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ABSTRACT

If TR is the class of triangulated graphs, a TR-formative edge coloring
is a green/red coloring of the edges of a graph, such that the green graph is
triangulated (i.e. belongs to TR) and the red graph has no triangles. Recently
Balas, Chvatal and Nesetril gave an O(‘V\S) algorithm for finding a maximum-
weight clique in any graph G = (V,E) with a known TR-formative edge coloring.
In this paper we give an O(|V| + |E|) time algorithm for finding in an arbitrary
graph an edge-maximal subgraph with a TR-formative coloring. This can be used
to construct improved implicit enumeration procedures for finding a maximum-
weight clique in an arbitrary graph.

Our algorithm consists of two subroutines, also of interest in their
own right: one finds an edge-maximal triangulated subgraph, the other one an

edge-maximal triangle-free subgraph, in an arbitrary graph.
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1. Introduction

Let TR denote the class of triangulated graphs, i.e. graphs that have
no hole (chordless cycle of length > 4). For an arbitary graph G = (V,E),

we define a TR-formative edge coloring of G as a green/red coloring of the

edges of G, such that the green graph is triangulated and red graph has no
triangles. In a recent paper, Balas, Chvatal and Nesetril [1985] have
given an 0(\V\5) algorithm for solving the maximum weight clique problem
(MWCP for short) on any graph G with a known TR-formative edge coloring.
This result can be used to derive improved implicit enumeration algorithms
for solving the MWCP on an arbitary graph G, provided one has an efficient
way of generating subgraphs of G with a TR-formative edge coloring. Indeed,
suppose that for some E'c E, the subgraph G[E'] = (V, E’) of G generated
by E’ has a known TR-formative edge coloring. Then the MWCP on G[E'] is
solvable in 0(\V|5) time. Let K be a maximum weight clique of G[E'] with
weight w(K). If G has a clique K’ with w(K’) > w(K), then G(K’) has at

least one edge in E \ E’.

Thus an implicit enumeration algorithm can be
constructed that, as a branching rule, recursively replaces the current
graph G by the collection of subgraphs G(N(el)), G(N(ez)) S ey eees

G(N(eq)) - {e }, where {el,...,eq} = E \ E] and for any edge

1,...,eq_1
e = (u,v),
N(e): = (weVi{u,v}|(w,u)eE and (w,v)eE},

while G(N(e)) denotes the subgraph of G induced by N(e). The procedure for
finding a subgraph with a TR-formative edge coloring can then be applied to
each of the above graphs, while any graph G(N(ei)) - (el,---,ei_l} that can
be shown to have no clique of weight larger than w(K) - w(ui) - w(vi) (where
(u,, vi) = ei)’ can be discarded. Naturally, the larger the subgraph with

i

a TR-formative coloring that one is able to generate, the fewer branches are
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needed; hence one is moved to search for edge-maximal subgraphs, where we

define the latter as follows. A triangulated subgraph G[F] is called edge-

maximal (with respect to set inclusion) if there exists no F@? F, F?E E,

such that G[F'] is trangulated. An edge-maximal triangle-free subgraph is
defined analogously. Now if G[E’] is a subgraph of G with a TR-formative

edge coloring [F,D], where G[F] is triangulated, G[D] is triangle-free, and

FUD = E’, we say that G[E’] is edge-maximal if there exists no F"i F, F'C E\D,
such that G[F'] is triangulated, and no D’i D, D’ C E\F, such that GID'] is
triangle-free.

An implicit enumeration procedure of the above type was used by Balas and
Yu [1984] to find a maximum (unweighted) clique in an arbitrary graph. The Balas-
Yu algorithm generates a maximal induced subgraph whose chromatic number is equal
to the size of its maximum clique, and in which a maximum clique can be found
in O(\V\+1E\) time. If G(S) denotes the maximal induced subgraph generated,

then G is replaced by G(N(vl)), G(N(vz)-{vl}),...,G(N(vp)-{v v _1}). The

1770V
computational results obtained on randomly generated graphs with up to 400 ver-
tices and 30,000 edges indicate that the procedure is clearly superior to earlier

algorithms that use straight implicit enumeration.

In this paper we give an O(|{V|+|E|) procedure for finding an edge-maximal
subgraph with a TR~formative coloring in an arbitrary graph. Thz rrocedure con-
sists of two independent algorithms, each of which is also of interest in its
own right. The first one finds an edge-maximal triangulated subgraph, the
second one finds an edge-maximal triangle-free subgraph, in an arbitrary graph.
Applied to a graph G = (V,E), algorithm I finds an edge-maximal triangulated
subgraph G[F] of G. Applied to G[E‘F], algorithm II then finds an edge-maximal
triangle-free subgraph G[D] of G[E‘F]. The resulting graph G[FUD] is then an

edge-maximal subgraph of G with the TR-formative edge coloring [F,D].
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2, Edge~Maximal Triangulated Subgraphs

o Our algorithm for finding an edge-maximal (EM) triangulated subgraph
o~ of a graph is based on the Balas-Yu algorithm for finding a maximal trian-
gulated induced subgraph. Like the latter, it uses the ideas of a procedure

- by Rose, Tarjan and Lueker [1976] for testing triangularity, and it runs in

‘:ﬁ O(\V|+‘E|) time. An earlier algorithm for finding an EM triangulated sub-
iE? graph, by Dearing, Shier and Warner [1984{, requires 0(A '\E\) steps, where
éﬁ? A is the maximum degree.

i;- To explain the algorithm, we have to recall a few properties of trian-
:if gulated graphs. A vertex is called simplicial if all its neighbors are

;i; adjacent to each other, Every triangulated graph has a simplicial vertex

(Dirac [1961]); it follows that a triangulated graph has at most as many
:ﬁ: cliques as vertices. An ordering v,,...,v_ of the n = \V\ vertices of a
O 1 n

graph G = (V,E) is called perfect if for i=1l,...,n, v is simplicial in

Ty Wl

G({vi,v

i+1,...,Vn}). A graph is triangulated if and only if there exists

a perfect ordering of its vertices. Based on this property, triangulated

e
PRI
)

graphs can be recognized, and their cliques can be listed, in 0(|V| + |E|)

time. (Rose, Tarjan and Lueker [1976}]).

% O

'ée% Given a graph G = (V,E), our algorithm generates an EM triangulated
E;é subgraph G[F] of G, along with a perfect ordering ¢ of the vertices of
§§ G[F]. The ordering 5 is generated backwards (i.e. the last rank is as-
E; signed first, the next to last seconds, etc.), based on a lexicographic
E; labeling of the vertices, For some ordering o = (vl,...,vn) of the ver-
: tices of G, we say that Vj is a successor of vy if vj and vi are adjacent

and j > 1. If, in addition, k > j for all successors v of A other than
. vy, then we say that v, is the first successor of v,.

We will use two known facts, established in Rose, Tarjan and Lueker

[1976]:




R Fact 1. If for i =1,...,n, the first successor of \ is adjacent in

}::: G[F] to every other successor of Vi then for i = 1,..,,n, v, is simplicial
i

in the subgraph of G[F] induced by {vi,...,vn}.

Fact 2. G[F] is an EM triangulated subgraph of G is and only if
there exists no ee¢E\F such that G[FU{e}] is triangulated.

BN Algorithm I (for finding an EM triangulated subgraph)

},ﬂi 0. Initialization. Assign the label @ to every vertex.
_ Set i ~ n = |V|, Fe@, c-0.

S 1. Choosing a vertex. If i = O, stop: G[F] is an EM triangulated

subgraph of G and ¢ is a perfect ordering in G[F].

Otherwise, choose an unnumbered (i.e. unranked) vertex v with lexi-

1¥i cographically largest label. Assign number i to v, i.e. set v, <, insert
tié& v, into g as the first element, i.e. set

e

ix}? o= (v;5 Vigrrerer Vo)

f{:? and go to 2.

iisi 2. Adding edges to F., Let Sc(vi) = (wl,...,wz) be the list of successors
E;;; of v, - Add to F the edge (Vi’wl) and all the edges (Vi’wj) such that wj is
ﬂi{? a successor of Vis adjacent to v, in G[F]; i.e., set

\ FeF U (v,w) U [(vi,wj)leesc(vi) and (wl,wj)eF}

fF: and go to 3.

E;ﬁi 3. Llabeling. Append i to the label of each unnumbered vertex w adjacent
.‘i: to vy in G, set 1 « i - 1, and go to 1.

.c Theorem 1. Algorithm I generates an EM triangulated subgraph of G in
\, o(|v| + |E]) time.

EE;; Proof. Let g = (vl,...,vn) be the ordering generated by Algorithm I.
:—ié From Fact 1, for i = 1,...,n, \ is simplicial in the subgraph of G{F] in-
g%jt duced by {vi’ V1+1”"’vn}' Hence G[F] is triangulated. From Fact 2, to

f
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5

prove that G[F] is edge-maximal it is sufficient to show that for all
e¢E \ F, G[FU{e}] is not triangulated. But this follows from the rule
which governs the addition of new edges to F (step 2). Thus G[F] is an
EM triangulated subgraph of G.

Next we establish the complexity of the algorithm. Each application
of Step 3 (labeling) requires O(deg Vi) operations, and the list of labeled
vertices can be kept in lexicographically decreasing order. Thus Step 1
(choosing an unnumbered vertex with lexicographically largest label) can be
carried out in constant time. Step 2 (adding edges to F) again requires
O(deg vi) operations. To get the complexity of the entire algorithm, we

n
sum over all v., i =1, ..., n, to obtain 0( £ deg (v,)) = olv] + |E])."
i=1

3, Edge-Maximal Triangle-Free Subgraphs

A straightforward method for finding an EM trinagle-free subgraph
G[D] of a given graph G = (V,E) is to initialize the edge set D as empty,
then examine every edge of E in some arbitrary order and put it into D if
and only if this does not create a triangle in D. Examining every edge from
this point of view requires O(‘V]) steps, hence the whole procedure requires
O(\V\ . \E\) steps.

However, one can do better than this naive approach by arbitrarily
choosing a vertex v, partitioning the vertex set V into subsets Vl,...,Vp,
where Vd is the set of vertices at distance d from v, (distance being measured
by the number of edges in a shortest path), and finally deleting all the
edges joining vertices of the same subset Vd’ ford =1,...,p. It is not
hard to see that the resulting subgraph is edge-maximal triangulated,

and its construction takes 0(|V\ + \E‘) steps. The details follow.

-
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oo For a graph G = (V,E), and a vertex of veVd, let

0
[
o

By
RIS
.

N(v): = {ueV|(u,v)¢E}; and

) (with V__: = @),

j,-:j NV gyqt = NOD N (Vg Uy 1

.2.0.g., we assume that G is connected.

=

Algorithm II (for finding an EM triangle-free subgraph)

¢ 0. Initialization. Choose some v eV and set d < O, v, - {v.},

Veyv \{V*}, V1 ~p, D~pP, and go to 1.

1. Choose the next vertex. If all veVd are marked and V = §, stop:

o G is an EM triangle-free subgraph of G. 1If all veVd are marked but V # @,

setde—=d+ 1,V ~ P, and go to 1.

d+1

s Otherwise choose an unmarked veVd, set v_ - v, and go to 2.

‘; ¢ %4 1 h -
. Add new vertices and edges. Generate V(Vo)d+1’ set Vd+1 Vd+1 U

N(Vo\d+1' Ve~V N(vo)d+1, D« D (vo,N(vo)d+1) and go to 1.

Theorem 2. Algorithm II generates an EM triangle-free subgraph in
O(\V\ + \E\) time.

Proof. For any triangle of any graph and any fixed vertex v,, two of
the three vertices of the triangle are equidistant from v, ; hence the edge
“ff joining them is not included into D by the Algorithm. Thus G[D} is triangu-
lated. Further, the only edges of E not in D are those joining pairs of
51 nodes equidistant from v, and having a common neighbor; but adding any such
- edge would create a triangle. Thus G[D] is maximal.

To see the complexity of the algorithm notice that for each

®. vertex v, chosen in step 1, it takes O(deg(vo)) steps to identify N(vo)d+1

- and to add to D the edge set (VO,N(vo)d+1). Since everything else done in
the algorithm takes constant time, the total number of steps is obtained by

adding up O(deg(v)) for all veV, which yields 0(\V\+\E\), as claimed.'l
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4. An Example

Consider the complete 4-partite graph G = K3,3,3,3, with
3 vertices in each of its 4 independent sets, numbered {1,2,3}, {4,5,6},
{7,8,931, {10,11,123.

We first apply Algorithm I to G and construct the EM triangulated
subgraph G[F] shown in Fig. 1. The labeling is illustrated in Fig.2, where
the circled numbers are the ranks (in the ordering o) and the square brackets
contain the lexicographic labels.

Algorithm I.

Iteration 1. Since all labels are @), we choose arbitrarily v = v, «~ 1.
n

12
We set ¢ — (1) and we append 12 to the label of vertices &4,...,12 (i.e., each
of these vertices now have label L(j)=[12], j=4,...,12).

Iteration 2., We choose Vi 4, set ¢~ (4,1), F « {(4,1)}; and append
11 to the label of vertices 2,3,7,...,12 (i.e., we set L(2)=L(3) « [11], L(7)=

«..=L(12) ~ [12,11]).

Iteration 3. We choose Vig © 7 (as 7 is one of the vertices with
lexicographically largest label), set g « (7,4,1), F « {(4,1), (7,1), (7,4)},
and append 10 to the label of the vertices 2,3,5,6,10,11,12,

In the next 3 iterations we choose Vg - 10, Vg < 11 and o 12, At
the end of iteration 6 we have ¢ = (12,11,10,7,4,1) and F = {(4,1), (7,1),
(7,%), (10,7), (10,4), (10,1), (11,7), (11,4), Q1,1), (12,7), (12,4),
(12,1}

So far every application of step 2 has resulted in the addition to F of

all the edges joining \ to its successors. At the next iteration this

situation changes.
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Iteration 7. We choose Ve < 8, since vertex 8 has the lexicographically

maximal label [12,11,9,8,7]. We set ¢ ~ (8,12,11,10,7,4,1). The first suc-
cessor of 8 is 12, so we add (8,12) to F; but of the remaining successors of
8 only 4 and 1 are adjacent in G[F] to 12, hence only (8,4) and (8,1) are
added to F, while the remaining two edges, (8,11) and (8,10), remain in E\F.
Thus we set F — FU{(8,12), (8,4), (8,1)) and app:nd 6 to the labels of all
unnumbered vertices adjacent to 8 in G,

Iteration 8. v

5
(9,1)}. The edges (9,11), (9,10) remain in E\F.

-9, o~ (9,8,12,11,10,7,4,1), F - F U {(9,12), (9,4),

Iterations 9,10,11,12 produce ¢ = (3,2,6,5,9,8,12,11,1n,7,4,1) and
the set of edges shown in Fig. 1.

Next we apply Algorithm II to the graph G[E'F], shown in Fig. 3, to find
an EM triangle-free subgraph. We omit the isolated vertices 1 and 12, which
can be added to the triangle-free graph obtained. (TIn general, if G[E F] is
disconnected, we apply the algorithm to everv component that contains a
triangle).

Algorithm IT.

ro

We arbitrarily choose v, = and set V0 - {2}, vV - {3,...,11}.

Iteration 1. We choose v, = 2 and mark (underline) 2: Vo - Lg}. We

generate N(2), = {4,5,7,8,10,11} and set V; = N(2),, V-~V V, = {3,6,9}, and

1
D~ ((2,4), (2,5, (2,7), (2,8), (2,100, (2,1D)}.

1

Pl

Tteration 2. v_ =4, V< {4,5,7,8,10,11}, N4, - 31, v, - {31,

1
V e {6,9}, D~ DU {(3,4).}.

Iteration 3. v_ =5, V; - {4,5,7,8,10,11}, N(5), = {3}, b~ DU {(3,51.




11

Iterations 4 and 5 generate the sets N(7)2 = N(8)2 = (3,6), and add to
D the edges (3,7), (6,7), (3,8), (6,8). Iterations 6 and 7 generate N(lO)2 =
N(11)2 = {3,6,9}, and add to D the edges (3,10), (6,10), (9,10), (3,11), (6,11),
(9,11).

Iteration 8. At this point vy = {4,5,7,8,10,11}, i.e. all veV

————— 1
and V = @; hence we stop, with the graph G[D] shown in Fig. 4.

are marked,

The original graph G = had 54 edges, G[F] has 30 edges and

3,3,3,3
G[D] has 15. Thus the edge-maximal subgraph G[F'D] with the TR-formative

edge coloring [F,D] has 45 edges.!|
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TR-Formative Edge Coloring
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10. AB8LTRACT /Continue on reverse side If necessary and identify oy bio:k manosr)

If TR is the class of triangulated. graphs, a TR-formative edge color-
ing is a green/red coloring of the edges of a graph, such that the green ;
graph is triangulated (i.e. belongs to TR) and the.red graph has no triangles.
Recently Balas, Chvatal and Nesetril gave an 0(\V\ ) algorithm for finding
a maximum- we1ght clique in any graph G = (V,E) with a known TR-formative :
edge coloring. 1In this paper we give an O(‘VI + ‘El) time algorithm for

i

finding in an arbitrary graph an edge-maximal subgraph with a TR-formative |
— {cont )
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coloring. This can be used to construct improved implicit enumeration
procedures for finding a maximum-weight clique in an arbitrary graph.

Our algorithm consists of two subroutines, also of interest in their
own right: one finds an edge-maximal triangulated subgraph, the other one
an edge-maximal triangle-free subgraph, in an arbitrary graph.
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