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ABSTRACT

In many critical applications of digital systems, fault tolerance has been an essential

architectual attribute for achieving high reliability. In recent years, the concept of the

performability of such systems has drawn the attention of many researchers. In this pa-

per, we develop a general Markov model for fault tolerant computer systems. Various

important performance measures, including the performability measures as well as some

new performance measures, are treated in a unified manner. Futhermore general and

efficient computational procedures are developed for calculating these performance mea-

sures based on the uniformization technique of Keilson(1974,1979). A numerical example

is given to illustrate the computational procedures developed.

XIR P.'1' VTF; 2 0,7 7P I- TFTC Z3&.krCH (AFSC)
:"'7tIC'E OF RNTITTTAL TO DTIC
This technic, l report Mns been reviewed and is
approvcd for public release IAW AFR 190-12.
Distribution is unlimited.

7THREW J. KE
Chief, Technical Information Division



§0 Introduction

In many critical applications of digital systems such as flight control, nuclear plant

control, etc., the need for achieving high reliability has made fault-tolerance an essen-

tial architectual attribute of digital systems. In general, to achieve high reliability re-

quirements, some redundancy techiniques are employed where systems contain multi-

ple copies of a resource. Typically forms of redundant structures for fault-tolerant sys-

tems are categorized into four classes and combinations thereof, see Beaudry(1978). In

Massive Redundant Systems, redandunt techniques such as triple-modular redundancy

(Von Neumann(1956)), N-modular redundancy(Mathur and Avizienis(1970)), and self-

purging redundancy(Losq(1976)) are employed where the same task is executed on each

equivalent module and the vote on the outputs is taken for improving the output in-

formation. In Standby Redundant Systems, tasks are executed on active units in the

system. When a failure of an active unit is detected, the system attempts to replace

the faulty unit with a spare unit, see Bouricius, Coorter, Jessep and Schneider(1969).

Hybrid Redundant Systems consist of massive redundant cores with spares to replace

failed modules, see Losq(1976). In Gracefully Degrading Systems, all operative units in

the system are kept active for executing tasks. Upon the detection of a unit failure

the system attempts to reconfigure the remaining operative units and continue oper-

ation, see Borgesson and Freitas(1975). The reader is referred to an exellent paper by

Avizienis(1978) for a more thorough discussion on the concept of fault-tolerance in digital

systems and a chronological view of the evolution of fault-tolerant systems.

A substantial literature exists for developing and analyzing reliability models of these

fault-tolerant digital systems, see e.g. Arnold (1973), Beaudry (1978), Borgerson and
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Freitas (1975), Bouricius, Coorter, Jessp and Schneider (1969), Castillo and Siewiorek

(1981), Costes, Landrault and Laprie (1978), Gay and Ketelson (1979), Huslende (1981),

Iyer, Donatiello and Heidelberger (1984), Koren and Sue (1979), Krishna and Shin (1983),

Makam and Avizienis (1981,1982), Mathur and Avizienis (1970), Meyer (1980,1982),

Meyer and Furchtgott and Wu (1980), Ng and Avizienis (1977,1980), Oda, Tohma and

Furuya (1981), Osaki and Nishino (1980), Seth and Lipsky (1983), Sonerio and Suk

(1980), Trivedi (1982) and others. Validation of models for such high reliable systems has

also been discussed, see e.g. Trivedi, Gault and Clery(1980). No general computational

schemes, however, have been developed for evaluating important reliability measures.

The purpose of this paper is three-fold. First, a general stochastic model for fault-

tolerant computer systems is developed. Underlying distributions of interest can be sys-

tem state dependent, incorporating possible interdependency among multiple modules.

The distributions are not restricted to exponential distributions. The model is general

in that any Markov chain model in the literature can be viewed as a special case, in-

cluding the unified reliability model of Ng and Avizenis(1980), and provides substantial

modeling flexibility for the performance analysis of such systems. Second, various impor-

tant performance measures (some of them are new) are treated in a unified manner. In

particular, several performability measures are discussed concerning the computational

capacity of the system in the time interval [0,t). Finally efficient and general computa-

tional procedures are developed for evaluating all of these performance measures, using

the uniformization technique of Keilson(1974,1979).

To the auther's best knowedge, the concept of the performability of the system can

be traced back to early 60's. The distribution and the moments of functionals of Markov
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renewal processes was studied by Jewell(1963) and Mclean and Neuts(1967). Relevant

weak and strong laws were also examined by Pyke and Schanfale(1964). In an excellent

and substantial paper by Cinlar(1969), functionals of semi-Markov processes were ex-

amined where the transform of the time dependent distributions of such functionals and

recursion formulae for the moments thereof were established. Keilson and Rao(1970,1971)

studied the limiting behavior as t --+ co of processes defined on Markov chain, having

state dependent growth rate.

Recently the concept of the performability of the system has been revitalized in

the context of fault tolerant computer systems, see Meyer(1980,1982). Iyer, Donatiello

and Heidelberger(1984) developed a recursion formulae in a Markov chain context using

the spectral representation. These recent papers failed to provide the reference to the

relevant previous work described above. The results of Qinlar(1969) were derived based

on renewal type arguments. In this paper, we provide an independent and totally analytic

proof for the Markov chain case. An extension of this analytic proof to semi-Markov case

is straightforward.

In Section 1, a general stochastic model will be developed for fault tolerant computer

systems. The model enables one to incorporate time dependent availability, reliabil-

ity and performability measures of such systems. These performance measures will be

classified, in Section 2, into three categories: (A) availability and reliability measures in-

dependent of computational capacity; (B) performability measures involving cumulative

computational capacity; (C) performability measures involving computational capacity

during the first passage time to the system failure. Most of performance measures in the

category (A) are traditional. The performance measures in the category (B) are con-
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cerned with the time dependent performability of the system which have drawn attention

of researchers during the last few years. One of performance measures in the category

(C) was first introduced and analyzed by Beaudry(1978). We will extend this work in a

more systematic manner. Section 3 through 5 will be devoted to develop general compu-

tational schemes for evaluating the performance measures in the categories (A) through

(C) respectively. Finally in Section 6, a numerical example will be given, illustrating the

efficiency of the computational procedures developed.
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§.1 Model Description

We consider a fault tolerant computer system consisting of N modules. The module

i may be in any one of Ki + 1 states Si = {0, 1,... , K1 }. Some of these states in Si may

represent the operative state of the module and the remaining represent the failed states

of the module under repair. Let Xi(t) be the state of the module i at time t. We also

define the indicator process I(t) by{ 0, if the system is not functioning at time t;
(1.1) l(t)

1, if the system is functioning at time t.

Then the multivariate process J(t) defined by

(1.2) J(t) =--[X (t), X2(t),.. ,ZN(t), I(t)]

fully describes the state of the system at time t. The state space of J(t) is given by

(1.3) S = S1 X S2 X ... X SN X {0,1}.

We note that the indicator process 1(t) is deliberately introduced. One may have a system

where, given a state vector x = (xl,... ,XN) of N modules, the system is operative only

with certain probability.
Ct

We assume that the multivariate process J(t) is'emporally homogeneous Markov

process on S governed by the transition rate matrix

(1.4) _= [L_], M, nE S.

It should be noted that the underlying distributions are not restricted to exponential

distributions. Futhermore N modules are not necessarily mutually independent. For

example, suppose that the up-time of the module i is an Erlang-2 random variable.

Upon a failure, it takes a random duration exponentially distributed before the repair
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starts. The repair time itself is also exponentially distributed. One then sets Si =

{0, 1, 2, 3} where 0 represents the failed state under repair; 1 represents the failed state

with no repair; 2 represents the operative state under the second phase of the up-time;

and 3 represents the operative state under the first phase of the up-time. Moreover

parameter values involved could depend on the states of other modules. Hence the model

could incorporate Phase-type distributions of Neuts(1981) with possible interdependence

among modules. Thus the model considered here is quite general and provides substantial

modeling flexibility for the performance analysis of fault tolerant computer systems.

The computational capacity of the whole system can be characterized by a mapping

4,: S - R+. The value 4 (L(t)) represents the maximum amount of computation per

unit time that the system can provide at time t. We decompose the state space S into

two subsets G and B where

(1.5) G = {M: m E S, mN+l=1} and B = S \ G.

The subset G is called a good set since O(M) > 0 for any m E G. Similarly the subset B

is called a bad set since O(M) = 0 for any rn E B

In some applications, it may be of interest to study the computational capacity of the

system for specific jobs. We assume that a set of jobs. C, to be processed by the system

consists of M different classes C,, 1 < j _ M. As before Lhe computational capacity of

the system for the jobs in C, is characterized by a mapping pj : S - R + .It should be

noted, however, that modules required for processing job.. may vary depending on classes.

Hence it is possible to have Oj(m) = 0 for some m E G. Accordingly we also define a

good set G and a bad set Bj for each class C,, i.e.,

(1.6) G= {m: m E S, j(rn) > 0} and B,= S \ C,
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We note that Gj C G and B C Bj for all j.

The decomposition of the state space into subsets G and B together with computa-

tional capacity function k enables one to describe the system behavior more accurately.

In particular, it is often assumed in the modeling of multiprocessor digital systems that

the failed state of the system due to the failure in coverage and the failed state of the

system due to the failure of all modules are the same, see e.g. the state 0 in Figure 7

of Beaudry(1978). In our model, this distinction can be made clearly, allowing one to

introduce different distributions for recovery times. This point will be illustrated through

a numerical example in Section 6.

The transition rate matrix L of (1.4) depends heavily on the system structure. By

specifying L, any Markov chain model appeared in the literature can be viewed as a spe-

cial case of this model. In the next section, we introduce various performance measures

concerning availability, reliability and performability of the system for a general transi-

tion rate matrix L and general computational capacity function 0 and 0j. The general

computational schemes for calculating these performance measures will be also developed

in the following sections.
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§.2 Performance Measures

Several different traditional and performance related reliability measures have been

considered for fault tolerant computer systems in the literature. These performance

measures are often used to compare alternative configuration for fault tolerance. In this

section, we present both time dependent and stationary performance measures concern-

ing availability, reliability and performability of the general model developed in Section 1.

This provides a concise summary of key performance measures discussed in the litera-

ture. Furthermore some important new performance measures are also introduced. The

performance measures we consider in this section are classified into three categories.

(A) Availability and reliability measures independent of computational ca-

pacity

These measures are intended to provide information about the state of the system

and have no relevance to computational capacity of the system at different system states.

(Al) State probability

Let aT be the initial state probability vector for the multivariate process J(t), i.e.,

(2.1) aT  (am)mEs; am = P[J(O) = rn, m E S.

The state probability vector at time t given aT is clearly of interest. We denote this

vector by

(2.2) pr(t a) = (pm(tla))E s ; Pm(tla) = Plj(tla) = n!', r S.

where J(tIa) denotes the state of the system at time t given the initial state probability

vector J. When there is no confusion, we will write pT(t) instead of pT(t~a). When the

transition rate matrix v is irreducible, the ergodic state probability vector exists where

(2.3) eT = lim pT(t[a).
t-00 -
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(A2) Point and interval availability

The point availability A(tIq) at time t is the probability that the system is operational

at time t given aT. The interval availability AI(t, ra) at time t is the expected fraction

of interval (t,t + r) during which the system is operational. Formally we define

(2.4) A(tIa) = P[J(tla) E G]

and

(2.5) AI(t,Tla) = -LE [ft+I(xa)dxj

where I(xa) is the indicator function of (1.1) given a. At ergodicity, one has

(2.6) Aoo = lim A(t]a) = lim AI(t,ra) = AIco.
t-- 00 t-00o

(A3) Time to first system failure and related reliability

Suppose that J(O) = 0 where 0 E G. Of interest is the time until the first system

failure. This is the first passage time of the multivariate process J(t) from 0 - G to the

bad states B, defined by

(2.7) TeB = inf{t : J(t) E B I J(0) = G}.

If _(t) has an initial state probability vector aT, then the corresponding first passenge

time TaB would be a probability mixture of TeB weighted by a, where TB = 0 with

probability one for 0 E B. Typically the system is operative at time t = 0 and one has

a# = 0 for 0 E B. Otherwise Ta B has mass ZEB a6 at the origin.

Of interest is the cumulative distribution function of TaB defined by

(2.8) FaB(x) PITaB < x).

9



An important reliability measure is the probability that the system will continue to be

h operative for the period longer than x given aT. We denote this reliability measure by

Ra(X). One then has

(2.9) Ra(x) = P[1TaB > x) FaB(X).

Also of interest are the moments

(2.10) E[TaB, k= 1,2,...,

and the a-reliable mission time Tc, defined by

(2.11) 7a = sup{x : Ra(x) aRa_(0+)}.

We note that the first moment E[TaB] is the mean time to failure.

(A4) Time to next system failure at time t and interval reliability

Given an initial state probability vector aT, let TBit be the time to the next system

failure from time t if the system is up at time t and zero otherwise. We define

(2.12) FaBIt(X) = P[TaBIt - xI.

We note that TaBit has mass FaBlt(O+) = 1 - A(tla) at the origin. Of interest is an

interval reliability RIalt(x) given by'

(2.13) RIajt(x) = PITa Bjt > x] = 1 - FBjt(x).

RI 1 t(z) is the probability that, given a, the system will continue to operate until time

t + x from time t. Corresponding to (2.10) and (2.11), we are interested in the moments

(2.14) EITkBItI, k = 1,2,...,

10
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and the a-reliable interval mission time

(2.15) T01t = sup{x: RIaIt(x) > aRiit(O+)}.

In some applications, one may be interested in the conditional random variable T" Bit

given that TQBIt > 0. We denote this conditional random variable by T +Bjt . Reliabil-

ity measures in (2.12) through (2.15) can be modified accordingly in a straightforward

manner. For example, one has, corresponding to (2.13),

(2.16) RI+t(x) = P[TBIt > = RaI t()/A(t a).

Here RI+t(x) is the probability that the system will continue to be operative until time

t + x given that it is operative at time t, with the initial probability vector a.

(A5) Stationary reliability measures

When the transition rate matrix v is irreducible, the multivariate Markov process

J(t) is ergodic. Hence the random variable Ta Bit converges in distribution to a random

variable, say S, as t -- oo. The limiting random variable S denotes the time until next

failure at ergodicity. We see that

(2.17) Fs(x) = PIS < x] = lim F._BIt(X).

With probability Fs(O+) = 1- A,, the system is not functioning at ergodicity. Hence S

has mass 1 - Aco, at the origin. Stationary reliability measures corresponding to (2.13)

through (2.15) can be found by letting t -- oo. In particular we define the stationary

interval reliability RIs(x) by

(2.18) RIs(x) = PIS > x] = lim RIlt(X) .

and the a-reliable stationary mission time rs by

(2.19) & sup{x: RIs(x) aR]s(O+)}.



The conditional random variable T+ also converges in distribution to S +  SIS>o

as t --* oo. Stationary reliability measures for S+ can be obtained similarly. One has, for

example,

(2.20) RI- (x) = P[S+ > x] = RIs(x)/Ao.

(AG) Quasi-stationary reliability measures

Suppose that the system has been operating for a "long time". One then wishes

to know how long it will take from current time until the first system failure. As for

the stationary case, the conditional random variable of TaB3it given that J(0) E G and

T0 B > t converges in distribution to a random variable, say Q, as t -+ oc. This limiting

random variable Q is called the quasi-stationary exit time from G, see e.g. Keilson(1974,

1979). More formally we define

(2.21) FQ(x) = PjQ < x] = lim PITa Bit < XITaB > t, J(O) E G).
-- t 00 o -

Quasi-stationary reliability measure can then be introduced in terms of FQ(x). In partic-

ular we define tie quasi-stationary interval reliability RIQ(x) by

(2.22) RIQ(x) = P[Q> xJ 1 - FQ(Xz,

and the a-reliable quasi-stationary mission time rQ by

(2.23) rQ = sup{x: RIQ(x) > a).

(A7) Cumulative operational time during the interval [,t)

Another important reliability measure of interest is the cumulative operational time

of the system during the time period 10,t) given the initial state probability vector a_

12



We denote this random variable by CO(tin). One then has

(2.24) CO(tlq) = I(xja)dx.

Evaluation of the distribution of CO(tq) is quite hard. We will derive the expression of

the moments

(2.25) E[CO(ta)k], k = 1,2.

Associated computational procedure will be also developed. It should be noted that

EICO(tIa)] = tAI(O,tla).

One may also consider several other compound reliability measures such as the joint

measure for the number of system failures during [0, t) and the system state at time t,

see e.g. Baxter(1982), Masuda, Shanthikumar and Sumita(1984), Shanthikumar(1983)

and Sumita and Shanthikumar(1984). It should be noted that the reliability measures

described in (As) and (A6) have not been discussed in the context of fault tolerant

computer systems.

(B) Performance Measures Involving Cumulative Computational Capacity

When the computational capacity of the system in operational state is constant inde-

pendent of the actual state of the system (as in the case of identical standby redundant

systems), all the performance measures described in Section A2 can be directly related

to computational capacity measures. However this is not the case in every system. As

described in Section 0, the gracefully degrading system reacts to a detected failure by

reconfigurating the system modules, which leads to a new system state possibly with a

decreased level of performance. The performance measures to be discussed in this section

are concerned with the computational capacity of the system in a finite time interval.

13



(Bi) Cumulative computational capacity in the time interval [0,t)

Let V(tla) be the cumulative computational capacity of the system for the whole class

C of jobs in the interval [0, t) given a. More formally we define

(2.26) V(tla) = Jo 0 (J(xla)) dx

where k S --+ R+ is the computational capacity function introduced in Section 1 and

J(t a) denotes the state of the system at time t given a. As mentioned earlier, the modules

required for processing may vary depending on classes of jobs. Hence it may be desirable

to study the computational capacity of the system for C jobs. We denote this random

variable by Vj(tla) where

(2.27) Vj(tla) = 0 4 j (J(xla)) dx.

(B2) Cumulative computational capacity in the time interval [t, t + r)

Of related interest is the cumulative computational capacity of the system in the time

interval [t,t + r), r > 0. Following the notation of (Bi) we define

(2.28) V(t,ra) ft ((x))dx

and

(2.29) Vj (t, ra) ft +, (J(xIa)) dx.

Cinlar(1969) established the transform E[e-wv(1 -) ] explicitly and provided a recur-

sion formula for calculating the moments of V(tlq) in the semi-Markov context. The

computational scheme for the moments of V(t[q_) has been developed in a recent paper

by Iyer, Donatiello and Heidelberger(1984) using the spectal representation of the under-

lying Markov chain. In section 4, we will provide an independent derivation of the double

14



transform f~o e-tE[€ewV(tla)]dt. Numerical procedures for calculating the first two mo-

ments of the performability measures in (2.26) through (2.29) will be also developed.

(C) Performance Measures Involving Computational Capacity during the

First Passage Time to System Failure

Performance-related reliability measures involving computational capacity of a com-

puter system during the first passage time to system failure were first studied in Beaudry

(1978). In what follows, we describe these together with spfLother related reliability

measures. We discuss only the total computational capacity of the system. The com-

putational capacity of jobs in the class C, can be studied in a similar manner, where

the mapping 0 : S --* R + should be repalced by ¢1 : S -- R' . For the future reference,

we indicate this by adding the index j to the expressions for the total computational

capacity.

(CL) Computational capacity before the first system failure and computa-

tional reliability

Given a, let Igia be the computational capacity available from the system before the

first system failure. More formally, one has

(2.30) WV1- = -  (J(xJa))dx.

We denote the distribution function of IVI- by

(2.31) Fwl _(z) = P[1V_ < xj.

Suppose that a task requiring x units of computational time is initiated at time t = 0.

Then the probability that this task will be computed without any interruptions due to

system failure is given by P W > =1 = 1 - FwjA(x). \Ve call this measure a computational

15



reliability denoted by Rwla(x) i.e.

(2.32) Rwg(x) = 1 - Fwjj(x) .

Of related interest are the moments

(2.33) E[Wka, k1,2,...

and the a-reliable task length defined by

(2.34) t= = sup(x : RWla(x) a}.

We note that 1a is the maximum computational length of a task that has a probability

of a or more for being completed before the first system failure.

(C2) Time dependiit computational capacity until next system failure and

interval computational reliability

Let WI., t be the total computational capacity available from the system from time

t until the next system failure if the system is operative at time t, and zero otherwise.

That is,

(2.36) Wl 't (J(xjE(t))) dx.

The corresponding cumulative distribution function is denoted by

(2.37) Fwjjt(x) = PIWIa,t S X).

The interval computational reliability RIwaIt(z) is then c'efined by

(2.38) RIwjat(x) = P[lVIa,t > x] = 1- Fwj,t(x).

RIwla,t(x) is the probability that the system is operative at time t and it will successfully

complete a task of computational length x before its next failure. The counterparts of

16
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(2.33) and (2.34) for Wat are

0 (2.39) k 1,2,.

and

(2.40) 1at = sup{x: RIwia,t(x) aRIwa,t(0+)}

Here 4ajt is the a-reliable interval task length, representing the maximum computational

length of a task that will be completed before the next system failure with probability

a or more, if it is initiated at time t. We note that Wait has mass PIJ(ta) E BI at

the origin. The corresponding measure associated with the conditional random variable

lit =,>- can be studied following the argument in (A4).

(C3) Stationary computational measures

When the system is ergodic, the random variable W47._ converges in distribution to

a random variable, say Sw, as t - oc. The limiting random variable Sw denotes the

computational capacity of the system until the next system failure at ergodicity. One

sees that

(2.41) Fsw (x) = P[Sw < xj lim Fg, It(x).

We note that Sw has mass 1 - A. at the origin, i.e. Fs,.(O--) = I - A,. Stationary

computational measures corresponding to (2.38) to (2.40) can be found by letting t --- oc.

We define

(2.42) RIs,, (x) = PJSw > x - Fs,. (x)

and

(2.43) t s = sup{x : RIst(x) _ aRIsv(0+)}.
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The conditional measures associated with S+ = Swjsw >0 can be discussed similary.

(C4) Quasi-stationary computational measures

The quasi-stationary reliability measures associated with the quasi-stationary exit

time Q was discussed in (A6). In this section we examine the quasi-stationary compu-

tational measures. Suppose that the system has been operating for a long time. The

question to be answered is how large the computational capacity of the system would be

before the next system failure. Formally the random variable Qw denoting the above

quantity can be defined by the limiting distribution of WaIt given that J(0) E G and

TaB > t ast --+ o. That is,

(2.44) FQw(x) = P[Qw < x] = lim P[Wait < X(TaB > t, _(O) E GI
-- t "-- 0-

Quasi-stationary computational measure can then be introduced through FQw (x). In

particular, we define the quasi-stationary interval computational reliability RIQwv (x) by

(2.45) RIQw (x) = P[Qw > x] = 1 - F, (x)

and the a-reliable quasi-stationary task length tQ by

(2.46) = sup{x : RIQw(x) > a}.

The computational capacity measures described in (C3) and (C4) have not been

discussed in the literature.
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§3. Numerical Procedures for Computing Performance Measures in Category

(A)

As we will see, all performance measures described in Section 2(A) can be expressed in

terms of the time dependent state probability vector pT(t) of the underlying Markov chain

j.(t), possibly with certain modifications. Hence for the computation of these performance

measures, it is necessary to develop efficient numerical procedures to evaluate pT(t a). In

the next subsection, we show that the uniformization procedures of Keilson(1974, 1979)

provides the computational vechicle needed for this purpose.

3.1 State probability

We have assumed that the underlying process J(t) is a finite Markov chain in con-

tinuous time on S governed by transition rate matrix v = [Im n]. Let p(t) = [p,_,(t)j be

the transition probability matrix of J(t), that is

(3.1) p,_n(t) = P[J(t) = njJ(O) = m], m,n E S.

Let

(3.2) V =m Z n.
nES,ntm

Since the cardinality of S denoted by ISI is finite, there exists a positive v such that

(3.3) sup Vm < V.
mES

A Markov chain in continuous time is said to be uniformizable if its governing transi-

tion rates satisfy (3.3). All finite Markov chains in continuous time are automatically

uniformizable. Keilson(1974, 1979) has shown that the uniformizability provides a useful

bridge between continuous time Markov chains and discrete time Markov chains in the

following manner.
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For notational convenience, we define the diagonal matrix v whose diagonal elements

are vm's ordered appropriately. From the Kolrnogorov forward equations, one then has

(3.4) p(t) = e~t; Q= -L_ + V.

Here Q is the infinitesimal generator. Using the uniformization constant v defined in

(3.3), we define

(3.5) L - +

whereI is an identity matrix of size ISI. We note that a > 0 and a i = 1 where I is

the vector of length ISI having all elements equal to 1. Hence a is a stochastic matrix.

From (3.4) one sees that Q = -t[= - a] so that

(3.6) p(t) = etIL-) = q,(t)a'
k=O

where

(Vt)k
(3.7) qk(t) = e - t  k!t ,2

Here o I. Equation (3.6) provides a bridge between a Markov chain in discrete time

govcrned by a and the Markov chain in continuous time governed by L. Hence given an

initial state probability vector a, one has

(3.8) PT (t a) = qk(t) aT ak

k=0

Equation (3.8) enables one to calculate pT(tlq) efficiently via computer. Although the

expression involves an infinite series, the matrix norm of ak is bounded by one for all k

and the truncation point k' may be determined for a given accuracy C and sufficiently

large T > 0 by

k(3.9) V" = min~k:E qj(t) > I- E, 0 <t < TI.

j=0
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The ergodic probability vector eT can be found by letting t -- oc in (3.8). Alternatively

eT may be found by solving eTa = eT and eTi =1.

3.2 Point and interval availability

The point availability A(tIa) defined in (2.4) can be expressed straightforwardly in

terms of pT(tla). We denote the subvector of b of length ISI restricted to the good set G

by bc. One then sees that

(3.10) A(ta) = PT(ta)lG.

For the interval availability AI(t, r) = !Elfrt I(xlg)dx] in (2.5), one first observes from

the linearity of E[.J and the boundedness of integral that AI(t, r) 7 f t+ EI(za_)]dz.

Since E[I(xa)] = P[J(zIa) E G], one has

(3.11) AI(t,rT) 1 r - )ldx"

The integral ft+r p(xa)dx can be computed from (3.8) as
tt+ r T 00T

(3.12) , P (xjIq) Z Qk(t, T
k=O

where

(3.13) Qk+l(t,r) = l(qk+(t)- qk+I(t + r)) + Qk(t,r), k 0,1,2 ....

starting with Qo(t, r) = 1 e-vt(1 -e-Vr).

3.3 Time to first system failure and related reliability

To find the distribution of the first passage time T, B, we consider the absorbing

process J' (t) obtained from the original process J(t) by censoring transitions from B to

G, see Keilson(1979). It is easily seen that the infinitesimal generator Q G governing

J*(t) inside the set G is given by

(3.14) = DGG + !GG
zG C

21



where bGG denotes the submatrix of a JSI x ISI matrix restricted to G. Correspondingly,

the transition probability matrix p (x) of J'(t) is given by
-G G

00

(3.15) P *(x) = exp{QG =j qk q(x) q'
k=O

Since the reliability Ra(x) of (2.9) is given by Ra_(x) = P[TIB > X) = PIP (Xja) E G!,

one has

(3.16) R, (x) G G
k=O

and

(3.17) FaB(X) = P[TaB x] = 1 - R,_(x).

We note that if aG < 1, then TaB has mass (1- a!I1G) at the origin. For the moments

of TaB, one has (see Keilson (1974, 1979) or Neuts(1981))

(3.18) E[rTBI = - T k 0
I C

where _GG is the fundamental matrix defined by

(3.19) iGG = [GG - G,:IGG- 1"

The a-reliable mission time r, of (2.11) can be found from (3.16).

3.4 Time to next system failure at time t and interval reliability

For given aT, the random variable Ta_ Bit was defined in (A4) as the time until next

system failure from time t if the system is operative at time t, and zero otherwise. Because

of the Markov property of the underlying process 1(t), this random variable is equal in

distribution to the ordinary first passage time having the initial state probability vector

_ (tla) ' i.e.

(3.20) Tatd p(tla,)B.

22



Hence performance measures (2.12) through (2.15) involving TaBJt can be readily obtained

from (3.16) through (3.18) where _T should be replaced by T(ta). As noted in 2.(A-11

TaBjt has mass 1 - A(ta_) at the origin. The conditional performance measures involving
T1Blt =TBt given T.Bj t > 0 can be found accordingly.

3.5 Stationary reliability measures

We have seen that the random variable T_,BIt converges in distribution to S as t , oe

d
when the process J(t) is ergodic. It can be seen from (3.20) that S = TeB. Hence the

stationary reliability measures described in 2.(A5) can be computed using (3.16) through

(3.18) where aT should be replaced by eT. The conditional measures can be calculated

accordingly.

3.6 Quasi-stationary reliability measures

For the quasi-stationary exit time Q introduced in 2.(A6), we assumed that the good

set G is irreducible, i.e. all states in G can communicate each other within G. Under this

condition, it is known that Q is exponentially distributed, see Keilson(1974, 1979). More

specifically one has

(3.21) FQ(x) = 1 - e- v ( ' - A )z

where AQ is the maximum eigenvalue of the matrix a,: AQ may be found either by

solving a set of equations or by the power method. Then the quasi-stationary reliability

measures can be computed straightforwardly.

The cumulative operational time CO(t a) described in 2.(A7) can be viewed as a

special case of cumulative computational capacity of the system, V(tja) discussed in

2.(B1), where 0(m) = 1, m E G. Hence numerical procedures for finding the moments
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of CO(tla) can be found from those for finding the moments of V(tjga), which we discuss

next.
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§.4. Numerical Procedures for Computing Performance Measures in Category

(B)

The results of (inlar(1969) derived based on renewal type arguments enable us to de-

velop numerical procedures for evaluating computational capacity of the system described

in Section 2(B). In this section, however, we derive the results through an independent

analytic approach. An extension of the proof to semi-Markov case is straightforward and

is omitted here. The moments of the performability measures are then placed in a form

for which the uniformization technique can be readily applied.

4.1 Cumulative computational capacity in the time interval 10, t)

In order to evaluate cumulative computational capacity of the system in the interval

[0, t), we consider the process Z(t) defined by

(4.1) d ()Sdt(4.1) Z(t)j_(t)=n mm_T, rn e S

where 1m 0. The process Z(t) increases at the rate of -y, while the underlying process

J(t) is in state m. We note that if the initial state probability vector of J(t) is a, then

one has

(4.2) Z(t) CO(tla) if -y, 1, m E G, and /m 0, otherwise

(4.3) Z(t) = V(ta) if "Ym 0(m), Gn 'E S

(4.4) Z(t) = VI(tia) if . = ;( ), m E S.

Let

(4.5) Fm (X,t) = P(Z(t) K x,J(t) , mE S.
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We assume that the initial distributions are given by

(4.6) Frn(x,O) = amD,(x)

where D, are an absolutely continuous cumulative distribution functions having proba-

bility density functions dm(x). It can be easily seen that Frn(x,t) are then also absolutely

continuous and one can define

a
(4.7) fm(x,t) = -n(xt), M S.

We note that fm(x,t) = 0 if x < 0 or t < 0. The p.d.f. of Z(t) denoted by f(x,t) is then

given by

(4.8) f(x,t) LM f(X,t).
mES

For the event {_1(t) rn, Z(t) = x} to occur, either J(t) starts at m and remains

there or J(t) starts somewhere, enters m at time y, 0 < y < t, and stays in M for the

period (y, t). By examining the probabilistic flow of the bivariate process (1(t), Z(t)) in

this way, one finds that

(4.9) fr_(x,t) =,r(x - yto)e - at + 1 v, f, (: - -1,t - y)e-'" dy, M E S.

For convenience, we apply the uniformization technique of Keilson(1974, 1979) here.

Using the uniformization constant v and the associated stochastic matrix a, of (3.5),

Equation (4.9) can be written as

(4.10) fx(,t) = fr_(x- jt,O)e-t +V Fa 1:,00 f, f(X - -Y,t - y)e-1dy, M t S.

Let o,(w,t) = f~o e-,zfm(x,t)dx and bm(w, s) f f e-± tfr_(x,t)dxdt" By tak-

ing the double transform of (4.10) one obtains

(4.11) )m(Ws) ( S+IV, - ) jW/ Lav:t3y(ws)j , S'

26 E S
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Equation (4.11) can be expressed more succinctly in matrix notation. We define the

transform vector by 2(ws) = #M(WS))7ES. The vector ;T(wO) is defined similarly.

Let 'I be the diagonal matrix having diagonal elements -, ordered appropriately and

define V (w, s) = (s + )+ . - " One then sees from (4.11) that
-T

(4.12) _P (w, S)V(w, ) = OT(w0) + Vrc (w,s)a .

It can be easily seen that (V(w, s)-Va)- exists for Re(w) > 0, Re(s) > 0. Furthermore.

one has ir(s) = f°e-tp(t)dt = (s + v)! - va )-' = [V(w,s) - va - W YDJ-. Hence

from (4.12) we obtain

(4.13) 7Tr Wr(s)2D -I7T(S).

~~~~~T w (w s I0), L

Let X(w, s) = fo' e-tE[ewZ(t)jdt f=- fj o e-w--f(z, t)dx dt. Then X(w, s) P (w,s) 1

from (4.8). Since i=(s) I = I Is, this then leads to

(4.14) 1 +(w,5) = -=

If Z(0+) = 0, we choose a sequence of (Dn,(x)) o so that D,,(x) -- U(x) as j -- oc

where U(x) = 1, x > 0 and U(x) 0, x < 0. Correspondingly _rT(w,0) - aT as j- 00.

One then has

-T 00
(4.15) 1 (w,s) = -(-1)1w') ].

* w s -[ ()kkDL.(>3* k=1

Althrough the double inversion of (4.15) is quite awkward, it does provide the moment

formula. One easily sees that

(4.16) 0 CBLEIZ=(t)]dt = k = 1,2,...

or equivalently

(4.17) E[Zk(t)= k! j aT{P(Y)y_ }(k)ldy, k = 1,2,...
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where {t)y}k*i) - ftp(t - y)-y {pyh }(k)dy. Using the uniformization procedure
{E(t2-} =D= =D

described in 3.1, we have:

00

(4.18) E[Z(t)1 l Qn (O, t)aQT a"-rI
ti=0

00 00

(4.19)~l 2 Qm~ (0 ~ am2a
m=O n=O

We note that Iimt..0 E[Zk(t)l/tk = ET k1. Keilson and Rao(1970,19 71) have shown that

{Z(t) -E(Z(t)l}/ V-ar Z(t) convergecs in distribution to N(O, 1) as t - oc.
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§.5 Numerical Procedures for Computing Performance Measures in Category

(C)

Given a task requiring certain computational time, it is of interest to find the proba-

bility that the task can be processed without interruption due to system failure. In order

to answer this question, the distribution of the cumulative computational capacity before

the first machine failure is needed. This random variable can be denoted by Z(TB) where

Z(t) is defined in (4.1). In this section, we develop numerical procedure for calculating

performance measures involving Z(TqB) by employing the trick used in Beaudry(1978)

in a more systematic manner.

5.1 Computational capacity before the first system failure and computational

reliability

The distribution and the moments of Z(TaB) can be obtained from the results in 3.3 by

modifying the transition rate matrix z/ in the following manner. If the process J_(t) enters

state m, it stays there for an exponentially distributed period with parameter Vm. Upon

the expiration of the period, the process changes its state to n with probability v, _/Vt,

n E S. During this dwell time in state m, the process Z(t) increases by an exponentially

distributed amount with parameter Lm/-Im, where this increment is understood to be zero

if ym = 0. Suppose we consider an alternative process J(t) on S such that when it enters

state m, it stays there for an exponentially distributed time with parameter m -, M.

As before, this dwell time is zero if -y, = 0. At the termination of this period, it moves

to the state n with probability vmn/vr. It is then clear that the sequence of the states

visited by J(t) and J(t) are probabilistically the same provided that the two processes

share the same initial probability vector a. However the time required for j(t) to achieve
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such transitions gives the accumulated computational capacity during those transitions.

If -1, > 0 for any n! E G (c.f. cases in (4.2) and (4.3)), one sees that L(t) is a Markov

chain on S governed by

2- 1GG GG 2D.GG=GB(5.1) _ _ 
" - ' c - cB  D~' B)v B

The diagonal matrix F/ is defined accordingly. It can then be readily seen that

(5.2) T_ Z(TB)

where

(5.3) TB = inf{t : J(t) G BjJ(0) M with probability ar,, m E S}.

Hence the distribution and the moments of Z(TaB) can be obtained from (3.14) through

(3.19) where v and v should be replaced by i DGG and _GG Accordingly
=D:GG =GG DGGGAcodnl

(5.4) --v:GG = IGG - =D:GG + -EGG

and

00(5.5) P[TiGB > Xj qk(x)g T-GGc

_ = q( aG=, Gl .

k=0

For the stationary computational measures described in Section 2(C3), the initial

distribution aT in (5.5) should be replaced by the ergodic vector eT . For the quasi-

stationary computational measures of Section 2(C4), one has to calculate the quasi-

stationary vector qon first. The vector q can be found, for example, using the

matrix a and the power method since _T = The vector a in (5.5)

should be replaced by T.
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When -1, = 0 for some rn E G (such as the case (4.4)), the state m becomes an

instantaneous state for 2L(t). That is the process J(t) moves to state n with probability

I__n///rn as soon as it enters m. To eliminate such instantaneous states inside G, we

further modify J(t). Let b = lb,,] where bmn = v,/v,. The good set is decomposed

into subsets H and L such that

(5.6) H={:ym >0, mE G}, L=G'\H.

We also partition the matrix b into submatrices

( HH 
-HL HB )(5.7) = ~LH =LL =LB)=BH =BL =BB

The transition probability matrix of the corresponding replacement process t(t) on

H u B, eliminating the instantaneous states in G, is given by

(5.8) _t &H&

-- kbtH btB

where

(5.9) b -'b for V,IV E {H,B}.

Then J1 (t) is a Markov chain on H U B governed by

(5.10) v t =[',; _ - bt, m, E, 1 E - B.

We define t as before and the matrix t by

(5.1)at11t 1 1t(.11)atHH - D:HH + HH

The initial state probability vector a must also be modified. We define

(5.12) atT = aT + _TALLL - bLL)-LI .
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In the case of stationary or quasi-stationary measures, the replacement is similar using

eT and (T,-T) instead of aT. The results in (3.16) throuth (3.19) then provides compu-

tational procedures needed where atHH and at4 in (5.8) and (5.9) should replace aG

and a.. Namely one has

(5.13) T.B Z(T7aB)

where

(5.14) T B  inf{t Jt(t) E BiJ(O) = m with probability am, rn 

and

(5.16) P[TIB > X1 qk, t T aZ qk(z)aH -v:HHH.
k=O
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§.6 A Numerical Example

In this section, we demonstrate the computational procedures described in the previ-

ous sections through a numerical example. All figures are given at the end of this section.

A system we consider here consists of two processing units. Each unit fails through two

phases. We define

(6.1) S = {O, 1,2}, 1 < i < 2,

where the state 2 denotes that the i-th unit is in the first phase of its up-time. The state 1

represents the operative state in the second phase and the state 0 means the failed state

under repair. We assume that all relevant distributions are exponentially distributed

with parameters (96 Ail, Ai2) corresponding to S, of (6.1).

The two processing units interact with each other in the following manner. If the

i-th unit is down and other unit is in operative state k, then the whole system fails with

probability Pik where i,k = 1,2. When the system is down while one of two units is

operative, the state of the operative unit does not change until the failed unit is repaired.

Let I(t) be the indicator function where I(t) = I (I(t) = 0) means that the systems is

functioning (down) at time t. The state space S = S1 X S 2 X (0. 1} then has the following

13 states:
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(6.2)
linearized state number state

0 (0,0,0)

1 (1,0,0)

2 (1,0,1)

3 (0,1,1)

4 (0,1,0)

5 (2,0,0)

6 (2,0,1)

7 (1,1,1)

8 (0,2,1)

9 (0,2,0)

10 (2,1,1)

11 (1,2,1)

12 (2,2,1)

We note that the failed state of the system due to the failure in coverage (e.g. (1,0,0),

(0,1,0), (2,0,0), (0,2,0)) and failed state of the system due to failure of all modules,

(0,0,0), are clearly distinguished here.

If X,(t) denotes the state of the i-th unit at time t, then the process J(t) (Xi (t),

X 2 (t), (t)) is a Markov process governed by the transition rate matrix:
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(6.3) ' =

0 0 0 0 0 0 JA 0 12 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 £2 0

A22  0 0 0 0 0 0 0 0 0 0 2A 1)

A 12  0 0 0 0 0 0 0 0 0 JI 0 0

0 0 0 0 0 0 0 0 0 0 JI 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ;A2

0 0 A1 1  0 0 0 0 0 0 0 0 0

0 p2 1A2 j (1-p 21 ))62 1 (-PLI)AIL PI 1AjI 0 0 0 0 0 0 0 0

0 0 0 A21  0 0 0 0 0 0 0 0 $

0 0 0 0 0 0 0 0 0 0 0 0 JAI

0 0 0 0 0 P22A22 (I-p 2 2 )A2 2 All 0 0 0 0 0

0 0 0 0 0 0 0 A2 1 (1-p 1 2 )A 1 2 A1 2 0 0 0

0 0 0 0 0 0 0 0 0 0 A1 A I1 0

We assume that the total job class C is decomposed into three disjoint subclasses

C,, j = 1,2,3. The processing capacities of the whole system and each class depending

on the state of J(t) are assumed to be given below.

state numberm 0 1 2 3 4 5 6 7 8 9 10 11 12

O(m) 0 0 1 2 0 0 3 3 4 0 7 8 20

0u1(m) 0 0 0.5 1 0 0 1 1 2 0 4 3 10

2 (") 0 0 0 1 0 0 0 1 2 0 1 3 5

€3(M) 0 0 0.5 0 0 0 2 1 0 0 2 2 5

The values of the parameters employed in the numerical example are summarized below.

(6.4) (=,.1,A 2) (1,0.4,0.6)

(,42 ,A 2 0 22) = (0.7,0.2,0.8)

(6.5) P= [Pik 0.2 0.3)

(. , 0.5 0.7

It is assumed that the system starts fresh at time t so that J(O) (2,2, 1). Correspond-

ingly the initial state probability vector is given by (0,0 . ,0, 1).
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Figures 6.1(a) and 6.1(b) depicts the time dependent state probabilities pk(t) for

0 < k < 6 and 7 < k < 12 respectively. We observe that the perfect state probability

p12(t) decreases monotonically to its ergodic probability e 12 = 0.29716, while all other

state probabilities rise from zero to corresponding ergodic probabilities as t -- co, some of

them monotone and some of them unimodal. The ergodicity sets in for t > 4. In Figures

6.2(a) and (b), the point availability A(tla) and the interval availability AI(t, ria) with

t = 1.5 are plotted. Both decreases monotonically to common ergodic value A, = AIo =

0.88757 as t - oo.

Figure 6.3(a) and (b) illustrate the cumulative distributions FaB(X) and FaBIl (t) of the

first passage times TaB and TaBit with t = 1.5 respectively. We note that TBit has a mass

of FaBlt(O+) = 1 - A(1.5) at the origin. Figure 6.4 depicts the cumulative distribution

functions Fs(t) and FQ(t) for the stationary and quasi-stationary random variables S and

Q respectively. We observe that S has mass of Fs (0+) = 1 - A. at the origin. The values

of Fs(t) and FQ(t) become close for t > 10. We note that these distribution curves enable

one to derive corresponding a-mission times easily. For example, rs with a = 0.8 is 1.56.

In Figure 6.5, the mean cumulative operational time of the whole system E[CO(tla)]

is plotted. We see that E[CO(tJ_)) is almost linear having the slope A,0 = 0.88757.

In Figure 6.6, the mean computational capacities for each job class and entire job class

are given. It is observed that all curves are concave-shaped and become quite linear for

t > 3. Figure 6.7(a) depicts the distributions of computational capacities before the first

system failure for each job class and the entire job class. Figure 6.7(b) and (c) provide

corresponding curves at stationarity and quasi-stationarity, These distribution curves

again enable one to evaluate the corresponding a-mission times.
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