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ABSTRACT

If TR is the class of triangulated graphs, a TR-formative edge coloring

is a green/red coloring of the edges of a graph, such that the green graph is

triangulated (i.e. belongs to TR) and the red graph has no triangles. Recently

Balas, Chvatal and Nesetril gave an O(IV1 5 ) algorithm for finding a maximum-

weight clique in any graph G = (V,E) with a known TR-formative edge coloring.

In this paper we give an O(jVl + lEt) time algorithm for finding in an arbitrary

graph an edge-maximal subgraph with a TR-formative coloring. This can be used

to construct improved implicit enumeration procedures for finding a maximum-

weight clique in an arbitrary graph.

Our algorithm consists of two subroutines, also of interest in their

own right: one finds an edge-maximal triangulated subgraph, the other one an

edge-maximal triangle-free subgraph, in an arbitrary graph.
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1. Introduction

Let TR denote the class of triangulated graphs, i.e. graphs that have

no hole (chordless cycle of length > 4). For an arbitary graph G = (V,E),

we define a TR-formative edge coloring of G as a green/red coloring of the

edges of G, such that the green graph is triangulated and red graph has no

triangles. In a recent paper, Balas, Chvatal and Nesetril [1985] have

given an O(jVj5) algorithm for solving the maximum weight clique problem

(MWCP for short) on any graph G with a known TR-formative edge coloring.

This result can be used to derive improved implicit enumeration algorithms

for solving the MWCP on an arbitary graph G, provided one has an efficient

way of generating subgraphs of G with a TR-formative edge coloring. Indeed,

suppose that for some Ec E, the subgraph G[E' ] = (V, E') of G generated

by E' has a known TR-formative edge coloring. Then the MWCP on G[E' ] is

solvable in O(IVj 5) time. Let K be a maximum weight clique of G[E' ] with

weight w(K). If G has a clique K' with w(K') > w(K), then G(K') has at

least one edge in E ',, E'. Thus an implicit enumeration algorithm can be

constructed that, as a branching rule, recursively replaces the current

graph G by the collection of subgraphs G(N(el)), G(N(e) -el,

qG(N(e)) - e .where . = \ E, and for any edge

e = (u,v),

N(e):= weV',.u,v~l(w,u)eE and (w,v)eE},

while G(N(e)) denotes the subgraph of G induced by N(e). The procedure for

finding a subgraph with a TR-formative edge coloring can then be applied to

each of the above graphs, while any graph G(N(e.)) (el,... ,e that can

be shown to have no clique of weight larger than w(K) - w(u.) - w(vi ) (where

(ui, vi) = e.), can be discarded. Naturally, the larger the subgraph with

a TR-formative coloring that one is able to generate, the fewer branches are

- .*--- . .- * . -*
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needed; hence one is moved to search for edge-maximal subgraphs, where we

define the latter as follows. A triangulated subgraph G[F] is called edge-

maximal (with respect to set inclusion) if there exists no F' F, F C E,

- such that G(F'] is trangulated. An edge-maximal triangle-free subgraph is

defined analogously. Now if G[E'] is a subgraph of G with a TR-formative

*:-' edge coloring [F,D], where G[F] is triangulated, G[D] is triangle-free, and

FU = E', we say that G[E'] is edge-maximal if there exists no F' sF F' E\D,

such that G[F' ] is triangulated, and no D'" D, D' C E\F, such that G[D'] is

triangle-free.

An implicit enumeration procedure of the above type was used by Balas and

Yu [19841 to find a maximum (unweighted) clique in an arbitrary graph. The Balas-

Yu algorithm generates a maximal induced subgraph whose chromatic number is equal

to the size of its maximum clique, and in which a maximum clique can be found

in O(1Vl+1,E) time. If G(S) denotes the maximal induced subgraph generated,

* then G is replaced by G(N(v1 )), G(N(v2)-tvl}),...,G(N(vp)-(Vl,...,V pv1 ). The

computational results obtained on randomly generated graphs with up to 400 ver-

tices and 30,000 edges indicate that the procedure is clearly superior to earlier

algorithms that use straight implicit enumeration.

In this paper we give an O(jV +jEj) procedure for finding an edge-maximal

Oq subgraph with a TR-formative coloring in an arbitrary graph. The Procedure con-

sists of two independent algorithms, each of which is also of interest in its

own right. The first one finds an edge-maximal triangulated subgraph, the

* ~second one finds an edge-maximal triangle-free subgraph, in an arbitrary graph.

Applied to a graph G = (V,E), algorithm I finds an edge-maximal triangulated

subgraph G[F] of G. Applied to G[E\F], algorithm II then finds an edge-maximal

triangle-free subgraph G[D] of G[E\F]. The resulting graph G[FUDI is then an

edge-maximal subgraph of G with the TR-formative edge coloring [F,D].

i. " °
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2. Edge-Maximal Triangulated Subgraphs

Our algorithm for finding an edge-maximal (EM) triangulated subgraph

of a graph is based on the Balas-Yu algorithm for finding a maximal trian-

• "gulated induced subgraph. Like the latter, it uses the ideas of a procedure

*by Rose, Tarjan and Lueker [19761 for testing triangularity, and it runs in

O(lVI+IEI) time. An earlier algorithm for finding an EM triangulated sub-

graph, by Dearing, Shier and Warner [1984[, requires O(A "iEl) steps, where

A is the maximum degree.

To explain the algorithm, we have to recall a few properties of trian-

gulated graphs. A vertex is called simplicial if all its neighbors are

adjacent to each other. Every triangulated graph has a simplicial vertex

(Dirac [19611); it follows that a triangulated graph has at most as many

cliques as vertices. An ordering vl,...,v of the n = IVI vertices of a

graph G = (V,E) is called perfect if for i=l,...,n, v. is simplicial in1

,vn). A graph is triangulated if and only if there exists

a perfect ordering of its vertices. Based on this property, triangulated

graphs can be recognized, and their cliques can be listed, in O(IVI + IEI)

time. (Rose, Tarjan and Lueker [19761).

Given a graph G = (V,E), our algorithm generates an EM triangulated

subgraph G[F] of G, along with a perfect ordering a of the vertices of

G[F]. The ordering g is generated backwards (i.e. the last rank is as-

signed first, the next to last seconds, etc.), based on a lexicographic

labeling of the vertices. For some ordering a (V,... ,v) of the ver-

tices of G, we say that v. is a successor of v. if v. and v. are adjacentj 1 j 1.

and j > i. If, in addition, k > j for all successors vk of vi other than

* v., then we say that v is the first successor of vi.

We will use two known facts, established in Rose, Tarjan and Lueker

[19761:

. . . .
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Fact 1. If for i =1,...,n, the first successor of v. is adjacent in

"" G[F] to every other successor of vl then for i = 1,...,n, v. is simplicial
1

- in the subgraph of G[FJ induced by vi,... ,V
n

Fact 2. G[F] is an EM triangulated subgraph of G is and only if

there exists no ecE\F such that G[FU~e}] is triangulated.

Algorithm I (for finding an EM triangulated subgraph)

0. Initialization. Assign the label 0 to every vertex.

Set i n =JV, F - ,- 0.

1. Choosing a vertex. If i = 0, stop: G[F] is an EM triangulated

subgraph of G and a is a perfect ordering in G[F].

Otherwise, choose an unnumbered (i.e. unranked) vertex v with lexi-

cographically largest label. Assign number i to v, i.e. set v. -v, insert

v. into a as the first element, i.e. set

(vi, Vi+l,' Vn),

and go to 2.

2. Adding edges to F. Let S (vi) = (W1,... ,w) be the list of successors

of v.. Add to F the edge (vi,wl) and all the edges (vi,w.) such that w. is

a successor of v., adjacent to w in G[F]; i.e., set

F -F U (vi,w) U ((vi,w.)lwcS (vi) and (wW)weF3

and go to 3.

3. Labeling. Append i to the label of each unnumbered vertex w adjacent

to vi in G, set i .- i - 1, and go to 1.

Theorem 1. Algorithm I generates an EM triangulated subgraph of G in

..' O(JVl + JEJ) time.

Proof. Let U = (v,... ,v) be the ordering generated by Algorithm I.

From Fact 1, for i = 1,...,n, vi is simplicial in the subgraph of G[F] in-

duced by (vi, vi+l,... ,vn . Hence G[F] is triangulated. From Fact 2, to

- - . - ..- *- - * -- -- - .
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prove that G[F] is edge-maximal it is sufficient to show that for all

ecE \ F, G[FU~e}] is not triangulated. But this follows from the rule

which governs the addition of new edges to F (step 2). Thus G[F] is an

EM triangulated subgraph of G.

Next we establish the complexity of the algorithm. Each application

of Step 3 (labeling) requires O(deg vi) operations, and the list of labeled

vertices can be kept in lexicographically decreasing order. Thus Step I

(choosing an unnumbered vertex with lexicographically largest label) can be

carried out in constant time. Step 2 (adding edges to F) again requires

O(deg vi) operations. To get the complexity of the entire algorithm, we

n
sum over all v., i = 1, ... , n, to obtain O( Z deg (v.)) = OIV + JE ).
9! i.=l

3. Edge-Maximal Triangle-Free Subgraphs

A straightforward method for finding an EM trinagle-free subgraph

G[D] of a given graph G = (V,E) is to initialize the edge set D as empty,

then examine every edge of E in some arbitrary order and put it into D if

and only if this does not create a triangle in D. Examining every edge from

this point of view requires O(IVI) steps, hence the whole procedure requires

O(IVI JE) steps.

However, one can do better than this naive approach by arbitrarily

choosing a vertex v , partitioning the vertex set V into subsets VI,...

'. where V is the set of vertices at distance d from v (distance being measuredd O
-"" by the number of edges in a shortest path), and finally deleting all the

edges joining vertices of the same subset Vd, for d = 1,...,p. It is not

hard to see that the resulting subgraph is edge-maximal triangulated,

and its construction takes O(IVI + IEI) steps. The details follow.

S.

[°........................... 
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For a graph G = (V,E), and a vertex of VeVd, let

N(v): = (ueVJ(u,v) eE } ; and

N(V) d+l: = N(v) \ (Vd U V ) (with V_: 0).

W.I.o.g., we assume that G is connected.

Algorithm II (for finding an EM triangle-free subgraph)

0. Initialization. Choose some v. eV and set d - , V .- Iv,

V - V \(v.}, V1  0, D - 0, and go to 1.

1. Choose the next vertex. If all veVd are marked and V = 0, stop:

G is an EM triangle-free subgraph of G. If all veVd are marked but V # 0,

set d - d + 1, V .- 0, and go to 1.
d+1

Otherwise choose an unmarked vCV set v 4- v, and go to 2.d' o

2. Add new vertices and edges. Generate N(v ) set V - V U
o d+1' d+1 d+1

N(v V - V N(v)d, D- D (vo ,N(v) ) and go to 1.
odlo d1o od+

Theorem 2. Algorithm II generates an EM triangle-free subgraph in

O(1VJ + JEI) time.

Proof. For any triangle of any graph and any fixed vertex v,, two of

the three vertices of the triangle are equidistant from v.; hence the edge

joining them is not included into D by the Algorithm. Thus G[D] is triangu-

lated. Further, the only edges of E not in D are those joining pairs of

@1 nodes equidistant from v. and having a comnmon neighbor; but adding any such

edge would create a triangle. Thus G[D] is maximal.

To see the complexity of the algorithm notice that for each

* . vertex v chosen in step 1, it takes O(deg(vo)) steps to identify N(v)d+ I

and to add to D the edge set (v ,N(v )d) Since everything else done in
o o d+l

the algorithm takes constant time, the total number of steps is obtained by

adding up O(deg(v)) for all veV, which yields O( VJ+JEI), as claimed.i

" ".".".".".- .- .- .. 2- .- .. : -" - - ..- ...-.-.--. S . -- -. . - . ' - . - - . - ...
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4. An Example

Consider the complete 4-partite graph G = K3, 3, with'J"3,3,3,3

3 vertices in each of its 4 independent sets, numbered (1,2,31, (4,5,61,
":' i] (7,8,91, (10,11, 12 .

We first apply Algorithm I to C and construct the EM triangulated

subgraph G[F] shown in Fig. 1. The labeling is illustrated in Fig.2, where

the circled numbers are the ranks (in the ordering a) and the square brackets

contain the lexicographic labels.

Algorithm I.

Iteration 1. Since all labels are 0, we choose arbitrarily v = v - .'. •-n v12

We set a - (1) and we append 12 to the label of vertices 4,...,12 (i.e., each

of these vertices now have label L(j)=[121, j=4,...,12).

Iteration 2. We choose v 1 1 - 4, set a - (4,1), F - f(4,1)}; and append

11 to the label of vertices 2,3,7,...,12 (i.e., we set L(2)=L(3) - [111, L(7)=

-•]. ., =L(12) -[12,11]).

Iteration 3. We choose vl0 4- 7 (as 7 is one of the vertices with

*1 lexicographically largest label), set a - (7,4,1), F - (4,1), (7,1), (7,4)1,

and append 10 to the label of the vertices 2,3,5,6,10,11,12.

In the next 3 iterations we choose v9 - 10, v8 - 11 and v7 - 12. At

the end of iteration 6 we have a (12,11,10,7,4,1) and F = ((4,1), (7,1),

(7,4), (10,7), (10,4), (10,1), (11,7), (11,4), (11,1), (12,7), (12,4),

~(12,1)1}.

So far every application of step 2 has resulted in the addition to F of

all the edges joining v. to its successors. At the next iteration this
1

situation changes.

eu .
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Iteration 7. We choose v- 8, since vertex 8 has the lexicographically
6

maximal label [12,11,9,8,7]. We set a - (8,12,11,10,7,4,1). The first suc-

cessor of 8 is 12, so we add (8,12) to F; but of the remaining successors of

8 only 4 and I are adjacent in G[F] to 12, hence only (8,4) and (8,1) are

added to F, while the remaining two edges, (8,11) and (8,10), remain in E\F.

Thus we set F - FU£(8,12), (8,4), (8,1)} and app-nd 6 to the labels of all

unnumbered vertices adjacent to 8 in G.

Iteration 8. v5 - 9, c - (9,8,12,11,10,7,4,1), F -F ( £(9,12), (9,4),

(9,1)1. The edges (9,11), (9,10) remain in E\F.

Iterations 9,10,11,12 produce a (3,2,6,5,9,3,12,11,10,7,4,1) and

n the set of edges shown in Fig. I.

Next we apply Algorithm II to the graph G[E' F, shown in Fig. 3, to find

an EM triangle-free subgraph. We omit the isolated vertices 1 and 12, which

can be added to the triangle-free graph obtained. (In general, if G[E F} is

disconnected, we apply the algorithm to every component that contains a

triangle).

*Algorithm II.

We arbitrarily choose v. 2 and set V - £21, V - 3,...,113.

Iteration 1. We choose v = 2 and mark (underline) 2: V - 21. We

generate N(2)( 4,5,7,8,I0,II} and set V -N(2) V V = 3,6,91, and

D "(2,4), (2,5), (2,7), (2,8), (2,10), (2,11)1.

Iteration 2. v - 4, V - 4,5,7,8,10,111, N(4 - -3, V 3,

0, - 6,91, D - D 'U '(3,4)1.

SIteration 3. v -5, V1 £-4,5,7,8,I0,II N(5)2 - £31, D - D U £(3,5) ,.

Iteration 3 .. v. . ..V"2



Iterations 4 and 5 generate the sets N(7)2  N (8)2 (3,6), and add to

D the edges (3,7), (6,7), (3,8), (6,8). Iterations 6 and 7 generate N(10)2

N(11)2 ( 3,6,93, and add to D the edges (3,10), (6,10), (9,10), (3,11), (6,11),

* Iteration 8. At this point V1  (A£,.j,7,8,lOl1}, i.e. all veV1 are marked,

and V =0; hence we stop, with the graph G[lD] shown in Fig. 4.

The original graph G K K3 3 $3 ,3 had 54 edges. G[F] has 30 edges and

G[D] has 15. Thus the edge-maximal subgraph G[F'JD] with the TR-forrnative

edge coloring [FD] has 45 edges.ii

04
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