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Detection of Outliers in Multivariate
Linear Regression Model

SUMMARY
In this article we suggest multivariate kurtosis measure as a statistic
for detection of outliers in a multivariate linear regression model. The
statistics has some local optimal properties.

Some key words: Multivariate linear re®ression model, Detection of outliers,
Multivariate kurtosis, Locally best invariant test.

1. INTRODUCTION

Several authors have dealt with the problem of detection of outliers in
linear model, See Cook and Weisberg (1982). However, the corresponding multi-
variate problem is difficult and there is not much work in that area., For
excellent entensive surveys of the outlier literature see Barnett and Lewis
(1984). In this paper we give a locally optimum procedure for detection of
outliers based on Mardia's (1970) mu1t1var1a£§ sample kurtosis. Result is based
on extension of Ferguson's (1961) work to multivariate case on the similar
Tines of Sinha (1984) and Schwager and Margolin (1982). The idea of using
Ferguson's (1961) work on outlier detection, with suitable modifications to
11near regression problems, was suggested by C.R. Rao. The multivariate problem

s an offshot of that idea.

2. NOTATIONS AND REDUCTION OF THE PROBLEM

Consider the multivariate linear regression model

Y=XB+E , rank (X) =m (2.1)
AXp mxp
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Assume rows of E to be independent, each distributed as N(0,I), i.e.

Vec(E) « N(O, L ® In). We write (2.1) in the form

(Y]:...:Yp) = (XB]:...:XBP) + (e]:...:ep) (2.2)

The BLUE of 8 is % = (X]X)-]X]Yi. i=1,2,...p. The residual vectors are

E' =Y. ~ XB. 1.=.|020---1p

-~ ~

Thus we have E = (e].....gp) and Vec(E)‘: N(CI ®Q) where Q = I-—X(X]X)-]X].

An unbiased estimate of I is S = E]E/(n—m).
Let us denote n row vectors of p X 1 dimension by €1v Epveense . If one

1' 1‘. [EX NN NN ]

are unusually large, then we identify corresponding observations as outliers,
In the following we adopt the procedure due to Theil (1965) to get uncorrelated
residual vectors, keeping the problem at hand in mind. First, we order the
quadratic forms ejS—lei. i=1,2,...4n in the increasing order of magnitude.

Then, rewrite the model (2.1) starting with the row having smallest e;S_]e.

i
and continuing until the observation vector with largest e'].S_]e1 is at the
bottom.

for notationai convenience let us take the rewritten model to be the same
as (2.1). HNow Theil's (1965) BLUS method involves choosing XO from X, starting

with the first row, so that X0 exists,

Then (2.1) can be written as
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m = 0 B + E or
Y(n—m) X]
Ym:...:Ymp XOB]:"':XOBp
= + E (2.3)

Now make the transformation,

1
_ AT _ 3 -1 _
U= 1Y nmmi ~ Q1%9%0 Timg ¢ 110 20eeenp (2.4)
=1 - X (x'x)" Ty ' PP
where Q]] =1 - ]( ) ] and Q]] is such that 011 = Q]]Q]] . ach

U1 o 1=1,2¢y..0..p is (n-m) X 1 residual vector and has the property that, if

U o= (U]...,.Up) then

vec(V) = N(0, L ® In-m)'

That is to say, rows of \J are independently distributed as N(0,Z), the p-variate
normal distribution. Thus, we have (n-m) i.i.d. observations from a p-variate
normal distribution with mean zero and covariance matrix I, and we want to
detect whether there are any outliers among them, Similar problem for obser-
vations from N(u,L) for unknown u has been solved by Schwager and Margolin
(1982) and Sinha (1984).
3. FORMULATION OF THE PROBIFM AND MATN RESHIT

Let X be n x p observation matrix, such that rows of X are independent

and each row is a p-variate normal with mean O and covariance matrix L.

Possibi11ity of outliers with mean slippage can be incorporated by considering

the model

>
"
[l
=
[ng]
\)'—
+
~N
[ng]
f—

(3.1)
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with A a nonzero scalar, A = (ajj) an arbitrary n x p matrix such that some
of the rows of A are zero and Z, mean zero, unit variance, independent normal
variables. Unless A = 0, the observation Xi corresponding to the ith row

of X is an outlier if the ith row of A is nonzero.

The general outlier problem then consists of the model (3.1) and the
null hypothesis HO:A = 0 versus the alternative H]:A z 0, We derive locally
optimum test of H0 Vs H] employing invariance arguments through the use of
a group of transformation keeping the testing problem invariant.

The above testing problem is invariant under the action of the group
G = P x GI(p) where P denotes the group of all n x n permutation matrices
with element Fa. G1(p) the group of p x p nonsingular matrices with elements
C. The group operations are defined by (1) post multiplication of X by any
nonsingular matrix CeGl(p) and (2) permutation of the rows of X by premulti-
plying X by FaeP. Without loss of generality assume £ =1,

The following lemma due to Wijsman (1967) is taken from Sinha (1984).
Lemma 3.1 Let h(x/A) be the pdf of x, let T = t(x) be a maximal invariant
under the transformation G and let PZ be the distribution induced by T under

A. Then the pdf of T w.r.t. Pg evaluated at T = t(x) is given by

o7 J h(g+x/8)[C '¢|™ 2du(g)
_E% _ G (3.2)

dp [ h(gex/8=0)[C'cI™ 24u(a)
G

where v is left invariant measure on G, Here g« x =I&xC. TP CeG1(p) and
V=V X v, vy is discrete uniform probability measure with mass 1/n! at each
of the n! elements FaeP and

dv,(C) = dc/[c'c|P/2.
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) Lemma 3.2 The ratio in (3.2) reduces to
if n-
N EQJ etr - 3 (C'C - ZAC'S-%(FGX)'A + s2atar)cie] 2 dc
G1(p) (3.3)
n-p
zuI etr(- + c'0)c'c| 2 dc
G1(p)

Proof is easy proceeding on the similar lines as in Sinha (1984).
Now we proceed to evaluate the expression in (3.3). An exact evaluation

of the expression is not necessary to evaluate locally best invariant test.

We use Taylor series expansion upto a few terms evaluated at & = 0. Making
a transformation from C to -C, it is clear from (3.3) that the ratio of the
pdf's depend only on A2. Let NA and N0 be the numerator and the denominator

of (3.3) respectively. We assume the conditions for taking derivative inside

. W L oK ot e gl S at o

the integral signs hold. Then, using Taylor expansion we write

(2) 2 (4) o*

1 (3) A®
NA = N0 + NOA + N0 5T + NO T+ NO AT + eeee

= N, + Néz) %; + Né4) %} b,

Using the results (Lemma 4.1) of Schwager and Margolin (1982) we can easily

A2
show that coefficient of 5T o

quf_v_YY e

1 _ltrc'c ] 0P
-tr(A'A)NO + Zaf (t c‘s"’(FQX)'A]2 e ? |C C| ZdC,

5
@
X G1(p)
-
- Ad
S 1s a constant, The coefficient of IT apart from a constant is
- ‘ n=p
| 3 _1 _1 )
N zaI [trac’s™2(r_x)' 1% &3t 0 Cere) 2 ge (3.4)
' G1(p)
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Let T(x) = b =nl (XS

2.p Xj)2 be multivariate kurtosis measure defined
' j=]

as in Mardia (1970). Let L(A) be such that

n n
n(n=1) L&) = (n-2) I IIr lI* =30 2 Il ]l 57 (3.5)

i=] i=]

l|2 = a? a,, a, is the i row of A

where]lri
Now (3.4) apart from a constant can be written, using the results due to

Ferguson (1961), Schwager and Margolin (1982) and Sinha (1984), as

¢, T(x) L(A) + ¢ (3.6)

Then we have the following theorem.

Theorem For the outlier problem discussed, the locally best invariant test

of HO:A =0 Vs H]:A # 0 conditional on A, is: if L(A) > 0, reject HO whenever
b2.p 2 k; if L(A) < 0, reject HO whenever b2'p s k'. The constants k,k' are

determined by the size of the test and L(A) is the function of A given in
(3.5)0

Proof Application of Lemma 3.2 and the generalized Neyman-Pearson Lemma along

with (3.6) completes the proof of the theorem.

One can usé asymptotic distribution of bZ,p' obtained by Mardia (1970),
to find the cutoff points k,k'. Or else, in specific problems, one can use
simulation to compute k,k'.

Now returning back to the multivariate regression model considered 1n
section 2; we test the hypothesis & = 0 Vs & # 0 using the uncorrelated
residual vectors obtained in (2.4) and applying the above theorem. If the

hypothesis is rejected then we identify the observation corresponding to the
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largest ei'S-]ei. as an outlier. Removing the outlier observation frem the
data, further testing can be done for more outliers.

We would like to remark that the kurtosis measure is very sensitive for
the presence of outliers and hence is a very useful tool for detection of
outliers. This fact, at least in the case of univariate regression models,
was realized in a data analysis problem considered by Vaidya (1985).
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