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Detection of Outliers in Multivariate
Linear Regression Model

SUMMARY

In this article we suggest multivariate kurtosis measure as a statistic
for detection of outliers in a multivariate linear regression model. The

* statistics has some local optimal properties.

Some key words: Multivariate linear rel-ession model, Detection of outliers,
*- Multivariate kurtosis, Locally best invariant test.

1. INTRODUCTION

Several authors have dealt with the problem of detection of outliers in

linear model. See Cook and Weisberg (1982). However, the corresponding multi-

variate problem is difficult and there is not much work in that area. For

excellent entensive surveys of the outlier literature see Barnett and Lewis

(1984). In this paper we give a locally optimum procedure for detection of

outliers based on Mardia's (1970) multivariate sample kurtosis. Result is based

on extension of Ferguson's (1961) work to multivariate case on the similar

- lines of Sinha (1984) and Schwager and Margolin (1982). The idea of using

Ferguson's (1961) work on outlier detection, with suitable modifications to

linear regression problems, was suggested by C.R. Rao. The multivariate problem

is an offshot of that idea.

* 2. NOTATIONS AND REDUCTION OF THE PROBLEM

Consider the multivariate linear regression model

Y - XB + E , rank (X) = m (2.1)

-K 
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Assume rows of E to be independent, each distributed as N(O,Z), i.e.

Vec(E) - N(O,Z 01n). We write (2.1) in the form
n

T 1 .(YI
' '

r ) = ( : )3 + (EI' :E (2.2)

The BLUE of B is i= (X x)- x yi, i=l.2,...p. The residual vectors are

= Y. - Hi ' ,

Thus we have E (l...,CFp) and Vec(E)- N(O 0 Q) where Q= I -(X x) X

An unbiased estimate of Z is S = E E/(n-m).

Let us denote n row vectors of p x 1 dimension by el, e2 ,...,en. If one

or more of the quadratic forms

e eiS lei ,  i-l,2,,..,n

are unusually large, then we identify corresponding observations as outliers.

. In the following we adopt the procedure due to Theil (1965) to get uncorrelated

residual vectors, keeping the problem at hand in mind. First, we order the

* quadratic forms eiS-1 ei, i=l,2,...,n in the increasing order of magnitude.

Then, rewrite the model (2.1) starting with the row having smallest e'S-Ie.
1 1

and continuing until the observation vector with largest e e. is at the

bottom.

For notational convenience let us take the rewritten model to be the same

as (2.1). Now Theil's (1965) BLUS method involves choosing X0 from X, starting

with the first row, so that X exists.

Then (2.1) can be written as

.t4
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n-m) (~)B + E or

-.- .Y ))+2(n-m)

Y m Y m X081 B X 05 p

=+ E (2.3)
Y Y(n-m)l'Y (n-m)p \XIBI:X 1Xp

Now make the transformation,

~i~n~) -Qi -1
U =i - Q 1X1X Ym ' i=l,2,...,p (2.4)

111
where QII = I - XI(X'X)-Ix and Q I is such that QII Q1IQII . Each

SU i , i=I,2,....p is (n-m) x 1 residual vector and has the property that, if

U l = (U....,up) then

vec(Q) = N(O, Z OD In-m).

That is to say, rows of U are independently distributed as N(OZ), the p-variate

normal distribution. Thus, we have (n-m) i.i.d. observations from a p-variate

normal distribution with mean zero and covariance matrix Z, and we want to

detect whether there are any outliers among them. Similar problem for obser-

vations from N(U,4) for unknown w has been solved by Schwager and Margolin

* (1982) and Sinha (1984).

3. FORMULATION OF THE PRORIFM AND MAIN RFIII T

Let X be n x p observation matrix, such that rows of X are independent

* and each row is a p-variate normal with mean 0 and covariance matrix E.

* .Possibility of outliers with mean slippage can be incorporated by considering

the model

O X =A + ZZ' (3.1)

. .



with 6 a nonzero scalar, A (a ) an arbitrary n x p matrix such that some

of the rows of A are zero and Z, mean zero, unit variance, independent normal

variables. Unless 6 = 0. the observation Xi corresponding to the ith row

of X is an outlier if the ith row of A is nonzero.

The general outlier problem then consists of the model (3.1) and the

null hypothesis H0 :t = 0 versus the alternative HI:A x 0. We derive locally

optimum test of H0 Vs H1 employing invariance arguments through the use of

a group of transformation keeping the testing problem invariant.

The above testing problem is invariant under the action of the group

G = P x Gl(p) where P denotes the group of all n x n permutation matrices

with element T' Gl(p) the group of p x p nonsingular matrices with elements

C. The group operations are defined by (1) post multiplication of X by any

nonsingular matrix CeGl(p) and (2) permutation of the rows of X by premulti-

plying X by rcP. Without loss of generality assume E = I.

The following lemma due to Wijsman (1967) is taken from Sinha (1984).

Lemma 3.1 Let h(x/A) be the pdf of x, let T = t(x) be a maximal invariant

under the transformation G and let P Tbe the distribution induced by T under

T
1. Then the pdf of T w.r.t. PO evaluated at T = t(x) is given by

T Gh(g • px/AG ICCn/2 C (g)
dp 

(3.2)
dp T I h(a.x/6=0) I C'Cn/2 dv(g)

JG

where v is left invariant measure on G. Here g * x rxC, r CP, CEG1(p) and

v= v I x v 2, V1 is discrete uniform probability measure with mass I/n! at each

of the n! elements r 0 and

dv2(C) = dC/ICClp/2.

9#



* Lemma 3.2 The ratio in (3.2) reduces to

Z(I er -1 C'C A'-( X)'A + A2 A'A} C'Cl 2 dCr 2etr 2 {C C -2AC'S- (X AG'~d

Gl(p) (3.3)

zf etr(- 1 CC)Cc'cl 2 dC

Gl(p) 2

Proof is easy proceeding on the similar lines as in Sinha (1984).

Now we proceed to evaluate the expression in (3.3). An exact evaluation

of the expression is not necessary to evaluate locally best invariant test.

We use Taylor series expansion upto a few terms evaluated at A = 0. Making

a transformation from C to -C, it is clear from (3.3) that the ratio of the

pdf's depend only on A2. Let NA and N0 be the numerator and the denominator

of (3.3) respectively. We assume the conditions for taking derivative inside

the integral signs hold. Then, using Taylor expansion we write

NA=1 (2) A 2  (3)A3' (4) A4N N +NTA+No + No -+ N0  4T+....

= N+ N 2) A2  (4) A4

0 0 2-+N 0  4- + ..

Using the results (Lemma 4.1) of Schwager and Margolin (1982) we can easily

A
2

show that coefficient of 2T

1trc'c . n-D

-tr(A'A)N 0 + Z]j f t C'S-I(F X)'A]2 e-  IC -C I

Gl(p)

A4

is a constant. The coefficient of ITF apart from a constant isn-p

*j [trACS-(fX),] 4 e-2trC'C ICCI 2 dC (3.4)

Gl(p)

I#
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Let T(x) b2,p  n E (X'S-x )2 be multivariate kurtosis measure defined

as in Mardia (1970). Let L(A) be such that

n n
n(n-1) L(A) = (n-2) E iri -_ II l 2)2 (3.5)

i=l i= 1

2= a. is the ith

where rII 2 a/ I row of A.

Now (3.4) apart from a constant can be written, using the results due to

Ferguson (1961), Schwager and Margolin (1982) and Sinha (1984). as

clT(x) L(A) + C2. (3.6)

Then we have the following theorem.

Theorem For the outlier problem discussed, the locally best invariant test

of H0 :A = 0 Vs HI:A x 0 conditional on A, is: if L(A) > 0, reject H0 whenever

5 b2,p - k; if L(A) < 0, reject H0 whenever b2, p < k'. The constants k,k' are

determined by the size of the test and L(A) is the function of A given in

(3.5).

Proof Application of Lemma 3.2 and the generalized Neyman-Pearson Lemma along

with (3.6) completes the proof of the theorem.

One can use asymptotic distribution of b2, p, obtained by Mardia (1970).

to find the cutoff points k,k'. Or else, in specific problems, one can use

simulation to compute k,k'.

Now returning back to the multivariate regression model considered in
0

section 2; we test the hypothesis A = 0 Vs A 0 0 using the uncorrelated

residual vectors obtained in (2.4) and applying the above theorem. If the

hypothesis is rejected then we identify the observation corresponding to the
0i
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largest e.'s- e as an outlier. Removing the outlier observation frcm the

* data, further testing can be done for more outliers.

We would like to remark that the kurtosis measure is very sensitive for

the presence of outliers and hence is a very useful tool for detection of

outliers. This fact, at least in the case of univariate regression models,

was realized in a data analysis problem considered by Vaidya (1985).
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