
■v - - ^ -. ■* -^ -„ ■*, -, - - - . . - - ... • . ■ , - -.--'.•--,-.■ ■ . • . - . - , ■

CN
00
cn
en
CO

<
i

Q
<

o

unclassified ^

SECUHITY CLASSIFICATION Of7 THIS PAGE (»rim Data Enlarad)

REPORT DOCUMENTATION PAGE
1 REPO«T NUMBER

86-07-01

2. GOVT ACCESSION NO

4. TITLE (end Subtllle)

Coordinate Free. LA?

7. AUTHORf«J

William Beckett

HEAD INSTRUCTIONS
BEFORE COMPLETING FORM

3 RECIPIENT'S CATALOG NUMBER

5. TYPE O"7 REPORT & PERIOD COVERED

Technical

6. PERFORMING ORG. REPORT NUMBER

B. CONTRACT OR GRANT NUMBERf«;

MDA903-85-K-0072
ARPA-4563, 111

Code S1VU)
9. PERFORMING ORGANIZATION NAME AND ADDRESS

UW/NW VLSI Consortium, Dept. of Computer Science/
University of Washington, FR-35 1/
Seattle, WA 98195

11. CONTROLLING OFFICE NAME AND ADDRESS

DARPA - IPTO
1400 Wilson Boulevard
Arlington. Virtyinia 22209

14, MONITORING AGENCY NAME ft ADDRESSr" dlllerent Irom ConlroMfnfl Olllce)

ONR
University of Washington
315 University District Building
1107 NE 45th St., .10-16, Seattle, WA 98195

10. PROGRAM ELEMENT, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

12. REPORT DATE

.lulv 1986
13. NUMBER OF PAGES

14
IS. SECURITY CLASS, fo/ (M« roporlj

unclassified
ISO DECLASSIFI CATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ol Ihla Ropott)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (ol lha abotracl anlattd In Block 20. II dlllorenl Irom Report)

rrnc i
JUL 2 4 1986|J

19, K EY WORDS (Continue on reverse etde II neceaeery and Idantlly by block number)

Coordinate Free LAP, CFL , Design Generators, VLSI, Caesar, Magic, Symbol,

C, FLAP

20 ABSTRACT fConlfnuo on rovor.. aide II neceeaary and Identity by block number)

Coordinate Free LAP (CFL) is a library of subroutines written in C intended to
facilitate the construction of VLSI circuit layouts. The Operators of CFL
generate new cells by forming combinations of existing cells using, only relative
positioning, that is without reference to a system of coordinates. CFL is able
to assemble sets of large, cells very quickly because its positioning, and routing
operations work from descriptions of the boundaries of cells and, therefore,
avoid direct references to the geometry within cells.

inclassifled DD I JAN 73 1473 EDITION OF I NOV 05 IS OBSOLETE

S/N 0102-LF.014.66Cn SECURITY CLASSIFICATION OF THIS PAGE (WhanD.ta Bnlarad)

& , ■■■ ^^»^mmm^^rM"^ ■ ::-••■_/• mm&4 ■ :v--:-v-v--..■>:■:-:■:.

Coordinate Free LAP

William Beckett

University of Washington
Seattle, WA 98195

Technical Report 86-07-01
July 1986

^wmm .. :m . •, Mmmmms mmymmmmM -■•-•:-••

Coordinate Free LAP

Abstract

Coordinate Free LAP (CFL) is a library of subroutines written in C intended to
facilitate the construction of VLSI circuit layouts. The operators of CFL generate new cells
by forming combinations of existing cells using only relative positioning, that is without
reference to a system of coordinates. The external data representation used by CFL may
be made compatible with either of the UCB graphics editors, Caesar and Magic, r-o these
editors may be used in conjunction with CFL. CFL is able to assemble sets of large cells
very quickly because its positioning and routing operations work from descriptions of the
boundaries of cells and. therefore, avoid direct references to the geometry within cells.

This paper bears on topics 3 (IC Layout) and 4 (Silicon Compilation).

Accesion For

NTIS CRA&I sT
DTIC TAB □
Unannounced
Justification

i

By...
Distribution/

Availability Codes

Avail and/or
Spdcial

mmmmmmmmmm ^ }m^^temxxm*mw msw&m ;. - --• m

- . . -

Coordinate Free LAP

Introduction

Coordinate Free LAP (CFL) is a library of subroutines written in C intended to
facilitate the construction of VLSI circuit layouts. The system is organized algebraically
in that there is a data type called SYMBOL, a set of operands of this type, and a set of
operators which generate new SYMBOLs by forming combinations of existing SYMBOLs.

The system has only two geometric primitives, box and label, which may combined
to make objects. There is a larger set of non-primitive objects called macros, which may
be used to generate frequently used structures such as contacts. Routing facilities are
provided which generate a variety of planar and non-planar wiring patterns used to connect
functional blocks. Additionally, there is a coordinate dependent facility called wire for
generating arbitrary configurations of material.

Although CFL has sufficient functionality to allow definitions to be developed for all
artwork including the lower level cells in a design, it is intended to be used more in xhe
mode of chip assembly. Hence the typical application involves using a graphics editor to
generate lower level cells or tiles and then using CFL facilities to assemble these leaf cells
into higher level modules. Currently, the system may be used in conjunction with either
of the UCB graphics editors, CaesarjS] and Magic[4j.

To insure that a wide variety of assembly situations can be accommodated, CFL
includes approximately 70 variants of operators for juxtaposing, transforming, and repli-
cating hierarchies of symbols. The positioning performed by most of these operators is
with respect to several abstract locations associated with objects, for example, 'the top',
rather than to a set of coordinates.

The syntax of these operators is quite compact since generated symbols are simply
stored in program variables of type SYMBOL *. The embedding of the language in C is
such that sequences of CFL operators admit to both procedural and declarative interpre-
tations. The resulting coordinate free form for defining the structure of complex objects is
grammatical in character and fairly easy to manipulate.

All of the calculations which support the operators of CFL are performed from descrip-
tions of the borders of the symbols. The information in the border descriptions includes
the bounding box and lists of rectangles representing the intersection that each kind of
material in the symbol makes with the bounding box. If there is a label near this intersec-
tion. the border description will also contain the label. If a border description is available
for a particular symbol, CFL will not require access to any of the rest of the geometry of
symbol.

The system will automatically generate border descriptions from the geometry when-
ever the need arises but it will also automatically save them on disk when library symbols
are written out. In this way, modules which have a large number of rectangles may be

iMiW. m \ ■ -■ -.-■ - ■•- ■■•::;•:-:■:^^::■:■:^^^:^•:■^•:v:■:-:v;v;/:•:■>:v:v:^v^■;:..■ :■.■■/-::•:■:.,..■.■;■■:•.•:■:•:■-.v;-.;.-;

- . , . . - - . .- ^- .

accessed from the library without the need of reading all of the geometry files associated
with their sub-modules. This capability allows CFL to assemble large blocks of circuitry
extremely quickly.

CFL provides automatic hierarchy compression when symbols are written to disk so
that only those symbols which represent meaningful functional groups need be saved.

Entities

The operations provided by CFL are defined with respect to a number of basic en-
tities. These entities include primitive geometric objects and compound objects, called
SYMBOLS; the boundaries of these symbols, called BORDERS; and individual symbolic
points along these boundaries.

CFL has the following two primitive objects -

hox{layer.dx,dy) - box
\ahe\{name,dx,dy.pos) - rectangular label

These are the same two primitives used by Caesar and Magic. (In the case of Magic,
the label primitive also specifies a layer.) All coordinates are dimensionless. box creates a
box on the specified layer with dimensions dx and dy. label creates a label. Labels consist
of a rectangle with dimensions dx and dy and a name, pos is used to specify the position
of the name of the label relative to its center when it is displayed by the graphics editor.

A CFL symbol is either a primitive object or an object formed by combining primitive
objects and other symbols using the CFL operators. Each symbol is a collection of geometry
(boxes), calls to other symbols (calls) and labels. CFL represents symbols internally as
data structures having lists of boxes, calls, and labels and all references to symbols within
a CFL application program are made through pointers to these structures. The pointers
are declared with the declarator SYMBOL *.

For example,

SYMBOL *boxl.*box2,*crossl.♦pairl;
boxl = boxCmetal". 3.10); /* vertical bar */
box2 = box("metal",10, 3); /* horizontal bar ♦/
crossl = cc(boxl,box2); /♦ metal cross */
pairl = cx(crossl,crossl); /* two adjacent crosses */

In this example, cc is the center to center alignment operator of CFL. It creates a new
object by juxtaposing the center of the vertical bar and the center of the horizontal bar.
The operator ex constructs a horizontal pair of crosses, aligned by their horizontal center
lines, with the right edge of the first cross abutting the left edge of the second cross. (All

■v

■■■■ \-->:-ä-;:-■■-■•■■ ^^^ :--::■::/-.-:--:::yr-:y/y-~:y:-:----:-

■•.I--.-.'-- ---,«•.. - < . -J^,

■J.

CFL operators are declared SYMBOL * by the include file cjl.h which must be included
in CFL application programs.)

For each symbol, CFL maintains a list of coordinates which mark the centers of
all intersections of mask layers and the bounding box. These sets of coordinates, called
crossings, are maintained separately for each mask layer and for each of the four sides of
the bounding box. Each crossing may be referred to by specifying its symbol, side of the
bounding box. layer and ordinal along the side.

For example, the symbol, pairl, generated above looks some thing like this -

1 2
+ -

1
1

- +

1
i

+

1
1

■ +

1
1

1 1 1 1

1
1
+ -

1

1
1

- +

1
1
+

2

1
1

■ +

The crossings are given by the following four-tuples

(pairl, "top". "metal". 1)
(pairl, "top". "metal". 2)
(pairl. "hot". "metal". 1)
(pairl, "bot". "metal". 2)
(pairl, "left". "metal". 1)

1 (pairl. "right", "metal". 1)

The string literals "top", "hot", "left", and "right" arc used by CFL to indicate the
sides of bounding boxes. Layer names like "metal" are, of course, technology dependent.
For each technology, CFL uses the long format Caesar or Magic layer names. All crossing
ordinals start at 1 and increase along the coordinate corresponding to the bounding box
edge in question.

Several of the routing operators in CFL have symbolic points as arguments. These
arguments are declared to be of type FT * and are generated by the symbolic point
descriptor constructor, pt. For example, to construct symbolic points which refer to the
leftmost and rightmost metal crossings in pairl above, the following program statements

,. j are used -

PT *pl.*p2;
pi = pt(pairl. "left". "metal", 1);
p2 = pt(pairl. "right", "metal". 1);

.■■:.•'■■■ ■■ .-•'■ • •.:-•■■■ ; w ;._■.,;.;•;- :;..v : . : . vv.;--. • mwXA-^mm'm

t-W-^-w ^-. H . « .-. > .

Whereas symbolic points are used to refer to specific crossings, CFL borders are used
to refer to sets of crossings. CFL borders are used as arguments to some of the routers. A
border is similar to a symbolic point in that it is referenced through a descriptor, declared
BORDER *, and constructed using a constructor, in this case, bd. In the simplest case,
a border contains all the crossings associated with a given symbol, side and layer. Hence,

BORDER ♦bl.*b2:
bl = bd(pairl. "top", "metal");
b2 = bd(pairl. "bot", "metal");

constructs two borders; bl, containing all the metal crossings on the top of pairl, and b2,
containing all the metal crossings on the bottom of pairl.

In addition to the basic border constructor which, by default, includes all crossings in
its resulting border description, CFL provides operators bdin and bdex for including and
excluding specific crossing ordinals from border descriptions. In general then, the border
description facilities are capable of directing the routers to consider any subset of crossings
along the side of a particular symbol. For example, the following statements construct a
description of the top of pairl which includes only the second crossing:

bl = bd(pairl. "top", "metal");
bl = bdex(bl.l);

In the special instance that the ordinal argument is zero, bdin will include all crossings
in its resulting border and bdex will exclude all crossings from its resulting border.

Operators

CFL has six classes of operators -

1. Alignment operators
2. Linear transformations
3. Array constructors
4. Tiling operators
5. Library access operators
6. Miscellaneous operators

The alignment operators combine a pair of symbols by placing them in one of several
relationships with respect to each other. The coordinate free nature of CFL stems largely
from the fact that the alignment operators typically specify the position of one symbol
relative to another rather than the position of either of them relative to a more global set

■v:.>::----::'::>:;-";-:/:.- :.-vv-v-v-;-.■"■•■■:-::■■::•".&:■:»;■■•:■:•;■ ■:•:-:■.:>':■:•:■:■:■•:■:•:-"•■:■::•:-:::■:■:•:■>:";.:•:->::-:•:■:.:•:•:■:.:■:-■•■:■:•:■ i

of coordinates. CFL has six categories of alignment implemented as the following thirteen
alignment operators -

1. Center to center cc
2. Center line to center line cxxy
3. Edge to edge ll,rr, tt,bb
4. Border to border bx.by
5. Point to point or center pax,pay, cp
6. Origin to origin oo

Each of these operators has two arguments si and s2 which are symbol pointers,
declared SYMBOL ,c. The operators form a new symbol containing si and s2 positioned
according to the indicated alignment criterion. The position of s2 relative to si in this new
symbol is called the (0.0) position. All of the alignment operators have three additional
variations which allow the specification of offsets from this (0,0) position in the x. y, or
both directions. The variations are formed by suffixing the operator name with dx, dy,
or dxy. For example, the ex operator has the following four forms:

cx(si,s2) - pair in x, center lines aligned
cxdx(si,s2.cfz) - pair in x, center lines aligned, x offset
cxdy{sl,sS.dy) - pair in x, center lines aligned, y offset
cxdxy(si,s5.(fx,(ii/) - pair in x, center lines aligned, xy offset

The center to center, center line to center line, and edge to edge alignment operators
depend only on the bounding boxes of the symbols being aligned. The border and point
alignment operators .however, depend on the border crossings. For example, the bx oper-
ator forms the horizontal pair of symbols (si,si?) such that the right side of the bounding
box of si is adjacent to the left side of the bounding box of s2 and the symbols are aligned
so that corresponding patterns of material along the common edge match up.

The point alignment operators are similar to the border alignment operators except
that the symbols are aligned so that specfic symbolic points along tjie respective borders
are adjacent.

The origin to origin operator is used in conjunction with CFL's routers and will be
discussed later.

There are three linear transformations -

mx(s) - mirror in x

my(s) - mirror in y

rot(s.n) - rotate

The argument to rot is in degrees and must be an integer multiple of 90.

^r-:^

There are three array constructors, nx. ny, and nxy, which can be used to generate
horizontal, vertical, or rectangular arrays of a given symbol. As in the case of the alignment
operators, offset variants of these operators are also defined. The interpretation of the
offsets is, however, slightly different, dx and dy, when supplied, are taken to be the
spacings between the bounding boxes of successive array elements. The (0,0) position is
when the bounding boxes are adjacent. The variants of the array operators which would
produce a non-rectangular structure are not defined, for example, nxdy.

nx(5,n) - repeat in x
nxy(s.nx,ny) - repeat in x and y
ny(5,n) - repeat in y

There are three additional array constructors repx, repy and repxy which construct
arrays of particular spatial periods. The arguments to these routines are given as dx and
dy but they specify the periods rather than offsets. These operators do not have variants
for providing additional offsets.

repx(5.n.cfi) - repeat in x with period dx
repxy(s,nx,nt/,<ii,(fy) - repeat in x and y, with periods dx dy
repy{s,n.dy) - repeat in y with period dy

Tiling is similar to an array operation except that each element of the generated array
can be a different symbol. There are three tiling operators, vx, vy, and vxy, which can
be used to generate horizontal, vertical, or rectangular tilings. These operators are similar
to the array operators except that the first argument is an array of symbol pointers rather
than a single symbol pointer. The tiling operators, then, operate on vectors of symbols so
their mnemonic starts with v. There are no offset variants for the tiling operators since
the offset for each tile could potentially be different.

vx(s,n) - vector in x
vxy(s.nj,ny) - vector in x and y
vy(s.n) - vector in y

There are two operators for accessing library symbols -

gs{cell) - get library symbol
ps(y,5) - put symbol in the symbol table

gs will read a library symbol in either Caesar or Magic format, place the symbol in
the data base and return a pointer to it. If the symbol is already in the data base, gs
simply returns the pointer, that is, it will read the symbol only once.

ps compresses the hierarchy below its argument and marks that argument as a library
symbol. The hierarchy compressor removes from the hierarchy all cells which are not

6

i^-vi^^ i mmmm

marked as library cells, that is, cells which were not read in with gs or cells which have
not been marked as permanent by a call to ps. Therefore, ps can be used to not only to
save symbols but also to control the actual structure of the hierarchy.

CFL is designed to be able to be used with any desired technology. It obtains its
table of layer names from technology files in the CFL path. A call to the routine cflstart
initializes the package and specifies the name of the technology file to be used, cflstart
must be called before invoking any other CFL functions, cflstop causes all permanent
symbols to be written to disk and should be called just prior to exiting a CFL application.

Routers

CFL does not currently provide high level routing facilities such as a general channel
router or switchbox router. Rather, the CFL routers consist of a set of wiring pattern
generators each of which is specialized to a particular kind of routing situation. These
routers, which are designed to be used in conjunction with each other and the other CFL
operators, support a set of elementary routing operations from which more sophisticated
patterns may be constructed.

There are two types of routing facilities available in CFL, planar routers and non-
planar routers. The planar routers are -

pp{30,pl,p8,'w) - point to point router
pr{sO,bl,bS,w) - general planar router
ext{b.d.w) - border extender
fill(s,side,(i) - Caesar fill operation

and the non-planar routers are -

p\xis0.pl.p2.w,ct) - horizontal point to line router
p\y{s0.pl.p2,w,ct) - vertical point to line router
e\h{s0,bl,b2,w,ct,rev) - general elbow
tee{s0,bl,b2,w,ct,rev) - tee

Since CFL is coordinate free, the routers operate from border descriptions and from
symbolic point designations. The generation of symbolic point and border descriptors is
described in the earlier section, Entities.

Most CFL operators produce a new symbol by combining existing symbols. The ar-
guments to these operators have no particular spatial relationship to each other before
the operation takes place. The routers, on the other hand, rather than combining sym-
bols, must form connections between them. This process requires that the symbols to be
connected have a previously established fixed spatial relationship.

iS^M^i^^

Symbols acquire a fixed spatial relationship as soon as they become constituents of
some higher level symbol. CFL refers to a higher level symbol, sO, which contains symbols
sj and s2 as a container of si and s2. Within any container, the relative positions of si
and $2 are fixed.

The routers, like all other CFL operators, are SYMBOL * valued functions. When a
router is invoked it produces a pattern of wiring as its result. This pattern of wiring is not
"written" into place directly by the routing operation, rather it is a separate symbol in its
own right. Therefore to connect two symbols using the routers, two steps are necessary:

1. Use one of the routers to generate the pattern of wiring necessary to form the required
connections.

2. Use the origin to origin alignment operator to locate the generated wiring pattern in
the container so that the intended connections are made.

In all cases, the wiring is generated in the coordinate system of the container and
often the two steps above may be combined using a statement of the following form -

result — oo(con^amer,router(con<cuner,...));

The rationale for requiring that the generation and placement of wiring patterns be
performed in steps rather than as an atomic operation is that in many cases routing
problems require the generation of complex patterns in which wiring generated by one call
to a router must itself be connected to the wiring generated by another call to a router.
Separating the generation allows the generated wiring to become a separate symbol which
may be then operated on using any CFL operator.

The point to point router generates a single wire for connecting two symbolic points
(see Entities). The layers of the points should match and both points must be uniquely
locatable within the containing symbol.

The planar router generates a planar wiring pattern for connecting the points in two
borders (see Entities). The borders must contain the same number of points. Also they
must be uniquely locatable within the containing symbol. All wires will have the same
width.

To simplify the diagnostic process, pr will construct wiring patterns whether or not
there is sufficient space for the number of wires requested. It will, however, issue a warning
message if any of the generated wires are closer than a specified tolerance,

ext generates a pattern of wiring for extending all points in a given border perpen-
dicularly for a specified distance, fill is similar to ext except that all layers crossing the
indicated side are extended. The extensions have the same widths as the crossings. For
example, suppose it is desired to generate a symbol s2 which consists of five instances of
a symbol si placed a distance 10 apart and connected by extending the material of the
right side of si. The following CFL statement generates this configuration -

s2 = cx(nx(oo(sl.fill(sl."rightM0)).4).sl);

•:^^>v■•^•■^•-:^^;-;^>•>-v-•:•^:■-v/:•^■/:^>■•^-;■.^■.■:-.■:•.■■: .•:•.. ^.•.v•:•.v/:v^-:^^-:-/:-.■:^v.^■.:-^:•:.•^;■^;■•^;-\^^:v.v.;A:.^:.^:.•,■/.:.-.

.--

Generally speaking the planar routing facilities of CFL are technology independent
whereas the non-planar routing facilities are technnology dependent since contacts must
bo specified.

plx generates a single wire for connecting a symbolic point the vertical line running
through another symbolic point. The connection is made horizontally. The layer of the
first point taken to be the layer of the wire. The points must be uniquely beatable in the
container symbol. If requested, a contact is placed with its origin at the intersection of the
vertical line and the generated wire.

ply is similar to plx but generates a single wire for connecting a symbolic point to the
horizontal line running through another symbolic point. The connection is made vertically.

elb generates a wiring pattern for connecting the points in two borders, say, bl and
b2. Wires from bl and b2 may have different widths. The pattern generated must form an
elbow but it is not necessary that bl and b2 be on the same layer. If requested, a contact
will be placed with its origin at the intersections of the wires from bl and the wires from
bS.

elb may generate either forward or reversed elbows. For a forward elbow the low
order points in bl will connect to low order points in b2. For a reversed elbow, low order
points in bl will connect to high order points in b2.

Through combinations of selecting subsets of the borders with bdin and bdex and
utilizing the normal and reverse options, a succession of elb invocations may be used to
form a set of elbows between bl and b2 which implement any desired ordering of the
connections.

tee generates a wiring pattern for connecting the border of a tee connected symbol
to the wiring of a transverse routing symbol. The wiring in the routing symbol is assumed
to run perpendicuhr to the wiring generated for connecting the tee connected symbol.
The routing symbol, presumably generated by a prior call to a router, is also assumed to
consist strictly of parallel lines, no elbows. All generated wires will have the same width.
If requested, a contact will be placed with its origin at the intersection of the generated
wires and the wires existing in the routing symbol. The connection order for tee may be
either forward or reversed.

All of the non-planar routers have a contact argument ct. The provision for positioning
this contact in generated routing is coordinate dependent in that the contacts are always
positioned so that their origins, coordinate (0,0), coincides with the intersections of wires on
different layers. If the contacts are symmetric and generated with the CFL box primitive,
as is the case with the NMOS macros gb and rb, the origins will be in the geometric
centers because the box primitive is designed to make boxes which are symmetric about
the origin whenever possible. If other, asymmetric, forms of contacts are needed they may
be generated according to the above criterion using the CFL wire facility described later.

Use of the routers generally requires that three pointers into a symbol hierarchy be
supplied - the container and the two symbols to be connected. When symbols are retrieved

9

;«.- ■-. .-■-?:V::<^:^:V:V>^.W:A"^

from the library using gs only one pointer is provided. A typical problem of this form is
to retrieve from the library both a complete circuit and a pad frame and then to connect
the circuit to the pads. The CFL procedure locate may be used to obtain a pointer to
any named sub-symbol within a symbol hierarchy. All symbols saved with ps are named
symbols.

For example, suppose a circuit called memory is to be placed in a pad frame and
connected. Suppose further that the section of the pad frame containing the output pads
is named outputs and that the memory outputs are available on the boundary of a sub-
symbol called planes. The following CFL code accomplishes the task:

SYMBOL »memory.*pads,
»outputs,»planes,* chip;

/* get the memory and the pad frame from the library */

memory = gs("memory");
pads = gsC'pads") ;

/* establish pointers to the planes sub-symbol of the memory */
/* and the outputs sub-symbol of the pad frame */

outputs = locate(pads."outputs");
planes = locateCmemory."planes");

/* position the memory within the padframe */

chip = ccdx(memory.pads.120);

/* connect the outputs from the memory planes to the */
/» corresponding output pads */

chip = oo(chip.pr(chip.bd(planes. "top"."metal").
bd(outputs."bot","metal").3)) ;

Macros

CFL has two groups of macros - technology independent macros and technology de-
pendent macros. The technology independent macros are -

10

^v;i :>>>::^y^^

a\pha{s.layeT,w) - character string, width w
CTOSs[layerl.dxl,dyl.Iayer2.dx2.dy2) - two boxes, centers aligned
letter(c/at/er.u») - alphanumeric letter, width w
\ne{layer.w.dx,dy] - el. north east
lnw{layer,w,dx,dy) - el, north west
lse[lüy€r,w.dx.dy) - el. south east
\sw[layer.w.dx.dy) - el, south west

alpha generates a string of characters which are 5w wide, 8w high with 2w spacing
in between. The same rules apply to letter. The character set that is available is

A- Z
0- 9

Currently, space (or blank) is not available.

The technology dependent macros available generate commonly used structures like
contacts, pullups and and components of standard pad frames.

Wire Facility

In order to provide for the parametric generation of particularly complex leaf cells,
or cells with specific coordinate requirements like router contacts, CFL includes the wire
facility which allows the use of symbol relative coordinates. Note that the use of this
facility can introduce significant coordinate dependency into a design so it should not in
general be used in cases where the coordinate independent operators are able to serve.
The procedures associated with the wire facility are the following -

yf\re{laytr,width) - Initialize a wire
at(xo,T/0) - Move to the point (x0,y0)
dx(cfiO) - Draw to the point (x-f dx0,y)
<\y[dy0) - Draw to the point (x,y-rdy0)
150(5) - Include symbol origin
wl(/ayer) - Reset the wire layer
•ww[width) - Reset the wire width
x[xÖ) - Draw to the point (x0,y)
y{y0) - Draw to the point (x,y0)

wire is of type SYMBOL *. All of the procedures apply to the wire generated by
the last call to wire. Note that the symbol generated by wire may contain an arbitrary
number of physical 'wires' which need not be connected. The only thing they have in
common is their coordinate system.

11

oMM>££;^^

The procedure iso has a symbol as its argument, iso includes that, symbol positioned
>o that its origin coincides with the current wire position. Note that the current wire
position, or more precisely, the position within the coordinate system of the current wire,
is initialized with the at procedure and maintained by all move and draw procedures.

Experience Using CFL

The UW/NW VLSI Consortium has been using CFL for the last year to make a
set of module generators. These generators are designed to produce instances of general
structures which meet various specifications. For example, a CMOS multiplier generator
has been developed which produces two's complement multipliers for either signed or
unsigned operands of varying sizes. Flexible generators have also been developed for a
FLA. a CAM. several kinds of ROM's and a multiplexer. In general, the generators
include features like automatic adjustment of driver and buss sizes as a function of the
modules" speed and power requirements.

In addition to the module generators, CFL has been used for assembling and routing
the components of the Quarter Horse microprocessor that the Consortium has developed.

So far indications are that CFL is easily learned by those familiar with C. The number
and sohpistication of the projects that have been completed using CFL indicate that the
system is substantially more convenient than coordinate based systems while still retaining
a sufficient degree of flexibility.

Due to the border abstraction, the system has an excellent speed advantage over many
other procedural and graphical approaches for assembly of larger modules. For example,
the sample program shown earlier, which places a ROM in a pad frame, executes in less than
two seconds on the VAX 11/780. The ROM has approximately 5000 transistors. The ROM
generator produces an eight by eight instance in about 16 seconds. The main limitations
are that the SYMBOL data structure consumes about 2KB of memory per symbol and
that the routers are not always straightforward to apply due to their somewhat specialized
formulation.

Acknowledgements

CFL has taken about two years to develop. I would like to thank the management
of the Consortium, in particular, Larry McMurchie, for his encouragement and patience
during the critical initial phase of the development. Also, the system would not have
achieved its current level of capability without the efforts of several staff members and stu-
dents who have spent considerable time exploring the package, developing new techniques,
new features, and discovering and helping to correct a number of bugs. Most particularly I
would like to thank Dave Morgan and Wayne Winder of the Consortium staff, Barry Jinks,
Consortium liaison from Microtel Pacific Research, and Jim Schaad, Amilesh Tyagi, and
Chyan Yang of the Department of Computer Science here at the University of Washington.

12

References

1. W. Beckett Coordinate Fre.e LAP Reference Manual. UW/NW VLSI Consortium De-
sign Tools Release S.O, University of Washington (June 1985)

2. V. Corbin and B. Yanagida FLAP Reference Manual, UW/NW VLSI Consortium
Design Tools Release 2.1, University of Washington (October 1984)

3. J. Ousterhout, Editing VLSI Circuits with Ceasar, 1983 VLSI Tools, Report No.
UCB/CSD 83/115 (March 1983)

4. J. Ousterhout, R. N. Mayo, and W. S. Scott, Magic Tutorials, Berkeley VLSI Tools,
Report No. UCB/CSD 85/225 (March 1985)

13

^w^/-<---/^<-^/--:-:' ' m^mMmymm'ttmmm - .:-;-■■:.:- ;■-■•--:■••■

