Our

linear detector are thus quantitatively techniques are additionally illustrated in

demonstrated, the paper through various specific exam-

IV. Second Order Robustness ples.
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