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HOT ISOSTATIC PRESSING OF CERAMIC POWDER COMPACTS
(Grant No. AFOSR-82-0238)
to
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
by
J. K. McCoy and A. J. Markwortt
from

BATTELLE
Columbus Division

February 14, 1986

INTRODUCTION

This report contains a summary of research carried out under
AFOSR contract No. 82~0238, "Hot lsostatic Pressing of Ceramic Powder
Compacts", the period of periormance of which was June 15, 1982 to Janu-
ary 15, 1986.
or are currently being, published in the open 1iterature.

The major results obtained under this program have been,
The pertinent

reprints and preprints are included as appendices, and these contain

complete descriptions of both methods and results. A brief summary of

the research is presented in the next section, with references made tc

the detailed discussions in the appendices.
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SUMMARY OF RESEARCH

The objective of this research was to investigate the poten-
tial of theoretical models for describing and predicting the densifica-
tion behavior of ceramics in hot {fsostatic pressing (HIP). As a test
material, we selected Reynolds RC-HP-DBM, a fine-grained, high-purity
alumina powder. The kinetics of densification for this materfial were
studied at temperatures of 1273 K to 1423 K and pressures of 34 MPa to
103 MPa. The primary novel feature of the experiments was that a dila-
tometer was used to obtain a continuous record of sample density. Use
of the dilatometer provided a very detailed view of the kinetics of den-
sification, and allowed us to critically evaluate theoretical models for
densification.

At the outset of this work we expected that we would be per-
forming a large number of simple hot isostatic pressing experiments and
correlating them with a number of theories of densification. Accord-
ingly, we developed a system of computer programs for the calculation of
densification mechanism maps. These programs are self-contained and
intended to be readily adapted to various densification mechanisms or
even to different problems such as creep. The programs are also
designed to be "portable", that is, able to be run readily on a variety
of computer systems. It is expected that the programs would run on many
computer systems with changes to only the few routines that form the
interface with the plotter. A description of the algorithms used in the
program is found in Appendix A.

Study of the densification maps for alumina indicated that,
for applied gas pressures of up to 100 MPa and temperatures up to at
least 1473 K, the dominant mechanism of densification would be grain-
boundary diffusion for the material under study. Specifically: the
predictions based on standard theories of densification were that tran-
sport of aluminum fons would be rate-limiting, that aluminum jons wculd
move primarily by grain-boundary diffusion, and that charge compensation

would occur primarily by diffusion of oxygen ions through the lattice.
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Near the end of the first year of the project, development of
the HIP dilatometer was completed. This offered us a choice of two
experimental strategies: we could perform a large number of relatively
inexpensive, uninstrumented HIP experiments, or we could perform a
smaller number of more expensive experiments using the dilatometer to
monitor changes in sample geometry, and keeping continuous records of
temperature and applied pressure. A few tests made it clear that the
Tatter choice was more effective due to the large volume of data which
could be collected from a single experiment. In addition, when taking
data with the dilatometer, we could study the effects of changing HIP
conditions without considering sample-to-sample and run-to-run varia-
tions. A discussion of the principles of the dilatometer and the bene-
fits of its use is found in Appendix B.

Methods of data analysis were developed for the dilatometer.
The dilatometer measures the diameter of an encapsulated cylindrical
sample, but the fractional density of the sample is desired. It was
necessary to develop a model for geometrical changes in the sample and
capsule occurring during densification and their effect on the measured
diameter. The effects of densification, thermal expansion, and changes
in the length-to~diameter ratio of the sample were included. Details of
the data analysis are described in Appendix C.

As mentioned above, a HIP experiment using the dilatometer
prevides a great deal of information, while an ordinary HIP experiment
gives only the initial and final density. In particular, the dilatome-
ter provides a much clearer and more detailed description of the kinet-
{cs of HIP than {is ordinarily available. To accommodate this new look
at HIP, we found that it was more appropriate to consider theoretically
calculated plots of density as a function of time than it was to use
densification maps. Accordingly, we developed programs to soive the
differential eauation for densification. This approach is complementary
to the use of maps: the maps provide qualitative information regarding
changes of densification rate in response to temperature and pressure,
while integration of the densification rate gives the details of the
density history resulting from a specific HIP treatment. The programs
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for calculating density histories were designed so that experimental
records of pressure and temperature could be used with theoretical
models of densification. As a result, we could readiiy plot and compare
the experimental and theoretical densification histories. This provided
a very graphic means for evaluating the thecry.

The most instructive of these calculations was for experiments

e E2p A

in which we changed the pressure during densification. In standard
theories of densification by diffusion, the densification rate varies

e

linearly with the applied gas pressure. As discussed in Appendix D, we
found that our data could not be reconciled with such a model. However,
the data were consistent with a model in which the densification rate
varies approximately with the square of the appiied gas pressure. The

"‘M

73

densification maps calculated early in the project were incomplete in
that no mechanism with such a pressure dependence had been included.

iy

5@ This discovery led us to review the theoretical basis of

2 models for a wide variety of densification mechanisms. As part of this
gﬁ review, we uncovered an error in a published model of densification. A

description of the correction of the error is found in Appendix E.
The second-power dependence of the densification rate on

==

applied pressure forms an unusual intermediate between the models of

L)

densification by diffusion, which predict a first-power dependence, and
models of densification by dislocation motion, which predict third- or

X

P higher-power dependerce. We found, however, that interface-reaction-

- controlled grain-boundary diffusion had been proposed as a mechanism for
Eﬁ creep deformation, and that this mechanism resulted in a second-power

- dependence of creep rate on applied stress. By changing the grain

gg geometry, we were able to adapt the model to describe densification

rather than creep. Two versions of the model were develcped: one with

&=

impinging spherical particles for the in.tial stage of densification and
one with isolated spherical pores for the final stage. A complzte

Eg development of the model and comparisons of e>>=rimental and theoretical
« results are found in Appendix F.

g‘:é The model of densification by interface-reaction-controlled

» grain-boundary diffusion was found to fit the data well for fractional
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densities up to 0.9, but the densification rate was overestimated at
higher densities. Since the final stage of densification is important
in determining the mechanical properties of high-performance ceramics,
this situation was thought to deserve closer study. We found that bcth
our model and standard models of densification by diffusion predict that
densification wiil proceed rapidly to compietion. This is in marked
contrast to our experimental data showing a gradual decrease in densifi-
cation rate and to the common observation that it is often difficult to
achieve full density.

One possible reason for the discrepancy between theory and
experiment is that standard theories assume a single pore size. Since
it 1s assumed that all the pores start at the same size at the beginning
the final stage of densification, they all remain the same size, shrink
together, and finally vanish simuitaneously. This is hardly a plausible
picture. A more reasonavle approach is to assume that there is a dis~
tribution of porz sizes, with small pores vanishing rather quickly while
large pores are more persistent. Such a description of final-stage den-
sification 1s given in Appendix G. It is found that even a distribution
of pore sizes with a modest variance can produce a much more gradual
approach toward full density.
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CONCLUSIONS

The following conclusions may be drawn from this research:

The use of a dilatometer can provide a detailed record of den-
sity during a HIP experiment. This amount of information obtained in
this way is so much larger than that produced from an ordinary HIP
experiment that i1t is possible to reduce greatly the number of experi-
ments and total cost to identify densification mechanisms or character-
ize densification behavior.

While densificaticn maps provide a good summary of a large
body of densification data, they are less useful for analysis of experi-
mental kinetic data. With data from a dilatometer, it is more appropri-
ate to compare piots of the recorded density history with a theoreti-
cally calculated density history.

It has been shown that models using a single particle size can
provide an adequate description of densification at fractional densities
up to 0.9. At higher densities, models using single pore and particle
sizes predict excessive densification rates. A detailed description of
the microstructure, especially of the pore size distribution, is neces-

sary for adequate predictions of final-stage densification kinetics.
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§ RECOMMENDED RESEARCH

.0}

ég As mentioned above, models of densification which use a single
grain size and pore size do not provide an adequate description of den-

gg sification at fractional densities above 0.9. Unfortunately, the
mechanical properties of high-performance ceramics depend sensitively on

éﬁ density in this range. In order to improve the predictive capabilities
_x of theoretical models to the point at which they can be used effectively
gg to reduce the cost of developing new ceramic materials, it {is recom-
mended that additional study of the final stage of densification be per-
: g; formed. Since it has been found that the final stage of densification
] 1s siinificantly affected by the distributior of pore sizes, it is
' gz appropriate to perforii detailed quantitative metallography to determine
_ the pore size distribution functions and to attempt to relate these
%ﬁ functions to powder properties such as particle size distribution and
f degree of agglomeration.
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APPENDIX A
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3
& A RATICNAL METHOD FOR CALCULATING
% MECHANISM MAPS
; Reprinted from
2
= Scripta Metallurgica, vol. 17, pp. 563-568 (1983)
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A RATION" “ETHOD FOR CALCULATING MECHANISM MAPS

J. Kevin McCoy
Battelle, Columbus Laboratories
Columbus, Ohio 43201

{Received February /, 1983)

INTRODUCT1GH

Since the introduction of mechanism maps by Weertman and Weertman (1) and their subse-
quent development by Ashby (2), there has been a great and growing interest in the construction
and use of such maps. They have been used to describe the kinetics of creep (2,3}, hot pressing
(4), sintering (5), and fracture (6). In addition, potential-pH diagrams (7), which are con-
structed in a similar way, have been used to describe the corrosion behavior of a large number
of materials. The discussion in this paper is couched in terms of deformation modeling, but the
methods may be applied readily to other problems.

A variety of algorithms have been used in the construction of trese maps, but for the
present discussion, it will suffice to classify them as “"linear” or "point-by-point". The
linear methods rely on the use of straight lines to represent the contours and boundaries in
the map, with, in some cases, the use of a change of variables to produce the necessary linear-
ization {8). The poirt-by-point methods, on the other hand, avoid the ascumntisn of limearity
by making an exhaustive scan of the whoie map. The point-by-point approzch is often thought of
as being inefficient because past programs required the evaluation of rates at a large number of
points, while linear methods involve the treatment of a linear system at relatively few points.
For metallurgical processes, however, it is noc clear that linearization is always possible, so
it is natural to choose the more general point-bv-point apgroach.

Unfortunately, the point-by-point programs which were available to us were less than
inspiring. They did not meet modern standards of modularity, documentation, or user convenience,
and they appeared to be slipshod in their use of data. A review of the literature further sug-
gested that no study had besn made of the methods necessary for systematic calculation and plot-
ting of mechanism maps. Accordingly, we set out to develop methods which make careful use of
all data and which could be used to plot maps in essentially final form. Besides the intended
advantage of producing finished maps, we also found that our algorithm is surprisingly efficient
and requires far fewer points than other point-by-point methods.

Calculation of Boundaries

Let us state the problem of the construction of a mechanism map in abstract terms. We
have n functions fi, i=1, n, each of which is dependent on two variables. At any point (x,y),
the value fi(x,y) is the rate of deformation via the ith mechanism. The map describes a rec-
tangular region Xmin < X < Xmax> Ymin < ¥ < Ymax- The first step in the constructicn of the map
is to divide the map into one or mcre regions where fi(x,y)> fi(x,y) for all j # i. Such a
region will be called a region of dominance of mechanism i. The second step is to find a set
of contour lines for each of the regions. The third step is to plot the boundaries of the
regions and the contours in a smooth and efficient manner. In the remainder of this paper we
will discuss each of these tnrae steps in sequence. Finally, we will present examples which
illustrate the efficiency of the algorithm.

To make the problem tractable, a regular grid is superimposed on the map, dividing
the area of the map into rectangles. The density of the grid will vary from one map to another,
based on the complexity of the map, the desired level of smoothness of the curves, and the need
for computational speed.

In calculating the map, each rectangie is treated separately, and the portion of any
boundary or contour which lies within the rectangle is represented by a line segment. The

563
0036-9748/83/040563-06303.00/0
Copyright (c) 1983 Pergamon Press Ltd.
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general efficiency of the algorithm may be improved by careful storage of the data. It is de-
sirable to evaluate the functions fi only once at each grid point and to save the results of the
analysis of individual sides of a rectangle for subsequent use in analysis of adjacent rectangles.

Since each rectangle is treated separately, let us consider the determination of the
boundaries of the regions of dominance which fall within one rectangle. We will first discuss
the topology of the boundaries, then investigate how the topology and positions of the boundaries
may be calculated.

Figure 1 shows four topologically distinct arrangements of boundaries between regions
of dominance in one rectangle of the map. We have found that real mechanism maps very rarely
require more complex topologies.

In calculating the positions of the boundaries, no data are used except the values of
the functions fi at the four corners of the rectangle. All boundaries within the rectangle are
assumed to be 1ine segments. ' ’

Rather than analyzing the rectangie as a whole, we study each side individually, then
combine the results for the four sides. We assume that the rates of the various mechanisms vary
linearly along the sides of the rectangle. Therefore, if one mechanism is dominant at both ends
of a side, it is dominant over the entire side. If two different mechanisms are dominant at the
two ends, there are two or three dominant mechanisms on the side, and the points where the
boundary or boundaries intersect the side may be calculated using a linear interpolant. Sides
with four or more dominant mechanisms can be ignored because of the assumption that only the
four topologies of Figure 1 are present.

The topology of the rectangle may be determined by simply adding the number of points
where boundaries intersect the four sides of the rectangle. Plotting is trivial if there are
zero or two such points. If the boundaries intersect the sides of the rectangle at four points
(two nonintersecting bcundaries), it is only necessary to draw the boundaries between appropriate
pairs of points. If the boundaries intersect-the sides of the rectangle at three points (three
intersecting boundaries), plotting cannot be done until the location of the intersection is
found. In this case, we temporarily treat the rectangle as if only two dominant mechanisms were
present, so that the boundary goes all the way across the rectangle. The three line segments ob-
tained will intersect at three points, the centroid of which is used as the intersection of the
three boundaries. This procedure is illustrated in Figure 2. The point of intersection could be
calculated directly by using a bilinear interpolant and solving for the point at which all three
mechanisms have equal rates.

Calculation of Contours .

Let us now consider the methods used in calculating the positions of the contours of
constant deformation rate. First we will consider the case where the entire rectangle lies
within a single region of dominance, then we will see how the procedure must be modified to
treat cases in which the rectangle is divided between two or more regions of dominance.

In either case, the first step in contouring is to find out which contours will pass
through the rectangle. To do this, we must find the minimum and maximum rates of the dominant
mechanism{s). If a single mechanism is dominant throughout the rectangle, it is only necessary
to check for extrema at the four corners. If there are two or more dominant mechanisms, it is
also necessary to check the rates at the points where the boundaries intersect the sides of the
rectangle and, if there is such a point, where three boundaries intersect. Given the minimum
and maximum rate, the minimum and maximum contour levels follow immediately.

For the case in which a single mechanism is dominant ihroughout the rectangle, we first
search all four sides of the rectangle for points where the rate of the dominant mechanism is the
same as a contour level. There will be either two or four such points. If there are two points,
the contour is taken to be the line segment which connects the points. If there are four points,
a more or less arbitrary criterion must be usad to decide which pairs of points will be connected
by contours. .

¥ ”

For the case in which two or more mechanisms are dominant in different portions of the
rectangle, each mechanism is contoured individually as if it were dominant throughout the rec-
tangle. The contour segments are then "cut to length" by truncating them at the point where
they enter a different region of dominance.
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Sorting and Plotting

If the methods described above are applied to every rectangle in the map, the
boundaries and contours will be completely calculated - , at leasty in principle, ready to be
plotted. To avoid inefficient use of the plotter and t. ussure a smonth 3pgpearance, however, it
is necessary to sort the line segments.

It is clear that standard algorithms for scrting a list of numbers camiot be used.
A11 of the efficient sorting algorithms (Shell sort (9), quick sort (10), hesp sort (11)) make
use of the fact that, if two numbers are chosen at random from the 1ist, it is possible to tell
which of the two will precede the other when the sort has been completed. With a list of line
segments, however, it is usually not possible to tell if two randomly chcsen line segments are
even part of the same curve.

The simplest approach to this problem would be to compare the pusition of the last
known point on the curve with each endpoint of each line segment in the list. Segments which
have been plotted would be marked in some way to prevent subsequent replotting. Such an
approach would work, but it wouid be very slow if the 1ist were long.

The efficiency of the basic algorithm described above can be improved in {wo ways:
First, we can restrict our definition of a curve, and second, we can exploit the existing order
in the 1list of line segments.

Since we are dealing with a 1ist of line segments, the "curves" which we have been
discussing are in fact polygonal paths. Usually, each side of these polygonal paths corresponds
to a single line segment. Let us now define a "directed curve" as a polygonal path in uhich
each side points to the right or straight up. Figure 3 shows a curve and its dissection into
directed curves.

From the definition of a directed cu ve, it follows that each of the line segments in
a directed curve has a definite starting poinc and a definite ending point. The x coordinate
of the starting point is less than the x coordinate of the endirg point, and if these are equal,
the y coordinate o. the starting point is less than the y coordinate of the ending point. Also,
each line segment in a directed curve except the first and the last has a unique predecessor and
2 unique succescor.

The use of directed curves has twg practical consequences for the sorting and plotting
of a list of linc segments. First, as Figure 3 makes clear, complicated curves may be broken up
into several directed curves which are plotted separately. This is not desirable, tut it has
little impact upon the preparation of mechanism maps since it rarely occurs. Second, when
searching for a successor to the current line segment, the position of the ending foint of the
current line segment need only be compared to the starting points of the potential successors;
the ending points may be ignored. This cuts the length of the search in half.

Let us now investigate how the search time can be cut further by exploiting the exist-
ing order in the list of line segments. When we calculate a map, we scan the map in columns of
rectangles, working from the left edge of the map to the right edge. Within each column, we
scan from the bottom of the column to the top. Within each rectangle, we sort the list of lin
segrnents according to the y coordinate of the starting point of the segment. Since the rec-
tangles do not overlap, the ordering of the y coordinate extends throughout the column. The
list of line segments is, therefore, highly ordered: it is divided into columns; the segments
in one column are ordered from bottom to top; each segment points to the right or straight up.

From this, it is clear that the successor to a given line segment must be either in
the current column (the column which contains the current 1°ne segment) or in the column just
to the right of the current column. Therefore, it is only necessary to search two columns when
looking for the successor rather than the whole list. If no successor is found in these two
columns, the curve ends.

Further gains in efficiency can be realized by using the fact that the sevients are
ordered on the y coordinate of their starting points. When searching the current cclumn, the
search may start at the current line segment and stnp as soon as the v con-dinate of o potential
successor is so large or so small that segments which are further up or down the column cannot
possibly join up with the current segment. A similar strategy may be used in searching the
column just to the right of the current colum.
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2
& Examples

Figure 4 shows two mechanism maps which were calculated and plotted by the methods
SE- described here. The same data and constitutive equations were used for both maps, but grids of
o) two different densities were used. It has been claimed (3,8) that a typical map requires the

evaluation of deformation rates at 4000 to 6000 points, and maps have been published with at
least 6900 evaluation points (12). By contrast, Figure 4a used evaluations at 441 points, and
irregularities in the curves are barely perceptible. Only 169 evaluations were used in the
preparation of Fi_ure 4b. The resulting irregularities in the map are visible but hardly ob-
jectionable. Clearly, careful use of the data results in a dramatic improvement in efficiency.
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Treatment of Three Intersecting Boundaries: a,b,c. Locatior. of single boundary
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A Typical Curve and Its Dissection Into Three
Directed Curves
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Dilatometer Technique for Hot-Isostatic Pressing*

J. KEVIN MCCoY AND ROGER R. WILLS'

Battelle Columbus Laboratories
505 King Avenue, Columbus, OH 43201-2693

e Ry O BY B &R

A dilatometer technique is described for hot isostatic pressing (HIP) that provides
far more data from each HIP experiment than can be obtained by conventional HIP
practice. The design, data analysis, and typical results obtained with the dilatome-
ter are described.
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Introduction

Before hot isostatic pressing (HIP) can be applied in the production of a
ceramic component, it is necessary to determine an appropriate HIP cycle
for developing the desired properties. such as a given level of density.
Those who are involved in cycle development for HIP know that this is
frequently a long. difficult. trial-and-error process. This paper describes a
dilatometer technique for HIP that provides far more data from each HIP
experiment than can be obtained ty conventional HIP practice. Because
more information is collected from each experiment, the amount of work
necessary for cycle development is greatly reduced. The dilatometer
technique was developed at Battelie-Columbus with support from the Air
Force Office of Scientific Research. To explain how this method works.
we will first describe the design of the dilatometer. then the data analy-
sis. and finally give an example of typical results obtained by this meth-

Ky BT B

=3

od.
;’ E:\ Procedure
- The design of the dilatometer is shown schematically in Fig. 1. A cy-
A lindrical sample, shown end-on in the figure, is heated in 2 cylindrical
e furnace. The sample temperature is monitored by a thermocouple. From
it the cold zone. well outside the furnace, two tungsten rods run up to the
D sample. The rods are attached to pivots, which are shown as triangles,
= and are held in contact with the sample by a spring, which is not shown.
- The bottom ends of the tungsten rods are attached to a linear variable
= differential transformer (LVDT). The entire apparatus is enclosed in an
? {'.g’;! autoclave.

The thermocouple and LVDT provide a continuous record of the
temperature and diameter of the sample as functions of time. These data
are subsequently used to calculate a record of density as a function of
time. To understand how they are used. it is necessary to take a closer
look at the sample geometry. Figure 2 shows a cutaway view of the sam-
ple. The sample proper is a ceramic cylinder: it is encased in a close-
fitting. airtight. cylindrical metal capsule. Strictly speaking. the dilatome-
ter provides a record of the capsule outside diameter rather than a
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record of the diameter of the sample itself. Therefore. the comnutational
procedure may be summarized as follows: We assume some fractional
density. then calculate the corresponding capsule diameter. using the
treatment described below. If the calculated diameter agrees with the
value reported by the dilatometer. then the assumed fractional density is
correct. If not. a new fractional density is chosen and the process is re-
peated.
There is an apparent weakness in this computational procedure: The
dilatometer gives only the diameter of the capsule. but the length will
also affect the calculated density. This difficilty is handled in the fol-
lowing way. As the sample densifies, its length changes from its initial
value L;, through some intermediate value L, to a final value L.
Similarly. the diameter changes from its initial value D;, through
some intermediate value D, to a final value Dy. The initial dimensions can
be determined before the sample is placed in the capsule, and the final
dimensions can be determined after HIP by removing the capsule. It is
then assumed that the current length of the sample is related to the cur-

rent diameter by the equation

L-() )

L, ~ \D;

The value of the constant k is obtained by inserting the final values of L
and D, and solving for k. Given Eq. | and the initial density and initia! di-
mensions of the sample. the length and diameter of the sample can be
calculated for any specified density. Typical values of k are about 0.85. so
changes in the length/diameter ratio are relatively small.

Changes in the geometry of the sample nzturally give rise to changes
in the geometry of the capsule: as densification proceeds. there is a dis-
tinct thickening of the capsule sidewall. This effect is treated by applying
the law of conservation of matter. It is assumed that any matter in the
sidewall at the beginning of HIP stays in the sidewall. and that matter
from the capsule ends does not transfer to, or from. the sidewall. It is also
assumed that the capsule stays in close contact with the sample. so the
inside diameter of the capsule equals the diameter of the sample, and the
length of the capsule sidewall equals the length of the sample.

The computational procedure given above can now be described in
greater detail. A fractional density is assumed for the sample, and from
this the sample dimensions at 20°C are calculated. The coefficieat of
thermal expansion is then used to determine the sample dimensions at
the actual HIP temperature. From the initial sidewall mass. the sidewall
volume at 20° C is calculated. and the coefficient of thermal expansion for
the capsule matenal is used to determine the sidewall volume at tempera-
ture. The sample dimensions and capsule sidewall volume are then used
to calculate the capsule sidewall thickness. and the capsule outside di-
ameter is just the sample diameter plus twice the sidewall thickness. If
the calculated capsule diamcter is equal to the diameter reported by the
dilatometer. then the assumed density is correct. otherwise, it is necessa-
ry to try a different fractional density.

Results
~ The type of results obtained by this method is shown in Fig. 3. Dur-
ing most of the heatup of the sample. essentially no densification occurs.

1147




XS CER

\
2

e

oA,

T

3,
»

ey T

e
P
(IR Y

%

XS I BE

b o

Ll = N S L1 e i = . i x 3 :
T BT B B D ] S e B WL Sk TN SR e 6 W AT D ATI s AT WAL MG K IR I P L L APV en b Y S KL AT A RILAT T Wk M0

While the sample was held at 1020°C and 34 MPa. it densified to about
80% of its theoretical density. At this po.nt, the pressure was then in-
creased to 100 MPa in order to speed up densification. These conditions
were maintained until the sample density reached 91% of theoretical
density. Another increase in densification rate was then obtained by
increasing the temperature to 1150°C. Under these conditions. the sample
reached a density of 97%. All this information was obtained from a single
experiment. If we had used conventional HIP practice. one experiment
would have given us only the initial and final densities. To obtz2in a densi-
ty vs time curve of the type shown here would have required many exper-
iments. To make matters worse. there would have been sample-to-sample
and run-to-run variations, which would have greatly complicated data
analysis. With the dilatometer. however. a single plot is obtained which
clearly shows the response of the system to changes in temperature and
pressure, and that is vita! information in developing an appropriate HIP
cycle.

Conclusions

In summary. the primary feature of this dilatometer techniqu- is that
it provides a continuous record of density as a function of time during
HIP. The large amount of information provided by the method is the key
to its principal benefit: much faster development of HIP cvcles.

*A more deiailed version of this work has been accepted for publication in the American

Ceranuc Society Bullet:n.
‘Now at TRW, Inc.. Cleveland. OH.
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APPENDIX C
CONTINUQUS MONITORING Of VOLUMETRIC CHANGES IN
CERAMIC POWDER COMPACTS DURING HOT ISOSTATIC PRESSING
Reprinted from
American Ceramic Society Bulletin,
vol. 64, pp. 1240-1244 (1985)
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Continuous Monitoring of Volumetric Changes in Ceramic
Powder Compacts During Hot Isostatic Pressing

J. KEVIN McCOY, LARRY E. MUTTART,
and ROGER R. WILLS"
Battelle Labs, Columbus, OH  43201-2693

The hot isostatic pressing (HIP) of ceramic powder compacts

consists of several sequential steps. These are: 1) green preform
preparation by an appropriate forming process; 2) preform ercap-
sularion 1n a pressure-transmitting membrane, capsule, or “can™;
3) actual HIPing by exposing the encapsulated powder compact to
a high-pressure gas (typically 160 to 200 MPa) at elevated tem-
perature; and 4) removing the encapsulant surrounding the HIFed
powder compact.

Research in this area is usually performed on a trial-and-error
basis by analyzing information obtained on samples before and
after HIP'ing in an effort to determine the optimum HIP conditions
needed to achieve either complete densification or to produce a
ceramic with a specific fractional density (the ratio of the volume
of solid in a material to the total volume of material including
pores). The process is iterative and sometimes lengthy.

The technique described herein allows volumetric changes to be
monitored continuousiy. Data are coliected throughout the HIP
cycle, consequently the temperatare and pressure processing pa-
ramzters car be changed if the selected parameters do not appear

A two-probe diiatometer, fitted into a molyb-
denum furnace, permits continuous record-
ing of the volumetric changes occurring
inside a metal-encapsulated ceramic pow-
der compact during hot isostatic pressing.
The effects of thermal expansion of the
metal capsule and the ceramic compact are
deleted from the raw data by a computer
program, and the nonlinear shrinkage rela-
tion batween the capsule diameter and
length is allowed for. Use of the equipment
is demonstrated in the hot isostatic press-
ing of a submicrometer alumina powder en-
closed in a stainless steel capsule.

a close-fitting cvlindrical alumina powder compact. Two therino-
coupies monitor the temperature, one in contact with the platform
supporting the specimen. the other slightly above the specimen.

An asbestos-based, ceramic insulating plate below the base
heater and radiation baffles attached to the tungsten probes mam-
tain the opcrating temperature of the LVDT at 180°C during

& to be achieving the desired objective (usually ful! density). Data ~ HIPing of aiumina at 1200°C. The LVDT range of 0.254 cm is
;q output is corrected for thermal expanston effects to obtain exact linear to within 0.25%. Preliminary experiments were performed
density changes as a function of time. This paper briefly describes using a molybdenum disk to determine the accuracy of the probe/
» the apparatus and the error-comrection routine. The use of the LVDT equipment under HIP conditions A muluchannel chan
h equipment is demonstrated in HIP'ing submicron alumina powder recorder momtored the LVDT output, temperature, and pressure.
e in a stainless steel capsule. The measured thermal expansion of this disk at 1300°C and
1600°C differed from the published data’' by 0.5%.
o Apparstus
£ HIP equipment consists of gas storage tanks, compressors, and Experimental
£ a water-cooled autoclave containing the furnace and heat shield Cylindrical specimens, 26-mm diameter by 102 mm long, were

package. The fumace is usually loaded through the top and the
electrical connections lead from the botiom of the vessel. A
10.16-cm diameter. 11.68-cm high molybdenum fumace capable
of operating at 1750°C was modified to contain a pedestal and a
two-probe dilatometer (see Fig. i) attached to a lincar variable
differential transformer (LVDT). The 3.175-mm diameic: tungsten
probes are in close coniact with a stainless steel capsule centaining

formed from submicron alumina* powders by isostatic pressing at
345 MPa. These specimens were then bisque fired at 1120°C and
ground to final 22-mm diameter and 39.68 mm length. This proce-
dure was adogted to ensure that the alumina specimens closely fit
the stainless steel capsules. The specimens and capeules were then
dried and vacuum outgassed at 1000°C for 1 hour. Each specimen
was weighed, and the initial dimensions of each specimen and

Table . FPhysical Measurements ot Samples and Capsules for
Hot isostatic Pressing Required for Data Manipulation

Expenment No.
' Dimension (mm) ] 2 3 4 s 5
Initial sample* length  39.67 39.68 3v.70 39.66  39.67 39.68
Initial capsule length  51.32  52.24  49.90 50.91 50.82 52.45
‘ Final capsule length 46.82 47.90 45.28 49.04 46.35 48.22
Initial total end plug
len 11.10 11.13 9.45 10.97 11.10 12.76
Final total end plug
length 11.69 11.60 10.08 11.16 11.79 13 57
Initial sample diameter 22.00 22.00 22.00 2200 22.01 22 01
Initial capsule diameter 25.39  25.37 25.38 2536 2537 25.38
Final capsule diameter 2228  23.85 23.33 24.53 23.11 23.25
Initial capsule wall
RS the A c Socuet F th;ckncssl i 1.57 1.57 1.57 1.57 1.66 1.66
Mcmber. the American Ceramic :,e y inal capsule wall
s O B e Wy DBM Alumina, Reynolds Met-“mickness 212 198 208 183 218 272
"3 Initia! fractional
5} “Receed October O, 1084, reveyed ropy recewed density 0.6562 0.6556 0.6556 0.6549 06370 0.6368

February 1, 1985, approved March 26, 1985 *Sample refers to ceramic compact
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Fig. 1. Schematic of dilatometer and furnace for hot isostatic
pressing. Key: 1. encasad thermocouples (W/Re6); 2. specimen;
3. specimen trough; 4. thermal barrier and cover: 5. radiation and
gas flow baffles; €. perforated moly hearth; 7. moly-tubular pedestal;
8. moly ribbon heater; 9. alumina base plates; 10. radiation shields;
11. couple connection; 12. power connection; 13. furnace base;
14. transite base; 15. frame; 16. tungsten probes; 17. inverted
pedestal; 18. spring ctee! hinge each end; 19. extention of probe
arms; 20. very light comprsssive spnng; 21. yoke; 22 spring stea!
yoke arms; 23. physical zero adjust screw; 24. LVDT; 25. core.

capsule taken with a2 micrometer Figure 2 shows the measured
dimensions and actual values are listed in Table I The capsules
were then s2aled under vacuum by electron beam welding.

After each sample was placed in contact with the tungsten
probes, adjustments were made to the LVDT and the chart recorder
was adjusted to zero. Tie zero position on the chart recorder was

CERAMIC BULLETIN, VOL. 64, NO. 9 (1885)
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Fig.2. Cross section of capsule and sampie for hot isostatic press-
ing, showing measurements. (1) Sampie length, (2) capsule iength,
(3.4) end plug length, (5) sample diameter, (6) capsule diameter, (7)
capsule wall thickness. Gap between capsule and sampie (shaded
area) is exaggerated; dashed line is axis of capsule.

set to accommodate initial contraction of the capsule diameter.
Each HIP cycle involved: 1) initial gas pressurization, 2) heating
at 400°C per hour to the dssired temperature under a constant
pressure, 3) HIPing under the required temperature/pressure con-
ditions, and 4) allowing thie specimen to cool to room temperature.
The final dimensions of the capsule (diameter and length) and the
thickness of the capsule end plugs were determined with a2 micro-
meter {see Table I). While seven measurements are necessary to
describe the initial capsule and sample geometries, only five are
required after HIPing since there is no longer a gap between the
sample and the capsule. The immersion technique was used to
determine the sample density after the capsule was removed.

During the HIP cycle, changes in the position of the probes are
registered in the LVDT output recorded by the chart recorder.
Several factors are responsible for this movement. Initial pressur-
ization of the autoclaves caused some small mcvement, but, after
pressure equilibration, the chart reading returned to the zero posi-
tion. During heatup, capsule deformation results in a thickened
capsule wall and both the stainless steel capsule and the alumina
powder compact expand. All of these effects give rise to a decrease
in the value registered by the chart recorder. Densification results
in a decreased capsule diameter, and the chart pen moves in the
opposite direction. The actual point recorded by the chart pen at
any one time is the sum of these effects.

Conversion of LVDT Output to Fractional Density Data

Data from severai sources are combined to produce density as a
function of ime. The thermocouples and LVDT provide the tem-
perature of the sample and the outsidc diameter of the capsule as
a function of time. The dimensiuns of the sample and capsule at the
beginning and end of the HIP cycle are also needed to calculate the
dczsity. These data are then processed by a program that compen-
sates for uicvmal expansion ang thickening of the capsule wall.

Data redu:tion st2rts by keying temperature. pressure, and
capsule-shrinkage data fron: the strip chart recorders :nto a com-
puter. Data points are chosen so tha: discrete points will provide a
good description of the actual experimem. Since the time interval
between data points is small, iinear interpolation i< used between
the readings. Physical dimensions and initial density <2*a are 1n-
serted at the beginning of the file.

The data are converted to fractional densities by a FORTRAN
comy Jter program. Before discussing the algorithm, it 1s appropn-
ate to describe the underlying assumptions used in deriving the
algorithm and to estimate the error incurred. Using the example of
en alumuna powder compact encapsulated in a stamless steel cap-
sule, the integrated thermal expansions of alumina and stainless
steel are:

aAl;0;=7.2978E -6(T—~293)

+7.8486EF — 10(T—293)(T-800) (1A)
@30488=1.7751E - 5(T--293)

+5.0423E ~-9(T—293)(T-800) (1B)
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Table Il. Capsule Sidewall Masses Determined change in shape accompanies the density change. The capsule’s
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E’ by Various Methods diameter is recorded continuously, but its length is measured only
X . Sidewall mass (g) at the beginning and end of the HIP cycle. It 1s therefore necessary
Exprriment Method T Method 3 Niehod 3 to assume some relationship between the length and diameter dur-

E 1 37.440 36.920 39,186 ing the HIP cycle. It is assumed that:

2 38233 36.903 39.034 L(p,20) [d(p.20)\*

3 37.634 36.932 38.619 YT ()

4 37.125 36.872 39.139 L(p.20) \d(p..20)

(5', ggg?i gg%i gg;gg where d(p,20) and L(p,20) denote the sample diameter and length,

In thes= equations, which are integrals of the ordinary coeffi-
cients of linear thermal expansion, E denotes multiplication by the
speeified power of 10, following the standard computational con-
venticn. The temperature T is given in degrees Kelvin. These
equations were obtained by fitting a quadratic to data compiled by
Touloukian.' Several other thermal effects might be anticipated.
First, ihc probe-rod dimensions will change both above and below
the pivots. Second, the pivets themselves may move due to thermal
expansion. Third, the sample may be displaced =s its supporting
structure expands. Finally, when the temperature gradient has a
component normal to the axis of the probe rods, the rods will
deflect. It is not feasible to perform an accurate calculation of all
thermal expansion effects. Our calculations have used a simple
approach by assuming that all thermal expansions except those of
the sample and the capsule have a negligible net effect on the
measured capsule diameter. The validity of this assumption is
supported by the good agreement between the measured thermal
expansion of the molybdenum disk and the literature data.

Duning the HIP cycle, the thickness of the capsule sidewall
changes due to thermal expansion of the encapsulant and densi-
fication of the sample. In determuning sample density, it is neces-
sary to consider both effects and to make some assumptions regard-
ing redistnbution of matter in the sidewall. We have assumed that
the sidewall does not slip axially along the sample. Thus, changes
1n the length or diameter of the sample or the capsule are assumed
to be taken up by wall thickening, rather than by moving matter to
or from the ends of the capsule. This assumption should be realistic
since the capsule is always being forced against the sample by the
applied gas pressure. Although the assumption may be somewhat
inaccurate near the ends of the sample, our measurements of cap-
sule diameter arc made near the middle of the sample, well re-
moved from end effects.

The importance of the correction for thermal expansion can be
scen from the following example. Using the final dimensions from
experiment No. 1, the combined thermal expansion of the sample
and the capsule upon heating from 20° to 1150°C is 0.378 mm in
diameter if the fractional density of the sample remains constant.
To prodice this large a change in size at constant temperature
would require a change of 0.08 in the fractional density of the
sample.

Another important consideration is the effect of temperature and
densification on the shape of the sample. We have assumed that the
thermal expansion of alumina is isotropic for a fixed fractional
density. However, the length-to-diameter ratio of the sample at the
beginning of the HIP cycle is different from that at the end, so a

Table lll. Comparison of Final Densities as Determined by
Calculation from Probe Data and by Direct Measurement

Final fiacuonal density

Expenment
No Calculated Measured® Dufference
1 0.9576 0 960 -0.002
2 0.8712 0.876 —0.005
3 0.9678 0.952 0.016
4 0.7697 0.758 0.012
5 0.9678 0.984 -0.016
6 0.9617 0.970 —0.008
*Determined by hiquid immersion techmque
1242
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respectively, at the fractional density in question and corrected to
20°C. The subscript i denotes an initial value. The exponent k is
set by the initial and final measured lengths and diameters of the
sample. A typical value for k is 0.85. The assumption of Eg. (2)
is essentially arbitrary, and other relations might be suggested,

eg.,
L(p,20)-L(p.,20) _ d(p.20)~d(p..20)
L(pﬁzo)—L(pnzo) d(p/'zo)-d(pnzo)

where the subscript f denotes a final value. The maximum differ-
ence in calculated sample lengths given by Eqs. (2) and (3), for
any sample length, is about 0.013 mm. This corresponds to an
error in density of less than 0.04%. This 15 considered neghgible
in our experiments.

The initial gap between the sample and the capsule vanishes
during HIP. Thus the {~~' sample diameter is the final outside
capsule diameter minus twce the final capsule wall thickness, and
the final sample length is the final capsule length minus the thick-
ness of the end plugs. This assumption is supported by sample
examination after HIPing. No gaps were found after HIPing. A thin

.2-micron reaction layer consisting of oxides of iron, aluminum,
chromium, and nickel was detected between the alumina sample
and the stainless steel capsule. An error 1n density of less than
0.05% results from ignoring this layer.

Putting al} these factors together, the program proceeds in the
following way. Pressure, temperature, and shrinkage are measured
for a given time, and the diameter of the capsule is calculated by
subtracting the shrinkage from the original size. Then the problem
is attacked from the other direction. A fractional density i< assumed
for the alumina sample, and the diameter and length of the sample
at 20°C are calculated using Eq. (2) and the mass of the sample.
The dimensions of the sample at temperature are then calculated
using Equation (1A). The volume of the capsule sidewall at 20°C
is corrected for temperature by converting the linear expansion of
Equation (1B) to a volume expansion, and the necessary wall
thickness to produce that volume is calculated. For the assumed
density, the outside diameter of the capsule will be the sample
diameter plus twice the wall thickness. The program repeats this
process with different values of density unti! i finds an outside
diameter equal to the actual diameter of the capsule. The output of
the program is a table consisting of five columns of data: tem-
perature, pressure, time, capsule shrinkage, and fractional density.

Ond difficulty with this approach 1s that there are several meth-
ods for treating the sidewall For any of these methods, the mass
of the sidewall is constant since it is assumed that the sidewall
does not slip over the sample during densification, and the mass 1s
given by

M=mw(D-w)Lp 4)

where w is the sidewall thickness, D is the outside diameter of the
capsule, L i, the length of sidewall, and p is the absolute density
of the capsule matenal. The sidewall mass can be obtained in three
ways: 1) w is assumed to be tiie initial capsule wall thickness, D
the iritial outside diameter of the capsule, and L the initial capsule
length munus the initial length of the end plugs; 2) w is assumed
t~ be the initial capsule wall thickness, D the initial outside di-
ameter of the capsule, and L the initial sam;le length; and 3) w' 15
assumed to be the final capsule wall thickness, D the final outside
diameter of the capsule, and L the final samp'e length. The length
L used in Method 1 is longer than that us¢d in Method 2. the
difference being the length of the gaps betwee:: the sample and the
end plugs (see Fag. 2). Method 3 differs from the other two since

&)
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Fig. 3. Data for experiment No. 2. (A) Pressure (solid line) and
temperature (dashed lme) vs time. (B) Relative density calculated
from temperature znd capsule shrinkage for alumina at 1000°C and
102 MPa

1t uses final measurements instead of initial ones. Table II shows
the sidewall masses determined by these three methods. As ex-
pected, the masses calculated by Method 2 are consistently smaller
than those given by Method 1, since Method 2 assumes a shghtly
longer sidewall. Th= choice of sidewall mass affects the density
value calculated from the capsule shrinkage data. Fractional densi-
ties can differ by as much as 4.6%. Method 1 can probably be
discounted since all samples, including those that exhibited a small
density increase during HIPing, were bonded to the capsule. It is
likely that significant capsule deformation occurred prior to shrink-
age of the alumina compact and removed the gap between the
sample and the capsule

We have used Method 3 to obtain the sidewall mass since it does
not require any assumption regarding the nature of the deformation
of the capsule. In Table III, we show the final densities as calcu-
lated from the probe data and determuned directly by the immersion
technique. The root-mean-square difference between the calcu-
lated and measured densities is 1.2%. Among the vanous possible
sources of error, the following are probably the most significant.
First, there is some uncertainty in the measurements of the iniual
and final densities. These errors are estimated at about 0.2% each
Secend, there are sigmificant vanations in the reported values of the
coefficients of thermal expansion, particularly for alumina. if the
coefficient o1 hnear thermal expansion for alumina 1s in error by
15%. the calculated fractional density wili be in error by 0.3%. A
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Fig. 4. Data for experiment No. 4. (A) Pressure (solid kne) and
temperature (dashed line) vs time. (B) Relaiive density calculated
from temperature and capsule shrinkage. Density curve clearly
shows effect of changing pressure from 34 to 70 MPa at 330 min.

5% error in the thermal expansion of stainless steel would also
cause an error of about 0.3%. Third, we have assumed that the
sample remains cylindrical during densification, but this is not
quite comrect. After HIP, the sides of the sample flare slightly
toward the ends, and the end surfaces become slightly domed. The
magnitude of the effects of this shape change on th~ calculated final
density is unknown. Finally, if there are variations of density with
position in the bisque-fired sample, the dilatometer may be provid-
ing data on a portion of the sample which is not typical of the entire
sample. If the fractional density in the vicinity of the dilatometer
probes differs from the average for the entire sample by 0 5%. the
calculated final density will also be in error by 0.5%. In light of
these considerations, the calculated ad measured densit:es appear
to be in reasonable agreement.

Application

The dilatometer and computer software program enables volu-
metric changes to be determined inside the autoclave. Thus, we can
obtain quantitative data about censity changes and phase changes
occurring during the HIP cycle Reaction kinetics data may also be
obtained by measuring densification rates as a function of density,
temperature, and pressure and altering the temperature and. or pres-
sure during the cycle. Examples of the use of the dilatometer are
giveninFigs 3and 4 Figures 3(B) and 4(B) show typical density -
ume plots for the densification of alumina at 1000°C and
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Figures 3(A) and 4(A) show the changes in temperature and pres-
sure for these two HIP cycles during pressurization, heat up, and
HIPing at 1000°C. Figure 3(B) shows that significant densification
does not occur until the temperature approaches 1000°C, at which
temperature the densification rate initially increases rapidly. The
densification rate subsequently falls with increasing fractional den-
sity as expected. In experiment No. 4 (see Fig. 4) the pressure was
changed from 34 MPa to 70 MPa during the HIP cycle. The
change in gradient of the density-time plot (Fig. 4(B)) at a frac-
tional density of 0.72 shows that the HIP densification of alu-
mina is pressure dependent. The densification rate is proportional
to the square of the pressure.? The initial drop in density shown in
Fig. 4(B) is not a real effect. We believe it was due to a temporary
movement of the probe arms during imtial gas pressurization. It
was not observed in any of the other experiments.

From a practical standpoint, considerable time and cost savings
are achieved using the diiatometer. More experimental data can be
obtained in one cycle, and the optimum conditions for HIPing
powder compacts to full density can be determined quickly by
altering the processing conditions during the HIP cycle. This ap-
proach virtually removes the costly iterative trial-and-error methed
commonly used. While the equipment has been used manly to
examine the densification of powder compacts it can also be used
to monitor changes occurring in sintered ceramics (e.g., densi-
fication, swelling, and phase changes).

In our work the HIP conditions have been controlled manually,
but extension to real-time process control should be possible. A
primary obstacle to achieving real-time control is that a value of k
is necessary in calculating density from Eq. (2), and k is deter-
mined from the final dimensions of the sample. Therefore, it is
necessary to HIP at least one sample to determine k before real-
time control is possible. This appears to be a reasonable strategy
since our work indicates that k does not vary strongly from sample
to sample.

To date, the equipment has been used only at relatively low
temperatures (= 1200°C) to study the densification of alumina. The
stainless steel capsules can be used up to 1400°C, but if molyb-
denum or tantalum were used as the capsule material, the equip-
ment couid be used up to 1750°C. The fumace would have to be
modified in order to operate above 1800°C.
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Interface-Reaction-Controlled Kinetics in the
Hot Isostatic Pressing of Submicrometer

Alumina Powder

ROGER R. WILLS" AND JOHN KEVIN McCoy
Battelle’s Columbus Laboratories, 505 King Avenue, Columbus, Oluo  43201-2693

The kinetics of densification of alumina powder compacts at 1000° to 1200°C were
studied by using a dilatometer 10 monitor volumetric changes during hot isostatic
pressing. The densification rate is proportional to the square of the applied
pressure, and densification does not occur below a threshold pressure. Results are
interpreted in terms of an interface-controlled reaction mechanism involving the
movement of grain-boundary dislocations.

AN EMPIRICAL approach is generally used

to determine the opt:mum conditions
for hot isostatic pressing of ceramic powder
compacts to full density. We have
attempted to remove this empiricism by
examining mechanisms responsible for
densification during hot iscstatic pressing.
Furtiiermore, by comparing the predictions
of various constitutive equations with ex-
perimental data, we have attempted to
show that optimum hot isostatic pressing
conditions can be forecast if certain infor-
mation about the powder is known. Alumi-
num oxide was selected for study since
there is a wealth of data on this ceramic.
The present communication presents evi-
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dence to indicate that, under hot isostatic
pressing conditions, the densification of
undoped alumina is controlled by an inter-
face reaction involving the movement of
grain-boundary dislocations. We believe
that this is the first time that this mechanism
has been observed to b2 active in the densi-
fication of a ceramic powder compact.

Previous research’~? suggested that
the mechanism of densification of sub-
micrometer alumina powder was probably
grain-boundary diffusion. After the initial
stage of particle rearrangement, densi-
fication proceeds by grain-boundary dif-
fusion, causing the average number of
contacts per particle to increase. Arzt
et al.” expressed this stage of densification
mathematically as

_128D,02P*
/== T

where 8 is the effective grain-boundary
thickness, D, the grain-boundary diffusisa
coefficient, {} the atomic volume, P* the
driving pressure for densification, k is
Boltzmann's constant, T temperature, Z

n

C-95

the particle coordination number, A(D) a
geometric factor depending on density, and
r the particle radius. The equation predicts
that the rate of densification is proportional
to the driving pressure P*. This is related to
the externally applied pressure as follows:
4mr’p
7D +P,~P, 2)

i

Pe=

where P is the externally applied pressure,
P, the effective contact pressure resulting
from surface tension, P; the intemnal pore
pressure, D the fractional density of the
compact, and a the average neck area.
Since powder compacts are ovizassed
before hot isostatic pressing, P, is =0.
Furthermore, P, czn be considered to be
negligible in comparison with the first teem
in Eq. (2), particularly in view of th: ,eia-
tively high pressures used in pressing. At
constant density, the net driving pressure is
consequently proportional to the applied
pressure. Thus, by varying the pressure
during the hot isostatic pressing cycle, the
dependency of the rate of densification on
the external pressure can be determined.
Figure 1 shows the effect of changing the
pressure from 34 to 70 MPa on the densi-
fication of a powder compact encapsulated
in a stainless-steel capsule. Assuming that
the rate of densification is proportional to
P7, m is =2.1. However, if grain-bound-
ary diffusion is controliing the densification
rate, the exponent should be equal to unity
(see Eq. (1)). One possible explanation for
the value of the pressure exponent is that a
combination of mechanisms is operative
during hot isostatic pressing. For example,
a dislocation-glide mechanism gives a pres-
sure exponent of 3,* and consequently, if it
operated in conjunction with grain-
boundary diffusion, a pressure exponent of
2.1 might result. This explanation can be
discounted since the climb or glide of lat-
tice dislocations is unlikely to occur in the
temperature range 1000° to 1200°C. Anoth-
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Fig. 1. Effect of changing applied pressure from 34 to 70 MPa on Fig. 2 Densification rate vs applied pressure for fractional densities

densification of 2lumina at fractional density of 0.725 (1000°C). indicated.
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er possibility is that basal-plane slip is re-
sponsible for densification. This mech-
anism may contribuie, but it could not be
the only factor since it does not enable mass
transport to occur in all directions.

One mechanism that would explain
the results is intesface-reaction-controlled
grain-boundary diffusion. It is considered
to be operative in many creep experiments
at low temperatures and small grain sizes
where it has been suggested that the grain
boundaries do not act as perfect sources or
sinks of point defects,® and the rate of the
interface reaction that creates and anni-
hilates vacancies controls creep. Ashby’
suggested that vacancy creation and
annihilation occur by the climb of grain-
boundary dislocations. Burton® assumed
that spiral dislocation climb sources main-
tained the dislocation density as creep pro-
ceeded and dislocations migrated along the
grain boundary.

Adapting the treatment of Arzt et al.”
to densification, one finds that the densi-
fication rate is proportional to the square of
the driving pressure and that the expression
for the driving pressure is modified by the
addition of a threshold term, P.. Below
this threshold pressure, there is insufficient
strcss 0 cause dislocation motion. Modi-
fying Eq. (1) for the hot isostatic pressing
of powder compacts gives:

4mr’P

*
d aZb

+PJ—FM (3)

The existence of a threshold stress can be
shown from the experimental datz. At con-
stant density, temperature, and grain size

dD/dr=QP* @)

AR T IR A T L L el TS T T T

where Q is a ccnstant. Equation (3) indi-
cates that densification can only occur by
this interface mechanism if P* is >0 or
(4nr®P/aZD +P,)>P,. When no external
pressure is applied, densification is not ob-
served. Thus, P, must be greater than or
equal to P,, otherwise some densification
would be observed in this sintering regime.
Now

4nr’pP
azD
Putting n=4r?/aZD, and P,=P.-P,,

dD/dt=QP ‘2=Q{ +P,-P.,.]2 &)

(d.?/dz)"‘=nQ"’(P—-%) 6)
If the square root of the densification rate
is plotted against applied pressure, the
graph should intercept the positive x-axis.
Figure 2 shows the graphs for four
conditions: (1) D=0.71, T=1050°C,
(2) D=0.78, T=1050°C, (3) D=0.71,
T=1000°C, and D=0.72, T=1000°C. At
zero densification rate, the plots intercept
the pressure axis as predicted. Since the
intercept value is equal to (Pa—F.)/n, ex-
act values for P,, cannot be obtained from
these data without knowledge of P, for
these four conditions. These were calcu-
lated using the equations derived by Arzt
and co-workers.>* Table I shows the values
for the threshold stress. As expected, these
values decrease with both increasing frac-
tional density and incieasing temperature.

Interface-controlied diffusional creep
has been found in Al,0.,° UO,," Fe,0,,"
and MgO." For example, Cannon et al.®
reported a threshold stresc of 13.8 MPa for

PR TR i Wl Sl S Tl TR A AR . D TR

Table 1. Threshold Stress Values at Different Temperatures and Fractional Densities 1.2-um grain size Al,O, doped with

E D Temperature (*C) " P, (MPa) P, (MPa) O.ﬁqthgO. Thtf: ti:mn ratf; al;c:) tl‘:,med
ET) . . ‘ with the square of the stress for pure

078 1030 Pos 8564 633  andMgO-doped ALOs atsirn rats below

- 01N 1000 6.2478 38.645 132.35 107° 57!, These data suggest that the
N 0.72 1000 5.4152 36.403 101.38 mechanism of densification may also be
& interface-controlled in the latter stage of the

densification (D>0.90) of alumina and
therefore could be the rate-coatrolling
mechanism over most of the densification
range (D =0.65 to 1.0).
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DISCUSSION OF "PRACTICAL APPLICATIONS OF HOT-ISOSTATIC
PRESSING DIAGRAMS: FOUR CASE STUDIES"

Reprinted from

Metallurgical Transactions, vol. 16A,
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Fig 9— Meallographic section of impacted semi-infinits plate of hard-
ness 150 HV. Impact velocity 325 ms™' Magmification 6 8 times.

formation of a dead zone below the compressed region. In
comparing Figures 1 and 9, it is apparent that a prerequisite
for shear band initiation was some degree of acceleration of
the section of plate between the advancing projectile and the
distai boundary of the target, consistent with the slip line
field model proposed by I ackman and Finnegan® which
emploved a minimum plastic strain rate criterion for shear
band formation. The shear stress concentrating eftect of the
projectile geometry was therefore not in itself sufficient for
shear band initiation.

This work was carried out at the Materials Research
Laboratories, Maribyrnong, Victona, Australia.
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Discussion of “Practica!l Applications
of Hot-Isostatic Pressing Diagrams:
Four Case Studies™

J. KEVIN McCOY

A recent paper by Arzt, Ashby, and Easterling' describes
a theory of densification by hot-isostatic pressing. The pur-
pose of this note is to point out an error that was made early
in the mathematical development which affected some of the
subsequently obtained results.

Arzt, Ashby, and Easterling use two distinct geometrical
descriptions of densification. Since these two descriptions
are mathematically equivalent, Arzt et al. switch from one
to the other as best suits the aims of clarity and mathematical
convenience. However, it is necessary to keep firmly in
mind which description is currently in use.

The first description 1 will call the “growing-sphere
model”. This is a relatively new approach, having been
pioneered by Arzt.? The growing-sphere model is illustrated
in Figure 1: a group of spherical particles is assumed to
grow around fixed centers. As the particles grow, they will
impinge on one another. Arzt’ has treated this effect in two
ways; following Arzt, Ashby, and Easterling,' 1 will discuss
only one of these. In this model, it is assumed that matter is
forced nut of the contact region to form a localized neck,
while away from necks, the particle radius and sphencal
geometry are unaltered. Therefore, if the particles grow
from a radius R to a radius R’, the volume of each particle
increases from 4R */3 to 47R '*/3. Since the particles grow
around fixed centers, the relative density increases from its
iitial value D, to D, where

ANk
5~ () 2
0
This is equivalent to Eq. {1] of Arzt, Ashby, and Easterling.

The second descniption 1 will call the “colliding-sphere
model”. This is the standard description of densification.
used, for exanple, by Wilkinson and Ashby.* The colliding-
sphere model is illustrated in Figure 2. In this treatment, the
spherical particles are assumed to have fixed volume, but
the particle centers are assumed to move so that each particle
approaches every other particle. One might say that the
particle volumes remain constant while space shrinl s. This
wording points out the mathematical equivalence of the
growing-sphere and colliding-sphere models. they differ
only by a dilatation of space.

Using the colliding-sphere model, suppose that densi-
fication reduces the ct nter-to-center distance of two imtially
tangent particles from 2R to 2y whiie increasing the relative
density from D, to D. Since the colliding-sphere model
assumes a uniform contraction of the group of particles.

*E ARZT.M F ASHBY.and K E EASTERLING Merall Trans A.
1983, vol 13A. pp 211-21

J. KEVIN McCOY 15 Research Scienust. Battelle-Columbus Laboratc.-
nes. 505 King Avenue. Columbus, OH 43201-2693

Discussion submitted Apnl 18, 1985
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with respect to time produces

1 dD ooy
—— T - Ty TV 3
D, ar - YTy 131

o

where 1 is time. Applying Eq. [2] and rearranging terms.
one may conclude that

8 D _=3(D)"d: "
di R \D, ar’
@ In contrast, Eq. {2] of Arzt, Ashby, and Easterling is
dD _ 3(D°D,)"‘dy (5]
55 dt R dr’
@ Fig 1 —Expanding-sphere model Two imtially tangent particles (sohd Imegrating Eq. (5] gives
lines) expand about fixed centers. impinging on one another and forcing
?ﬁ matter out of the contaci fegion to form a neck (dotted hines) D ( ¥ )1 [6] {
@ D, \R

rather than Eq. [2] above. Use of Eq. [6] produces a result

‘i;‘i that is incorrect in both sign and functional form. Upon
P::g comparison of Eqs. [1] and [6], one is tempted to specu-

late that the error resulted from a cunfusion between the
i colliding-sphere and growing-sphere models.

This error appears to be propagated through the paper.
Since the paper contains several paralle! dervations. how-
ever, the effects are apparently hmited to Arzt. Ashby. and
Easterling’s Eq. {16) and the various figures. Apart from the
incorrect sign. the quantitative effects of the error are rather
small: the magnitudes of the densification rates given by
Eq. |4} and by Arzt. Ashby. and Easterling's Eq [2] never
differ by more than about 30 pet.

T

e

XD

)

Fig 2—Colliding-spiere model Two mmitially tangent parucles (sohd
lines) mose toward each other. Matter 1s forced out of the contact area to . . .
form a neck Support of this work by the Air Force Office of Scientific

Research is gratefully acknowledged.
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DENSIFICATION BY INTERFACE-REACTION CONTROLLED GRAIN-BOUNDARY DIFFUSIGN

J. KEVIN McCOY and ROGER R. WILLS -
Battelle, 505 King Avenue, Columbus, Ohio 43201-2693, USA

Abstract--The densification of a fine-grained, high-purity aluminum
oxiue powder under hot isostatic pressing (HIP) has been found to occur
by interface-reaction controlled grain-boundary diffusion. We discuss
geometries and dislocation mechanics for this process for both the ini-
tial and final stages of dsnsification and develop constitutive equa-
tions for densification rate as a function of density, materials con-
stants, and experimental parameters. The model is used to explain the
results of several HIP experiments at pressures of 34 tc 102 MPa and
temperatures of 1273 to 1423 K. Sources of variation from sample to
sample are discussed. An analysis is made of the sensitivity of the
model to its adjustable parameters. Alternative explanations for the

experimental data are discussed and found to be inadequate.

1. INTRODUCTION

A number of mechanisms have been proposed to describe densifi-
cation during sintering and hot isostatic pressing (HIP}. Most of the

theoretical treatments invoke either a simple diffusion or dislocation

mechanism for material transport. When we analyzed densification data
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for aluminum oxide from a serfes of HIP experiments in which both tem-

A

perature and pressure were monitored, we found that the data could not

be adequately explained in terms of either theory, but that they could

(S

be expiained in terms of interface-reaction controlled grain-boundary

¥ diffusion [1]. Both dislocation and diffusion elements are contained in
df this mechanism in that mass transport occurs by diffusion but is 1imited
%% by the mobility of grain-~boundary dislocations. The concept of

é@ interface~reaction controlled grain-boundary diffusion is not particu-
Y

larly new, having been proposed by Burton [2] in 1972 and given a

L

thorough development in a recent review by Arzt, Ashby, and Verrall [3],

E% but it has apparently been applied only to creep or deformation.

In this paper, we apply the theory of {interface-reaction con~
E; trolled grain-boundary diffusion to describe densification of a porous
EE solid. Following standard practice [4], we divide densification into

two stages. The fnitial stage is described as a random packing of
9 spherical particles; this model is applied at fractional densities of
§§ 0.64 to 0.9. The final stage is descrived by an isolated spherical pore

centered in a spherfical shell; this model is used for fractional densi-

3

ties greater than 0.9. We develop appropriate geometries for both

stages of densification and then briefly review the islocation kinetics

r
iy

s

associated with the mechanism. The model 1s expressed in a form suit~

abie for fitting to experimental data and applied to explain the densif-

g; ication kinetics of a high-purity aluminum oxide for a range of tempera-
x)

) tures, pressures, and specimen porosities.
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3
2. INITIAL STAGE

In this section, we develop a model for the initial stage of
densification. We begin by describing the geometry of a neck between
two particles and use the results to calculate the driving force for
densification., Finally, the driving force and the mechanism of
interface-reaction controlled grain-boundary diffusion are used to cal-
culate the densification rate.

The most important geomstrical quantities for the description
of an interparticle neck are illustrated in Fig. 1: R is the particle
radius, 2y is the particle center-to-center distance. x is the neck
radius, and w is the axial radius of curvature of the neck. These quan-
tities reflect a standard model of neck geometry: twc spherical parti-
cles impinge upon each other, and matter is transferred from the contact
area to a localized neck while the remainder of the surface of the
spheres remains unaltered. The surface of the neck is assumed to be a
portion of a circular torus that is tangent to both spheres. The minor
radius of the torus is w and the major radius is x+w. For given values
of R and y, x and w are specified by the solution to two equations. The

first equation follows from the Pythagorean theorem:

y2e(x+w) 2 = (rtw)2 (1)

or

2 :2 BE
ty = (2)

YT O2(R-x)
The second equation for x and w specifies that the volume of matter

removed from the spheres must equal the volume of matter deposited in
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the neck. It 1s a strafghtforward exercise in calculus to show that

:his equation is

§(R~y)2(zR+y) = (3)

szcoszesine - wsine(Rz-yz)

CTy KD S 5hE

+ w3sin39 - 2(x+w)w2(6-cosesin9)

where

nclla A vrdn Tt il
Ik

o 8 = arctanly/(x+w)]. 4)

Due to the complexity of equation (3), Arzt [5] has proposed the approx-

5 E} imeticn

! % % = n(R-y)R (5)

§ ) where n is a numerical constant. Arzt suggested the value n = 11, but

l # we have chosen to use n = 11.4 since this value gives a slightly better

é Sg fit. We have used equations (2) and (5) to provide a description of

s :§ torus geometry. As evidence of the accuracy of equation (5), we give in
Z Fig. 2 a comparison of the values of x and w obtained by using the

§ gg rigorous treatment of equation (3) and the approximation of equation

(5). The agreement between the two treatments {s probably better than

LW BB e ST

m!’. 7}

that between either treatment and physical reality.

]

(#37

With this description of neck geometry, we can find p*, the

effective contact pressure between the twc particles for the initial

e

stage, which produces a c1imb force on grain-boundary dislocations and

e

thus acts as the driving force for densification. Following Molerus [6]

and Arzt, Ashby, and Easteriing [7], we write the effective contact

(5585

pressure as

| = P
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where p is the externally applied pressure, a is the average neck area,

(6)

Z is the coordination number, D is the fractional density, Pg is the
contact pressure due to surface tension, and Peh is a threshold pressure
for the motion of grain-boundary dislocations. In our experiments, the
sample was thoroughly outgassed before encapsulation; and the capsules
were welded 1n vacuum, so the effect of gas trapped in the pores is not
{ncluded in equation (6).

To evaluate the effects of coordination number and contact
area 1n equatfon (6), it is mathematically convenient to use the
approach of Arzt [5]. Arzt describes densification not as a packing of
spheres that approach each uther but as a packing of stationary spheres
that grow fictitiously. If the spheres grow from a radius R to a radius
R', the increase in the volume of the spheres will cause the fractional

density to increase from its init{ial value Do to a new value D, where

D/D = (R'/R)’ (7)
As the spheres grow, two types of geometrical changes occur.
First, the fnitial contact points grow into necks as the growing spheres
impinge on each other. We have assumed that all displaced material
remains in the necks, while, away from the necks,. the particles remain
spherical with radius R'. Second, as sphere growth continues, the
spheres also begin to form contacts with additional spheres that they
did not touch in the original packing. Using radial distribution func-
tions for a random dense packing developed by Scott [8] and Mason [9].

Arzt developed the following approximate equation for the coordination
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number

Z = Z +c(R'/R-1) (8)
where Z° = 7.3 and ¢ = 15,5, Using thic radial distribution function

and equatifon (5) for the area of a neck, the average neck area is [5]

a = n(Z_(R'-RIR+c(R'-RIZ/2IR/ZR". (9)
Equation (9) includes a correcticn so that it 1s applicable to spheres
of radius R rather than R'. Using equations (8) and (9), the effect of
external pressure in equation (6) may be evaluated.

Following Arzt, Ashby, and Easteriing [7], the contact pres-

sure due to surface tension is

P =7 [&-i-] (10)
where y is the surface tension. The average neck area is known from

equation (9), so the average neck radius is

x = Va/n (11)
while the axial radius of curvature of the neck is given by equation
(2).

The threshold pressure for motion of a grain-boundary disloca-
tion is uncertain, since it depends on the Burgers vector of the dislo-
cations and the type of dislocation source. We have chosen to use the
approach of Arzt, Ashby and Verrall [3]l. Following their treatment, the

threshold stress for grain-boundary dislocation motion is

_ Y2agfhy (12)
pth 2%

0.2 is a constant that reflects the relative amount by which

where
%
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the length of a dislocation fluctuates as it moves.

The presence of an effective contact pressure will cause den-
sification and produce changes in the neck geometry. As densification
proceeds, the center-to-center distance of two initially tangent parti-
cies will change with rate d2y/dt. As discussed below in the section on
dislocation mechanics, a change in y results from the motion of gratn-
boundary dislocations; the passage of one dislocation acrcss the entire
neck reduces the center-to~-center distance 2y by bn where bn is the com-
ponent of the Burgers vector normal to the grain boundary. For the case
in which several dislocations are moving together, the numbe. cf dislo-
cations that will pass a given point on the grain boundary in unit time
is vp. Thus the rate of change of the center-to-center distance of two

particles is

d2y . _
dt Vpbn. (13)
The final step of the model is to obtain the densification
rate. If it is assumed that the sample starts as a packing of tangent
spherical particles and that the particles approach each other as den-

sification proceeds, it is clear from geometry that [10]

D = D_(R/y)> (18)
where Do is the initial fractional density and D is the current frac-

tional density. By differentiating equation (14), one obtains

1/3

d_ 3| D 42y
it - ZR[DO] pragt (1%

An expression for dD/dt in terme of experimental varfables is given in

equation (27).




= =

=

202

’

<3

¢

1)
kis

s

e@wwé

4

- Cu ¥ — e, ‘- A ke A & AN

.i

3. FINAL STAGE

As a material approaches full density, it is no longer
appropriate to describe interparticle contacts in terms of distinct
necks, and it becomes 2ppropriate to describe the porosity in terms of
1solated pores. In this section, we develop a model for this stage of
densification. We first describe the geometry of the grains and pores;
then determine the driving force for densification, and finally obtain
the densification rate.

The geometry of the pores and grains is similar to that used
by Arzt, Ashby, and Easterling. It {s assumed that the grains take the
shape of truncated octahedrons with spherical pores of radius r located
at each vertex. Each truncated octahedron has 24 vertices, and four
grains meet at each vertex so there are, on the average, six pores per
grain. The volume of each grain is assumed to be 4uR3/3. as in the ini-
tial stage. Since there are six pores per grain, the density, pore

radius and equivalent spherical grain radius are related by

3
1-p = —RI— (16)

R3+6r3
Following Coble [11], we may simplify the geometry for the purposes of

calculating densification rate by taking a spherical shell of material
around each pore. We assign a volume of matter 2uR3/9 (1/6 of a grain)

to each pore, so the shell radius Rs is given by

] fea“‘”s' (7

X
n v
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The effective pressure or driving force for densification may
be obtained by balancing the forces imposed on the shell against the
stresses in the shell. Suppose that we make an imaginary cut through
the center of the sheil on the xy plane. The total force on one hemi-

sphere in the z direction is

wRZp + 2nry - n(RE-rf)eg, = 0. (18)
The first term is due to the externally applied pressure, the second is
from the surface tension of the pore, and the third results from the
tangential stress within the sphere which balances the forces applied to
the surface of the sphere. Note that %6 is treated as a constani in
equation (18). This is justified if we assume that the motion of dislo-
cations 1s at steady state. As discussed below, the density and speed
of the dislocations are both proportional to the driving force. But at
steady state, vp is independent of position, so %00 is also independent
of position.

In addition to the tangential stress, the driving force for

densification also involves a threshold term, just as for the fnitial

stage. For hot isostatic pressing, this is [3]

= Yz Gy (19)
Pth 2R

and the net driving force is

p* = cee-pth' (20)
Differentiating equation (16) with respect to time, we obtain

db _ =3DQ1-D) dr
at - r  dt° (2D
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Furthermore,
. A-d (22)
dt 4“r2 dt

where V is the volume of a pore and -¢V/dt is the rate at which matter

{s removed from the grain boundaries and deposited in the pore:

av/dt = -veb_n(R2-rin, , (23)
that 1s, the product of the dislocation flux, the component of the
Burgers vector normal to the grain boundary, the area of one planar
grain boundary intersecting the pore, and the effective number of boun-

daries. An expression for dD/dt in terms of experimental variables is

given in equation (30).

4. DISLOCATION MECHANICS

In both the initial and final stages, the appiied pressure
results in a climb force on the grain-boundary dislocations. In this
section, we discuss dislocation effects that are common to both stages.

Following Arzt, Ashby, and Verrall [3], the rate at which an

individual grain boundary dislocation climbs 1s

v=M = Mp*bn. (24)
Here F is the force per unit length on the dislocation and M is the
dislocation mobility. From elementary dislocation theory, it follows

that the force on the dislocation is the product of the driving force p¥

anu the component of the Burgers vector normal to the grain boundary bn’
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Applying the results of Cottrell and Jaswon [12] and Cottrell
[13], Arzt, Ashby, and Verrall obtained the following expression for

grain-boundary dislocation mobility limited by solute drag:

D_2
M= ——2— (25)
ﬁkabC°

In this equation, Co {s the concentration of solute in the lattice, and
the concentration in the solute atmosphere of the dislocation is
increased by a factor of § to ﬁCo. Ds is the diffusivity of the solute
in the lattice, 2 1is the effective atomic volume of the solute, kT has
its usual meaning, and bb is the Burgers vector of the grain-boundary
dislocation.

To complete the description of a grain-boundary with disloca-
tions we need only an expression for the density of c¢islocations. This
problem has been studied by Burton [2] and by Arzt, Ashby, and Verrall

[3]. Although different approaches were used, their results are in sub-

stantial agreement. The result of Arzt et al. is

C]p*
(26)

p =
be
where C1 is a constant (atout 0.5), G is the shear modulus, and bb is

the length of the Burgers vector.

5. EXPERIMENTAL RESULTS

The development of the theory of densification presented above

was prompted by failure of standaii theories to explain the cdata
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reported below. The experimental technique used in obtaining the data

has been described in detail elsewhere [14], so only a brief summary

5o A

will be given here. Cylindrical samples of Reynolds RC-HP-DBM alumina
were encased in close-fitting AISI 316 stainless steel capsules. The

samples were subjected to HIP at temperatures ranging from 1273 K to

LSO -

1423 K and at pressures ranging from 34 MPa to 102 MPa. Throughout den-

[

sification, continuous records of temperature and pressure were kept.

}

In addition, a two-probe dilatometer was used to produce a continuous

i;.;.i

0

record of the diameter of the sample. The records of temperature and

ety |
i

I diameter, along with a description of the changes in geometry of the

e sample, were used to calcuiate a record of density as a function of time
-? during HIP. This procedure produces far more information from each

gi experiment than does conventional HIP practice, which provides only a

3 final density. In addition to a providing a much Targer body of data,

\EJ

the dilatometer technique provides the additional advantage that all the

t;nk!’

data obtained from a given experiment can be compared to theory without

consideration of sample-to-sample or run-to-run variations. To further

- ———
e

increase the amount of information produced during each experiment, the

-
v,
0

temperature and/or pressure were often changed during an experiment.

L

J

This allowed us to determine activation energies and pressure exponents

gy
'

13

from a single experiment.

aJ.:b

For the purposes of fitting the theory to the experimental

data, it is convenient to coilect the variables that are essentially

TEe

constant throughout the experiment. If this is done, we may combine

]

equations 14, 16, and 24 to 26 and write for the initial stage




§§) 13
E @_p|L 7 plewcesm (27)
dt "~ |D GT '
EE o]
: where
g; 2 0
;.D°Q
ﬁg ba b" o
and the solute diffusivity is assumed tc be given by
B o
- Ds = Dsexp( ES/RT) (29)
Ei Similarly, we may combine equations 21 to 26 and write for the final
@ stage
- (E./RT)
2 dD _ [371/3n8/3,«_rq_py2/3y 2P "
B L - [2]153%3¢-a-00%p Sn, f (30
- using the same definition for f. The following data were used with
Xﬁ equations (27) and (30). The surface energy was taken to be vy =1 J/m2
gg [71. The activation energy for solute diffusion Es was determined

experimentaily by changing the temperature during the course of the run.

A

A value of Es = 200000 J/mol was measured. Values of the shear modulus

G were obtained from the equation

I

G = 12.382x10%(1838.5-1)1/3 pa, (31)

where T is the temperature in kelvins, which provides a good fit to the

= A

data of Ryshkewitch [15]. The value of n,» the effective number of

x/

grain boundaries meeting at a pore, was derfved frbm the assumption that

Gy

the grain shape is a truncated octahedron. Tn this geometry, four regu-

3)

lar hexagonal faces and two square faces meet at each vertex, so tha

total of the angles of all the faces meeiting at the vertex is 660°.

)

Since a single planar grain boundary corresponds to an angle of 360°, Ny

1~
J c.‘J‘J.

t

.
'

Rt
VAl
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With these data, it is possible to use the temperature and

@ = 11/6.
:

pressure records to integrate the kinetic equations for densification to

E% obtain a theoretical record of density as a function of time. Results
_ of such calculations are given in Figs. 3-6. We present records of tem-
E" perature, pressure, and density for six experiments, and we compare the
g§ experimental records of density with the results of theoretical calcula-
% tions. Equation (27) was used for tractional densities up to 0.90,

{4

while equation (30) was used for higher densities. The abrupt change in

v
J

P

equations corresponds to an abrupt change in the geometry of the model,

L]

v

from highly connected open porosity to closed porosity, and a marked

discontinuity in the densification rate might be expected. In fact, the

Eﬁ discontinuity is small, and, as shown in Figs. 3~6, it is usually quite
4 difficult to see in piotted results. The small size of the discon-

Q? tinuity suggests that there is 1ittle to be gained by modeling an inter~

’fé mediate stage of densification in which "cylindrical pores" predominate.
3 Neglecting the intermediate stage is in accord with the practice of

ié; Swinkels, Wilkinson, Arzt, and Ashby [4], who have argued against the

gé use of an intermediate stage model.

Eﬁf The integration was carried out numerically, using an adaptive

.%: third-order Runge-Kutta method [16]. From tests with varying step

E& sizes, it is estimated that the absolute global error in the theoretical

Sl

Gk

value of D due to the integration is never larger than 0.0001, which is

much smaller than the expected error {n experimental values of D.

LA

The only adjustable parameters were the initial value of the

) density and the kinetic factor f. For each experiment. a value of f was
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chosen to provide a good fit between theoretical and experimentai den-
sity histories, while the initiz1 fractional density was taken as the
value measured by immersion, which is not sxactly equal to the density
given by the dilatometer, due to experimental error. In some cases, the
immersion density was smaller than that of a random dense packing of
spheres, Do' and numerical integration starting at the immersion density

. In

was not be possible due to a singularity in equation (27) at D = Do

those cases, an initial fractionai density of 0.641 was used.

The exact the value of the initial density used in integration
actually has a only very small effect on the calculated density record,
since, in the low density rangs, the densificction rate drops rapidly as
density increases. As an illustration of this, consider two samples
that are being HIPped under identical, unchanging conditions, and assume
that the twn samples are identical except that the initial density of
one sample is higher than that c¢: ‘the other. It will take a certain
amount of time for the less dense sample tc reach the initial density of
the denser cample. Since the samples are densifying under identical
conditions, the densities of the samples will be the same function of
time except for the time offset just mentioned. Although the time
offset remains constant, the densification rate drops so that the
difference between the densities of the two samples decreases as time
goes on. As a qualitative {liustration of the effect of changing the
initial density, corsider the results shown in Fig. 7. The calculated
density history of Fig. 3 is repiotted, aiong with the results of a cal-
culation that differed only in the value of the initial density. It is

clear that the rather large initial difference in density quickly

LU SN R A
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becomes negligible. Note also that since the temperature and pressure
were not constant in this calculation, so the time offset between the

two curves is not constant.

6. DISCUSSION

In the preceding discussion, the values of f used in fitting
the theoretical equations to the dita were presented without any jJuestif-
fcation that the values are reasonable. To show that the values are
indeed reasonable, let us estimate the values of the variables that
comprice f. From scanning electron photomicrographs [17]1, it is

estimated that R = 0.35X10'6m‘ Following Arzt, Ashby, and Verrall [3],

10m. where

we may take b, /b = V2, Cy = 0.5, B =10, and b, = 1.59<10°
the value of bb is one third of the Burgers vector for slip on the
{0001} <1120> basal system. A reasonable astimate of the effective
atomic volume of the solute 1s @ = 2,15%10"2°m>, which is half the
volume of the formula urnit. Although the solute that controlled derisif-
ication was not identified, chenical analysis of the powder rsvealed
several impurities for wh:ch it is reasonable to use an atom fraction of
solute of C0 = 3.X10"t. The value of Dg is unknown, since it is not
known what solute might be responsible for controiling the motion of
grain-boundary dislocations. However, by combining the estimates above
with f = 3.X104 KPa'ls’l. a typica’ value obtained by curve~fitting, vae
obtains a vaiue of Dg = 9.x10710Z/s. This is within the range of

values of preexponential factors for solute diffusion in ajumina »s com-
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piled by Freer [18], so we may conclude that the values of f are also
reasonable.
From the capticns of Figs. 3-6, it will be observed that the

values of f used in fitting theory to experiment vary by a factor or

N

seven. As in {llustration of the effect of a large change in f, in Fig.

8 we have replotted the theoretical curve of Fig. 5 along with a similar

™

E&8

curve for a value of f five times as large. The two curves are markedly

different.

oo

Since the variation in f may seem to be larger than might have

o]

been expected, 1t is appropriaia to disciuss possible causes of variation

in f. There is no evident correlation between the value of f and the

v

’
v

experimental conditions, so we have attributed the variation in f to

differences between samples. The two factors in f that would appear to

&

be subject to the greatest variation are Co and D:. Since the powder

oo
Rh s

RSk

. was blended before being formed intoc samples, it {is not expected that

;: sample-to-sample variation of Co would explain all of the varifation in
if f. However, variations in Dg are expected to be much larger, since

= solute diffusivities in ceramics often depend very sensitively on the

Es concentrations of other impurities. Besides Co and Dg. large variations
@ in f may also arise from relatively small varfations in ES. In our cal-
< culations, we used a single activation energy for all samples. If the
,§§ actual value of Es for the sample differed from the value used in the

= calculation, the inaccuracy would show up, greatly enlarged, in

s axp(ES/RT). However, since f was the only kinetic fitting parameter,

és changes in exp(Es/RT) would appear as changes in f. The effects of a

§§ change in activatfon energy can be quite significant; a varfation of 9%
&

b
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in Es (with D: held constant) would not be considered large, but it
would be sufficient to explain the entire range of values of f. There-
fore, we conclude that sample-to-sample variations are sufficient to
explain the variation on f.

In Figs. 3-6, 1t will be observed that the theoretical and
experimental curves are generally in excellent agreement up to a frac-
tional density of about 0.9 but that the theory overestimates the den-
sification rate beyond this point. Cne possibie explanation for this
fact is that the mechanism of densification changes at this density.

But the densification mechanism is determined primarily by the tempera-
ture an¢ the driving force, and at high densities the driving force is a
weak function of density. Therefcre, 1t is unlikely that the mechanism
would chenge, under constant temperature and applied pressure. A more
pilausible but less welcome explanation is that the pore~and-shell model
described above does not adequately describe the final stage of donsifi-
cation. This hypothesis is supported by the fact that similar overesti-
mates of the densification rate occur in pore-and-shell models of the
final stage for other mechanisms. Additional work on this question is
ir progress.

While the agreement between theory and experiment {is generally
excellent except at high density, it is appropriate to ask if some other
densificaticn mechanism could also explain the data. Considering the
Tow temperature and small grain size of this material, it might be sup-
pesed that a simpis grain-boundary diffusion mechanism might explain the
data. However, this mechanism has a pressure exponent of 1: the densifi-

catfon rate is linearly dependent on the driving force for
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3,
N

A S k.

densification, and analysis of data from experiments with changing pres-

- 3

sure, such as that presented in Figs. 5 and 6, shows a pressure exponent

— o=

Lol

of about 2 [1]. Another hypothesis might be that some lattice dislocz-~

e

tion mechanism 1s responsible for densification, but models of disloca-

tion plasticity generally give stress exponents of at least 3 [19].

Py

Also, most of the experiments were performed at temperatures of 1273 to

v
“af

i

Ex

1323 K. Tt 1s expected that significant slip could occur only on the

basal systems at these temperatures [20], and it 1s difficult to imagine

[\

how significant densification could result with only two active indepen-

L o

dent slip systems. Furthermore, the activation energy for power-law
densification, which is generally thought to have a dislocation mechan-
ism, 1s 477 ki/mol [21], while the observed activation energy was 290
kd/mol. This discrepancy is too large to be explained by experimental
error. A third possible explanation of the data is that two (or more)
simultaneous mechanisms are at work, and that the observed pressure
exponent of 2 is the result of two mechanisms with pressure exponents of
(say) 1 and 3. Such an argument would be difficult to defend. Theoret-

ical models of densification that give rise to pressure exponents of 3

Y

T

Ly

or more generqally invoke lattice dislocation mechanisms, and, as argued

|92

above, lattice dislocations can centribute 1ittle to densification at

LR

e

0
LS

the temperatures used in the experiments since¢ only basal slip can

sy

-
.
“w

occur., It is therefore concluded that a model of densification by

~
28

s(\a.

interface-reaction controlled grain houndary diffusion provides the most

x|

plausible e<planation of the data.
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Table of symbols

average neck area

Burgers vector of grain boundary disiocation

component of Burgers vector of grain boundary dislocation
normal to grain boundary

derivative of coordination number with respect to R'/R, ¢ = 15.5

atom fraction of solute in bulk

constant, C1 = 0.5

fractional density

fractional density of random dense packing, D° = 0.64

diffusivity of solute at infinite temperature

diffusivity of solute

activation energy for diffusion of solute

force per unit length on dislocation

shear modulus

Boltzmann's constant

dislocation mobility

constant for neck area in initial stage, n = 11.4

effective number of grain boundaries meeting at a pore

external pressure

driving force for densification

contact pressure due to surface tension

threshold contact pressure for dislocation motion

particle radius

current particle radius in Arzt's growing-sphere description
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Table of symbols (continued)

shell radius

gas constant

pore radius

temperature

time

dislocation velocity

neck axtal radius of curvature

neck radfus

half particie center-to~-center distance

coordination number

coordinaticn number at Do’ Z, = 7.3

constant, e = 0.2

ratfo of solute concentration near dislocation to solute
concentration in bulk

surface tension

dislocation density

effective atomic volume of solute
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oE 5D

Fig. 1. Neck geometry. The two particles are spherical, while the neck

is part of a tangent circular torus.

=

E
:
E
3
t
f
|
3
E Fig. 2. Comparison of two treatments of neck geometry. Solid curve is
! for the toroidal neck geometry of Fig. 1 with strict conservation of
|

% mass; dashed curve is for the approximation given in equation (5). (a)

Relative neck radius (x/R) as a function of relative particle separation

(y/R). (b) Relative neck axial radius of curvature (w/R) as a function

E;w“h

of relative particle separation (y/R).

Fig. 3. (a) Pressure (solid curve) and temperature (dashed curve) his-

5? tories. (b) Comparison of experimentally determined density (solid
R

Eﬁ curve) with integration of kinetic equations for densification (dashed
e 4 p.-1-1

;&g curve) with f = 7,X10"° KPa "s ~.

|

S

1 Fig. 4. (a) Pressure (solid curve) and temperature (dashed curve) his-

tories. (b) Comparison of experimentally determined density (solid

5

curve) with integration of kinetic equations for densification (dashed

;
Eﬁg curve) with f = 2.8x10% kPa~1s71,

Egg Fig. 5. (a) Pressure (solid curve) and temperature (dashed curve) his-
E“g tories. (b) Comparison of experimentally determined density (solid

® curve) with integration of kinetic equations for densification (dashed
E% curve) with f = 1.x10% kPa™1s71,

§§ Fig. 6. (a) Pressure (solid curve) and temperature (dashed curve) his-

o

tories. (b) Comparison of experimentally determined density (solid

I
(5

curve) with integration of kinetic equations for densification (dashed
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curve) with f = 1.5%x10% kPa~1s™1,

Fig. 7. Effect of initial density on densification history. Temperature
and pressure data from Fig. 3 were integrated with f = 7.X104 KPa"ls'l,
but with initial densities of 0.641 (solid curve) and 0.7 (dashed

curve).

Fig. 8. Effect of f on densification history. Temperature and pressure

data from Fig. 5 were integrated with f = 1.X104 KPa'ls"1 (solid curve)

4 kpa~ls™1 (dashed curvej.

and f = 5.X10
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COMPUTER SIMULATION GF EFFECTS OF THE PORE SIZ* DISTRIBUTION
ON THE KINETICS OF PRESSURE ASSISTED FINAL-STAGE DENSIFICATION

ALAN J. MARKWORTH and J. KEVIN McCOY

SE O S S 53

Battelle, 505 King Avenue, Columbus, Ohio 43201-2693, USA

{‘.E ¥ r‘}

Abstract

2

Most theoretical treatments of pressure-assisted densifi-

e‘g?,'iu

cation of porous solids assume a single size for all pores. We

remove this this assumption and consider a distribution of pore

853

sizes. Dissolution of intragranular pores by volume diffusion and

6..4._11

dissolution of intergranular pores by grain-boundary diffusion are

)

both treated. The evolution with time of pore size distributions is

L

t: .';—L

calculated for distributions that are initially described by log-

Bl

normal and Weibull functions, and differences in predicted behaviors

5

are discussed. The pore size distribution is ther related to two

)

..

P

important quantities: porosity and number of pores per unit volume.

5{*7.‘_’,’

The assumption of a distribution of pore sizes is found to avoid

certain unrealistic predictions obtained from models with a single

et

pore size such as abrupt disappearance of all pores and rapid

?\
EE approach to full density.
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1. Introduyction

It is frequently observed in studies of densification that
full density is difficult to achieve. This is in direct conflict
with predictions of rapid and complete densification derived from
theoretical models of densification by diffusion. In this paper, we
show that the models can be brought into agreement with expzrience
by consideration of the effects of a distribution of pr e sizes.

The tiupcrtance of size-distribution effects r considera-
tions of the evolution of a discrete second~phase species has long
been recognized. The porosity within a solid body can be regarded
as a particular type of second phase, and its variation with time,
resulting from surface-energy and applied-pressure driving forces,
can be treated as a type of phase transformation. In this case as
well, size-distribution effects can play an important role, for
example in considerations of the manner in which the overall volume
fraction of porosity varies with time.

Presented below are the results of a modeling study of the
dissclution kinetics of a distribution of discrete (i.e.. non-
overlapping), spherical pores contained within a solid body. Both
intragranuler and intergranular pores are considered, using well-
established expressions for the size-dependent rate of pore dissolu-
tion resulting from volume diffusion and grain-boundary diffusion,

respectively, of vacancies away from the pore surrace. The evolu-

tion with time of the pore size distribution is calculated, starting
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from various assumed initial distributions, and from this the
corresponding variation of the overall porosity of the solid is cal-
culated and related to size~distribution effects.

Bacause of the fact that both pore-surface-energy and
applied-pressure driving forces are considered, the problem is not
analytically tractable for either intragranular or intergranular
pores. Consequently, solutions are generated numerically.

It 1s clear that the assumption of a system of discrete
pores 1imits our consideration to a solid for which the amount of
porosity is relatively low. This corresponds to what is commonly
referred to as the "final stage" of densification. A quantitative
evaluation of the protability that a given pore is actually discrete
can be carried out, as, for example, has been done [1] for the case
of a uniform size distribution of spheres distributed at random

within three-dimensional space.

2. Pore=Dissolution Models

Over the years, many investigators have developed models
for the growth and dissolution of pores contained within a solid
bedy. (Actually, models for pore growth can be used to describe
dissolution as well, if appropriate modification is made of the
applied-stress term in the growth-rate expression, as has oeen dis-
cussed by Greenwood [2].) In addition, a variety of kinetic mechan~

isms has been considered. For purposes of the present analysis,
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relatively simple models for pore dissolution are used which
nevertheless serve well to {llustrate the manner in which size-
distribution effects can influence the overall kinetics of porosity

reduction.

2.1. Intragranuylar Pores

For the volume-diffusion-controlled dissoclution of an iso-
lated, spherical, intragranular pore (i.e., neighboring pores are
assumed nct to influence one another), one can derive an expression
for the rate of pore dissolution by assuming that the vacancy-
concentration field within the solid outside the pore satisfies the

Laplace equation. One thus obtains (e.g., [3,41),

a
%§=-k-:-;§[i>+§'-] (1)
where R is the pore radius at time t, Q, Dv’ and 7Y are the atomic
volume, the volume self-diffusivity, and the surface energy of the
solid, P is the externally applied pressure, k is Boltzmann's con~
stant, and T is the absolute temperature. Three assumptions
inherent in Equation 1 are (a) that the vacancy supeisaturation in
the lattice is zero, (b) that the "effective" applied pressure
inside the solid is unaffected by the presence of the porosity, and
(c) that no gases exisi inside the pores. Relaxation of assumption
(a) has been considered by Geguzin and Lifshitz [3] and others;
relaxation of (b) and (c) has been discussed by Markworth [4] and

others.
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In order to simplify the analysis which follows, we re-
express Equation 1 in terms of dimensionless variables, i.e., a

pore-size parameter p and a time parameter ¢ defined as

p = [E‘?]R (2)

T (3)

'
ap p3

T = v
ay2kT

in terms of which Equation 1 assumes the much simpler form

do - 1T 1
e pL1+p] ) (4)

r r_Por

A number of models have been developed with which to
describe the grain-boundary-diffusion-controlled and volume-
diffusion-contrclled growth or dissolution of an intergranular pore.
For the present analysis, we consider an isolated spherical pore
situated on an planar grain boundary and dissolving bx the flow of
vacancies away from the pore through the boundary. To describe this
situation, we apply a model for ~-ain-boundary-diffusion controlled
growth of an intergranular pore developed by Trinkaus [5]. The

above-noted modification suggested by Greenwood [2] is used to adapt

the model to pore-dissolution kinetics. One thus obtains

an, &
g?: = .—%—{p + %1] (5)
2KTR?

where Db is the grain-boundary self-diffusivity, & is the effective
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thickness of the grain boundary, and all other symbols are as
defined for Equation 1. Again, it is assumed that the "effective"
applied pressure inside the solid is unaffected by the presence of

porosity and that no gases exist inside the pores. Effects of gaces

33 By 5y

inside the pores could be considered [5] and are analogous the

corresponding effects for intragranular pores.

It is again convenient to express Equation 5 in terms of

e

dimensionless variables. We use the same size and time parameters,

A
ST

p and t, given by Equations 2 and 3, but we define a new dimension-

less factor, a, as

R

(6)

Lt
=4
"
¥ig
<U tc_U

and obtain the following simpler form for Equation 5:

ERRY

§§=—;§[1+%] . (7

L%

The rate of pore shrinkage -dp/dt as a function of pore radius p is

e 28 )

s

plotted in Fig. 1 for both intergranular and intragranular pores, as

Eg calculated from Equations 4 and 7 with a value of a = 1. From Fig.
f§= 1, it can be seen that the rate of pore shrinkage decreases as pore
5

radius increases, and that the dependence of shrinkage rate on pore

size is stronger for intergranular pores than it is for intragranu-

S

lar pores. Note that the shrinkage rate for intergranular pores is

v .',;,
>

b dependent on a, and that the corresponding curve in Fig. 1 would be
Eﬁ raised or lowered if a different value of a had been chosen,

-t 4
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2.3. Other Pore-Dissolution Models

Clearly, pore-dissolution models other than those

X 8

represented by Equations 4 and 7 could have been used. These two

particular models were chosen because they are particularly amenable

2

to the size-distribution analyses developed below while still con-

~~u
kL%

taining a description .7 some essential features of the physics of

the respective dissolution processes.

AL

One interesting case not mentioned above is the oft-quoted

pS
’ﬁﬁ model of Hull and Rimmer [6] for the stress-induced growth of
L’? grain-boundary voids. Using their model, and including only
&
applied-pressure and surface-energy effects as ariving forces for
]
i3

pore dissolution, one obtains an expression equivalent to Equation 4

as the dimensionless representation, noting that Equation 4 was

=

derived for a model of intragranuylar pores. The only difference

55

would be the replacement of D in Equation 1 with Dy 8/(2a) where a

y
H
")

is the mean separation between pores. Consequentiy, the anaiysis of

Eg

intragranular porosity based on Equation 1 is mathematically

"[EEQ

equivalent to that of intergran"’ar porosity based on the Hull-

Rimmer model [6]. It should d, however, that important

07

corrections to the Huil-Rimmer .w~ . have been made, e.g., by Weert-

| Ao

man [7].
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8
3. Size-Distribution Kinetics
3.1. Evolution of the Pore Size Distribution

We define the size-distribution function for a system of
pores as f(R, t), such that f(R, t)dR is the concentration of pores,
at time t, having radius within the range R to R + dR. Clearly, it
is assumed in this definition that the size distribution exhibits no
spatial dependence, on the average. Assuming that no "sources" or
"sinks" for pores exist, one can show that the function f satisfies

the following continuity relation:

g—tf- +52vf) = 0 (8)
where v is a function that describes the rate at which a given pore,
which can be considered as a point existing in a one-dimensional
pore-radius space, moves through that space. (Obviously, the defin-
ition of v is equivalent to dR/dt which is given in Equations 1 and

5 for the two models under consideration here.) Expressing Equation

8 in terms of the dimensionless parameters p and v,

af . @ =
ac * ap(Vf) 0 (9)
where now f(p, t)dp is the concentration of pores, at time t having
rad'us within the range p to p + dp, and v is now equivalert to the
"velocity", dp/dt, in p-space.

The "flux" of pores crossing a given point of the one-

dimensional p-space is, in general, equal to v(p, t)f(p, ). For




the pore-dissolution models under consideration here, v has explicit
dependence only upon p (see Equations 4 and 7).

Let us examine the behavior of the pore flux with respect
to a moving coordinate frame in our one-dimensional p-space.

Specifically, let p! be a coordinate which moves along the p-axis at

PO U B B O B e

the same rate as a pore having instantaneous size p. Hence, p' is

given through the relation

Y
-

!

_do
vip) (10

o

-‘C

&
a

© -

\.‘J"L'

where p  is the size of the pore at some given initial time 7, and

where we again take v to depend only upon p. From Equation 10 we

b

e obtain

~

X da’ = v(pn) (11)
§§ It now follows that,

o 2 v(pf(pts o)) (12)
»

= [g'—('p“‘)'\ép" g’%'-] f(p" t)

R
*

+ vip") {a Fp', T %g—'—+ a‘% £(p!, e>] )

Combining Equations 11 and 12,

&

A vipnfper, 1 (13)

MR EEZ

= viph | ri-‘il—)- flpts ) + 55 o, o + 52 fpt, ]

B

Now, the continuity equat1on. Equat1on 9, must also be satisfied

]
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with respect to the moving coordinate system, in which case the sum

| ot

of the terms within brackets on the right hand side of Equation 13

is zero. Consequently,

Y KXY

Ef [vip")f(p', v)]1 =0 . (14)

An alternative way of expressing Equation 14 is the following:

&=

vip)f(p, T) = v(p)f(po, T) (15)

BAS]

where p (dropping the prime sy—bol) is understood to be the size of

1
kﬁ a pore, at time t that had size P, at an earlier time Toe Taking
E? To = 0 and g(py) = flp , 0), we obtain
] v(pg)
1 =
. flp, T) vip) g(po) . (16)
g% Equation 16 can be used to relate the size distribution at time
&

T = 0 to that at some late time v > 0. An alternative derivation of

eL

Equation 15 is presented in the appendix.

f: In order to apply Equation 16 to cases of interes: here,
;; one can use Equation 10 (again, and from now on, dropping the prime
Zﬁ symbol) together with the given expressions for v(p). This can be
Eg done in closed form for the models under consideration hers. 1In

particular, substituting the right-hand side of Equation 4 for v(p)

&4z

into Equation 10 and integrating, one obtains the following expres~

"(‘\:’

sion for intragranular pores:

e
3

—t

&2

1 1Lt %
v= g, - re - | T (17)

:l ﬁ.a.;.n. .i ¢
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&R 3

Likewise, substituting the right-hand side of Equation 7 for v(p)

into Equation 10 and integrating, one obtains the following expres-

NS 29

sion for intergranular pores:

& S 13 _ .3 2_ .2 1+ 0

- av = 23 - 03 + (- ) - (o2 p)ﬂn[“"o . a8
E§ Unfortunately, for given values of t and Po? the value of p can be
E% calculated from either Equation 17 or 18 only through some numerical

procedure. Given this fact, however, the problem of calculating the

L7

evolution of the pore size distributicn is, in principle, solved.

I The above analysis can be cast in somewhat simpler form by
f taking
E':A
p =p+A (19)

S’:’} o
o where A > 0 since the pores are dissolving. In this form, Equations
5 16, 17 and 18, respectively, become
gt
N flpy T) = %lg(p +A) (20)
5
t=Ap-1+30 +1nflietal (21)
3 [
] = 2 1,2 - o = k4) - [l+t o+ A
o ot = A(p" + pA + 34° + 1 - p - Z0) - In | AT ] (22)

For given p and v, Equations Z1 and 22 can be solved numerically for
4
e the corresponding values of A for intragranular and intergranular

pores, respectively,

=y S

E&E

—
GL37]
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3.2, Evolution of Distribution-Function Moments

Properties of physical interest are related to imoiments of
the size-distribution function, rather than to the distribution
function per se, defining the i-th algebraic moment (i.e., the i-th

moment about p = 0) as

Mty = Jolflp, Trdp . (23)
0

For example, Mo(t) is the net concentration of pores within the
solid, and the volume fraction occupied by porosity is 1inearly pro-
portional to M3(t).

There are different ways in which Mi(t) can be calculated
(see, e.g.,» [8, 9]). As diccussed below, the approach used here is
to calculate f(p, t) using a general approach described above, and
then numerically integrating, using Equation 23 as a basis, to
determine the moments of interest.

One case is of particular interest, namely, that involving

MO' It can easily be shown that an alternative expression for M0 is

M0("-') = [ glp)dp (24)
A
o

where the quantity A  in Equation 24 is the value of A, obtained
from Equation 21 or 22, corresponding to p = 0. Thus, for

intragranular and intergranular pores, respectively,
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Iy = 1+ +ay (25)

el C et bbbl

B33 659 R &3 9NN Y
<t
n
>

= 2 _1p .
ot =4 (32 -2 1) - n e a) . (26)

The values of My can be calculated, for a given value of T, simply

by numerically determining the pertinent value of Ao from Equation

25 or 26, and then perfcrming the integration indicated in Equation
24. The result obtained by this approach should yield the same

result as that obtained from the approach previously described based

=3

0
calculated using the two different approaches would serve as a use-

22

%

ful check of the accuracy of the numerical procedures and was indeed

Lt

3
E on the use of Equation 23. In fact, comparison of the values of M
3
E

used for this purpose in the examples described below.

R

The methods of calculating size~-distribution kinetics
-
A“‘
Eé described above may be appiied to a wide variety of initial pore-

size disiributions. We have applied them to a Weibull distribution

v,
e o

m
glp) = mp™le7P | (25)

KXz

with m = 2, 2.5, and 3, and to a log-normal distribution

g
&
2
E§ glp) = —— exp [=ilniﬂﬂlﬁl—] , (26)
A v2ncp (2¢2)

where we have taken b = 0.8 and ¢ = 0.5. As will be seen from the

T

Bg figures below, these distributions are generally similar in appear-
Eg ance. The most important difference among them is that the log-

r. normal distribution has a long large-radius tail, while the large-
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radius tails of the Weibull distributions are smaller and decrease
with increasing m.

A11 of these functions are normalized, that is, they have
MO = 1. However, due to the differences between the functions, it
is generally not possible to normalize the third moments simultane-
ously. For the Weibull distributions, we have M3 = I'(1 + 3/m) while

for the log-normal distribution, M, = b3exp(9c2/2).

3
In Figs. 2-4 we present plots of the pore size distribu~
tion function for selected times and various initial distributions
as calculated using Equation 4 for the kinetics of dissolution of
intragranular pores. Results for the Weibull distribution with
m = 2.5 are not plotted but were intermediate between the results
form=2 and m = 3., From Fig. 2, it will be noted that the posi-
tion of the peak of the distribution function moves toward larger
radii as time progresses. A similar but smaller effect can be seen
in Fig. 3, while in Fig. 4, position of the peak clearly shifts
toward smalier radii. This behavior is in marked contrast to that
of standard models in which all pores are the same size and all
pores shrink together: for densification to occur, the pore radius
must shrink. If there is a distribution of pore siz.s, however, the
peak of the distribution may mcve in either direction, depending on
the shape of the distribution and the velocity function. The influ-

ence of the velocity function may be seen in Figs. 5-7, which differ

from Figs. 2-4 only in that the velocity for intergranular pores was
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used. For all calculations with intergranular pores, we took o = 1.
As seen in Figs. 5-7, the peak shifts strongly to higher radii for
the log-normal distribution, somewhat less strongly for the Weibull
distribution with m = 2, and only slightly for the Weibull distribu-
tion with m = 3, It is clear from the figures that, qualitatively,
if the magnitude of the velocity function decreases strongly with
increasing radius and the initial distribution has a long large-
radius tail, the peak of the distribution function will shift toward
the right, since the small pores disappear quickly, leaving the
larger pores almost unchanged. Conversely, if the velocity function
depends weakly on radius and the initial distribution is narrow, the
pores will shrink together and the peak of the distribution will
move to the left.

While the pore size distribution functions would be diffi-
cult to determine experimentally, two quantities that are more
easily measured are the number of pores per unit volume and the
porosity. These two quantities are proporticnal to M0 and M3,
respectively. The moments are plotted as functions of time for all
four distributions and both velocity functions in Figs. 8-11. For
comparison, we have also plotted the third moments tor a distribu-
tion in which all pores are the same size. An initial pore radius
of p = (3/41:)1/3 was used.

If it is assumed that all pores have the same size, all

pores vanish simultaneously, and M0 changes discontinuously. A more
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% realistic picture is seen in Figs. 8 and 10: the number of pores
1 gradually decreases toward zero. At times up to ¢t = 0.2, the number

K
z e

1_
(%

of pores decreases at comparable rates for all four distributions,

]

reflecting the general similarity of the central portion of the dis-

tributions. By t = 1, however, the distributions are dominated by

| Ka%e)

what was originally the large-radius tail of the distribution, and,

<Y Li.‘

for both velocity functions, the log-normal distribution has the

%)

largest number of pores, followed by the Weibull distributions in

-

oty

order of increasing m.

(755

From Figs. 9 and 11, we note again the unrealistic results

obtained by assuming a single pore size: densification prcceeds

E%T)

rapidly to completion. At short times, the rates of change of the

third moment as obtained by assuming . .ribution of pore sizes

RATS

agree relatively well with those for a single pore size and with

e

each other. However, the results soon begin to diverge. For a sin-

q %!
5 gle size of intragranular pores, it is predicted that all porosity
) will vanish at v = 0.247, but all of the calculations with a distri-
8]
[+

bution of sizes give significant remaining porosity at this time.

The contrast is even stronger in the case of intergranular pores.

5.4‘;3 5

The calculation with a single pore size shows all porosity vanishing

B3

at v = 0.196, but, for the log-normal distribution and Weibull dis-

E tribution with m = 2, more than half of the original porosity

Fﬁ remains, For both velocity functions, the calculations on a log-
: normal distribution give significant remaining porosity at v = 1.
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5, Discussion

Stze-distribution efiects associated with pores in solids

have been studfed by other investigators as well. For example,

Rr B R B

Tomandl [10] considered pore shrinkage resulting from sintering
without any externally applied pressure. The expression he used to

describe the rate of pore dissoluticn by diffusion along grain bcun-

L R

daries was

A

R. 2 (27)

dt RZ

where €, s a parameter that is dependent upon temperature.

rivcheg

n

vige
ot ]

Clearly, Equation 27 is mathematicaily equivalent to Equation 1 if P

]

kot

is set equal to zero in the latter. They then differ only in the

form of the coefficient of the R™2 term. For this 1imiting case,

e

the time-dependent size-distribution function can be derived in

K=

closed form, as Tomandl has shown [10]. In other studies [11, 123,

AR

the evclution of a cavity size distribution under an applied tensile

stress was studied. The rate of change of pore size was here

A

described by an expression equivaient to our Equation 5, with P

274

replaced with -g, where ¢ is the tensile stress at and perpendicular

9y

to the grain boundary. It was assumed that o is equal to the exter-

(K

nally applied tensile stress, an assumption which (as was pointed

*

3? out [12]) is not generally valid. The evolution of the cavity size
e distribution was evaluated numerically using an approach that was

) analogous to that used here.

L

Lo




R S

o

£ J

=
% R

vl

-
w

N

™~
L]

=43

o
%

o

3
(4

v

&4

Lo o
o,
W L_,[

¥

L

s

s

W5 AT SES

-

o D o T T TR T N T TN A T AT TR e TR TE T e T e e

18

It 1s a common experience in sintering and hot isostatic
pressing to observe that it is difficult to achieve fuil density.
This 1s in marked contrast to the predictions of rapid and comflete
densification obtained from standard models derived under the
assumptions of diffusional control and a single pore size. We have
shown that more realistic results may be obtained by assuming that a
distribution of pore sizes exists in the material. We have also
shown that the most likely pore size can increase even as densifica-
tion proceeds and all pores shrink.

It is beyond the scope of this paper to relate pore size
distributions to particle size distributions and particle packinas.
However, it is clear from this work that behavior in the 1imit of
long time (and high density) is controlled by large pores. It is
expected that these large pores would be found near large initial

particles or fully densified agglomerates.
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s Alternai r f
In this appendix, we present an alternative derivation of

Equation 15, one that is perhaps simpler than that developed in the

text, but wihich nevertheless is mathematically rigorous.
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Consider a pore that has size Py as time v, and size p 2 0

o
at some later lime t. The relationship between p and © is given by
Equation 10 (dropping the prime symbol in Equation 10). Likewise,
consider another pore that has size Po t dpo at time T, and size

p + dp at time . For this case, Equation 10 becomes

pt dp
T-T_ = J

p.+ dp

do_ (A.1)
vip)

(o] 9

Subtracting Equation 10 from A.1,

p+ dp P
0= J e _ . do_ (A.2)

vipd =1 Ve °
Po + dPo Po

or

+
p ) dp ?:) _ fp ds
po + dp vip pov(P)

. (A.3)

For infinitesimally small dp_ and dp, Equation A.3 can be expressed

as

do_ . —0 (A.4)

The concentration of pores at time T, within the interval

o to Po t dPo is f(Po. fo)dpo and that at time T within the inter-

val p to p + dp 1s f(p, t)dp. Clearly, these must be equal, i.e.,

flp, t)dp = f(po, T,)dP, - (A.5)
Elimirating dp and dp  from Equation A.5 by application of Equation
A.4, we find that
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vip)flp, ) = V(po)f(po, 1:0) (A.6)
and we see that Equations A.6 and 15 are identical.
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58 Fig. 1. Normalized shrinkage rate as a function of normalized pore
Eg radius for two types of pores. Solid line: intragranular pores.

Dashed 1ine: intergranular pores.

Fig. 2. Pore size distribution function for int.agranular pores at

m
E% several times. Initial distribution is log-normal.
o
‘ ;ﬁ Fig. 3. Pore size distribution function for intragranular pores at

several times. Initial distribution is Weibull with m = 2.

&

Fig. 4. Pore size distribution function for intragranular pores at

2o

several times. Initial discribution is Weibull xith m = 3.

B

Fig. 5. Pore size distribution function for intergranular pores at

Pl

several times., Initial distribution 1s log-normal.

L

Fig. 6. Pore size distribution function for intergranular pores at

saveral times. Initial distribution is Weibull with m = 2,

e

X Fig. 7. Pore size distribution function for intergranular pores at
E: several times. 1initial distribution is Weibull with m = 3.

Fig. 8. Zeroth moment of the pore distribution function (propor-
E tional to number of pores) as a function of time for intragranular

pores with four initial pore size distriputions. Solid 1ine: log-

==

normal. Short-dashed 1ine: Weibull, m = 2. Dot~-dashed 1ine:
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Weibull, m = 2.5. Long-dashed 1ine: Weibull, m = 3,

Fig. 9. Third moment of the pore distribution function (proportional
to porosity) as a function of time for intragranular pores with five
initial pore size distributions. Solid 1ine: log-normal. Short-
dashed 1ine: Weibull, m = 2. Dot-dashed 1ine: Weibuil, m = 2.5.

Long-dashed 1ine: Weibull, m = 3. Dotted 1ine: single pore size.

Fig. 10. Zeroth moment of the pore distribution function (propor-

tional to number of pores) as a function of time for intragranular
pores with four initial pore size distributions. Solid 1ine: log~
normal, Short-dashed 1ine: Weibull, m = 2. Dot-dashed line:

Weibull, m = 2.5. Long-dashed 1ine: Weibull, m = 3.

Fig. 11. Third moment of the pore distribution function (propor-
tional to porosity) as a function of time for intragranular pores
with five initial pore size distributions. Solid line: log-normal.
Short-dashed 1ine: Weibull, m = 2, Dot-dashed line: Weibull, m =
2.5. Long-dashed 1ine: Weibull, m = 3, Dotted line: single pore

size.
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