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Abstract

Given an i.i.d. sequence of random variables (r.v.'s) with continuous

cumulative distribution function (CDF) F, we present a simple construction

for the jump times of an extremal process on the same probability space

which 'interpolate' the given record times. This gives another approach to

the strong approximation of extremal processes as developed by Deheuvels

*.- (1981, 1982, 1983), and allows for a more detailed investigation of the re-

'-dtionship between the record tirres of the given sequence and the juni' timer

of the extremal process. In particular, it it shown that the number S of

:.. surplus jump time points in (1,-) over the record times is approximately

Poisson distributed with an exact mean of E(S)= 1-C, C denoting Euler's

constant.

Kevwords: Extremal process, record times, strong approximation, Poisson ap-

prox imat ion.
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1. Introduction

Let {X ; n l} be an i.i.d. sequence of r.v.'s with continuous CDF F, and
n

let X(n ) =max{X I,..., Xn 1, n2!1. Of particular interest are the times Un when

these partial maxima change their values, defined by

U0 = 1, Un+l = inf{k:XI >X,, }, n O. (1.1)

n

Due to the continuity of F, (1.1) is a.s. well-defind; U is also callcd the
n

n record time, and KU the n record value of the sequence. Several efforts

n

have been made to clarify the asymptotic properties of record tines, usin ,

different approaches such as canonical representations ([12],[13]), strong ap-

proximation techniques ([3],[6]) or embedding into extremal processes (7],[91),

all of them saying that {log U ; n }11 asymptotically behaves like a homogeneous11 n

Poisson point process with unit rate.

Here the extremal process {E(t); t >01 (called extremal- F) is a right

continuous non-decreasing pure jump Markov process such that for all selections

0< t < ... < t k of time points we have

k t k tk-tk_1P( {E(t.) <x.}) = F .ix) (min' (1.2)
,. 1 1 i=2

where xI ,..., Xk c JR. Especially, from (1.2) it follows that we have

"X(l) ,  , X(n)L [ {E(l),..., E(n)} for all n->l, where means equality in

distribution. The structural properties of such extremal processes are well-

investigated (cf. [7]-[10]), and their importance is given by the fact that

they occur as the functional weak limits of the normalized processesK -. (X -a ; t >O} (['] denoting integer part) where a EJR, b > 0 are
. ([nt]) n n

%- %, %
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constants such that ,(X -a n ) tends weakly to an extreme value distribution
nn

(if applicable) (see e.g. [9] and further references therein). Further, if

n noo<n<-1 denotes the jump times of the extremal-F process, it has been,- n

shown that these form a non-homogeneous Poisson point process with intensity

X(t)= l/t, t >0 (in fact, the extremal process has infinitely many jumps in

every neighborhood of the origin). Correspondingly, the sequence

S{E(Tn ); -< n < o} of states visited forms a Markov chain with transition

probabilities

. P(E(Tn+l) > yIE(T) X) - log F() vx (1.3)

where x,y are chosen such that O< F(x) < F(y)< 1. Since the distribution of

{T I is independent of F, {E(t)) can be transformed to an extremal-A process/. n

tE*(t)} by letting E*(T n ) )-log {-logF(E( n)))}, t >0, and interpolating withn n

piecewise constant paths, where A(x)= exp e-X), xE 1k is the CDF of a doubly

exponential distribution. Then {E*(T )} forms a homogeneous Poisson process

d. on IR with unit rate. It follows that the time-transformed process

{E*(et ); t I now is homogeneous Poisson both in time and space.

In the light of (1.2), one might ask whether extremal processes can also

-4L be constructed by some sort of extension of the partial maxima (or records)

from the original sequence, on the same space. Such considerations have been

recently made by Deheuvels ([1],[2]) who started with a strong approximation

of the record times {U }, which he then extended to a strong approximation of*1- n

71: the inverse extremal process, and finally to the extremal process itself.

We shall show in this paper that also a 'direct' approach is possible, con-

structing first the extremal jump times from the given record times.

%~ !N-.



3

This also allows for a more detailed investigation of the relationship

between the jump times {T } of the extremal process and the record times {U n,
' n n

completing the results of Resnick ([7],[9]). In particular, if S denotes the

number of surplus points in the Tk-sequence over the record times, counted in

E(S) = I - C, (1.4)

where C= .577 denotes Euler's constant. An estimation for the distance of S

and the approximating Poisson r.v. in terms of total variation is also given.
.-
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%. .2. Construction of the extremal jumps

In view of what has been said earlier, it is easier to work with the time-

transformed process {E(et); tE RI} since then the corresponding jump times

,log T ; -- <n<-} form a homogeneous Poisson process with unit rate. Further,_ . n

by the general structure of extremal processes, the jump times {log T n must be

a.s. concentrated in the random set u00l(lOg(Uk-l), lOgU In fact, in our

-* construction, logT 1 E (log(U 1 -l), log UI).

Let, for real numbers a<b, N(a,b) denote the number of (logT )-points in

the interval (a,b). As a simple consequence of the Poissonian nature of

{log T ; n l}, in a successful construction, the random variables
n

Ak=N(log(Uk - i), logU k) should be conditionally independent given the G-field

A=A(UI .U following a (below) truncated Poisson distribution Q( )  say,
1 ' 2

with parameter
•k (2.1)

k= 1 k -

N •-where

2 € Q( ,j) = j --1,2,3, (\>O) (2.2)

-VI

N 0. Further, conditioned on A and the number Ak, the location of the points in

. (log(U k - 1), logu ) should be distributionally the same as that of an ordered
k k

sample of a population distributed uniformly over this interval.

°x
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By means of two independent i.i.d. uniformly U[0,1]-distributed sequences

{W (i); n c IN}, i= 1,2 (which can independently of {X n be defined on then nl

same probability space, eventually after enlarging) we are thus able to

interpolate the given record times by extremal jumps in the following way.

Step 1. Determination of number of jumps.

Let F denote the CDF of the truncated Poisson distribution with
Q(\)

parameter - > 0. Define

A FQ1 k(W k (1)), kz IN, (2.3)

u k k

U
where Xk= log(U k). Ak describes the number of jump times to be implanted in

the interval (log(Uk -), logU k) -

Step 2. Determination of position of jumps.

Let
"- I0, k = 0

B
kklA' 1 + ... +A k9 k-.

Define unordered samples

D k  --W (2)log(Uk-1) + (l-W (2))logU (2.4)B Bk-l+3J Bk-1l+ j k

for l-<j -Ak, k->l. Let

"mf (k)
log TB kl+j D(j), 15j - Ak , k- (2.5)

(ordered samples).

Step 3. Completion of the sequence.

Extend the sequence {logTn ;n-1} to the whole time interval -

%n
- .''.V q . . .-. • -'.-.- -. . -".-" . .".* * .. ... '..".........-. ........... - . . . ,

% -%%"%4, -- "-* ""% *** -. %''%' "' ' "% """"-"- "' ""' " "" ,." e"-"- *€" •"""""""'"'%I
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This can be done in different ways; one possibility is to construct the jump

times {log T ; n : O} in 'reverse' time such that log' 0< 0.

This procedure requires at most another countable set of independent

r.v.'s, independent from the previous ones, which again exist on the same pro-

bability space, eventually after enlarging.

.-

D1
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3. Extremal jumps and record times

% From the foregoing it is clear that the sequences {logT ; n 11 and

{log Un; n l} are closely related since log T only takes values in the setS n

U. (log(U -1), logUk); particularly, there exists some a.s. finite r.v. S
-~ k ' k

such that

log Tn+Sz E(log(Un-l) logU ) a.s. (3.1)
F n

for sufficiently large n (cf. [7],[9]). From here it follows that

logU = log 'I + o(exp{-n+ nH()}) (3.2)

= logi + O(logn) a.s. (n- oo)
n

where tH(-), t >0 belongs to the upper class of a Wiener process (see [6])
t

since logU log(Un- 1) - -- with n- x.
nn Un

Relation (3.2) does not provide the best possible strong approximation of

{logU} by a homogeneous Poisson process with unit rate. In fact, in [6] it
n

was proved that there exists a Poisson process {n ; n- 1} with unit rate, de-

fined on the same probability space as the original sequence, and a r.v. Z 0

which is asymptotically independent of this process such that

logU = T +Z+o(exp{-n+nH(!)}) a.s. (n--) (3.3)
n n n

which gives an a.s. 0(1) rate result. It was also shown that Z can be repre-

sented as

0 Wk
z !tlog(l + U (3.4)

, Ck=1 k

where {W is an i.i.d. sequence of U[O,1]-distributed r.v.'s independent of
k

. , . . . .- gA~*~. A . p

•-~*A AA'~~. ~ X
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{U} and that E(Z)= 1-C (cf. also [4)). Although {T} and {logT } are not
n n

directly comparable, there is however a conditional relationship between Z and

S, given the a-field A generated by the record times.

' Theorem 1. We have

E(SIA) = E(ZIA) a.s., (3.5)

hence

E(S) = E(Z) = 1 - C.

Proof. According to what has been said in Section 2, we have

' Uk

E(A~ijk) = Vklog(k _ a.s.
k

which is the (conditional) mean of the truncated Poisson distribution k)
U

with k = log(--- k But a little analysis shows that alsok-

Uk W
Uklog ( = E(log(l + - )IU ) + 1 a.s. (3.6)

k k(3)

The result now follows by the observation that S = Zkl(Ak- 1); hence

,Wk

E(SIA) = Z E(log(l + U -IA) E(ZIA) a.s. (3.7)

. -k=l k

In the light of (3.1), S is the surplus number of points in { n -I
n

- compared with (U ; nl}.
n

It should be pointed out that since {logT } has i.i.d. increments following
n

an exponential distribution with unit mean, the limiting distribution of

logU -logT is that of Z*--Z Y where {Y are i.i.d. exponential random
n n k 1 k k

S.5~S~S . . . . . .' .. * .- . -
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variables with unit mean, independent of S, such that again E(Z*)= 1- C.

*' However, Z* and Z are not identical in distribution since P(S= 0) C> 0;

*hence Z* has an atom at zero, while Z has no atoms.

01
Since A = kl(A- 1) and P(Ak 2) is "small" one might expect that Z

should be close to a Poissonian r.v. This can be precised in the following

way.

Theorem 2. Let P(.) denote the Poisson distribution with mean ii > n. Then

with z= 1-C= .422, S is approximately P(,)-distributed, with

sup P(S H) - P() (M) .12.

Proof. According to Theorem 3 (Appendix), if d denotes the total variation

x
distance and P the distribution of a r.v. X, we have, conditionally on A,

Uk
with k= lg(-)

d(P (-IA), P('/ 2X )) 06X (3.8)
k -. k

since -. < log(l+ ) log 2 for all k 1.k _k -

A little calculus shows that for any y> 2, we have

i v log ')') - 1 - '/ log (---y) i 1 o (j- ) (3.9)

hence (cf. [Ii])

d d(P ('/k ) P(Uk k- 12 k

and

% % % % . .. . .. . .

.r 0
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a.O

d(PS(.[A), P(E(ZIA))) 12 2 + .06 k (3.11)
k~l k=l

by (3.6) and (3.7). From here it follows that, if E[P(E(ZjA))] denotes the

corresponding mixed Poisson distribution, that

S ( 2 +Q 2'2
d(P SE[P(E(Z A))]) 12 Ek E + .06 E(, ) (3.12

k=l k= I

and hence by [5]

d(P SP(E(Z))) 2 + .06 E(,.) + Var(E(ZA)) (3.13)
k~l k=1

where E(Z) =; 1- C. Now, for y >2,

v2 ( (y-l)log2 (")- - 1) 2 v _ 2(v)
0 313 6 1og (-) - 1 o --g (y -1log () < -- Ig

Y-1 v-1 V-1 12 Vog

hence

Var(E(ZJA)) = Var(Z) - E(Var(ZJA))

00
2 2,2

Var(Z)- I jI-E[(U k-1)k]-E[(U k-1) ;k] (3.14)
k=l

CO

- Var(Z) - .08136 i E )2

k=l
hence

- 2 3d(pS(,p())- .002 X E( + .06 Y E(3) + Var(Z).
k=d k=l

i
But !k< log(l+-) and Var(Z)- :.09, hence the result follows by some numerical

k k'

computations.
..

Clearly, by the a.s. finiteness of S, we can now also construct the

extremal process E(t) interpolating the given partial maxima sequence, at

least for t-T>S+T where T= inf{kI s+kC (U k- ,U k)} is also a.s. finite.

We only have to define

1'"'¢:' C i:; ''",A '. ' ", ' ' ' ',"",:''' '. .''?', ' '-.>., ¢



l o E ( t ) = T U [ T) ( t ) . t- 4  ( 3 .1 5 )
k , " k=T Uk [TS+k' T S+k+ I S+T

T h en E (n ) = X (n )  fo r a ll ns + T  If , fo r ex am p le , F = , , then

X - logn E(nt) -logn for t / n which now is extremal-.'. on the

larger interval (S+T/n,- ) , similarly for general F. This provides another

strong approximation approach for the limiting extremal processes as worked

out in [1],[2].

i. ,S

6 J6
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4. Appendix

Theorem 3. Let the r.v. X have a truncated Poisson distribution Q()witli

>0, and let Y have a Poisson distribution P(,)) with v-. Then, if

=" -. 702 (the root of sinh 0') 2,) we have

0 2 3 0

x-1i Y1EM) P( :)d(P ,P )=SUP IP(X-1M (c)

I { 2 s i n h ( ) - \ l + - A 1

e 2

* which in turn can be estimated by

)3 (2+X,)cosh()(42

48

Proof. The sup in the total variation distance is attained for the set

M k kE 2 IP (X =k +1) 5P (Y k)!, which is 'M = 10,1} in the case ! 0

This follows from the fact that

P(Y= k) = e eo' !- I kl

if and only if
k-I

*sinh(-j 1! 2~ k, 0.

By our assumption, this is only true for k=0,1, which gives (4.1). (4.2)

follows from the Taylor expansion for sinh.

.4r.

di r-
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