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technique (H EC) was investicated Using coaxial thermal
reflector svstems it was possible fdr the first time to achieve
for CATe a degree of crystalline peyxfection which exceeds that
obtalned through conventlonal Bridgman growth.
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including IR transmission microscopy with image processing and
absorption spectroscopy of the optical band edce, were developed
and arplied to investigations of the bulk defect structure.

The results obtained during this research program consti-
tute the basis for extensive DARPA, Air Force, and NASA
sponsored research on growth of III-V and II-VI compound semi-
conductor systems.
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FOREWORD

Property requirements of electronic and opto-electronic materials for
device fabrication have until recently not been an issue of primary concemn
since yield and performance characteristics could in most instances not e
related to bulk properties. Critical materials deficiencies in silicon IC
facrication coull be overcome as needed through changes in Jdevice architec-
ture, Jdevice processing, or through resort to epitaxial overgrowth. These
approaches, while effective in silicon based large scale device integra-
tion, are found largely to ve ineffective for very large scale integration.

In recent years the rate of advance in device technolocay was so high
that simultaneous prograss made in materials preparatiorn was inacdequate to
meet emerging, more stringent, property recquirements. While deficiencies
in properties of the elemental semiconductors are serious, those
encountered  in corpound  serdconductors are overwnelming:  titiz  thre
establishment of a GaAs and InP based device technology and the evolution
of a viable industrial II-VI compound semiconductor activity appear at
present largely controlled by advances in materials processing. In context
it is significant that industrial semiconductor crystal growth, the basis
for all of device technology, is as yet virtually devoid of a scientific
framework and therefore by necessity conducted on a largely empirical
pasis. The unavailability of a scientific basis for industrial crystal

growth can on the one hand be attributed to turbulent convective interfer-

ence with heat and mass transport in the melt and on the other hand to
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complications in the control and quantification of prevailing thermal
boundary conditions.

A major deficiency of the currently practiced empiricism in crystal
growth lies in our inability to take a generic approach. Expertise gained
in analog systems is not readily transferable; results obtained in one
laboratory under a certain set of conditions are not necessarily comparable
with those obtained elsewhere under apparently identical conditions.

The presently reported effort was aimed at: (a) establishing at MIT
experimental capabilities for growth of CdTe, (b) broadening the science
base of melt growth of semiconductors, (¢) establishing stability criteria
for Bridgman type growth of CdTe, and (d) explore the potential of the LEC
technique with heat and mass transport control for growth of CdTe.
Although the research was focused on growth and characterization of a
specific material, the approach taken was largely generic, with the results
being consequential to other materials such as GaAs and InP as well. Thus
major segments of DARPA, Air Force, and NASA sponsored research were
affected by results of the investigation and in part were redirected as a
result. Data and insight gained from this study are considered rnajor
contributions to the understanding of semiconductor crystal growth. The
primary benefit, however, is likely derived from the realization that
needed advances in processing science and technology require inter-

disciplinary. intercdepartmental approaches leading to the replacement of
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empirical procedures by expert systems with steadily increasing elements of

artificial intelligence.
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LIST OF i{LLUSTRATIONS

CdTe grown with heat transfer control in a vertical Bridgman
configuration; non-twinned region generally extends a 3 to 4 cm
crystal length. Dislocation density as determined from etch pit
counts ranges in average from 5x10° to about 5x10% cm2.

Growth interface relocation, unavoidable in conventional Bridgman
configuration, due to thermal end effects. Significant is the
sensitivity of the growth rate behavior, which deviates signifi-
cantly from the ampoule lowering rate, to the placement of the
control thermocouple (T, B, top and bottom of ampoule in original
position) and the mode of heat extraction from the ampoule
(Indirect and Direct cooling).

Stability map against twinning for CdTe. The figure provides for
a (001) seeded crystal a density of dangling bonds composite
surface and all of its first-order twins in a projecticn of the
three-dimensional surface onto the {001} surface.

Configuration of smallest (8 atom cluster) which can function as
nucleus for twin formation. Notice the average of 1.75 dangling
bonds per atom.

Stability region (cross hatched) against twinning in thermal
gradient (G) vs. growth rate (R) space, as predicted by the melt
clustering model.

Schematic of the axial temperature distribution in the CdTe
charge and the confining crucible near the growth interface.
Notice that the inequality of the k; and kg mandates a radial
temperature gradient in confined charges.

Growth interface shape for CdTe as a function of its position
within the gradient zone of the heat controlled vertical Bridgman
system; it should be noticed that the sensitivity of the inter-
face morphology to its axial position is lost upon confinement by
a crucible.

CdTe grown by the high pressure (450 psig) LEC technique. Wafers
cut from the crystal indicate initial growth with a limited
number of lamellar twins and deterioration of conditions upon
reseeding in the lower segment.
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Fig. 9 Optical band edges for CdTe and CdMnTe (20 wt% Mn) as obtained {
by the spectra-scan system. The developed procedure permits
compositional analyses with 15 um spatial resolution.
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Fig. 10 Optical band edge characteristics for CdTe grown by the vertical
Bridgman technique and by HP-LEC

Fig. 11 Micrograph of TEM analysis for CdTe prepared for electron trans-
parency by ion-milling. (The massive defect formation observed
throughout is absent in specimen prepared by wet jet etching.)

™
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.12 HEED micrograph of CdTe grown by the Bridgman technicque; streak
formation is taken to be indicative for the presence cf
atomically thin lamellar precipitates.
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PROBLEM DEFINITION

This research program on single crystal growth of CdTe was directed
at:

* The establishment of causes for failure to achieve cr
even approach theoretical degrees of crystalline and
chemical perfection in CdTe and related II-VI compound
semiconductors.

* The develcpment of science based experimental growth
procedures vielding crystal perfection which meets

property requirements for device fabrication.

CéTe and related compounds constitute primary matrix materials for IR focal
plane arrays and discrete detectors. The material, obtained exclusively by
Bridgman type crystal growth, is characterized by a very low degree of
crystalline perfection; it exhibits precipitates, lamellar and solitary
twinning as well as low angle grain boundaries, the result of excessivelv
high densities of dislocations. Efforts to obtain single crystal of
irproved crystalline perfection through growth by the LEC technicue have
been even less successful. Attempts to achieve device material by epi-
taxial approaches including LPE, CVD and MBE failed so far because of the

unavailability of adequate substrate material.

The presently reported research effort focussed on:




* Growth of CdTe with heat transfer control in vertical
Bridgman configuration.

* Exploration of LEC growth of CdTe.

* The identification of growth characteristics associated
with the conventional vertical Bridgman-type configura-
tion making use of current induced crystal-melt inter-
face demarcaticn and differential chemicA' etching.

* The development of theoretical approaches aimed at the
establishment of a scientific framework for the genera-

y tion of lamellar and solitaryv twins, grain bcundaries,

and dislocations during growth under defined boundary
and growth conditions.

* The determination of orientation dependent stability
criteria for the crystal-melt interface.

* Development of advanced approaches to melt growth of

CdTe.

1 J : EARCH T,

Bridcman Growth
* Using a vertical, seeded Bridgman configuration with heat pipe based
axial and radial thermal gradient control it was possible to grow (at 20%

vield) twin and grain boundary free CdTe of 1.2 cm diameter and a lencth

of up to 3 cm with an average dislocation density of about 2 x 10%/cm?;
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twinned, grain boundary free single crystals were grown at a yield of
tetter than 60% (Fig. 1).

* Deficiencies of conventional Bridgman growth were identified as thermal
endeffects (due to growth geometry) giving rise to centinuously varving
thermal gradients and consequently to transients in growth rate and
growth interface morphology (Fig. 2).

* Contrar

o gredicticns, it was found that the perfection of CdTe grown

cr

in vertical Bridgman configuration is not noticeably affected by the

chemical nature of the confining crucible material; graphitization, total

1iquid encapsulation by B,03 and the use of a boron-nitride insert in
guartz ampoules yielded virtually the same crystal perfection during
growth under otherwise corparaple conditions.

* A theoretical analysis of growth stability based on the orientation-
dependent dangling bond density concept was made. It indicates that twin
formation is cne moce of stabilization for non-planar crystal-melt incer-
faces: The thecry accounts for the increased twinning tendency of all
‘A’ seeded polar crystals (III-V and II-VI compound semiconductors) as a
consequence of low dangling bond density in that crystallographic orien-
tation; the theory provided explicit stability maps for elementary semi-
conductors (Fig. 8).

* The cdeveloped dangling pbond nodel indicates that the favored growth
direction in unseeded vertical Bridgman growth is the direction which

exposes the higher censity cof dangling tonds to the melt; twinning opera-

. . . £y . y
¥ tions in all instances will expose surface orientations with increased |
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most stable growth in CdTe is the <111)>B direc-

dangling bond density:

tion; growth stability is sensitive to both the axial and radial tnhermal

field distribution; it is also sensitive to the rate of growth which is

not to exceed a maximum value.

Based on the experimentally proven existence of associated species in

The results indicate that

CdTe melt, a clustering model was ceveloped.

the smallest cluster of relative stability capable of nucleating oblicue

twins comprises eight atoms; the theory predicts that cluster formation

is favored by slow rates of growth and by low thermal gradients (Figs. 4

and 5).

The heat transfer for CAdTe growth in vertical Bridgman configuration was

.

modelled. Analyzing the heat pipe operated three-zone system used in the

it is found that the control of the growth

present research effort,

interface morphology through its positioning within the gradient zcne is

severely impeded by the ’'interface effect’: the undesirable axial flow

The theoretical study,

of heat within the confining crucible material.

confirmed by experiment, shows that needed control over the shape of the

crystal-melt interface is contingent on the development of confinement

systems that are chemically compatible with the charge, have adequate

mechanical strength, and will not imbalance axial heat flow within the

growth cryvstal (Figs. 6 and 7).

a . & a g

Licuid E ] i Czochralski G ]

* Using a pre-cast charge (5N, II-VI, Inc.) and B,03 (Pasa Type D) as

.............
......................................
.............
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encapsulant it was pcssible to grow at 450 psi over-pressure and a growth
rate of 4 pm/s CdTe crystals of up to 15 mm diameter which contained a
limited number of lamellar twins and was devoid of grain boundaries and
optically visible precipitates (Fig. 8).

It was found that B,03, exhibiiting incomplete wetting in contact with
solid CdTe, is an inadecuate charge encapsulant. The non—wetting condi-
tion is found to result in evaporative Cd losses from the melt (loss of
stoichiometry) and from the growing solid (generation of point defects
after growth).

Enhanced wetting of the growing crystal by the liquid encapsulant was
pursued through the temperature dependence of the viscosity of the encap-
sulant and the modifications of chemical and optical properties of B,0;
through the addition of other glass forming oxides, notably SiO,.

All attempts to grow CdTe by the low vressure LEC technicue (at pressures
up to 4.5 atm) failed, primarily because of excessive evaporative losses
from the melt along the perimeter of the crystal-encapsulant boundary.

A thermo-elastic stress analysis was made for CdTe growth in the LP-LEC
configuration. It was found that the maximum allowable heat flux (loss)
from the crystal surface to the environment, for which the resulting
radial thermal gradients yield stresses which do not exceed CRSS, is only
1/140 that of silicon. The development of a viable LEC approach to

growth of CdTe is found to be contingent on effective melt encapsulation

and on heat lcss control.
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* Making use of a spectra scan ‘IR spectrometric camera’, a technique was
g

developed which allows the virtually instantaneous determination of
optical band edge characteristics for CdTe and related compounds. In a
scanning mode the spectrometer could provide radial compositional
analyses of CAInTe with a precision of better than f1%; the system was
also successfully applied to the differentiation of Bridgman and
Czochralski type materials, based on characteristic differences in the
optical band edge behavior Figs. 9 and 10).

In conjunction with TEM and STEM analyses of bulk defects, different
techniques were investigated for preparation of electron transparent CdTe
specimens. Both ion-milling and plasma etching were found to introduce
bulk defects during wafer preparation. An automated wet jet etching
technicue with feedback control was developed and found to yield reprodu-

cible results without artifacts (Figs. 11 and 12).

~~~~
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The presently reported research effort has implications which tran-
scend the domain of CdTe growth. It contributed substantially to the
development of a quantifiable, computer controlled Bricdgman type system,
now extensively used in research on non-man-tended growth of semiconductors
in reduced gravity environment. This research, moreover, was instrumental
in the realization of a CCD based therral imaging system, considered essen-

tial for the advancement of the LEC technigue as it applies to growth of

GaAs and InP.
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8-ATOM CLUSTER

Average no. of dangling
bonds per atom is 1.75
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