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Abstract (continued)

The TRAC configuration which became available for use during this period is a four-processor
nine-memory system with two 10 MBYTE ijinchester disks. The VAX 11/750 obtained under the
DoD Research Equipment program is used as both front- and back-end for TRAC. This con-
figuration is not able to support development of major software systems but can be used
for small scale experiments in reconfigurable computation. Several such experiments were
conducted including one which attached an image input device to the auxiliary resources
interface developed in 1983 and reported in the Final Report for Contract F43620-83-C-0049.

Substantial existing Fortran programs, up to 4,000 lines of code, have been qiven parallel
structure in the Computation Structures Language (CSL) and used as test programs for the
concepts and implementation of CSL.

The computations of the scheduling algorithms developed for selection of circuits to
realize configurations in banyan network architectures are distributed among the nodes of
the switch. This distribution and resulting parallel execution qives log(n) execution
time for circuit scheduling. (n is number of base or apex nodes in the network.)

It was, during this year, recognized that the network structure which couples processors
and memories in TRAC can be adapted and extended to couple computers to external menory
systems to provide a very high performance highly parallel I/O system.
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ABSTRACT

The 1984/85 accomplishments of the research project "High Performance Parallel

Computing" included bringing the prototype of the Texas Reconfigurable Array

Computer (TRAC) to a configuration and to a state of stability where it could support

execution of simple assembly language programs, initial development of a unified model, -,

of parallel computation which is a basis for a programming environment uniting process

and data flow models of parallel computation, bringing to operational status on an

alternative host one of the two parallel programming languages (the Computation

Structures Language, CSL) originally intended for use on TRAC, exploration of the

expressive capabilities of this programming language, initiation of development of a

graphical programming language based on the unified model of parallel computation

mentioned preceding, major progress on a graphically interfaced Petri Net-based

performance modeling system for parallel computations and development of algorithms

for scheduling of circuits to realize configurations in configurable banyan network based

computer architectures.

The TR-C configuration which became available for use during this period is a four-

processor nine-memory system with two 10 MBYTE Winchester disks. The VAX

11/750 obtained under the DoD Research Equipment program is used as both front-

and back-end for TRAC. This configuration is not able to support development of

!-. major software systems but can be used for small scale experiments in reconfigurable

computation. Several such experiments were conducted including one which attached

an image input device to the auxiliary resource interface developed in 1983 and reported

in the Final Report for Contract F49620-83-C-0049.

- Substantial existing Fortran programs, up to 4,000 lines of code, have been given

* , parallel structure in the Computation Structures Language (CSI) and used as test

programs for the concepts and implementation of CSL.

- -The computations of the scheduling algorithms developed for selection of circuits to
,e* 

,-  
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-. of the switch. This distribution and resulting parallel execution gives log(n) execution

* time for circuit scheduling. (n is number of base or apex nodes in the network.)

. It was, during this year, recognized that the network structure which couples

processors and memories in TRAC can be adapted and extended to couple computers to

external memory systems to provide a very high performance highly parallel I/O

system.

1. Research Objectives

The research objectives of the project "High Performance Parallel Computing" was an

integrated approach to parallel computation coupling the development of a novel

reconfigurable parallel computer architecture, the Texas Reconfigurable Array

Computer (TRAC), with the development of software for the architecture and design of

algorithms which could effectively utilize the capabilities of the architecture. This

project, which we shall refer to as the TRAC Project, was initiated in 1978. The

research accomplishments reported for 1984/85 are in context of this substantial and

long-lived project. The specific objectives for 1984/85 included bringing the prototype

of TRAC to a configuration and to a state of stability where it could support

*development of software systems and applications, to bring into experimental use the

-i software systems designed and partially implemented in previous research and to

S.,explore the effectiveness of the reconfigurable execution environment provided by

TRAC on significant algorithms.

A summary of architectural concepts for TRAC will provide a context for the

reporting of the research accomplishments given following. The fundamental concept of

TRAC is that an effective execution environment for parallel computations can be

realized by having a computer architecture which can be configured to the arithmetic

and communication requirements of the algorithms and applications it is executing.

Configurability is attained by having processor and memory resources connected by a

banyan interconnection network which supports the establishment of circuits at runtime

and which also implements memory to processor packet routing. The processors are

/ ,K *.*, *2 /~1
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placed at the apex of the network and the memories at the base of the network. Figure

1 illustrates this concept with a four-processor nine-memory configuration connected by

a switch with nodes having spread of two and fan-out of three. A "computer" is

realized by establishing circuits in the network coupling processors to memories and

coupling "Computers" to "Computers." Figure 2 shows a configuration realizing an

MIMD configuration with each "computer" being made up of two processors coupled

through the switch, and two memory units. The two computers also share a memory

unit. It is straightforward to see that this procedure can be used to construct a

spectrum of architectures ranging across SINM and M[ID and including both message-

based and shared-memory-based configurations. A more extensive discussion can be

found in Browne and Lipovski [BRO82aI.

0-1 2 3 4 pex set: Drocessors

1 34 5 6 switch nodes

02 3 4 5 678 9 Wse set:
"rie s

Figure 1
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2. Research Accomplishments

. All of the objectives were attained in greater or lesser degree. The subsections which

__ follow give the accomplishments in summary form relating them to published papers

where possible.

2.1. Hardware Design and Development

The major accomplishments for 1984/85 in the area of hardware design and

- development were redesign of the memory board, coupling of the VAX 11/750 obtained

under a DoD Research Equipment Grant (Grant Number AFOSR-83-0315) to TRAC to

serve as a front- and back-end and bringing the four-processor nine-memory

configuration to a level of stability where it can serve as an execution environment for

i L.° ...° •.



simple programs.

The memory board which was actually carried to completion for inclusion was a

redesign of the original board which corrected timing errors and incorporated much

greater margins for stability. This redesign was carried out on the VALID Logic ECAD

design system purchased with the matching funds provided by the University of Texas

in connection with DoD Research Equipment Grant Number AFOSR-83-0315. The

addition of this more stable memory board enabled a sustained push of hardware

testing (which was made possible by the Tektronix Logic Analyzer purchased under the

DoD Research Equipment Grant Number AFOSR-83-0315) which brought the four-

processor nine-memory configuration of TRAC to a point where it could be and was

- -- used for execution of demonstration codes and simple applications. The assembler and

Eloader which had been hosted on the Research DEC 2060 of the Computer Science

Department were ported to the TRAC VAX to facilitate code development and loading.

'' The most significant application attempted was coupling of an image digitizer to the

*' - Auxiliary Resource Interface (ARI) referenced in the Final Report for Grant F49620-83-

-C C-0049. Code for simple image processing applications was developed and run on the

digitized images.

2.2. Algorithms and Theory

A fundamental problem for a configurable network architectured computer

architecture is development of algorithms for selection of the processors, memories and

switch resources with which to establish specific computer configurations. The problem

arises because the Banyan interconnection network is a blocking network which cannot

simultaneously realize circuits giving full connectivity between all processors and all

memories. Effective use of the processor and memory resources thus requires effective

S,algorithms for construction of configurations. In addition to yielding efficient use of

. resources, the algorithm must be sufficiently efficient to be frequently executed during

the course of execution of a computation. It must be applicable to partial

configurations of resources since the total system resources may be shared by several

jobs. Feo [FE085] has developed and evaluated by simulation a spectrum of
4%.%
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algorithms. All have the common property that the computations of the algorithm are

distributed across the nodes of the network. All function by broadcast of signals

through the network, first from apex nodes to base nodes and then back to the apex

nodes. Each pass generates state information about the number of paths through the

network which will be consumed by selection on a given resource configuration. There

exists an algorithm which can be shown to minimize loss of connectivity in the network

|BIT841. This algorithm is rather complex. The results of Feo's research show that

simple algorithms whose functionality can be implemented by adding fewer than 150

gates to the switch nodes give near optimal results over a wide range of network states

with log(n) computation time where n is proportional to the number of apex and base

nodes.

There are a great number of models of parallel computation. Some of the more

popular are the process model, the several flavors of data flow and the

functional/applicative model. It has been the case in the past that each of these models

of computation has spawned its own programming languages and architectures. Browne

[BRO85a, BRO85b] has developed a unified model of parallel computation which

integrates all of the common models of parallel computation at a somewhat abstract

level. The essential concept is to generalize dependency relations and to formulate

computations as graph structures where the nodes are schedulable units of computation

and the arcs are generalized dependency relations. This model of parallel computation

allows a single computation graph to include several different types of dependency

relations. This model of parallel computation leads naturally to the concept of a

graphical programming language. This paradigm for graphical programming is

described briefly in the following section.

2.3. Parallel Programming System

Implementation of the Computation Structures Language (CSL) [BRO82b] on the dual

CDC Cyber 170/750 configuration of the University of Texas Computation Center was

completed during 1984/85. The choice of the dual Cybers as the host for

implementation of CSL was made because the configuration of TRAC which was

| . .

2~ 2S~ . .,. .
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available would not support the runtime system of CSL. The four-processor nine-

memory configuration has a total of 576 KBYTES of memory. It did not have the

interrupt handling capabilities implemented. There remained problems of intermittent

hardware failures. The circumstances made it impractical to attempt implementation of

the operating system and programming language systems designed for TRAC. The

Computation Center of the University of Texas added to the UT-2D operating system

the necessary primitives for implementation of generalized dependency relations. A

number of programs of existing Fortran programs of substantial size have been given

parallel structure at the module level and executed under control of the CSL runtime

system. The largest of these programs is a 4,000 line molecular integrals code.

"-" The CSL runtime system was also used as a vehicle for the study of parallel

structuring of resource management systems lODE85]. The result was a relationship

defining the degree of parallelism necessary for the CSL runtime system to execute a

"- given workload.

We have also used CSL as a vehicle for study of the amount of parallelism in an

algorithm which can be readily captured in programming languages. CSL is a language

for representing dependency graphs at the task level and for expressing a traversal of

S•the graph to execute the computation. CSL incorporates both message and shared

memory models for implementation of dependency relations. It was found in several

studies that the use of both types of dependency relations aided in obtaining compact

-
2  parallel computation structures which yield most of the potential parallelism in an

algorithm. Appendix A develops one example CSL program from a specification of an

algorithm for solution of a set of linear equations with a triangular coefficient matrix.

We also initiated during this period implementation of two other programming

systems for parallel computation. The Task Level Data Flow Language (TDFL) uses an

explicit specification of a dependency graph in terms of a subset of the generalized

dependency relations defined by Browne [BRO85b] but leaves the traversal of the graph

to be determined dynamically at runtime. A prototype implementation of TDFL has

. . ..
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been accomplished since the conclusion of the period of this grant. We also have begun

design and implementation of a graphical programming interface in which a

programmer specifies a parallel program directly as a dependency graph where the

nodes of the graph are pre-programmed schedulable units of computation and the

properties of the generalized dependency graph are declaratively specified.

2.4. Performance Modeling of Parallel Computations

There are always many possible parallel structures for a given computation. The
,- factors which can be varied include granularity of the schedulable units of computation

and choice of types of dependency relation. It would be laborious to systematically

explore the parameter space for complex computation structures with explicit

programming. Adiga 1ADI861 has been developing a performance modeling system for

parallel computation structures. The conceptual basis of the modeling system is an

extended form of Petri Nets. The extended Petri Nets are expressed in terms of vector

replacement systems, a generalization of vector addition systems developed by Kapur

" [KP 82]. The performance modeling system uses a graphical interface for model

specification. The modeling system has been implemented to have constructs which are

direct equivalents of CSL programs. A CSL program can be directly mapped to an

extended Petri Net model and vice versa. A critical aspect of any performance

modeling system is validation. The ability to transform back and forth from CSL

facilitates validation. A study of the design space for parallel computations is executed

- by writing a CSL program for one parallel structure and measuring its execution

properties. The CSL program determines the structure of the model. The measurement

data can then be used to parameterize and validate the extended Petri Net performance

- model. The model can then be used to search for "optimal" parallel structures with

- increased confidence. The design of this performance modeling system was done under

* @sponsorship of this grant.

Io.....



2.5. Parallel 1/0 Architectures

The network architecture concepts of TRAC have been extended and adapted to

generate a highly parallel 1/0 architecture which integrates data base operations,

efficient virtual memory operation and object-oriented data handling [BRO85c].

The basis of the proposed 1/0 architecture is to connect the external memories of the

multiprocessor architecture to the computation elements via a network switch. The

nodes of the switch are given the functionality to execute routing and sort/merge

operations on data elements as they traverse the switch between the processors and

external memories. The routing operations can be used to implement indexed store

operations in the processor to memory direction and data distribution and sort/merge

operations in the memory to processor direction. The external memory systems are

* ~ interfaced to an object-oriented self-managing secondary memory (SNISM) [RAT84]

which is in turn interfaced to the network by a specialized processor which implements

data filtering operations. The SMSM's are composed of cells which can execute search

operations in parallel and which also execute memory management functions such as

allocation and garbage collection. The SMNSM's are short latency object-oriented cache,.

for the mass storage devices. Figure 3 is a schematic of this architecture.

This architecture clearly has the potential for a great deal of parallelism in thePr.:!operation of 1/0 and data base operations. Multiple activities can be initiated at the
processor level. Indexing operations are executed in parallel by the netwvork switches.

The SMSM's can execute searches in parallel and each SNISN can have internal search

parallelism. Research to explore the potential of this 1/O architecture was initiated

under the partial sponsorship of this grant.
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Appendix A

AN EXAMPLE COMPUTATION STRUCTURE AND PROGRAM

This section illustrates the representation concepts described in the previous section.

The example is a problem used by J. Dongarra and D. Sorensen of Argonne National

Laboratories to test the expressive power of parallel programming languages. The

computation is the solution of a triangular matrix

Tx=b

Dongarra and Sorensen are evaluating the ease with which all of the potential

parallelism in the computation can be obtained in the programming system. The

method used is to decompose the matrix into blocks as illustrated in Figure 4. The

steps in the solution are

a. solve the triangular diagonal blocks

b. execute the transformation

Tjix i - b--> b

on all of the blocks in column i

The schedulable units of computation are:

a. INITARRAY - an initializing routine

b. SOLVE - a block triangular solver

c. MATVECT - multiplies a matrix times a vector and subtracts from another
vector in place

The dependency relations are all of type data. The granularity is that of computation

data structures. We choose a data driven protocol. Figure 5 gives an explicit

computation graph for this computation for NBLOCKS=4 and Figure 6 is the same

graph in a proposed indexed notation. Figure 7 is a CSL program where the

CONSTRUCT section of the program gives a text string representation of the

dependency graph and the executable portion of the program specifies a traversal of the

graph.
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all satisfied. The mutual exclusion relations
are noted by double headed arrows.

Figure 6 - Indexed Form of Computation Graph
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JOB TRI;

VAR NBLOCKS: INTEGER;
END;

BEGIN

NBLOCKS 6;

CONSTRUCT
TASKS

INITARRAY C2 [T(I,J), X(I)] RANGE I = 1 TO NBLOCKS, J = 1 TO I;
(* This sets up the values of array T and vector X *)

SOLVE (I) C1 [T(I,I),X(I)] RANGE I = 1 TO NBLOCKS;
(* The code for the diagonal tasks is identical.

A task is declared for each such block, and they are
indexed by row. The compiled code resides in file C1.
Each task accesses the ith block of vector X,
and the i,ith block of array T. *)

MATVECT (I. J) : C3 [ T(IJ), X(I), X(J)] RANGE I = 1 TO NBLOCKS,
J = 1 TO (I - 1);

(* The nondiagonal tasks are indexed by row and column.
Compiled code is in file C2. Each matvect task

* '  accesses the ith and jth blocks of vector X. and the
IJth block of array T. *)

CONDITIONS
TC (I,J) MATVECT (IJ) RANGE I = 1 TO NBLOCKS,

J = 1 TO (I - 1);
(* Each matvect task has one task condition associated with

It, which it can set to communicate with the CSL program.
The convention used here is that the task conditions are

Sw initially false, and each task sets them to true as part
of its execution to signal that it is done. *)

END; (* end construct *)

5, WITH T[I,J], X[I] RANGE I = 1 TO NBLOCKS, J = 1 TO I

DO EXECUTE INITARRAY; (*initialize X, T *)

(/ BEGIN

// WAIT TC(I,J) RANGE J = I TO I-1; (* parallel waits. control dc
not advance until all are

I F'°-
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satisfied. *)

WITH X[I] T[I.I]
DO EXECUTE SOLVE (I); (* when all matvect tasks finished for

this row, execute diagonal.
The ith block of X is changed, so It
accessed read/write. The values in
T[i.1] are used in calculations but r
altered, so It Is accessed read-only.

-- WITH X[J] XCI], T(J,IJ
DO EXECUTE MATVECT (JI)

RANGE J = (I + 1) TO NBLOCKS;
(* when diagonal task for this column finished, start off

all matvect tasks in this column in parallel.
the Jith task reads X[1] and writes X[J] *)

* -END;

'- ) RANGE I = 1 TO NBLOCKS;
END.

Figure 7 - CSL PROGRAM

This program starts off NBLOCKS parallel streams. Each parallel stream begins by

executing a diagonal task first, and then all the matvect tasks in that column in

parallel. The start of the actual execution of each stream is coordinated by checking

the task conditions of the tasks that must precede the diagonal task execution for that

column. The first stream is started immediately, since the range index for the

conditions varies from I to 0. The second stream executes SOLVE(2) as soon as

-LMTX'ECT(2,1) is completed, and has communicated that fact to the CSL program. It

doesn't have to wait for MATVECT (3,I)..MATVECT (NBLOCKSI). Since each

,MATVECT (1,J) puts a lock on the Ith block of X for the duration of its execution, the

MATVECTs for each row will have to execute sequentially. This could be remedied byH splitting MATVECT into two tasks, the first one reading and computing, and then

0 or- transmitting the result to the second task, which obtains the necessary write-lock for a

shorter period of time.

',.-.;,::.
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Note that the range statement which is the last executable statement of the program

initiates parallel execution of NBLOCK SOLVE's. The RANGE statement on each

MATVECT(J,I) initiates parallel execution of a set of MATVECT tasks. The statement

\ITH X[I]: T[I,I]

DO EXECUTE SOLVE (I))

requires SOLVE (I) to obtain exclusive access to X[I] and T[I,I] before executing.

Constructing the dependency graph leads naturally to the very simple program of

* Figure 7. The task condition variables TC(I,J) are used to implement the mutual

exclusion relations between the occurrence of SOLVE and the occurrences of

*MANTVECT along a row of blocks. This CSL program selects one traversal from many

possible traversals. This is one of several places where the current CSL falls short of the

generality needed for representation of the computation graphs described in Section 3.

Fortran code for the tasks SOLVE and MATVECT as supplied by Dongarra and

Sorensen is given in Appendix B. This program has been executed on the experimental

version of the CSL programming system on the dual CDC 170/750 configuration in the

Computation Center at UT-Austin.

The important element of the graph representation is that it contains no

architecturally dependent information. The CSL program again contains no

architecturally specific elements. The VAIT and WNITH constructs and also the

message passing elements which can be used in CONSTRUCT statements can be easily

implemented on shared memory or fixed topology architectures.
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