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This report contains a summary of research carried out under

AFOSR contract No. 82-0238, "Hot Isostatic Pressing of Ceramic Powder

Compacts", the period of performance of which was June 15, 1982 to Janu-

ary 15, 1986. The major results obtained under this program have been,

or are currently being, published in the open literature. The pertinent

reprints and preprints are included as appendices, and these contain

complete descriptions of both methods and results. A brief summary of

the research is presented in the next section, with references made to
the detailed discussions in the appendices.
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SUMMARY OF RESEARCH

The objective of this research was to investigate the poten-

tial of theoretical models for describing and predicting the densifica-

tion behavior of ceramics in hot isostatic pressing (HIP). As a test

material, we selected Reynolds RC-HP-DBM, a fine-grained, high-purity

alumina powder. The kinetics of densification for this material were

studied at temperatures of 1273 K to 1423 K and pressures of 34 Wa to

103 MPa. The primary novel feature of the experiments was that a dila-

tometer was used to obtain a continuous record of sample density. Use

of the dilatometer provided a very detailed view of the kinetics of den-

sification, and allowed us to critically evaluate theoretical models for

densification.

At the outset of this work we expected that we would be per-

forming a large number of simple hot isostatic pressing experiments and

correlating them with a number of theories of densification. Accord-

ingly, we developed a system of computer programs for the calculation of

densification mechanism maps. These programs are self-contained and

intended to be readily adapted to various densification mechanisms or

even to different problems such as creep. The programs are also

designed to be "portable", that is, able to be run readily on a variety

of computer systems. It is expected that the programs would run on many

computer systems with changes to only the few routines that form the

interface with the plotter. A description of the algorithms used in the

program is found in Appendix A.

Study of the densification maps for alumina indicated that,

for applied gas pressures of up to 100 MPa and temperatures up to at

least 1473 K, the dominant mechanism of densification would be grain-

boundary diffusion for the material under study. Specifically, the

predictions based on standard theories of densification were that tran-

sport of aluminum ions would be rate-limiting, that aluminum ions would

move primarily by grain-boundary diffusion, and that charge compensation

would occur primarily by diffusion of oxygen ions through the lattice.
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Near the end of the first year of the project, development of

the HIP dilatometer was completed. This offered us a choice of two

experimental strategies: we could perform a large number of relatively

inexpensive, uninstrumented HIP experiments, or we could perform a

smaller number of more expensive experiments using the dilatometer to

monitor changes in sample geometry, and keeping continuous records of

temperature and applied pressbre. A few tests made It clear that the

latter choice was more effective due to the large volume of data which

could be collected from a single experiment. In addition, when taking

data with the dilatometer, we could study the effects of changing HIP

conditions without considering sample-to-sample and run-to-run varia-

tions. A discussion of the principles of the dilatometer and the bene-

fits of its use is found in Appendix B.

Methods of data analysis were developed for the dilatometer.

The dilatometer measures the diameter of an encapsulated cylindrical
sample, but the fractional density of the sample is desired. It wasI necessary to develop a model for geometrical changes in the sample and

capsule occurring during densification and their effect on the measured

diameter. The effects of densification, thermal expansion, and changes

in the length-to-diameter ratio of the sample were included. Details of

the data analysis are described in Appendix C.
As mentioned above, a HIP experiment using the dilatometer

provides a great deal of information, while an ordinary HIP experiment

gives only the initial and final density. In particular, the dilatome-

ter provides a much clearer and more detailed description of the kinet-

ics of HIP than is ordinarily available. To accommodate this new look

at HIP, we found that it was more appropriate to consider theoretically

calculated plots of density as a function of time than it was to use

densification maps. Accordingly, we developed programs to solve the

differential eauation for densification. This approach is complementary

to the use of maps: the maps provide qualitative information regarding

changes of densification rate in response to temperature and pressure,

while integration of the densification rate gives the details of the

density history resulting from a specific HIP treatment. The programs
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for calculating density histories were designed so that experimental

records of pressure and temperature could be used with theoretical

models of densification. As a result, we could readily plot and compare

the experimental and theoretical densification histaries. This provided

a very graphic means for evaluating the theory.

The most instructive of these calculations was for experiments

in which we changed the pressure during densification. In standard

theories of densification by diffusion, the densification rate varies

linearly with the applied gas pressure. As discussed in Appendix D, we

found that our data could not be reconciled with such a model. However,

the data were consistent with a model in which the densification rate

varies approximately with the square of the applied gas pressure. The

densification maps calculated early in the project were incomplete in

that no mechanism with such a pressure dependence had been included.

This discovery led us to review the theotetical basis of

models for a wide variety of densification mechanisms. As part of this

review, we uncovered an error in a published model of densification. A

description of the correction of the error is found in Appendix E.

The second-power dependence of the densification rate on

applied pressure forms an unusual intermediate between the models of

densification by diffusion, which predict a first-power dependence, and

models of densification by dislocation motion, which predict third- or

higher-power dependence. We found, however, that interface-reaction-

controlled grain-boundary diffusion had been proposed as a mechanism for

creep deformation, and that this mechanism resulted in a second-power

dependence of creep rate on applied stress. By changing the grain

geometry, we were able to adapt the model to describe densification

rather than creep. Two versions of the model were developed: one with

impinging spherical particles for the initial stage of densification and

one with isolated spherical pores for the final stage. A complete

development of the model and comparisons of e>:-imental and theoretical

results are found in Appendix F.

The model of densification by interface-reaction-controlled

grain-boundary diffusion was found to fit the data well for fractional



Fidensities up to 0.9, but the densification rate was overestimated at

higher densities. Since the final stage of densification is important

in determining the mechanical properties of high-performance ceramics,

this situation was thought to deserve closer study. We found that both

our model and standard models of densification by diffusion predict that

densification will proceed rapidly to completion. This is in marked

contrast to our 9xperimental data showing a gradual decrease in densifi-

cation rate and to the common observation that it is often difficult to

;ichieve full density.I One possible reason for the discrepancy between theory and

experiment is that standard theories assume a single pore size. Since

it is assumed that all the pores start at the same size at the beginning

the final stage of denslfication, they all remain the same size, shrink

together, and finally vanish simultaneously. This is hardly a plausible

picture. A more reasonable approach is to assume that there is a dis-

tribution of pors sizes, with small pores vanishing rather quickly while

large pores are more persistent. Such a description of final-stage den-I sification is given in Appendix G. It is found that even a distribution

of pore sizes with a modest variance can produce a much more gradual

"approach toward full density.

RN
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CONCLUSIONS

The following conclusions may be drawn from this research:

The use of a dilatometer can provide a detailed record of den-

sity during a HIP experiment. This amount of information obtained in

this way is so much larger than that produced from an ordinary HIP

experiment that it is possible to reduce greatly the number of experi-

ments and total cost to identify densification mechanisms or character-

ize densification behavior.

While densification maps provide a good summary of a large

body of densification data, they are less useful for analysis of experi-

mental kinetic data. With data from a dilatometer, it is more appropri-

ate to compare plots of the recorded density history with a theoreti-

cally calculated density history.

It has been shown that models using a single particle size can

provide an adequate description of densification at fractional densities

up to 0.9. At higher densities, models using single pore and particle

sizes predict excessive densification rates. A detailed description of

the microstructure, especially of the pore size distribution, is neces-

sary for adequate predictions of final-stage densification kinetics.

a,.
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RECOMMENDED RESEARCH

i As mentioned above, models of densification which use a single

grain size and pore size do not provide an adequate description of den-

sification at fractional densities above 0.9. Unfortunately, the

mechanical properties of high-performance ceramics depend sensitively on

density in this range. In order to improve the predictive capabilities

of theoretical models to the point at which they can be used effectively

Sto reduce the cost of developing new ceramic materials, it is recom-

mended that additional study of the final stage of densification be per-

formed. Since it has been found that the final stage of densification

is slinificantly affected by the distributior of pore sizes, it is

appropriate to performn detailed quantitative metallography to determine

the pore size distribution functions and to attempt to relate these

functions to powder properties such as particle size distribution and

degree of agglomeration.

kký
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A RATION' 'IETHOD FOR CALCULATING MECHANISM MAPS

J. Kevin McCoy
Battelle, Columbus Laboratories

Columbus, Ohio 43201

e 'Received February /, 1983)

INTRODUCTI0N

Since the introduction of mechanism maps by Weertman and Weertman (1) and their subse-
quent development by Ashby (2), there has been a great and growing interest in the construction
and use of such maps. They have been used to describe the kinetics of creep (2,3), hat pressing
(4), sintering (5), and fracture (6). In addition, potential-pH diagrams (7), which are con-
structed in a similar way, have been used to describe the corrosion behavior of a large number
of materials. The discussion in this paper is couched in terms of deformation modeling, but theI methods may be applied readily to other problems.

A variety of algorithms have been used in the construction of tlese maps, but for the
present discussion, it will suffice to classify them as "linear" or "point-by-point". The
linear methods rely oii the use of straight lines to represent the contours and boundaries in
the map, with, in some cases, the use of a change of variables to produce the necessary linear-

p ization (8). The point-by-point methods, on the other hand, avoid the ac..su..tic Of $1,,earity
by making an exhaustive scan of the whole map. The point-by-point appro'.ch is often thought of
as being inefficient because past programs required the evaluation of rates at a large number of

] •points, while linear methods involve the treatment of a linear system at relatively few points.
For metallurgical processes, however, it is noc clear that linearization is always possible, so
it is natural to choose the more general point-by-point approach.

Unfortunately, the point-by-point programs which were available to us were less than
inspiring. They did not meet modern standards of modularity, documentation, or user convenience,
and they aopeared to be slipshod in their use of data. A review of the literature further sug-

I 'gested that no study had been made of the methods necessary for systematic calculation and plot-
t• ting of mechanism maps. Accordingly, we set out to develop methods which make careful use of

all data and which coulJ be used to plot maps in essentially final form. Besides the intended
advantage of producing finished maps, we also found that our algorithm is surprisingly efficient
and requires far fewer points than other point-by-point methods.

Calculation of Boundaries

Let us state the problem of the construction of a mechanism map in abstract terms. We
have n functions fi, i=l, n, each of which is dependent on two variables. At any point (x,y),
the value fi(x,y) is the rate of deformation via the ith mechanism. The map describes a rec-
tangular region Xmin < x ' Xax, Ymin < Y < Ymax- The first step in the construction of the map
is to divide the map into one or more regions where fi(x,y)> f-(xy) for all j # i. Such a
region will be called a region of dominance of mechanism i. Tge second step is to find a set
of contour lines for each of the regions. The third step is to plot the boundaries of the
regions and the contours in a smooth and efficient manner. In the rem3inder of this paper we
will discuss each of these cnrie steps in sequence. Finally, We will present examples which
illustrate the efficiency of the algorithm.

the ae To make the problem tractable, a regular grid is superimposed on the map, dividing
Sthe area of the map into rectangles. The density of the grid will vary from one map to another,

based on the complexity of the map, the desired level of smoothness of the curves, and the need
for computational speed.

In calculating the map, each rectangle is treated separately, and the portion of any
boundary or contour which lies within the rectangle is represented by a line segment. The

563
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general efficiency of the algorithm may be improved by careful storage of the data. It is de-
sirable to evaluate the functions fi only once at each grid point and to save the results of the
analysis of individual sides of a rectangle for subsequent use in analysis of adjacent rectangles.

Since each rectangle is treated separately, let us consider the determination of the
boundaries of the regions of dominance which fall within one rectangle. We will first discuss
the topology of the boundaries, then investigate how the topology and positions of the boundaries
may be calculated.

Figure 1 shows four topologically distinct arrangements of boundaries between regions
of dominance in one rectangle of the map. We have found that real mechanism maps very rarely
require more complex topologies.

In calculating the positions of the boundaries, no data are used except the values of
the functions fi at the four corners of the rectangle. All boundiries-within the rectangle are
assumed to be line segments.

Rather than analyzing the rectangle as a whole, we study each side individually, then
combine the results for the four sides. We assume that the rates of the various mechanisms vary
linearly along the sides of the rectangle. Therefore, if one'mechanism is dominant at both ends
of a side, it is dominant over the entire side. If two different mechanisms are dominant at the
two ends, there are two nr three dominant mechanisms on the side, and the points where the
boundary or boundaries intersect the side may be calculated using a linear interpolant. Sides
with four or more dominant mechanisms can be ignored because of the assumption that only the
four topologies of Figure I are present.

The topology of the rectangle.may be determined by simply adding the number of points
where boundaries intersect the four sides of the rectangle. Plotting is trivial if there are
zero or two such points. If the boundaries intersect the sides of'the rectangle at four points
(two nonintersecting boundaries), it is only necessary to draw the boundaries between appropriate
pairs of points. If the boundaries intersect-the sides of the rectangle at three points (three
intersecting boundaries), plotting cannot be done until the location of the intersection is
found. In this case, we temporarily treat the rectangle as if only two dominant mechanisms were
present, so that the boundary goes all the way across the rectangle. The three line segments ob-
tained will intersect at three points, the centroid of which is used as the intersection of the
three boundaries. This procedure is illustrated in Figure 2. The point of intersection could be
calculated directly by using a bilinear interpolant and solving for the point at which all three
mechanisms have equal rates.

Calculation of Contours

Let us now consider the methods used in calculating the positions of the contours of
constant deformation rate. First we will consider the case where the entire rectangle lies
within a single region of dominance, then we will see how the procedure must be modified to
treat cases in which the rectangle is divided between two or more regions of dominance.

In either case, the first step in contouring is to find out which contours will pass
through the rectangle. To do this, we must find the minimum and maximum rates of the dominant
mechanism(s). If a single mechanism is dominant throughout the rectangle, it is only necessary
to check for extrema at the four corners. If there are two or more dominant mechanisms, it is
also necessary to check the rates at the points where the boundaries intersect the sides of the
rectangle and, if there is such a point, where three boundaries intersect. Given the minimum
and maximum rate, the minimum and maximum contour levels follow immed;ately.

For the case in which a single mechanism is dominant throughout the rectangle, we first
search all four sides of the rectangle for points where the rate of the dominant mechanism is the
same as a contour level. There will be eitner two or four such points. If there are two points,
the contour is taken to be the line segment which connects the points. If there are four points,
a more or less arbitrary criterion must be used to decide which pairs of points will be connected
by contours. I.,

For the case in which two or more mechanisms are dominant in different portions of the
rectangle, each mechanism is contoured individually as if it were dominant throughout the rec-
tangle. The contour segments are then "cut to length" by truncating them at the point where
they enter a different region of dominance.
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Sorting and Plotting

If the methods described above are applied to every rectangle in the map, the
boundaries and contours will be completely calculated , at least in principlt, ready to be

L plotted. To avoid inefficient use of the plotter and t,. jssure a smanth appearance, however, it
is necessary to sort the line segments.

It is clear that standard algorithms for sorting a list of numbers cantiat be used.
All of the efficient sorting algorithms (Shell sort (9), quick sort (10), heap sort (11)) make
use of the fact that, if two numbers are chosen at random from the list, it is possible to tell
which of the two will precede the other when the sort has been completed. With a list of line
segments, however, it is usually not possible to tell if two randomly chcsen line segments are
even part of the same curve.

L The simplest approach to this problem would be to compare the pusition of the last
known point on the curve with each endpoint of each line segment in the list. Segments which

- have been plotted would be marked in some way to prevent subsequent replotting, Such an

approach would work, but it would be very slow if the list were long.

The efficiency of the basic algorithm described above can be improved in two ways:
First, we can restrict our definition of a curve, and second, we can exploit the existing order
in the list of line segments.

4. Since we are dealing with a list of line segments, the "curves" which we have been
discussing are in fact polygonal paths. Usually, each side of these polygonal paths corresponds
to a single line segment. Let us now define a "directed curve" as a polygonal path in .:hich
each side points to the right or straight up. Figure 3 shows a curve and its dissection into
directed curves.

"From the definition of a directed cu' e: it follows that each of the line segments inP a directed curv• hLs a definite starting poinc and a definite ending point. The x coordinate

of the starting point is less than the x coordinate of the endirg point, and if these are equal,
the y coordinate o the starting point is less than the y coordinate of the ending point. Also,
each line segment in a directed curve except the first and the last has a unique predecessor and
a unique succeseor.

The use of directed curves has two practical consequences for the sorting ind plotting
of a list of finE segments. First, as Figure 3 makes clear, complicated curves may be broken up
into several directed curves which are plotted separately, This is not desirable, tut it has
little impact upon the preparation of mechanism maps since it rarely occurs. Second, when
searching for a successor to the current line segment, the position of the ending roint of the

current line segment need only be compared to the starting points of the potential successors;
the ending points may be ignored. This cuts the length of the search in half.

Let us now investigate how the search time can be cut further by exploiting the exist-
ing order in the list of line segments. When we calculate a map, we scan the map in columns of
rectangles, working from the left edge of the map to the right edge. Within each column, we
scan from the bottom of the column to the top. Within each rectangle, we sort the list of line

S.-segments according to the y coordinate of the starting point of the segment. Since the rec-

tangles do not overlap, the ordering of the y coordinate extends throughout the column. The
*: list of line segments is, therefore, highly ordered: it is divided into columns; the segments

in one column are ordered from bottom to top; each segment points to the right or straight up.

From this, it is clear that the successor to a given line segment must be either in
the current column (the column which contains the current 1-ne segment) or in the column just
to the right of the current column. Therefore, it is only necessary to search two columns when
looking for the successor rather than the whole list. If no successor is found in these two
columns, the curve ends.

Further gains in efficiency can be realized by using the fact that the seyments are
' ordered on the y coordinate of their starting points. When searching the current co'umn, the

search may start at the current line segment and stnp as soon as the y coordinate of 1 potential

successor is so large or so small that segments which are further up or down the column cannot
possibly join up with the current segment. A similar strategy may be used in searchirg the
column just to the right of the current column..



566 CALCULATING MECHANISM MAPS Vol. 17, No. 4

Examples

Figure 4 shows two mechanism maps which were calculated and plotted by the methods
described here. The same data and constitutive equations were used for both maps, but grids of
two different densities were used. It has been claimed (3,8) that a typical map requires the
evaluation of deformation rates at 4000 to 6000 points, and maps have been published with at
'least 6900 evaluation points (12). By contrast, Figure 4a used evaluations at 441 points, and
irregularities in the curves are barely perceptible. Only 169 evaluations were used in the
preparation of F;_jre 4b. The resulting irregularities in the map are visible but hardly ob-
jectionable. Clearly, careful use of the data results in a dramatic improvement in efficiency.

Acknowledgment

This work was supported by the Air Force Office of Scientific Research under
Contract AFOSR-82-0238.

References

1. J. Weertman and J. R. Weertman, in R. W. Cahn (ed.) Physical Metallurgy, North-Holland,
Amsterdam, p. 793 (1965).

2. M. F. Ashby, Acta Met., 20, 887 (1972).
3. T. G. Langdon and F. A. Mohamed, Mater. Sci. Eng., 32, 103 (197).
4. P. A. Urick and M. A. Notis, J. Am. Ceram. Soc., 56, 570 (1973).
5. F. B. Swinkels and M. F. Ashby, Acta Met., 29, 259 (1981).
6. C. Gandhi and M. F. Ashby, Acta Met., 27, 1565 (1979).
7. P. B. Linkson, B. D. Phillips and C. D. Rowles, Corros. Sci., 19, 613 (1979).
8. T. G. Langdon and F. A. Mohamed, J. Mater. Sci., 13, 1282 (1978).
"9. D. L. Shell, Comm. ACM, 2, No. 7, 30 (1959).
10. C.A.R. Hoare, Comm. ACM, 4, 321 (1962).
11. J.W.J. Williams, Comm, ACM, 7, 347 (1964).
12. A. Mohan, N. C. Soni and V. K. Moorthy, J. Nucl. Mater., 79, 312 (1979).

Sa b

C d
FIG. 1

Four Possible Topologies for Boundaries in One
Rectangle of the Map

a. No boundaries, b. One boundary,
c. Two nonintersecting boundaries,
d. Three intersecting boundaries.
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Treatment of Three Intersecting Boundaries: a,b,c. Locatior. of single boundary

if third mechanism were absent. Dotted potion of boundary will be cut off by
third mechanism. d. Superposition of a, b, and c. Due to approximations,
bounddries do not intersect at a single point, e. Composite map with regiuns
of dominance labeled. Intersection is drawn at centroid of middle triangle in d.
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FIG. 3

A Typical Curve and Its Dissection Into Three
, Directed Curves
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Dilatometer Technique for Hot-Isostatic Pressing*

3. KEVIN McCoY AND ROGER R. WILLS"

Battelle Columbus Laboratories
505 King Avenue, Columbus, OH 43201-2693

A dilatometer technique is described for hot isostatic pressing (HIP) that provides
.far more data from each HIP experiment than can be obtained by conventional HIP
practice. The design, data analysis, and typical results obtained with the dilatome-
ter are described.

Introduction

"Before hot isostatic pressing (HIP) can be applied in the production of a
ceramic component, it is necessary to determine an appropriate HIP cycle

I glfor developing the desired properties. such as a given level of density.
Those who are involved in cycle development for HIP know that this is
frequently a long. difficult, trial-and-error process. This paper describes a
dilatometer technique for HIP that provides far more data from each HIP
experiment than can be obtained Ity conventional HIP practice., Because
more information is collected from each experiment, the amount of work
necessary for cycle development is greatly reduced. The dilatometer
technique was developed at Battelle-Columbus with support from the Air
Force Office of Scientific Research. To explain how this method works.
we will first describe the design of the dilatometer. then the data analy-
sis. and finally give an example of typical results obtained by this meth-
od.

Procedure
The design of the dilatometer is shown schematically in Fig. 1. A cy-

lindrical sample, shown end-on in the figure, is heated in P cylindrical
furnace. The sample temperature is monitored by a thermocouple. From
the cold zone. well outside the furnace, two tungsten rods run up to the
sample. The rods are attached to pivots, which are shown as triangles,
and are held in contact with the sample by a spring, which is not shown.
The bottom ends of the tungsten rods are attached to a linear variable
differential transformer (LVDT). The entire apparatus is enclosed in an

_ autoclave.
The thermocouple and LVDT provide a continuous record of the

temperature and diameter of the sample as functions of time. These data
are subsequently used to calculate a record of density as a function of
time. To understand how they are used. it is necessary to take a closer

N look at the sample geometry. Figure 2 shows a cutaway view of the sam-
ple. The sample proper is a ceramic cylinder: it is encased in a close-
fitting. airtight. cylindrical metal capsule. Strictly speaking. the dilatome-
ter provides a record of the capsule outside diameter rather than a
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record of the diameter of the sample itself. Therefore. the computational
procedure may be summarized as follows: We assume some fractional
density. then calculate the corresponding capsule diameter, using the
treatment described below. If the calculated diameter agrees with the
value reported by the dilatometer. then the assumed fractional density is
correct. If not, a new fractional density is chosen and the process is re-
peated.

There is an apparent weakness in this computational procedure: The
dilatometer gives only the diameter of the capsule. but the length will
also affect the calculated density. This difficulty is handled in the fol-
lowing way. As the sample densifies, its length changes from its initial
value Li, through some intermediate value L, to a final value Lf.

Similarly. the diameter changes from its initial value Di, through
some intermediate value D, to a final value Df. The initial dimensions can
be determined before the sample is placed in the capsule, and the final
dimensions can be determined after HIP by removing the capsule. It is
then assumed that the current length of the sample is related to the cur-
rent diameter by the equation

= (D)(

The value of the constant k is obtained by inserting the final values of L
and D. and solving for k. Given Eq. 1 and the initial density and initial di-
mensions of the sample. the length and diameter of the sample can be
calculated for any specified density. Typical values of k are about 0.85. so
changes in the length/diameter ratio are relatively small.

Changes in the geometry of the sample naturally give rise to changes
in the geometry of the capsule: as densification proceeds. there is a dis-
tinct thickening of the capsule sidewall. This effect is treated by applying
the law of conservation of matter. It is assumed that any matter in the
sidewall at the beginning of HIP stays in the sidewall, and that matter
from the capsule ends does not transfer to, or from, the sidewall. It is also
assumed that the capsule stays in close contact with the sample. so the
inside diameter of the capsule equals the diameter of the sample, and the
length of the capsule sidewall equals the length of thu sample.

The computational procedure given above can now be described in
greater detail. A fractional density is assumed for the sample, and from
this the sample dimensions at 20'C are calculated. The coefficient of
thermal expansion is then used to determine the sample dimensions at
the actual HIP temperature. From the initial sidewall mass, the sidewall
volume at 20' C is calculated, and the coefficient of thermal expansion for
the capsule material is used to determine the sidewall volume at tempera-
ture. The sample dimensions and capsule sidewall volume are then used
to calculate the capsule sidewall thickness, and the capsule outside di-
ameter is just the sample diameter plus twice the sidewall thickness. If
the calculated capsule diameter is equal to the diameter reported by the
dilatometer. then the assumed density is correct. otherwise, it is necessa-
ry to try a different fractional density.
Results

The type of results obtained by this method is shown in Fig. 3. Dur-
ing most of the heatup of the sample. essentially no densification occurs.
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While the sample was held at 1L00°C and 34 MPa. it densified to about
80% of its theoretical density. At this po:nt, the pressure was then in-
creased to 100 MPa in order to speed up densification. These conditions
were maintained until the sample density reached 91% of theoretical
density. Another increase in densification rate was then obtained by
increasing the temperature to 1 150°C. Under these conditions, the sample
reached a density of 97%. All this information was obtained from a single
experiment. If we had used conventional HIP practice. one experiment
would have given us only the initial and final densities. ID obtain a densi-
ty vs time curve of the type shown here would have required many exper-
iments. To make matters worse, there would have been sample-to-sample
and run-to-run variations, which would have greatly complicated data
analysis. With the dilatometer. however, a single plot is obtained which
clearly shows the response of the system to changes in temperature and
pressure, and that is vital information in developing an appropriate HIP
cycle.

Conclusions
In summary. the primary feature of this dilatometer technique is that

it provides a continuous record of density as a function of time during
HIP. The large amount of information provided by the method is the key
to its principal benefit: much faster development of HIP cycles.

*A more detailed version of this work has been accepted for publication in the American
Ceramic Society Bulletin.

'No% at TRW, Inc.. Cleveland. OH.
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Fig. 1. Design of dilatometer.
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CAPSUI -E

Fig. 2. Sample geometry.
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Fig. 3. Results of typical HIP experiment.
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RPezpetd fron the Amenco Cenrmin society bulletin. Vol 64. No. 9. 1985

Copyriglht 19 by The Amerncn Zemmac Somity

Continuous Monitoring of Volumetric Changes in Ceramic
Powder Compacts During Hot Isostatic Pressing
J. KEVIN McCOY, LARRY E. MUTTART, A two-probe diiatometer, fifted into a molyb-
and ROGER R. WILLS denum furnace, permits continuous record-
Battelle Labs, Columbus, OH 43201-2693 inq of the volumetric changes occurring

inside a metal-encapsulated ceramic pow-
der compact during hot isostatic pressing.
The effects of thermal expansion of the

roe hot isostatic pressing (HIP) of ceramic powder compacts metal capsule and the ceramic compact are
consists of several sequential steps. These are: 1) green preform deleted from the raw data by a computer

preparation by an appropriate forming process; 2) preform encap- program, ana the nonlinear shrinkage rela-
sulation i a pressure-transmitting membrane, capsule, or "can";3) actual Hiping by. exposing the encapsulated powder compact to tion between the capsule diameter and

a high-pressure gas (typically 100 to 200 MPa) at elevated tem- length is allowed for. Use of the equipment
perature; and 4) removing the encapsulant surrounding the HIPed is demonstrated in the hot isostatic press-
powder compact. ing of a submicrometer alumina powder en-

Research in this area is usually performed on a trial-and-error ing of a sub icleter alumer
basis by analyzing information obtained on samples before and closed in a stainless steel capsule.
after HIP'ing in an effort to determine the optimum HIP conditions
needed to achieve either complete densification or to produce a
ceramic with a specific fractional density (the ratio of the volume
of solid in a material to the total volume of material including a close-fitting cylindrical alumina powder compact. Two therino-
pores). The process is iterative and sometimes lengthy. couples monitor the temperature, one in contact with the platform

The technique described herein allows volumetric changes to be supporting the specimen. the other slightly above the specimen.
monitored continuousiy. Data are collected throughout the HIP An asbestos-based, ceramic insulating plate below the base
cycle, consequently the temperatare and prLssure processing pa- heater and radiation baffles attached to the tungsten probes main-
ramzters car be changed if the selected parameters do not appear tain the opereting temperature of the LVDT at 180°C during
to be. achieving the desired objective (usually full density). Data HIPing of alumina at 1200°C. The LVDT range of 0.254 cm is
output is corrected for thermal expansion effects to obtain exact linear to within 0.25%. Preliminary experiments were performed
density changes as a function of time. This paper briefly describes using a molybdenum disk to determine the accuracy of the probe/
the apparatus and the error-correction routine. The use of the LVDT equipment under HIP conditions A multichannel chart
equipment is demonstrated in HIP'mg submicron alumina powder recorder monitored the LVDT output, temperature, and pressure.
in a stainless steel capsule. The measured thermal expansion of this disk at 1300°C andnastanles 1600 0C differed from the published data' by 0.5%.
Apparatus

HIP equipment consists of gas storage tanks, compressors, and Experimental
a water-cooled autoclave containing the furnace and heat shield Cylindrical specimens, 26-mm diameter by 102 mm long, were
package. The furnace is usually loaded through the top and the formed from submicron alumina* powders by isostatic pressing at
electrical connections lead from the bottom of the vessel. A 345 MPa. These specimens were then bisque fired at 1120°C and
10.16-cm diameter. 11.68-cm high molybdenum furnace capable ground to final 22-mm diameter and 39.68 mm length. This proce-
of operating at 1750 0C was modified to contain a pedestal and a dure was adopted to ensure that the alumina specimens closely fit
two-probe dilatometer (see Fig. i) attached to a lincar variable the stairiless steel capsules. The specimens and cap.ules were then
differential transformer (LVDT). The 3.175-mm diametc, tungsten dried and vacuum outgassed at 1000°C for I hour. Each specimen
probes are in close contact with a stainless steel capsule centaining was weighed, and the initial dimensions of each specimen and

Table I. Physical Measurements ot Samples and Capsules for
Hot Isostatic Pressing Required for Data Manipulation

Expesgment No.

Dimension (mm) 1 2 3 4 3 6

Initial sample* length 39.67 39.68 39.70 39.66 39.67 39.68
Initial capsule length 51.32 52.24 49.90 50.91 50.82 52.45
Final capsule length 46.82 47.90 45.28 49.04 46.35 48.22
Initial total end plug

length 11.10 11.13 9.45 10.97 11.10 12.76
Final total end plug

length 11.69 11.60 10.08 11.16 11.79 1357
Initial sample diameter 22.00 22.00 22.00 22 00 22.01 22 01
Initial capsule diameter 25.39 25.37 25.38 25.36 25 37 25.38
Final capsule diameter 23.28 23.85 23.33 24.53 23.11 23.25
Initial capsule wall

thickness 1.57 1.57 1.57 1.57 !.66 1.66"*Member. the American Ceramic Socfety Final capsule wall
"Reynolds RC-HP-DBM Alumina, Rcynolds Mel-

als Co. Bauxite, AR thickness 2.12 1.98 2.08 1.83 2.18 2.72
Initial fractional

Rcce:ved October 0. ,Q_4. •.-,sd copy cece,-td density 0.6562 0.6556 0.6556 0.6549 0 6370 0.6368
February I. 1985, approved Ma:ch 26. 1985 'Sample refers to ceramic compact
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Fig. 2. Cross section of capsule and sample for hot isostatic press-
ing, showing measurements. (1) Sample length, (2) capsule length,

+ ~(3,4) end plug length, (5) sample diameter, (6) capsule diameter, (7)
II I capsule wall thickness. Gap between capsule and sample (shaded

area) is exaggerated; dashed line is axis of capsule.

t set to accommodate initial contraction of the capsule diameter.
Each HIP cycle involved: 1) initial gas pressurization, 2) heating
at 400'C per hour to the d.&sired temperature under a constant
pressure, 3) HIPing under the required temperature/pressure con-
ditions, and 4) allowing the specimen to cool to room temperature.

13 The final dimensions of the capsule (diameter and length) and the
thickness of the capsule end plugs were determined with a micro-

14 meter (see Table I). While seven measurements are necessary to
describe the initial capsule and sample geometries, only five are

10 required after HIPing since there is no longer a gap between the
sample and the capsule. The immersion technique was used to

12 determine the sample density after the capsule was removed.
,, Dtring the HIP cycle, changes in the position of the probe- are

registered in the LVDT output recorded by the chart recorder.
Several factors are responsible for this movement. Initial pressur-
ization of the autoclaves caused some small movement, but, after
pressure equilibration, the chart reading returned to the zero posi-
tion. During heatup, capsule deformation results in a thickened

S1capsule wall and both the stainless steel capsule and the alumina
powder compact expand. All of these effects give rise to a decrease
in the value registered by the chart recorder. Densification result.
in a decreased capsule diameter, and the chart pen moves in the

1x , .opposite direction. The actual point recorded by the chart pen at
any one time is the sum of these effects.

Conversion of LVDT Output to Fractional Density Data
Data from several sources are combined to produce density as a

function of ume. The thermocouples and LVDT provide the tem-
perature of the sample and the outsidc diameter uf the icaile as
a function of time. The dimensiins of the sample and capsult at the
beginning and end of the HIP cycle are also needed to calculate the
&•'itv. These data are then processed by a program that compen-
sates for Qitc'ral expansion and thickening of the capsule wall.

23 24 25 Data reduztion ,:.rts by keying temperature. pressure, and
capsule-shrinkage data fro,,w the strip chart recorders into a com-

Fig. 1. Schematic of dilatometer and furnace for hot isostatic puter. Data points are chosen so tm,: discrete points will provide a
pressing. Key: 1. encased thermocouples (W/Re6); 2. specimen; good description of the actual experunent. Since the time interval
3. spectmen trough; 4. thermal barrier and cover: 5. radiation and between data points is small, linear interpolatio. ;' used between
gas flow baffles; 6. perforated moly hearth; 7. moly-tubular pedestal; the readings. Physical dimensions and initial density Z3.ta are in-
8. moly ribbon heater; 9. alumina base plates; 10. radiation shields; serted at the beginning of the file.
11. couple connection; 12. power connection; 13. furnace base; The data are convened to fractional densities by a FORTRAN
14. transite base; 15. frame; 16. tungsten probes; 17. inverted coml ater program. Before discussing the algorithm, it is appropn-
pedestal; 18. spring L'eel hinge each end; 19. extention of probe ate to describe the underlying assumptions used in deriving the
arms; 20. very light compisu:ive spring; 21. yoke; 22 spring steel algorithm and to estimate the error incurred. Using the example of
yoke arms; 23. physical zero adjust screw; 24. LVDT; 25. core. an alumina powder compact encapsulated in a stainless steel cap-

sule, the integrated thermal expansions of alumina and stainlessr' steel am:

capsule taken with a micrometer Figure 2 shows the measured
dimensions and actual values are listed in Table I The capsules aAl2O3=7.2978E-6(T-293)
were then sealed under vacuum by electron beam welding. +7.8486E-10(T-293)(T-800) (IA)

After each sample was placed in contact with the tungsten
probes, adjustments were made to the LVDT and the chart recorder 0.304SS= 1.7751E-5(T--293)

was adjusted to zero. Mte zero position on the chart recorder was +5.0423E-9(T-293)(T-800) (IB)

S CERAMIC BULLETIrN. VOL 64, NO. 9 (1985) 1241
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Table II. Capsule Sidewall Masses Determined change in shape accompanies the density change. The capsule's
by Various Methods diameter is recorded continuously, but its length is measured only

Experiment Sidewall mass (g) at the beginning and end of the HIP cycle. It is therefore necessary
No Method I Method 2 Method 3 to assume some relationship between the length and diameter dur-
1 37.440 36.929 39.186 ing the HIP cycle. It is assumed that:

2 38.233 36.903 39.034 L(p,20) _ d(p,20
3 37.634 36.932 38.619 (2)
4 37.125 36.872 39.139 L(p,,20) - d(p,,20)!
5 38.883 38.843 39.169 where d(p,20) and L(p,20) denote the sample diameter and length,
6 38.714 38.704 38.582 respectively, at the fractional density in question and corrected to

20°C. The subscript i denotes an initial value. The exponent k is
set by the initial and final measured lengths and diameters of the
sample. A typical value for k is 0.85. The assumption of Eq. (2)In thes': equations, which are integrals of the ordinary coeffi- is essentially arbitrary, and other relations might be suggested,

cients of linear thermal expansion, E denotes multiplication by the
sti.cified power of 10, following the standard computational con- e.g.,
vention. The temperature T is given in degrees Kelvin. These L(p,20)-L(p,,20) =d(p,20)-d(p,,20)
equations were obtained by fitting a quadratic to data compiled by (3)
Touloukian.' Several other thermal effects might be anticipated. L(p1,20)-L(p,20)d(p1 ,20)-d(p,20)
First, ihe probe-rod dimensions will change both above and below where the subscriptf denotes a final value. The maximum differ-
the pivots. Second, the pivots themselves may move due to thermal ence in calculated sample lengths given by Eqs. (2) and (3), for
expansion. Third, the sample may be displaced Ps its supporting any sampl,: length, is about 0.013 ram. This corresponds to an
structure expands. Finally, when the temperature gradient has a error in density of less than 0.04%. This 1i considered negligible
component normal to the axis of the probe rods, the rods will in our experiments.
deflect. It is not feasible to perform an accurate calculation of all The initial gap between the sample and the capsule vanishes
thermal expansion effects. Our calculations have used a simple during HIP. Thus the -.- •1 sample diameter is the final outside
approach by assuming that all thermal expansions except those of capsule diameter minus tmice the final capsule wall thickness, and
the sample and the capsule have a negligible net effect on the the final sample length is the final capsule length minus the thick-
measured capsule diameter. The validity of this assumption is ness of the end plugs. This assumption is supported by sample
supported by the good agreement between the measured thermal examination after HIPing. No gaps were found after HIPing. A thin
expansion of the molybdenum disk and the literature data. 0.2-micron reaction layer consisting of oxides of iron, aluminum,

During the HIP cycle, the thickness of the capsule sidewall chromium, and nickel was detected between the alumina sample
changes due to thermal expansion of the encapsulant and densi- and the stainless steel capsule. An error in density of less than
fication of the sample. In determining sample density, it is neces- 0.05% results from ignoring this layer.
sary to consider both effects and to make some assumptions regard- Putting all these factors together, the program proceed, in the
ing redistribution of matter in the sidewall. We have assumed that following way. Pressure, temperature, and shrinkage are measured
the sidewall does not slip axially along the sample. Thus, changes for a given time, and the diameter of the capsule is calculated by
in the length or diameter of the sample or the capsule are assumed subtracting the shrinkage from the original size. Then the problem
to be taken up by wall thickening, rather than by moving matter to is attacked from the other direction. A fractional density i- assumed
or from the ends of the capsule. This assumption should be realistic for the alumina sample, and the diameter and length of the sample
since the capsule is alNays being forced against the sample by the at 20'C are calculated using Eq. (2) and the mass of the sample.
applied gas pressure. Although the assumption may be somewhat The dimensions of the sample at temperature are then calculated
inaccurate near the ends of the sample, our measurements of cap- using Equation (IA). The volume of the capsule sidewall at 200C
sule diameter are made near the middle of the sample, well re- is corrected for temperature by converting the linear expansion of
moved from end effects. Equation (IB) to a volume expansion, and the necessary wall

The importance of the correction for thermal expansion can be thickness to produce that volume is calculated. For the assumed
seen from the following example. Using the final dimensions from density, the outside diameter of the capsule will be the sample
expenment No. 1, the combined thermal expansion of the sample diameter plus twice the wall thickness. The program repeats this
and the capsule upon heating from 200 to 1150 0C is 0.378 mm in process with different values of density until t finds an outside
diameter if the fractional density of the sample remains constant. diameter equal in the actual diameter of the capsule. The output of
To proJ;;rca this large a change in size at constant temperature the program is a table consisting of five columns of data: tem-
would require a change of 0.08 in the fractional density of the perature, pressure, time, capsule shrinkage, and fractional density.
sample. Ond difficulty with this approach is that there are several meth-

Another important consideration is the effect of temperature and ods for treating the sidewall For any of these methods, the mass
densification on the shape of the sample. We have assumed that the of the sidewall is constant since it is assumed that the sidewall
thermal expansion of alumina is isotropic for a fixed fractional does not slip over the sample during densification, and the niass is
density. However, the length-to-diameter ratio of the sample at the given by
beginning of the HIP cycle is different from that at the end, so a M=.w(D -w)Lp (4)

F where w is the sidewall thickness, D is the outside diameter of the
Table Icapsule, L i, the length of sidewall, and p is the absolute density
Table Ill. Comparison of Final Densities as Determined by of the capsule material. The sidewall mass can be obtained in three
Calculation from Probe Data and by Direct Measurement ways: 1) w is assumed to be thie initial capsule wall thickness, D

Final fiactional density the initial outside diameter of the capsule, and L the initial capsule
No Calculated Measured* DW.femce length minus the initial length of the end plugs; 2) w is assumed
1 0.9576 0 960 -0.002 t- be the initial capsule wall thickness, D the initial outside di-
2 0.8712 0.876 -0.005 ameter of the capsule, and L the initial sample length; and 3) w is
3 0.9678 0.952 0.016 assumed to be the final capsule wall thickneis, D the final outside
4 0.7697 0.758 0.012 diameter of the capsule, and L the final samp'e length. The length
5 0.9678 0.984 -0.016 L used in Method I is longer than that usd in Method 2. the
6 0.9617 0.970 -0.008 difference being the length of the gaps betweei: the sample and the

*Determined by liquid immenion technique end plugs (see Fig. 2). Method 3 differs from the other two since
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Fig. 3. Data for experiment No. 2. (A) Pressure (solid line) and Fig. 4. Data for experiment No. 4. (A) Pressure (solid fine) and
temperature (dashed line) vs time. (B) Relative density calculated temperature (dashed line) vs time. (B) Relative density calculated
from temperature znd capsule shrinkage for alumina at 10000C and from temperature and capsule shrinkage. Density curve clearly
102 MPa shows effect of changing pressure from 34 to 70 MPa at 330 min.

it uses final measurements instead of initial ones. Table 11 shows 5% error in the thermal expansion of stainless steel would also
the sidewall masses determined by these three methods. As ex- cause an error of about 0.3%. Third. we have assumed that the
pected, the masses calculated by Method 2 are consistently smaller sample remains :ylindrical during densification, but this is not
than those given by Method 1, since Method 2 assumes a slightly quite correct. After HIP, the sides of the sample flare slightly
longer sidewall. Th," choice of sidewall mass affects the density toward the ends, and the end surfaces become slightly domed. The
value calculated from the capsule shrinkage data. Fractional densi- magnitude of the effects of this shape change on th," calculated final
ties can differ by as much as 4.6%. Method I can probably be density is unknown. Finally, if there are variations of density with
discounted since all samples, including those that exhibited a small position in the bisque-fired sample, the dilatometer may be provid-
density increase during HIPing, were bonded to the capsule. It is ing data on a portion of the sample which is not typical of the entire
likely that significant capsule deformation occurred prior to shrink- sample. If the fractional density in the vicinity of the dilatometer
age of the alumina compact and removed the gap between the probes differs from the average for the entire sample by 0 5%. the
sample and the capsule calculated final density will also be in error by 0.5%. In light of

We have used Method 3 to obtain the sidewall mass since it does these considerations, the calculated an;d measured densit:es appear
not require any assumption regarding the nature of the deformation to be in reasonable agreement.
of the capsule. In Table Il, we show the final densities as calcu-
lated from the probe data and determined directly by the immersion Application
technique. The root-mean-square difference between the calcu- The dilatometer and computer software program enables volu-
lated and measured densities is 1.2%. Among the various possible metric changes to be determined inside the autocla'.e. Thu!,, we can
sources of error, the following are probably the most significant. obtain quantitative data about censity changes and phase changes
First, there is some uncertainty in the measurements of the initial occuring during the HIP cycle Reaction kinetics data may also be
and final densities. These errors are estimated at about 0.2% each obtained by measuring densification rates as a function of density.
Second. there are significant variations in the reported values of the temperature. and pressure and altering the temperature and, or pres-
coefficients of thermal expansion, particularly for alumina. If the sure during the cycle. Examples of the use of the dilatometer are
coefficient ot linear thermal expansion for alumina is in error by given in Figs 3 and 4 Figures 3(B) and 4(B) show typical densit) -
15%•, the calculated fractional density wili be in error by 0.3%. A time plots for the densification of alumina at 1000°C and
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Figures 3(A) and 4(A) show the changes in temperature and pres-
sure for these two HIP cycles during pressurization, heat up, and
HIPing at 10000C. Figure 3(B) shows that significant densification
does not occur until the temperature approaches 10000C, at which

- temperature the densification rate initially increases rapidly. The
. ,Z densification rate subsequently falls with increasing fractional den-
S sity as expected. In experiment No. 4 (see Fig. 4) the pressure was

changed from 34 MPa to 70 MPa during the HIP cycle. The
change in gradient of the density-time plot (Fig. 4(B)) at a frac-
tional density of 0.72 shows that the HIP densification of alu-
mina is pressure dependent. The densification rate is proportional
to the square of the pressure.2 The initial drop in density shown in
Fig. 4(B) is not a real effect. We believe it was due to a temporary
movement of the probe arms during imtial gas pressurization. It
was not observed in any of the other experiments.

J Kevn McCoy Lawrence E Muttart From a practical standpoint, considerable time and cost savings

are achieved using the dilatometer. More experimental data can be
Kvi reobtained in one cycle, and the optimum conditions for HIPing

•'-•J. Kevin McCoy is a research powder compacts to full density can be determined quickly by

scientist in the Physical Met- altering the processing conditions during the HIP cycle. This ap-
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SUniversity. Most of his re- but ettension to real-time process control should be possible. A
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classical and atomistic mod- is necessary in calculating density from Eq. (2), and k is deter-

f eling of materials behavior, mined from the final dimensions of the sample. Therefore, it is
S• Lawrence E. Muntart is a re- necessary to HIP at least one sample to determine k before real-

search scientist in Battelle's time control is possible. This appears to be a reasonable strategy
Roger R Wils Physical Metallurgy Section. A since our work indicates that k does not vary strongly from sample

graduate of the University of to sample.
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J. Am. Cerm Soc.. 68 [4) C-9S-C-96 (1985) the particle coordination number, h(D) a
geometric factor depending on density, and

SInterface-Reaction-Controlled Kinetics in the r the particle radius. The equation predicts
A4Kt that the rate of densification is proportional

Hot Isostatic Pressing of Submicrometer to the driving pressure P *. This is related to
the externally applied pressure as follows:

Alumina Powder p*_Prpp (2)

ROGER R. WILLS* AND JOHN KEVIN McCoY
l where P is the externally applied pressure,

Bantelle's Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201-2693 P, the effective contact pressure resulting

The kinetics of densification of alumina powder compacts at 10000 to 1200"(C were from surface tension, P, the internal pore
pstudied by using a dilatometer to monitor volumetric changes during hot isostatic pressure, D the fractional density of thecompact, and a the average neck area.

pressing. The densification rate is proportional to the square of the applied Since powder compacts are outgassed
pressure, and densification does not occur below a threshold pressure. Results are before hot isostatic pressing, P, is =0.
interpreted in terms of an interface-controlled reaction mechanism involving the Furthermore, p, can be considered to be
movement of grain-boundary dislocations, negligible in comparison with the first term

in Eq. (2), particularly in view of tk; iela-

A N EMPIRICAL approach is generally used dence to indicate that, under hot isostatic tively high pressures used in pressing. AtA to determine the optirmum conditions pressing conditions, the densification of constant density, the net driving pressure is
for hot isostatic pressing of ceramic powder undoped alumina is controlled by an inter- consequently proportional to the applied

compacts to full density. We have face reaction involving the movement of pressure. Thus, by varying the pressure
"i, attempted to remove this empiricism by grain-boundary dislocations. We believe during the hot isostatic pressing cycle, the

examining mechanisms responsible for that this is the first time that this mechanism dependency of the rate of densification on-4 t be ctiv in he dnsi- the external pressure can be detcrmined.
"densification during hot isostatic pressing. has been observ• to be. active in the densi- gure 1 shows the effect of changing the

Fuwitermore, by comparing the predictions fication of a ceramic powder compact.
of various constitutive equations with ex- Previous research'- suggested that pressure from 34 to 70 MPa on the densi-
S perimental data, we have attempted to the mechanism of densification of sub- fication of a powder compact encapsulateduatwehvathmia powderwas pob in a stainless-steel capsule. Assuming thatshow that optimum hot isostatic pressing micrometer alumina powder was probably
conditions can be forecast if certain infor- grain-boundary diffusion. After the initial the rate of densification is proportional to
mation about the powder is known. Alumi- stage of particle rearrangement, densi- P', m is =2.1. However, if grain-bound-

num oxide was selected for study since fication proceeds by grain-boundary dif- arydiffusion is controlling the densification
there is a wealth of data on this ceramic. fusion, causing the average number of rate, the exponent should be equal to unity
The present communication presents evi- contacts per particle to increase. Arzt (see Eq. (1)). One possible explanation for

pthe value of the pressure exponent is that aet al.' expressed this stage of densification combination of mechanisms is operative
mathematically as- during hot isostatic pressing. For example.

6 CoenratsuritN Eorro--W R CANNoN 12BDbflZP * a dislocation-glide mechanism gives a pres-
SdD/dt = () sure exponent of 3," and consequently, if it

Presernted at the Pacific Coast Regional Meeting. operated in conjunction with grain-
Oc Americ3n Ce14mic Socie. San rancisco, Ce, where 8 is the effective grain-boundary boundary diffusion, a pressure exponent of•at October 31, 1984 (Basic Science Division No 146-

B-84P Received October 26. 1984, revUsd r thickness, Db the grain-boundary diffusion 2.1 might result. This explanation can be
ceicd January 4, 1985, aplroved January 7, 1985 coefficient, fil the atomic volume, P* the discounted since the climb or glide of lat-
ese•re by the Air Force Office of Scentfic driving pressure for densification, k is tice dislocations is unlikely to occur in the

"Mernber. the Amican Ceanhrc Society Boltzmann's constant, T temperature, Z temperature range 10000 to 1200 0C. Anoth-
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Fig. I. Effect of changing applied pressure from 34 to 70 MPa on Fi' 2 Densification rate vs applied pressure for fractional densities
densification of alumina at fractional density of 0.725 (l000*C). uinIcalted.

Table 1. Threshold Stress Values at Different Temperatures and Fractional Densities I .2-;im grain size A120 3 doped with
D Temperature C*C) RP, (Ml's) P,, (Ml's) 0.25% MgO. The strain rate also varied

0.71 1050 6.2478 24.435 80.66 with the square of the stress for both pure
0.78 1050 2.9318 8.564 61.33 and MgO-doped A12 03at strain rates below
0.71 1000 6.2478 38.645 132.35 10'~ s-, These data suggest that the
0.72 1000 5.4152 36.403 101.38 mechanism of densification may also be

interface-controlled in the latter stage of the
densification (D >0.90) of alumina and

er possibility is that basal-plane slip is re- where Q is a constant. Equation (3) indi- teheref mor e r could be the rae-sfctrolng
sponsible for densification. This mech- cates that densification can only occur by mcaimoe oto h esfcto
anism may contribuze, but it could not be this interface mechanism if P* is >0 or range (D =0.65 to 1.0).
the only factor since it does not enable mass (47nr2P/aZD +P,)>P,h,. When no external
transport to occur in all directions. pressure is applied, densification is not ob-

One mechanism that would explain served. Thus, Ph, must be greater than or ACKNOWLEDGMENS
the results is inteiface-reaction-controlled equal to P',, otherwise some densification The authors wish to thank Dr A I Markworttlfor
grain-boundary diffusion. It is considered would be observed in this sintering regime. helpful technical discussions and KM L. E Muart for
to be operative in many creep experiments Now Pronn h xemna ok
at low temperatures and small grain sizesr2p1
where it has been suggested that the grain 2 (5)r.p+P

boundaries do not act as perfect sources or dl=Q* QLaZD REEENE
sinks of point defects.' and the rate of the Puttig n 47m2 /ntZ , and P,=P,,-P,, iM P. Harmer &nd R.i. Brook. '*The Effect of
interf-ce reaction that creates and anii- MO Adihtions on the Kinetics of Hot Pressing in
hilates vacancies controls creep. Ashby' j1% Mater Sci. 1S, 3017-24 (1980)
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Discussion of "Practical Applications
of Hot-lsostatic Pressing Diagrams:

"-- - Four Case Studies"*

'- , .J. KEVIN McCOY

- ,. .- A recent paper by Arzt, Ashby, and Easterling' describes
"; ,.... ; k_ " ,-'" a theory of densification by hot-isostatic pressing. The pur-

pose of this note is to point out an error that was made early
in the mathematical development which affected some of the
subsequently obtained results.

"Arzt, Ashby, and Easterling use two dis,;nct geometrical
-.-- - descriptions of densification. Since these two descriptions

are mathematically equivalent, Arzt et al. switch from one
.• ......- -_- -to the other as best suits the aims of clarity and mathematical

-- "-. . .- , .. . .- - convenience. However, it is necessary to keep firmly in
- ' . ~ . " - mind which description is currently in use.

. .- - . - -, --.-. - • The first description I will call the "growing-sphere
-- ..- "- - - -.- model". This is a relatively new approach, having been

-- .pioneered by Arzt.' The growing-sphere model is illustrated
7- in Figure 1: a group of spherical particles is assumed to

-["" - 400 Jr grow around fixed centers. As the particles grow, they will
, impinge on one another. Arzt' has treated this effect in two

Fig 9-Metallographic section of impacted srni-mnfinite plate of hard- ways; following Arzt, Ashby, and Easterling,' I will discuss
ness 150 HV. Impact velocity 325 ms-' Magnification 6 8 times. only one of these. In this model, it is assumed that matter is

forced out of the contact region to form a localized neck,
formation of a dead zone below the compressed region. In while away from necks, the particle radius and spherical
comparing Figures I and 9, it is apparent that a prerequisite geometry are unaltered. Therefore, if the particles grow
for shear band initiation was some degree of acceleration of from a radius R to a radius R', the volume of each particle
the section of plate between the advancing projectile and the increases from 47rR'/3 to 47rR 3/3. Since the particles grow
distal boundary of the target, consistent with the slip line around fixed centers, the relative density increases from its
field model proposed by iackman and Finnegan2 which initial value Do to D, where
employed a minimunm plastic strain rate criterion for shear D (R).
band formation. The shear stress concentrating effect of the P[]projectile geometry was therefore not in itself sufficient for D

shear band initation. ,This is equivalent to Eq. [1] of Arzt, Ashby, and Easterling.
The second descnption I will call the "colliding-sphere

This work was carried out at the Materials Research model". This is the standard description of densification,
Laboratories, Maribymong, Victoria, Australia. used, for example, by Wilkinson and Ashby.' The colliding-

sphere model is illustrated in Figure 2. In this treatment, the
REFERENCES spherical particles are assumed to have fixed volume, but

I G B Olson. J F Mesciai. and M Azn in Shod, Waes and High the particle centers are assumed to move so that each particle
Strain Rate Phenomena in Metals. M. A. Meyers and L E Murr. approaches every other particle. One might say that the
eds.. Plenum Publishing Co.. New York, NY. 1981, ch. 4 particle volumes remain constant while space shrinl s. This

2 M E Baclman and S A Finnegan in Metallurgical Effects at wording points out the mathematical equivalence of the
High Strain Rates. R. W Rohde. B M Butcher. J. R Holland, and growing-sphere and colliding-sphere models. they differ
C. H Karnes. eds. Plenum rhblishing Co . New York. NY. 1973,
pp 531-41 only by a dilatation of space.

3 H.C Rogers Ann. Rev of Materials Science. 1979. vol 9. Using the colliding-sphere model, suppose that densi-
pp 283-311 fication reduces the ct nter-to-center distarice of two initially

4 H C Rogers "Material Factors in Adiabatic Shearing and the Imph- tangent particles from 2R to 2v while increasing the relative
cations for Analysis,- in Proc. Sa mposium on Adiabatic Shear. Mate-
nals Research Laboratories, Australia. 1979, pp 1-26 density from Do to D. Since the colliding-sphere model

5 J F. Velez and G W Powell Wear. 198.1, vol 66. pp 367-78. assumes a uniform contraction of the group of particles.
6. Y Me-Bar and D. Shechtman Materials Science apd Engineering.

1983. vol 58. pp 181-88
7 A L Wingro%e Metall Trans , 1973. vol 4. p 1829
8. R L Woodkard. B. J. Baxter. and N V Scarlett in Third Orford

Conference on the Mechanica! Properties of Materials at High Strain
Rates. Universit) of Oxford. England. Apnil 1984. p 525

9 J A Zukas in Impact D-,nan'ics. J A Zukas. T Nicholas. H F *E ARZT. M F ASHBY. and K E EASTERLING Metall Trani A.
Sift, B Greszczuk. and D R Curran. eds . John %,iley aid Sons. 1983. %ol 14A. pp 211-21
N•,% York, NY, 1982. ch. 5. p 162. J. KEVIN McCOY is Research Scientist. Battelle-Columbus Laborati,-
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S+ with respect to time produces

I dD -4,•,, , ,",' • o '• t = 3 R ' - t 13 ]
Do dr dt

,, where t is time. Applying Eq. [2] and rearranging terms.
one may conclude that

dD = ,o -3D(D_'d'.4/ , di = •k0 / d [4],,?,d t R \D o / d t

l of In contrast, Eq. 121 of Arzt, Ashby, and Easterling is

dD 3(DDo)"dv•+ ÷ 151Sdt R dt
Fag I - Expanding-sphere model Two initially tangent particles (solid Ineg
lines) expand about fixed centers. impinging on one another and forcing rating Eq. [5] gives

Smatter out of the contauai region to form a neck (dotted lines) D I6)
rather than Eq. [2] above. Use of Eq. 16] produces a rcsuhI that is incorrect in both sign and functional form. Upon
comparison of Eqs. 11] and 16], one is tempted to specu-
late that the error resulted from a cunfusion between ther --

t colliding-sphere and growing-sphere models.
This error appears to be propagated through the paper.Since the paper contains several parallel derinations, ho'%-

ever, the effects are apparently limited to Arzt. Ashby. andEasterling's Eq. 116] and the various figures. Apart from the
incorrect sign. the quantitative effects of the error are rather
small: the magnitudes of the densification rates given by
Eq. 14, and by Arzt. Ashby. and Easterling's Eq 121 never
differ b) more than about 30 pet.

Fig 2-Collding-.phwre model Tsko initiall% tangent panicles (solid"lines) mo%,e toward each other. Matter is forced out of the contact area tofor-, a neck Support of this work by the Air Force Office of Scientific
Research is gratefully acknowledged.

one obtains
REFERENCES

D = [2] i E Arzt. M F Ashbv. and K E Easterling Metal! Tram A. 1983.D, I %ol 14A. pp 211-21
"2 E Arzt Acia Metall.. 1982. vol 30, pp 1883-90Of the variables in Eq. 12], only y and D change during the 3 D S. Wilkinson and M F Ashb) Acta Metall. 1975. ,ol 23.densification process. Therefore, differentiation of Eq. 12] pp 1277-85
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DENSIFICATION BY INTERFACE-REACTION CONTROLLED GRAIN-BOUNDARY DIFFUSION

J. KEVIN McCOY and ROGER R. WILLS

Battelle, 505 King Avenue, Columbus, Ohio 43201-2693, USA

Abstract--The densification of a fine-grained, high-purity aluminum

oxide powder under hot isostatic pressing (HIP) has been found to occur

by interface-reaction controlled grain-boundary diffusion. We discuss

geometries and dislocation mechanics for this process for both the ini-

tial and final stages of densification and develop constitutive equa-

tions for densification rate as a function of density, materials con-

stants, and experimental parameters. The model is used to explain the

results of several HIP experiments at pressures of 34 to 102 'Pa and

temperatures of 1273 to 1423 K. Sources of variation from sample to

. sample are discussed. An analysis is made of the sensitivity of the

model to its adjustable parameters. Alternative explanations for the

experimental data are discussed and found to be inadequate.

k 1. INTRODUCTION

A number of mechanisms have been proposed to describe densifi-

cation during sintering and hot isostatic pressing (HIP). Most of the

theoretical treatments invoke either a simple diffusion or dislocation

mechanism for material transport. When we analyzed densification data

Ri
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for aluminum oxide from a series of HIP experiments in which both tem-

N perature and pressure were monitored, we found that the data could not

be adequately explained in terms of either theory, but that they could

be explained in terms of interface-reaction controlled grain-boundary

diffusion [1). Both dislocation and diffusion elements are contained in

this mechanism in that mass transport occurs by diffusion but is limited

by the mobility of grain-boundary dislocations. The concept of

interface-reaction controlled grain-boundary diffusion is not particu-

larly new, having been proposed by Burton [2) in 1972 and given a

thorough development in a recent review by Arzt, Ashby, and Verrall [3),

but it has apparently been applied only to creep or deformation.

In this paper, we apply the theory of interface-reaction con-

trolled grain-boundary diffusion to describe densification of a porous

solid. Following standard practice [4), we divide densification into

two stages. The initial stage is described as a random packing of

spherical particles; this model is applied at fractional densities of

0.64 to 0.9. The final stage is descrioed by an isolated spherical pore

centered in a spherical shell; this model is used for fractional densi-

ties greater than 0.9. We develop appropriate geometries for both

stages of densification and then briefly review the islocation kinetics

associated with the mechanism. The model Is expressed in a form suit-

able for fitting to experimental data and applied to explain the densif-

ication kinetics of a high-purity aluminum oxide for a range of tempera-

tures, pressures, and specimen porosities.
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2. INITIAL STAGE

In this section, we develop a model for the initial stage of

densification. We begin by describing the geometry of a neck between

two particles and use the results to calculate the driving force for

densification. Finally, the drivinq force and the mechanism of

"interface-reaction controlled grain-boundary diffusion are used to cal-

culate the densification rate.

The most important geometrical quantities for the description

of an interparticle neck are illustrated in Fig. 1: R is the particle

radius, 2y is the particle center-to-center distance, x is the neck

radius, and w is the axial radius of curvature of the neck. These quan-

tities reflect a standard model of neck geometry: twc spherical parti-

cles impinge upon each other, and matter is transferred from the contact

"area to a localized neck while the remainder of the surface of the

spheres remains unaltered. The surface of the neck is assumed to be a

portion of a circular torus that is tangent to both spheres. The minor

radius of the torus is w and the major radius is x+w. For given values

of R and y, x and w are specified by the solution to two equations. The

first equation follows from the Pythagorean theorem:

S2= (R+w) 2  (1)

or

w = 2(R-x) (2)

The second equation for x and w specifies that the volume of matter

ýs removed from the spheres must equal the volume of matter deposited in

N'
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the neck. It is a straightforward exercise in calculus to show that

•;his equation is

Z(R-y)2(2R+y)= (3)

R2 wcos 2 6s!nO - wsin8(R 2-y 2 )

3 + w3 sin3 O - 2(x+w)w 2 (e-cosesin@)

where

0 = arctan[y/(x+w)]. (4)

Due to the complexity of equation (3), Arzt [5) has proposed the approx-

imation

-2 _ n(R-y)R (5)

where n is a numerical constant. Arzt suggested the value n = 11, but

we have chosen to use n = 11.4 since this value gives a slightly better

fit. We have used equations (2) and (5) to provide a description of

torus geometry. As evidence of the accuracy of equation (5), we give in

Fig. 2 a comparison of the values of x and w obtained by using the

rigorous treatment of equation (3) and the approximation of equation

(5). The agreement between the two treatments is probably better than

that between either treatment and physical reality.

With this description of neck geometry, we can find p*, the

effective contact pressure between the two particles for tha initial

stage, which produces a climb force on grain-boundary dislocations and

thus acts as the driving force for densification. Following Molerus [6]

and Arzt, Ashby, and Easterling [7), we write the effective contact

pressure as
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II

p* =AZ+sPth (6)

where p is the externally applied pressure, a is the average neck irea,

Z is the coordination number, D is the fractional density, Ps is the

contact pressure due to surface tension, and Pth is a threshold pressure

for the motion of grain-boundary dislocations. In our experiments, the

sample was thoroughly outgassed before encapsulation, and the capsules

were welded in vacuum, so the effect of gas trapped in the pores is not

included in equation (6).

To evaluate the effects of coordination number and contact

area in equation (6), it is mathematically convenient to use the 1

approach of Arzt [5]. Arzt describes densification not as a packing or

spheres that approach each uther but as a packing of stationary spheres

that grow fictitiously. If the spheres grow from a radius R to a radius

R', the increase in the volume of the spheres will cause the fractional

density to increase from its initial value D to a new value D, where
S~0

D/Do = (R'/'R) 3  (7)

As the spheres grow, two types of geometrical changes occur.

r First, the initial contact points grow into necks as the growing spheres

impinge on each other. We have assumed that all displaced material

remains in the necks, while, away from the necks, the particles remain

spherical with radius R'. Second, as sphere growth continues, the

spheres also begin to form contacts with additional spheres that they

did not touch in the original packing. Using radial distribution func-

tions for a random dense packing developed by Scott [8] and Mason [9],

Arzt developed the following approximate equation for the coordination
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number

Z = Zo+C(R'/R-1) (8)

where Z = 7.3 and c = 15.5. Using this radial distribution function

and equation (5) for the area of a neck, the average neck area is [5]

a = n(Z (R1-R)R+c(R'-R) 2 /2)R/ZR,. (9)0

Equation (9) includes a correction so that it is applicable to spheres

of radius R rather than R'. Using equations (8) and (9), the effect of

external pressure in equation (6) may be evaluated.

Following Arzt, Ashby, and Easterling [7), the contact pres-

sure due to surface tension is

P (10)

where y is the surface tension. The average neck area is known from

equation (9), so the average neck radius is

x = Va-,! (11)

while the axial radius of curvature of the neck is given by equation

(2).

The threshold pressure for motion of a grain-boundary disloca-

tion is uncertain, since it depends on the Burgers vector of the dislo-

cations and the type of dislocation source. We have chosen to use the

approach of Arzt, Ashby and Verrall [3]. Following their treatment, the

threshold stress for grain-boundary dislocation motion is

V2aoGbb

Pth 2x (12)

where .= 0.2 is a constant that reflects the relative amount by which
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the length of a dislocation fluctuates as it moves.

The presence of an effective contact pressure will cause den-

sification and produce changes in the neck geometry. As densification

proceeds, the center-to-center distance of two Initially tangent parti-

cles will change with rate d2y/dt. As discussed below in the section on

dislocation mechanics, a change in y results from the motion of grain-

boundary dislocations; the passage of one dislocation across the entire

neck reduces the center-to-center distance 2y by b where bn is the com-

ponent of the Burgers vector normal to the grain boundary. For the case

in which several dislocations are moving together, the numbe, of dislo-

cations that will pass a given point on the grain boundary in unit time

is vp. Thus the rate of change of the center-to-center distance of two

particles is

S-vpb (13)dt n

The final step of the model is to obtain the densification

rate. If it is assumed that the sample starts as a packing of tangent

spherical particles and that the particles approach each other as den-

sification proceeds, it is clear from geometry that [10]

D = Do(R/y) 3  (14)

where D is the initial fractional density and D is the current frac-

tional density. By differentiating equation (14), one obtains

• 1/3dD= 3D [I! ] d2.X(15)
dt 2R D0o dt

An expression for dD/dt in terms of experimental variables is given in

equation (27).



3. FINAL STAGE

As a material approaches full density, it is no longer

appropriate to describe interparticle contacts in terms of distinct

necks, and it becomes ;ppropriate to describe the porosity in terms of

isolated pores. In this section, we develop a model for this stage of

densification. We first describe the geometry of the grains and pores,

;ý. then determine the driving force for densification, and finally obtain

the densification rate.

The geometry of the pores and grains is similar to that used

-• by Arzt, Ashby, and Easterling. It is assumed that the grains take the

shape of truncated octahedrons with spherical pores of radius r located

at each vertex. Each truncated octahedron has 24 vertices, and four

grains meet at each vertex so there are, on the average, six pores per

1 2igrain. The volume of each grain is assumed to be 4uR3 /3, as in the ini-

tial stage. Since there are six pores per grain, the density, pore

radius and equivalent spherical grain radius are related by

3
1-D - (16)

_ R3 +6r 3 "

Following Coble [11], we may simplify the geometry for the purposes of

calculating densification rate by taking a spherical she'll of material

around each pore. We assign a volume of matter 2nR3 /9 (1/6 of a grain)

to each pore, so the shell radius R is given by

R +r. (17)s 6
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The effective pressure or driving force for densification may

be obtained by balancing the forces imposed on the shell dgainst the

stresses in the shell. Suppose that we make an imaginary cut through

the center of the shell on the xy plane. The total force on one hemi-

sphere in the z direction is

iTR2p + 2nry -(R 2 -r 2 )a =0. (18)

The first term is due to the externally applied pressure, the second is

from the surface tension of the pore, and the third results from the

tangential stress within the sphere which balances the forces applied to

the surface of the sphere. Note that a,0 is treated as a constaiiL i.i

equation (18). This is Justified if we assume that the motion of dislo-

cations is at steady state. As discussed below, the density and speed

of the dislocations are both proportional to the driving force. But at

steady state, vp is independent of position, so cr is also independent

of position.

In addition to the tangential stress, the driving force for

densification also involves a threshold term, Just as for the initial

stage. For hot isostatic pressing, this is [3]

/2a Gbb

Pth 2R (19)

and the net driving force is

p*= e-Pth. (20)

Differentiating equation (16) with respect to time, we obtain

Sd =-_3_(D)dr_ (21)dt r dt



Furthermore,

r= . (22)

dt 4 r2 dt

where V is the volume of a pore and -dV/dt is the rate at which matter

is removed from the grain boundaries and deposited in the pore:

dV/dt =-vp)n (23)

that is, the product of the dislocation flux, the component of the

Burgers vector normal to the grain boundary, the area of one planar

grain boundary intersecting the pore, and the efFective number of boun-

daries. An expression for dD/dt in terms of experimental variables is

given in equation (30).

4. DISLOCATION MECHANICS

In both the initial and final stages, the applied pressure

results in a climb force on the grain-boundary dislocations. In this

section, we discuss dislocation effects that are common to both stages.

Following Arzt, Ashby, and Verrall [3D, the rate at which an

individual grain boundary dislocation climbs is

v = MF = Mp*b n. (24)

Here F is the force per unit length on the dislocation and M is the

dislocation mobility. From elementary dislocation theory, it follows

that the force on the dislocation is the product of the driving force p*

and the component of the Burgers vector normal to the grain boundary bn.

- - - -- - - - - - -~ -j
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Applying the results of Cottrell and Jaswon [12) and Cottrell

[13], Arzt, Ashby, and Verrall obtained the following expression for

grain-boundary dislocation mobility limited by solute drag:

M = --k- (25)
PkTb Cb o

In this equation, C% is the concentration of solute in the lattice, and

the concentration in the solute atmosphere of the dislocation is

increased by a factor of P to 0Co. Ds is the diffusivity of the solute

in the lattice, I is the effective atomic volume of the solute, kT has

its usual meaning, and bb is the Burgers vector of the grain-boundary

dislocation.

To complete the description of a grain-boundary with disloca-

tions we need only an expression for the density of dislocations. This

problem has been studied by Burton [2) and by Arzt, Ashby, and Verrall

[3]. Although different approaches were used, their results are in sub-

stantial agreement. The result of Arzt et al. is

p - (26)

P Gb b

where C1 is a constant (about 0.5), G is the shear modulus, and bb is

the length of the Burgers vector.

5. EXPERIMENTAL RESULTS

The development of the theory of densification presented above

was prompted by failure of standatJ theories to explain the data

-[ -------
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reported below. The experimental technique used in obtaining the data

has been described in detail elsewhere [14], so only a brief summary

will be given here. Cylindrical samples of Reynolds RC-HP-DBM alumina

were encased in close-fitting AISI 316 stainless steel capsules. The

samples were subjected to HIP at temperatures ranging from 1273 K to

1423 K and at pressures ranging from 34 MPa to 102 MPa. Throughout den-

sification, continuous records of temperature and pressure were kept.

In addition, a two-probe dilatometer was used to produce a cintinuous

record of the diameter of the sample. The records of temperature and

diameter, along with a description of the changes in geometry of the

sample, were used to calculate a record of density as a function of time

during HIP. This procedure produces far more information from each

experiment than does conventional HIP practice, which provides only a

final density. In addition to a providing a much larger body of data,

the dilatometer technique provides the additional advantage that all the

data obtained from a given experiment can be compared to theory without

consideration of sample-to-sample or run-to-run ",ariations. To further

increase the amount of information produced during each experiment, the

temperature and/or pressure were often changed during an experiment.

This allowed us to determine activation energies and pressure exponents

from a single experiment.

For the purposes of fitting the theory to the experimental

data, it is convenient to collect the variables that are essentially

constant throughout the experiment. If this is done, we may combine

equations 14, 16, and 24 to 26 and write for the initial stage

p.
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S~~~~1/3 p*2e),p(E )f

=D D (27)
dt D0  GT

where

b 2 00

2R bPkC (28

and the solute diffusivity is assumed to be given by

D = D exp(-Es/RT) (29)

Similarly, we may combine equations 21 to 26 and write for the final

stage

1/3D4/3,-(l.D,/3)p*exp (ES/RT) f(0

dt L4J GT nb

using the same definition for f. The following data were used with

equations (27) and (30). The surface energy was taken to be y = 1 3/M2

[7.The activation energy for solute diffusion Es was determined

experimentally by changing tha temperature during the course of the run.

A value of Es = 290000 J/mol was measured. Values of the shear modulus

G were obtained from the equation

G = 12.382X109(1838.5-701/3 Pa, (31)

where T is the temperature in kelvins, which provides a good fit to the

data of Ryshkewitch [15). The value of nb, the effective number of

grain boundaries meeting at a pore, was derived from the assumption that

the grain shape is a truncated octahedron. In this geometry, four regu-

lar hexagonal faces and two square faces meet at each vertex, so thq

total of the angles of all the faces meeting at the vertex is 660.

Since a single planar grain boundary corresponds to an angle of 360", nb
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= 11/6.

With these data, it is possible to use the temperature and

pressure records to integrate the kinetic equations for densification to

obtain a theoretical record of density as a function of time. Results

of such calculations are given in Figs. 3-6. We present records of tem-

peraturep pressure, and density for six experiments, and we compare the

experimental records of density with the results of theoretical calcula-

tions. Equation (27) was used for fractional densities up to 0.90,

while equation (30) was used for higher densities. The abrupt change in

equations corresponds to an abrupt change In the geometry of the model,

from highly connected open porosity to closed porosity# and a marked

discontinuity in the densification rate might be expected. In fact, the

discontinuity is small, and, as shown in Figs. 3-6, it is usually quite

difficult to see in plotted results. The small size of the discon-
tinuity suggests that there is little to be gained by modeling an inte"-

mediate stage of densification in which "cylindrical pores" predominate.

Neglecting the intermediate stage is in accord with the practice of

Swinkels, Wilkinson, Arzt, and Ashby [4), who have argued against the

u.e of an intermediate stage model.

The integration was carried out numerically, uming an adaptive

third-order Runge-Kutta method [16). From tests with varying step

sizes, it is estimated that the absolute global error in the theoretical

value of D due to the integration is never larger than 0.0001, which is

much smaller than the expected error in experimental values of D.

The only adjustable parameters were the initial value of the

density and the kinetic factor f. For each experimentp a value of f was
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chosen to provide a good fit between theoretical and experimental den-

sity histories, while the initiO1 fractional density was taken as the

value measured by immersion, which is not exactly equal to the density

given by the dilatometer, due to experimental error. In some cases, the

immersion density was smaller than that of a random dense packing of

spheres, D0, and numerical integration starting at the immersion density

was not be possible due to a singularity in equation (27) at D = Do. In

those cases, an initial fractional density of 0.641 was used.

The exact the value of the initial density used in integration

actually has a only very small effect on the calculated density record,

since, in the low density ranga, the densificetion rate drops rapidly as

density increases. As an illustration of this, consider two samples

that are being HIPped under identical, unchanging conditions, and assume

that the two samples are identical except that the initial density of

one sample is higher than that c; The other. It will take a certain

amount of time for the less dense sample to reach the initial density of

the denser sample. Since the samples are densifying under identical

conditions, the densities of the samples will be the same function of

time except for the time offset just mentioned. Although the time

offset remains constant, the densification rate drops so that the

difference between the densities of the two samples decreases as time

goes on. As a qualitative illustration of the effect of changing the

initial density, corsider the results shown in Fig. 7. The calculated

density history of Fig. 3 is repiotted, along with the results of a cal-

culation that differed only in the value of the initial density. It is

clear that the rather large initial difference in density quickly
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becomes negligible. Note also that since the temperature and pressure

were not constant in this calculation, so the time offset between the

two curves is not constant.

6. DISCUSSION

In the preceding discussion, the values of f used in fitting

the theoretical equations to the data were presented without any Justif-

ication that the values are reasonable. To show that the values are

Indeed reasonable, let us estimate the values of the variables that

comprise f. From scanning electron photomicrographs [17), it is

estimated that R = 0.35x10-m6 , Following Arzt, Ashby, and Verrall [3),

we may take bb/bil = %= 0.5, P = 10, and bb = 1.59A10-M, where

the value of bb is one third of the Burgers vector for slip on the

{0001) <1120> basal system. A reasonable estimate of the effective

atomic volume of the solute is 0 = 2.15x10-29 m3 , which is half the

volume of the formula unit. Although the solute that controlled densif-

ication was not identified, cht,;ical analysis of the powder revealed

several impurities for wh;ch it is reasonable to use an atom fraction of

solute of C = 3.x10-f The value of Do is unknown, since it is not
S

known what solute might be responsible for controlling the motion of

grain-boundary dislocations. However, by combining the estimates above

with f = 3.X 1O4 KPa- s-1, a typical value obtained by curve-fitting, %ýe

obtains a value of D° = g.x1o-lm2 /s. This is within the range of

values of preexponential factors for solute diffusion in alumina s com-
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piled by Freer [18), so we may conclude that the values of f are also

reasonable.

From the capticns of Figs. 3-6, It will be observed that the

values of f used in fitting theory to experiment vary by a factor of

seven. As in illustration of the effect of a large change in f, in Fig.

8 we have replotted the theoretical curve of Fig. 5 along with a similar

cuive for a value of f five times as large. The two curves are markedly

different.

Since the variation in f may seem to be larger than might have

been expected, it is appropria'La to discuss possible causes of variation

in f. There is no evident correlation between the value of f and the

experimental conditions, so we have attributed the variation in f to

differences between samples. The two factors in f that would appear to

be subject to the greatest variation are C and D0 . Since the powder
0Ud

was blended before being formed into samples, it is not expected that

sample-to-sample variation of C0 would explain all of the variation in

f. However, variations in D0 are expected to be much larger, since
s

solute diffusivities in ceramics often depend very sensitively on the

concentrations of other impurities. Besides C and D , large variations
0

in f may also arise from relatively small variations in Es. In our cal-

culations, we used a single activation energy for all samples. If the

actual value of E for the sample differed from the value used in the

calculation, the inaccuracy would show up, greatly enlarged, in

exp(E S/RT). However, since f was the only kinetic fitting parameter,

changes in exp(E s/RT) would appear as changes in f. The effects of a

change in activation energy can be quite significant; a variation of 9%
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in (with held constant) would not be considered large, but it

would be sufficient to explain the entire range of values of f. There-

fore, we conclude that sample-to-sample variations are sufficient to

explain the valatLion on f.

In Figs. 3-6, it will be observed that the theoretical and

experimeatal curves are generally in excellent agreement up to a frac-

tional density of about 0.9 but that the theory overestimates the den-

sification rate beyond this point. One possible explanation for this

fact is that the mechanism of densification changes at this density.

But the densification mechanism is determined primarily by the tempera-

ture and the driving force, and at high densities the driving force is a

weak function of density. Therefore, it is unlikely that the mechanism

would change, under constant temperature and applied pressure. A more

plausible but less welcome explanation is that the pore-and-shell model

described above does not adequately describe the final stage of donsifl-

cation. This hypothesis is supported by the fact that similar overesti-

mates of the denstfication rate occur in pore-and-shell models of the

final stage for other mechanisms. Additional work on this question is

in progress.

While the agreement between theory and experiment is generally

excellent except at high density, it is appropriate to ask if some other

"densificaticn mechanism could also explain the data. Considering the

R1 low temperature and small grain size of this material, it might be sup-

posed that a simple grain-boundary diffusion mechanism might explain the

data. However, this mechanism has a pressure exponent of 1: the densifi-

cation rate is linearly dependent on the driving force for
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densificatton, and analysis of data from experiments with changing pres-

sure# such as that presented in Figs. 5 and 6, shows a pressure exponent

of about 2 [1]. Another hypothesis might be that some lattice disloca-

tion mechanism is responsible for densification, but models of disloca-

tion plasticity generally give stress exponents of at least 3 [19).

Also, most of the experiments were performed at temperatures of 1273 to

1323) K. It is expected that significant slip could occur only on the

basal systems at these temperatures [20), and it is difficult to imagine

how significant densification could result with only two active indepen-

dent slip systems. Furthermore, the activation energy for power-law

densification, which is generally thought to have a dislocation mechan-

ism, is 477 ki/mol [21), while the observed activation energy was 290

kU/mol. This discrepancy is too large to be explained by experimental

error. A third possible explanation of the data is that two (or more)

simultaneous mechanisms are at work, and that the observed pressure

exponent of 2 is the result of two mechanisms with pressure exponents of

(say) 1 and 3. Such an argument would be difficult to defend. Theoret-

ical models of densification that give rise to pressure exponents of 3

or more generdlly invoke lattice dislocation mechanisms, and, as argued

above, lattice dislocations can contribute little to densification at

the temperatures used in the experiments sincL. only basal slip can

occur. It is therefore concluded that a model of densification by

interface-reaction controlled grain boundary diffusion provides the most

plausible e<planation of the data.
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Table of symbols

a average neck area

bb Burgers vector of grain boundary dislocation

b n component of Burgers vector of grain boundary dislocation

normal to grain boundary

c derivative of coordination number with respect to RI/R, c 15.5

C atom fraction of solute in bulk0

C1  constant, C1 = 0.5
D fractional density

D 0 fractional density of random dense packing, Do 0.64

Do diffusivity of solute at infinite temperatures

D s diffusivity of solute

E activation energy for diffusion of solute

F force per unit length on dislocation

G shear modulus

k Boltzmann's constant

M dislocation mobility

n constant for neck area in initial stage, n = 11.4

nb effective number of grain boundaries meeting at a pore

p external pressure

p* driving force for densification

Ps contact pressure due to surface tension

Pth threshold contact pressure for dislocation motion

R particle radius

RI current particle radius in Arzt's growing-sphere description
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Table of symbols (continued)

R shell radius

R gas constant

r pore radius

T temperature

St time

v dislocation velocity

w neck axial radius of curvature

x neck radius

y half particle center-to-center distance

Z coordination number

Z 0 coordination number at DO, Z0  = 7.3

a constant, ao = 0.2

11 ratio of solute concentration near dislocation to solute

concentration in bulk

surface tension

p dislocation density

£2 effective atomic volume of solute
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Fig. 1. Neck geometry. The two particles are spherical# while the neck

is part of a tangent circular torus.

Fig. 2. Comparison of two treatments of neck geometry. Solid curve is

for the toroidal neck geometry of Fig. 1 with strict conservation of

mass; dashed curve is for the approximation given in equation (5). (a)

Relative neck radius (x/R) as a function of relative particle separation

(y/R). (b) Relative neck axial radius of curvature (w/R) as a function

of relative particle separation (y/R).

Fig. 3. (a) Pressure (solid curve) and temperature (dashed curve) his-

tories. (b) Comparison of experimentally determined density (solid

curve) with integration of kinetic equations for densification (dashed

curve) with f = 7.x104 KPa-s 1.

Fig. 4. (a) Pressure (solid curve) and temperature (dashed curve) his-

tories. (b) Comparison of experimentally determined density (solid

curve) with integration of kinetic equations for densification (dashed

curve) with f = 2.8xiO4 KPa-s 1 .

Fig. 5. (a) Pressure (solid curve) and temperature (dashed curve) his-

tories. (b) Comparison of experimentally determined density (solid

curve) with integration of kinetic equations for densification (dashed

curve) with f = 1.x104 KPa-s 1 .

Fig. 6. (a) Pressure (solid curve) and temperature (dashed curve) his-

tories. (b) Comparison of experimentally determined density (solid

curve) with integration of kinetic equations for densification (dashed
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curve) with f = 1.5xl04 KPa's".

Fig. 7. Effect of initial density on densificatlon history. Temperature

and pressure data from Fig. 3 were integrated with f = 7.x104 KPa- 1 s- 1 ,

but with initial densities of 0.641 (solid curve) and 0.7 (dashed

curve).

Fig. 8. Effect of f on densification history. Temperature and pressure

data from Fig. 5 were integrated with f = 1.x104 KPa-ls-1 (solid curve)

and f = 5.x104 KPa 1's (dashed curve).

.3
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COMPUTER SIMULATION OF EFFECTS OF THE PORE SI7 DISTRIBUTION

ON THE KINETICS OF PRESSURE ASSISTED FINAL-STAGE DENSIFICATIONI
ALAN J. MARKWORTH and J. KEVIN McCOY

Battelle, 505 King Avenue, Columbus, Ohio 43201-2693, USA

Most theoretical treatments of pressure-assisted densifi-

cation of porous solids assume a single size for all pores. We

remove this this assumption and consider a distribution of pore

sizes. Dissolution of intragranular pores by volume diffusion and

dissolution of intergranular pores by grain-boundary diffusion are

both treated. The evolution with time of pore size distributions is

calculated for distributions that are initially described by log-

normal and Weibull functions, and differences in predicted behaviors

are discussed. The pore size distribution is then related to two

important quantities: porosity and number of pores per unit volume.

The assumption of a distribution of pore sizes is found to avoid

certain unrealistic predictions obtained from models with a single

pore size such as abrupt disappearance of all pores and rapid

approach to full density.

RIN
L-
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SInintroduction

It is frequently observed in studies of densification that

full density is difficult to achieve. This is in direct conflict

with predictions of rapid and complete densification derived from

theoretical models of densification by diffusion. In this paper, we

show that the models can be brought into agreement with exporience

by consideration of the effects of a distribution of pr *e sizes.

The imnportance of size-distribution effects in considera-

tions of the evolution of a discrete second-phase species has long

been recognized. The porosity within a solid body can be regarded

as a particular type of second phase, and its variation with time,

resulting from surface-energy and applied-pressure driving forces,

can be treated as a type of phase transformation. In this case as

well, size-distribution effects can play an important role, for

example in considerations of the manner in which the overall volume

fraction of porosity varies with time.

Presented below are the results of a modeling study of the

dissolution kinetics of a distribution of discrete (i.e., non-

overlapping), spherical pores contained within a solid body. Both

intragranul~r and intergranular pores are considered, using well-

established expressions for the size-dependent rate of pore dissolu-

tion resulting from volume diffusion and grain-boundary diffusion,

respectively, of vacancies away from the pore suriace. The evolu-

tion with time of the pore size distribution is calculated, starting
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from various assumed initial distributions, and from this the

corresponding variation of th6 overall porosity of the solid is cal-

culated and related to size-distribution effects.

Because of the fact that both pore-surface-energy and

applied-pressure driving forces are considered, the problem is not

analytically tractable for either intragranular or intergranular

pores. Consequently, solutions are generated numerically.

It is clear that the assumption of a system of discrete

pores limits our consideration to a solid for which the amount of

porosity is relatively low. This corresponds to what is commonly

referred to as the "final stage" of densification. A quantitative

evaluation of the probability that a given pore is actually discrete

can be carried out, as, for example, has been done [1) for the case

of a uniform size distribution of spheres distributed at random

within three-dimensional space.

2. Ppre-Dissolution Models

Over the years, many investigators have developed models

for the growth and dissolution of pores contained within a solid

body. (Actually, models for pore growth can be used to describe

dissolution as well, if appropriate modification is made of the

applied-stress term in the growth-rate expression, as has been dis-

cussed by Greenwood [2).) In addition, a variety of kinetic mechan-

isms has been considered. For puirposes of the present analysis,
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relatively simple models for pore dissolution are used which

nevertheless serve well to illustrate the manner in which size-

distribution effects can influence the overall kinetics of porosity

reduction.

2.1, Intragranular Po_es

For the volume-diffusion-controlled dissolution of an iso-

lated, spherical, intragranular pore (i.e., neighboring pores are

assumed not to influence one another), one can derive an expression

for the rate of pore dissolution by dssuming that the vacancy-

concentration field within the solid outside the pore satisfies the

Laplace equation. One thus obtains (e.g., [3,4]),

ýaR=- 9 pr), (1)
dt -kTRI P + (R

where R is the pore radius at time t, f, Dv, and T are the atomic

volume, the volume self-diffusivity, and the surface energy of the

solid, P is the externally applied pressure, k is Boltzmann's con-

stant, and T is the absolute temperature. Three assumptions

inherent in Equation 1 are (a) that the vacancy supersaturation in

the lattice is zero, (b) that the "effective" applied pressure

inside the solid is unaffected by the presence of the porosity, and

(c) that no gases exist inside the pores. Relaxation of assumption

(a) has been considered by Geguzin and Lifshitz [3] and others;

relaxation of (b) and (c) has been discussed by Markworth [4] and

others.
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In order to simplify the analysis which follows, we re-

express Equation 1 in terms of dimensionless variables, i.e., a

pore-size parameter p and a time parameter T defined as

P P] R(2)
Sro~i 1
Q~v (3)

412kT

in terms of which Equation 1 assumes the much simpler form

-42 a..r 1+1(4)
d-r p L+ ]

2.2. Intergranular Pores

A number of models have been developed with which to

describe the grain-boundary-diffusion-controlled and volume-

diffusion-controlled growth or dissolution of an intergranular pore.

For the present analysis, we consider an isolated spherical pore

situated on an planar grain boundary and dissolving by the flow of

vacancies away from the pore through the boundary. To describe this

situation, we apply a model for -- ain-boundary-diffusion controlled

g of an intergranular pore developed by Trinkaus [5]. The

above-noted modification suggested by Greenwood [2] is used to adapt

the model to pore-dissolution kinetics. One thus obtains

r 21 (5)
dt 2kTR2L Rl

where Db is the grain-boundary self-diffusivity, 8 is the effective

• ••.••• ' %--,••%••'.' , • • • • ,• • • • -• •- •,_ -c. ,- , .'-- •".-. . • '- " ~ -• . o.
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thickness of the grain boundary, and all other symbols are as

defined for Equation 1. Again, it is assumed that the "effective"

applied pressure inside the solid is unaffected by the presence of

porosity and that no gases exist inside the. pores. Effects of gases

inside the pores could be considered [5] and are analogous the

corresponding effects for intragranular pores.

It is again convenient to express Equation 5 in terms of

dimensionless variables. We use the same size and time parameters,

p and v, given by Equations 2 and 3, but we define a new Aimension-

less factor, a, as

D
a = P6D b (6)21 Dv

and obtain the following simpler form for Equation 5:

d4 = a [1 + p] (7)

The rate of pore shrinkage -dp/dv as a function of pore radius p is

plotted in Fig. 1 for both intergranular and intragranular pores, as

calculated from Equations 4 and 7 with a value of a = 1. From Fig.

1, it can be seen that the rate of pore shrinkage decreases as pore

radius increases, and that the dependence of shrinkage rate on pore

size is stronger for intergranular pores than it is for intragranu-

lar pores. Note that the shrinkage rate for intergranular pores is

dependent on a, and that the corresponding curve in Fig. 1 would be

raised or lowered if a different value of a hc.d been chosen.

---------------------------------------------
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2.3. Other Pore-Dissolution Models

Clearly, poe-dissolution models other than those

reDresented by Equations 4 and 7 could have been used. These two

particular models were chosen because they are particularly amenable

to the size-distribution analyses developed below while still con-

taining a description LC some essential features of the physics of

the respective dissolution processes.

One interesting case not mentioned above is the oft-quoted

model of Hull and Rimmer [6) for the stress-induced growth of

grain-boundary voids. Using their model, and including only

applied-pressure and surface-energy effects as oriving forces for

pore dissolution, one obtains an expression equivalent to Equation 4

as the dimensionless representation, noting that Equation 4 was

derived for a model of intragranular pores. The only difference

would be the replacement of D in Equation 1 with Db6/( 2 a) where avb

is the mean separation between pores. Consequently, the analysis of

intragranular porosity based on Equation 1 is mathematically

equivalent to that of intergran."ir porosity based on the Hull-

Rimmer model [6]. It should d, however, that important

corrections to the Huil-Rimmer ,r.i' have been made, e.g., by Weert-

man [7].

4
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3, Size-Distribution Kinetics

3]J.f1mlutiLn of the Pore Size Distribution

We define the size-distribution function for a system of

pores as f(R, t), such that f(R, t)dR is the concentration of pores,

at time t, having radius within the range R to R + dR. Clearly, it

is assumed in this definition that the size distribution exhibits no

spatial dependence, on the average. Assuming that no "sources" or

"sinks" for pores exist, one can show that the function f satisfies

the following continuity relation:

atf+ -- (vf) = 0 (8)

tIZI t aR

where v is a function that describes the rate at which a given pore,

which can be considered as a point existing in a one-dimensional

pore-radius space, moves through that space. (Obviously, the defin-

ition of v is equivalent to dR/dt which is given in Equations 1 and

5 for the two models under consideration here.) Expressing Equation

8 in terms of the dimensionless parameters p and T,

If + -a(vf) = 0 (9)
8'• •p

where now f(p, x)dp is the concentration of pores, at time z having

X, rad'us within the range p to p + dp, and v is now equivalent to the

"velocity", dp/dz, in p-space.

The "flux" of pores crossing a given point of the one-

dimensional p-space is, in general, equal to v(p, r)f(p, T). For
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the pore-dissolution models under consideration here, v has explicit

dependence only upon p (see Equations 4 and 7).

Let us examine the behavior of the pore flux with respect

to a moing coordinate frame in our one-dimensional p-space.

Specifically, let pl be a coordinate which moves along the p-axis at

the same rate as a pore having instantaneous size p. Hence, p' is

given through the relation

S vOpd) (10)
PO

where p0 is the size of the pore at some given initial time z and

where we again take v to depend only upon p. From Equation 10 we

obtain

• =v(pt) (11)

d-r

It now follows that,

-Ad [V(P')f(P k J)]fp (12)

" - •dp' i d _ f(Pd" r)

~~O r v( , fp f(Pt, r) Ax,_d + -•a f (Pt' T)

Combining Equations 11 and 12,

4 EV(p')f(p, T)] (13)d-r

I~t dp f(pt T) + ~f(Pt , T) +- f( ,T

Now, the continuity equation, Equation 9, must also be satisfied

L•f
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with respect to the moving coordinate system, in which case the sum

of the terms within brackets on the right hand side of Equation 13

is zero. Consequently,

_1 [v(p')f(p', T)] = 0 . (14)d-c

An alternative way of expressing Equation 14 is the followilng:

v(p)f(p, T) = v(p)f(p0 , r) (15)

where p (dropping the prime sy-bol) is understood to be the size of

a pore, at time T that had size P0 at an earlier time To. Taking

Ro = 0 and g(Po) H f(Po, 0), we obtain

f(P' [) = v(-p) g(ps)v" (16)

Equation 16 can be used to relate the size distribution at time

S= 0 to that at some late time T > 0. An alternative derivation of

Equation 15 is presented in the appendix.

In order to apply Equation 16 to cases of interesi here,

one can use Equation 10 (again, and from now on, dropping the prime

symbol) together with the given expressions for v(p). This can be

done in closed form for the models under consideration here. In

particular, substituting the right-hand side of Equation 4 for v(p)

into Equation 10 and integrating, one obtains the following expres-

sion for intragranular pores:

'=(Po - + P- 2) + In 0 (17)



Likewise, substituting the right-hand side of Equation 7 for v(p)

into Equation 10 and integrating, one obtains the following expres-

sion for intergranular pores:

3 o + 0o - po- p2 ) + n 1 + Po (1

Unfortunately, for given values of T and pop the value of p can be

r calculated from either Equation 17 or 18 only through some numerical

procedure. Given this fact, however, the problem of calculating the

evolution of the pore size distribution is, in principle, solved.

The above analysis can be cast in somewhat simpler form by

taking

Po = p + A (19)

where A > 0 since the pores are dissolving. In this form, Equations

16, 17 and 18, respectively, become

f(p, A) = ( p + A) (20)

A(p- 1 + 2A) + In ri + a + A] (21)

.4 A(p2 + pA + 2 + 1 p -A) -In r + p+ A] (22)

3 -A 2 L 1 + p

For given p and T, Equations 21 and 22 can be solved numerically for

the corresponding values of A for intragranular and intergranular

pores, respectively.
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3.2.. Eyv] ution of Distribution-Function Moments

Properties of physical interest are related to ifomients of

the size-distribution function, rather than to the distribution

function _-e, defining the i-th algebraic moment (i.e., the i-th

moment about p = 0) as

M i(T) = fp if(p, z)dp .(23)
S~0

For example, Mo(T) is the net concentration of pores within the

solid, and the volume fraction occupied by porosity is linearly pro-

portional to M3(,).

There are different ways in which M i() can be calculated

(see, e.g., [8, 9)). As diccussed below, the approach used here is

to calculate f(p, T) using a general approach described above, and

then numerically integrating, using Equation 23 as a basis, to

determine the moments of interest.

One case is of particular interest, namely, that involving

M 0* It can easily be shown that an alternative expression for M0 is

Mo(iT) = f g(p)dp (24)
tlN Ao0

where the quantity A° in Equation 24 is the value of A, obtained

from Equation 21 or 22, corresponding to p = 0. Thus, for

intragranular and intergranular pores, respectively,
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=A o (O -1) + In(1 + AO) (25)

A (=A(1A2 -'Ao -~ n (1 + AO)(6
0~ 2o (26

The values of M0 can be calculated, for a given value of T, simply

by numerically determining the pertinent value of A from Equation

25 or 26, and then perfcrming the integration indicated in Equation

24. The result obtained by this approach should yield the same

result as that obtained from the approach previously described based

on the use of Equation 23. In fact, comparison of the values of M

calculated using the two different approaches would serve as a use-

ful check of the accuracy of the numerical procedures and was indeed

used for this purpose in the examples described below.

4. Appl•Ication to Specific Examples

The methods of calculating size-distribution kinetics

described above may be applied to a wide variety of initial pore-

size distributions. We have applied them to a Weibull distribution

Sg(p) = mpmleP . (25)

with m = 2, 2.5, and 3, and to a log-normal distribution

[ 2
g() 1 exp -rnph] (26)

V-c p I (2c 2 )

where we have taken b = 0.8 and c = 0.5. A3 will be seen from the

figures below, these distributions are generally similar in appear-

ance. The most important difference among them is that the log-

normal distribution has a long large-radius tail, while the large-
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radius tails of the Weibull distributions are smaller and decrease

with increasing m.

All of these functions are normalized, that is, they have

M0 = 1. However, due to the differences betaeen the functions, it

is generally not possible to normalize the third moments simultane-

ously. For the Weibull distributions, we have M3 = r(1 + 3/m) while

for the log-normal distribution, M3 = b3exp(9c2/2).

In Figs. 2-4 we present plots of the pore size distribu-

tion function for selected times and various initial distributions

as calculated using Equation 4 for the kinetics of dissolution of

intragranular pores. Results for the Weibull distribution with

m = 2.5 are not plotted but were intermediate between the results

for m = 2 and m = 3. From Fig. 2, it will be noted that the posi-

tion of the peak of the distribution function moves toward larger

radii as time progresses. A similar but smaller effect can be seen

in Fig. 3, while in Fig. 4, position of the peak clearly shifts

toward smaller radii. This behavior is in marked contrast to that

of standard models in which all pores are the same size and all

pores shrink together: for densification to occur, the pore radius

must shrink. If there is a distribution of pore sizes, however, the

peak of the distribution may move in either direction, depending on

the shape of the distribution and the velocity function. The influ-

ence of the velocity function may be seen in Figs. 5-7, which differ

from Figs. 2-4 only in that the velocity for intergranular pores was
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used. For all calculations with intergranular pores, we took a 1.

As seen in Figs. 5-7, the peak shifts strongly to higher radii for

the log-normal distribution, somewhat less strongly for the Weibull

S distribution with m = 2, and only slightly for the Weibull distribu-

Ei tion with m = 3. It is clear from the figures that, qualitatively,

if the magnitude oF the velocity function decreases strongly with

increasing radius and the initial distribution has a long large-

radius tail, the peak of the distribution function will shift toward

the right, since the small pores disappear quickly, leaving the

larger pores almost unchanged. Conversely, if the velocity function

depends weakly on radius and the initial distribution is narrow, the

pores will shrink together and the peak of the distribution will

move to the left.

While the pore size distribution functions would be diffi-

cult to determine experimentally, two quantities that are more

easily measured are the number of pores per unit volume and the

porosity. These two quantities are proportional to M and M

respectively. The moments are plotted as functions of time for all

four distributions and both velocity functions in Figs. 8-11. For

comparison, we have also plotted the third moments for a distribu-

tion in which all pores are the same size. An initial pore radius

of p = (3/4n)1/3 was used.

If it is assumed that all pores have the same size, all

pores vanish simultaneously, and M0 changes discontinuously. A more
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realistic picture is seen in Figs. 8 and 10: the number of pores

Sgradually decreases toward zero. At times up to • = 0.2, the number

of pores decreases at comparable rates for all four distributions,

reflecting the general similarity of the central portion of the dis-

tributions. By T = 1, however, the distributions are dominated by

what was originally the large-radius tail of the distribution, and,

for both velocity functions, the log-normal distribution has the

largest number of pores, followed by the Weibull distributions in

order of increasing m.

From Figs. 9 and 11, we note again the unrealistic results

obtained by assuming a single pore size: densification proceeds

rapidly to completion. At short times, the rates of change of the

third moment as obtained by assuming .ribution of pore sizes

agree relatively well with those for a single pore size and with

each other. However, the results soon begin to diverge. For a sin-

gle size of intragranular pores, it is predicted that all porosity

F' will vanish at T = 0.247, but all of the calculations with a distri-

bution of sizes give significant remaining porosity at this time.

The contrast is even stronger in the case of intergranular pores.

The calculation with a single pore size shows all porosity vanishing

at z = 0.196, but, for the log-normal diftribution and Weibull dis-

tribution with m = 2, more than half of the original porosity

N remains. For both velocity functions, the calculations on a log-

normal distribution give significant remaining porosity at z 1.
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Size-distribution effects associated with pores in solids

have been studied by other investigators as well. For example,

Tomandl [10] considered pore shrinkage resulting from sintering

without any externally applied pressure. The expression he used to

describe the rate of pore dissoluticn by diffusion along grain bcun-

daries was

d _• (27)dt R

where cd is a parameter that is dependent upon temperature.

Clearly, Equation 27 is mathematically equivalent to Equation 1 if P

is set equal to zero in the latter. They then differ only in the

form of the coefficient of the R-2 term. For this limiting case,

the time-dependent size-distribution function can be derived in

closed form, as Tomandl has shown [10). In other studies [11, 12),

the evolution of a cavity size distribution under an applied tensile

stress was studied. The rate of change of pore size was here

described by an expression equivalent to our Equation 5, with P

replaced with -a, where a is the tensile stress at and perpendicular

to the grain boundary. It was assumed that a is equal to the exter-

nally applied tensile stress, an assumption which (as was pointed

out [12)) is not generally valid. The evolution of the cavity size

distribution was evaluated numerically using an approach that was

analogous to that used here.

CO.



It is a common experience in sintering and hot isostatic

pressing to observe that it is difficult to achieve full density.

This is in marked contrast to the predictions of rapid and comFlete

densification obtained from standard models derived under the

r assumptions of diffusional control and a single pore size. We have

showri that more realistic results may be obtained by assuming that a

distribution of pore sizes exists in the material. We have also

shown that the most likely pore size can increase even as densifica-

tion proceeds and all pores shrink.

"It is beyond the scope of this paper to relate pore size

distributions to particle size distributions and particle packings.

However, it is clear from this work that behavior in the limit of

long time (and high density) is controlled by large pores. it is

expected that these large pores would be found near large initial

particles or fully densified agglomerates.
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Appendix: AiternaLive Derivation of Equation 15

In this appendix, we present an alternative derivation of

Equation 15, one that is perhaps simpler than that developed in the

text, but which nevertheless is mathematically rigorous.
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Consider a pore that has size p0 as time -o and size p > 0

at some later time z. The relationship between p and T is given by

Equation 10 (dropping the prime symbol in Equation 10). Likewise,

consider another pore that has size p0 + dPo at time -o and size

p + dp at time T. For this case, Equation 10 becomes

p + dpT - To0 f A (A.1)
4 PO + dPov(P)

9V Subtracting Equation 10 from A.1,

p+dp do P
0= f d (A.2)

PO + dPo PO

or

P p+dp p
j f dp(A.3)PO dPov(p) v(P)

For infinitesimally small dp and dP, Equation A.3 can be expressed

as

d• = d~o(A.4)v(p) v(p
~0)

The concentration of pores at time To within the interval

PO to Po + dPo is f(Po, -ro)dPo and that at time T within the inter-

val p to p + dp is f(p, T)dp. Clearly* these must be equal, i.e.,

f(p, ')dp = f(po0 To)dPo0  (A.5)

Eliminating dp and dp0 from Equation A.5 by application of Equation

A.4, we find that
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V(p)f(p, .) = v(Po)f(po, 0) (A.6)

and we see that Equations A.6 and 15 are identical.
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List of Figures

Fig. 1. Normalized shrinkage rate as a function of normalized pore

radius for two types of pores. Solid line: intragranular pores.

Dashed line: intergranular pores.

Fig. 2. Pore size distribution function for int.agranular pores at

several times. Initial distribution is log-normal.

Fig. 3. Pore size distribution function for intragranular pores at

several times. Initial distribution is Weibull with m = 2.

Fig. 4. Pore size distribution function for intragranular pores at

several times. Initial dis-*ribution is Weibull with m = 3.

Fig. 5. Pore size distribution function for intergranular pores at

several times. Initial distribution is log-normal.

Fig. 6. Pore size distribution function for intergranular pores at

saveral times. Initial distribution is Weibull with m = 2.

Fig. 7. Pore size distribution function for intergraiular pores at

several times. initial distribution is Weibull with m = 3.

Fig. 8. Zeroth moment of the pore distribution function (propor-

tional to number of pores) as a function of time for intragranular

pores with four initial pore size distributions. Solid line: log-

normal. Short-dashed line: Weibull, m = 2. Dot-dashed line:
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Weibull, m = 2.5. Long-dashed line: Weibull, m = 3.

Fig. 9. Third moment of the pore distribution function (proportional

to porosity) as a function of time for intragranular pores with five

initial pore size distributions. Solid line: log-normal. Short-

dashed line: Weibull, m = 2. Dot-dashed line: Weibull, m = 2.5.

Long-dashed line: Weibull, m = 3. Dotted line: single pore size.

Fig. 10. Zeroth moment of the pore distribution function (propor-

tional to number of pores) as a function of time for intragranular

pores with four initial pore size distributions. Solid line: log-

normal. Short-dashed line: Weibull, m = 2. Dot-dashed line:

Weibull, m = 2.5. Long-dashed line: Weibull, m = 3.

Fig. 11. Third moment of the pore distribution function (propor-

tional to porosity) as a function of time for intragranular pores

with five initial pore size distributions. Solid line: log-normal.

Short-dashed line: Weibull, m = 2. Dot-dashed line: Weibull, m

2.5. Long-dashed line: Weibull, m = 3. Dotted line: single pore

size.
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