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A NOVEL DIFFERENTIAL GEOMETRIC APPROACH

TOWARD ROBUST SIGNAL DETECTION

by

M.W. Thompson and D.R. Halverson

Department of Electrical Engineering

Texas A&M University

College Station,

ABSTRACT

We present a new approach toward robust
signal detection which is based on techni -
ques rooted in differential geometry.
These methods, as opposed to the commonly
employed classical saddlepoint criteria,
reipily admit the quantitive measure of the
degree of robustness over very general
classes of admissable noise distributions.
Our approach thus is seen to make possible
investigations of the quantitative tradeoff
between optimal performance and robustness,
and we illustrate the application of this
differential geometric approach via various

specific examples.

I. Introduction

It is well known that there is
increasing interest in the employment of
robustness techniques for the discrete time
detection of signals in imperfectly known
noise. The traditional approach toward
addressing questions within this rather
broad area of research has been to rely
heavily on the classical saddlepoint
criterion of Huber (see, for example,{1)).
A varlety of work appearing in the engi -
neering literature has verified that such
an approach can lead to tractable results,
However, it may be argued that the degree
of robustness obtained owes much to the
types of noise models admitted by the
method. 1In reality it may not be easy to
verify that the types of models appropriate
to the saddiepoint robustness approach
sufficiently represent the full extent of
variation of the unknown perturbation of a

distribution around the nominal. Moreover,

Texas 77843

although it is possible via the approach of
{2)to obtain generalrepresentations of the
noise model via Choquet capacities [3], it
has yet to be seen if such elegant methods
are capable of enhancing the denseness of
the class of noise models beyond the
relatively few standard models (see, for
example, [1]). 1In addition, the saddle -
point criterion is inherently a nonquanti-
tative approach toward imparting robustness.
We intuitively might suspect that robust -
ness is obtained by a judicious tradeoff
with optimal performance, and we thus might
desire a way to quantitatively measure the
degree of robustness in order that a
weighted combination of robustness and per-
formance could be considered subject to
some cost criterion. In this paper we
present an entirely different approach
which views the robustness question not
from the saddlepoint perspective but from
one which 1is rooted in differential

geometry.

II. Development

Viewing the robustness problem from a

slightly different perspective, let Dn

denote the class of n-dimensional distri-
bution functions. From this point of view
the performance of the detector is thus
expressed by considering the performance
functional P:Dn*R; we then simply wish to
choose the detector so the P is reasonably
high and doesn't vary much near the nominal
element of Dn. Viewing P as a height
function over Dn' we could say that a

robust detector would yleld a "surface”
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which above the nominal element is both

relatively high and not strongly sloped.

Such a perspective thus would indicate

that a geometric approach to robust detect-
What would be
needed would be to provide a differentiable

tion might be appropriate.

structure to Dn so that the concept of slope

would have the proper meaning. We would

then be considering a height function over
a differentiable manifold M which would

result in a new manifold M1 for which the

Riemannian metric would yield a norm.

In this paper we present some specific

applications of the above observations.

Noting that a Neyman-Pearson approach in -

volves comparing the sample vector to the

appropriate n-dimensional Borel set Bn in

Rn , where n is the number of samples, we

then observe that in this robustness appli-

cation we could in practice regard Bn as

specified via the choice of nominal distri-

bution under HO; we then would be interest-

ed in analyzing the degree of variation in

' the false alarm probability a and/or detec-

tion probability B as the underlying distri-

bution varies about the nominal, thus fix -

ing a choice of height function h:R™»R for

some natural number m, where h(:.)corres -

ponds to the value of o or B for some fixed

detector of interest.

Consider first the case where the

. class of n-dimensional distribution func -

tions is parameterized by m parameters;

this class can then be identified with a

subset of Rm, and the corresponding mani -

fold M,is a surface in Rm4t

An appropriate

is inherited from the

' with the

. metric tensor g(-,-)
+
standard inner product on R™
obvious choice of coordinate system
c Rl
T L, 2 “im )
i 1 L L | » ﬁ

components of the metric

leading to the

tensor given by

h.on
EFRRLE 1f id]
glji g(3v ' vj)- 2
Le¢ R )T LE =y
x

Associating the slope of the unit normal

with the cosine of the angle of the unit

m+ 1)

normal to vertical (with w immersed in R
it is then straightforward, although some-
what lengthy, to show that at the point

corresponding to the nominal distribution

this cosine is given by

LN 2 -1/2
cos Ym-(1+ % (3;—) ) .
=] i

Note that Ym provides a measure of local

"first order" robustness; smaller values of
Y, Sussest less variation in o or f near the
nominal distribution.

Consider now the discrete time detec-
tion of a constant signal s in additive
i.i.d. Gaussian noise with mean u and
variance 02. We note that there may be
some uncertaintly in all of the values of
s,u and 02. Employing first the linear

detector, we then choose h(:) to correspond
to B and then straightforwardly obtain (for

samples)

n
d8 _ dB . 2
rrik (a/(2707))

%exp(-la (u+s)-T1%/ (20 F))

d

w

2 =={(n{u+s)-T)-

6
cexp (- [n(u+s)-T1%/(200%)) / (8mno®)? ,
where the threshold T is speéified for a

&l
Q

given false alarm rate a by evaluating the
detector at the nominal values of s,y andoz.
We next employ the robustified version of
the linear detector, which replaces the
identity function of the linear detector
with the nonlinearity g(:) defined by
k2 if x > k2

g(x) = { x if k< x <k .

1 2
k if X < k

1 1

It is well known that this detector resists
the tractable development of closed form
expressions for aorf in the Gaussian case.
In order to numerically compare the robust-
ness of this "censored" version of the
linear detector we therefore employ a large
sample Gaussian approximation of the test
statistic. The resultant lengthy analysis
for example, that with n=50, 1=0.05

,=0.6 and npm?nally u&p.a,\a-n;u43;~

i

12-1. we: have yélf;k,ﬂb;;whxcﬁ éan.be-comﬂ

shows,

kl--O.h. k

pared TQJW3"68.B“ for the linear detector.
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The robustness of the detector which

employs censoring is thus quantitatively

demonstrated.

II1. The General Case

It would also be important to consider

more general classes of distributions;
ideally we would wish to place virtually
no constraints on the admissable distribu-

tion function. Such an approach 1is actu -

ally feasible in the 1.i.d. Since

case.
a and B are expressed via an integral over
a Borel set B with reapect to the appro-
n

priate n-dimensional distribution under
HO and H1

of generality note the independence of the

respectively, we can without loss
observations and investigate perturbations
in « and 8 by limiting consideration to
the class of those univariate distribu -
tions given by step functions,

1.e. those

functions of form

- m+1
F(*) = L a, IA (*) , where the inter-
i=0 i
vals Ai partition R and we take ao-O and

am+1-l' For a fixed finite partition P
of R, we note that the corresponding class
of step functions can be viewed as par -

ameterized by elements of R™, Letting

F(:) denote the nominal univariats distri-
bution of the observations, we then can
employ the aforementioned methods to obtain

an expression for cos Ym where for each

’
partition a Stieltjes approximation to
F(*) is chosen and regarded as nominal for

the parameterized case. We then define

vealim® ywhenever the limit exists. The
A-p @
number | may be thus be interpreted as the

angle of the unit normal to vertical for
the general (nonparameterized) distribution

caée. and as before, we would like this

angle to be small for robustness. We also
have m e~ 2 -y
cosy=lim (1+ I (—=) ) ,

0 1=l 3y

where, as before,

we limit consideration
to the situation where the height function
F(') is * or (with the corresponding

univariate distribution of the observa -

Satat gy pl et aia il sl st iyt

tions F(.)).

SI q, = {(xl.xz,...,xn):there exists €>0

Now let

such that
(xl,....xi_l,y,xi+1,...,xn)€ Bn

for y e(xi-e, xi) and

(xl,...,x ..xn)eBn

1-1° 22 417"
for ze (xi,x1+€)}

&i ql- {(xl,xz,...,xn):there exists €>0
such that
(xl.....xi_l,y,xi+1,...,xn)eBn

for y e(xi—e. xi)

and

(xl’""xi—l'z’xi+l""’xn)€8n

Sy for z ¢ (xi,xi+e)}
ii™n

yj—l’yj+l""’yn): there exists w such that

= { (xl,...,xi_l,xi+1....,xﬂ,y1...-.

* g

(xl,...,xi_l,w,xi+1,...,xn) 931 n and

.+
(yl’---:yj_lrw’yj_‘_l,‘--,yn) Cdj Bn}
Similarly, we define 3:5
++ -
in the aij expression with Bj. In an

by replacing 3;

we also define 3-+ and

ij
3;5. We then can establish the following

analogous manner,

result, which provides a closed form ex -

pression for cosy:

Theorem: Suppose that if
xR 3V BAstBA .0t BAITBAI BN .. .08
1'n 27n ann 1l n 2°n nn
then xe int (Bn)vint (T ). We then have
n
cosy-(1+A2+F)-8, where
2 D
A ‘izl . dF(yl)"'dF(yi-l)dF(yi+l)
i"n - PRSI,
...dF(yn)
2 1
i[;g dF(y;)...dF(y, )dF(y  ,)...dF(y ) ‘t
i n ]
- ]
e dF(x.)...dF(x YdF(x )...dF(x )
ifj[++3 1 i-1 1+1 n I
{j ' n ]
dF(yl)...dF(yj_l)dF(yj+1)...dF(yn) + e |
S—

+'/;F(x1)...dF(xi_l)dF(xi+1)...dF(xn)dF(yl) 3

‘thn “.dF(yj_l)dF(yj+l)...dF(yn)

/
f
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- JdF(x,)...dF(x YdF(x Y...dF(x_)dF(y)
'LI‘SB 1 i-1 1+1 n 1
n
<dF(y  )dF(y ). dF(y )~

)...dF(xn)dF(%)

./}F(x ). 'dF(xi-l)dF(xi+1

+=
aijBn

.dF(yj_l)dF(yj+l)...dF(yn),whenever the
integrals exist.

Proof: Recall the step function approxi -
mation ?(-) to the nominal univariate

~ m+1
distribution F(*),F(*)= Z a,I, (*), where
i=0 1Ay

30-0 and a1 =1. The associated approxi-

mate measure of performance is given by

‘ﬁ(-)-[s dF(y;)...dF(y ), and thus
n

R W m 1 )
: c.w A& X ' X s e e X, )
1 =0 1 20 1778, 71-1"7, 1o
i 2
~IB (xi,xi vee Xy )+
n 2 n
m m m *
+Z - 2 a, (I (x, ,x x e X, )
04 02 EOAE B BhE UL
H 05 % 0 Bn 1 3 n
—IB(xi SX Ky »Xy ))
n 1 3 n
m m
+ +L Ioa (I (x, , y X , X ) -
f=01= 1 EPUR R £
1 n n
I, (x, , ,» X X)),
8n 1 in-l t

{a -ay ... (a -a, ) and x,=sup A for
Lot Th i S 1 t
m T
i=0,1,...,m. Expanding the I ( )" ex -
i=1 %ai

pression, we observe that as the norm of
the partition approaches zero, the squared
terms collectively reach 42 as a limit,
whereas the cross products yleld [,
QED

We remark that from an intuitive per-
spective, *:§1 consists of those elements
of the boundary of Bn which are intersected
by rays parallel to the 1 axis and moving

in the positive direction from the exterior

of Bn to its interior, whereas %Bn is
formed in an analogous manner with the rays
moving in the negative direction from the
exterior of Bn to its interior. In addition,
we note that the Theorem's hypothesis 1is
simply a mild condition on the regularity
of Bn which 1is frequently easy to satisfy
in this detection context (wherein Bn arises
by way of a threshold comparator). Moreover,
the existence of the integrals in the
Theorem is very often easy to verify since
the boundary of Bn 18 sufficliently well be-
haved in such cases.

As an example of an application of the
Theorem, consider again the linear detector.
For n=2 it then follows that (where the
detector threshold is T)

31’82- 3‘2“82- {(x,y):y=T-x} 3 B,= 3,B,=0
1282-32182-{(x y)iy=x}
9138y 418y~ 938,731 B,= 3] ;8
We therfore have
cosY‘l/(1+1+1+0)5-1/3
gardless of the nominal distribution. This

2731 8,=¢.

%, i.e. Y-54.70, re-
may be generalized to show that for n sam-
ples

cosy1(1+n)-%, regardless of the nomimal

distribution. Note that lim cosy=0,i.e.
n-+o
the linear detector becomes completed un-

robust (as measured by y) as the number of

samples approaches infinity.

On the other hand, consider the class-

ical robustified version of the linear de -

tector, wherein a "censored" detector non-

linearity g(*) of form

x if (x| <k
g(x)=1 k if x >k is used.
-~k if x <=k

It then can be shown that

)IBza{(x,y):x-T-k,y>k; or y=T-x,

+ T- k<x<k}
'¥2Bz-{(x,y):y-T-k,x>k; or y=T-x,
T-k<x<k}
Y 1Bpm 338,70
T;BZ 3;?82-{(x,y):xzk and y>k, or y=x and
T-k<x<k }
ot - +

AT T ATt -ﬂ_+ - =~ -
12 BZ-AZIBZ-d1282 ‘2182 H1282 ’2182 ¢

For this case the exact value of cosYy
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depends on the values of k,T, and the
choice of nominal distribution. However,
we can make some general conclusions when
the amount of censoring approaches maximal
(k»0). 1In this case we have, when n=2,

lim cosy -(1+2(1~F(0))2+2(1-F(0))2)-5-
k~0

For the common case where F(0)< %, we then

obtain
lim cosy < 1/2li »i.e. limy> 650. which
k~+0 k-0

may be compared to the linear detector's
«=54.7° for n=2. This may be generalized
through a lengthy analysis to conclude
that for n samples,

lim cosy =(l+n(1-F(0))
k+0

2(n-1) o (n-1)-

C(1-F(0))™) 7%,

Note that for F(0)>0 we have lim(lim cosy)
n+® k+0

= 1, that is, the detector approaches

possessing complete robustness (@as measured
by 1) as the number of samples tends to
infinity. For F(0)< % we have

-2(n-1) -3

) .

n

lim cosy <(l+n-2 +n(n-1)2"

k+0

Note that the upper bound can be approache
ed arbitrarily closely for F(0) near %.
For n=3 this upper bound becomes 0.8
(corresponding to w-36.9°), whereas for
n=10 it becomes 0.96 (corresponding to Y
-16.30). This can be compared to the case
of the linear detector, where for n=3 we
have ‘-60o and for n=10 we have Y'72-5°-
For the larger values of n the robustness
advantages of the classical robustified
linear detector are thus quantitatively
demonstrated.

IV. Second Order Robustness

Finally, we note that our geometric
approach admits the additional "second
order" sensitivity check provided by cur-
vature. There are many different defini -
tions of curvature, however scalar curva-
ture has the advantage of being indepen-
dent of the local coordinate system em -
ployed, thus simplifying its computation.
In addition, the choiceof scalar curva-
ture i{s intuitively appealing since it is

just a sum of the various sectional curva-

tures; we are therefore simply accumulating
ordinary two dimensional Gaussian curvature
it all possible orthogonal directions. For
the parameterized distribution case it
would then be possible to generate numer -~
ical values for the "second order" measure
of robustness provided by scalar curvature,
which from [4] is given by (where here the

Einstein summation convention is used)

g 2
ol 3T
ik ik i 3 s 2 s
Rm-8 [BxQ - Bxk + rsl r‘ik - Fsk riQ]

(m not summed), where the Christoffel

symbols F: are given by

]
g 3 3
IS S ju o, —wi o ZHy ) g
ij 2 axi ij qu
which (gij) - (gij)-l' Although the above

equations regarding scalar curvature appear
rather compact, numerical calculationsg in-
volving them can be quite tedious (but not
difficult), especially for large m.

I11. Conclusion

We have presented a new approach to-
ward robust signal detection which 1is
based on differential geometric methods as
opposed to classical saddlepoint criteria.
These techniques are seen to admit a quan-
titative measure of robustness through the
geometric concepts of uanit normal slope
and scalar curvature, thus allowing the
consideration of a weighted combination of
performance, first order robustness (via
unit normal slope), and second order ro-
bustness (via scalar curvature) subject to
some cost criterion of interest. Our
techniques are additionally illustrated in
the paper through various specific exam-
ples.
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