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A NEGATIVE RESULT ABOUT SOME CONCEPTS OF NEGATIVE DEPENDENCE

by

Kumar Joag-Dev and Frank Proschan

University of Illinois and Florida State University

Abstract

The key result is:

1Theorem. Let Xl, X2 be independent random variables and suppose there exist

real numbers c, t,, t2 such that t2 > ti and

1 P[X 1 cX X2 =t1 > P[Xl cX 1 l x2 =t2],

where conditioning events have positive probability. Then there exists a

random variable X independent of XI. X such that the conditional distribu-
31' 2

3
tion of (X1, X, X3) given the sum Xi is not pairwise NQD.

Other negative results concerning negative dependence are presented.
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1. Introduction.

Suppose Peter and Paul inherit a fortune. If Xl, X2 are their shares,

" then it is clear that (X1 . X2) should be 'negatively dependent' according to

every reasonable notion of negative dependence. We want to consider the

question of a multivariate analog of this simple bivariate fact. For

example, suppose X1, X2, X3 are independent random variables representing

the shares of Peter, Paul and Mary. Suppose that the sum X1 + X2 + X3 is t.

To what extent does the conditional distribution of (XI, X2, X3) exhibit

negative dependence? If Xi possess log concave density (also known as PF2

condition) then utilizing a monotonicity result of Efron (1965), Joag-Dev

and Proschan (1983) show that the above distribution does satisfy a strong

negative dependence relation called 'negative association' (NA). Other

concepts of negative dependence such as 'negative orthant dependence',

'reverse rule', etc. are established for a long list of multivariate distri-

butions, such as multinomial, Dirichlet, hypergeometric, etc., by Block,

Savits and Shaked (1982), Ebrahimi and Ghosh (1981), and others. Most of

- these examples can be perceived as the conditional distributions, obtained

by fixing the sum of the independent PF random variables. Note that assum-
2

ing only finite variance, if the random variables are independent and

identically distributed, then clearly the conditional covariance of every

pair is negative when the total sum is fixed. A natural question would be:

does the conditional joint distribution exhibit a condition such as pairwise

negative quadrant dependence? Note that although this condition is stronger

than negative covariance, it is weaker than 'negative upper orthant depend-

ence' (NUOD) or 'negative lower orthant dependence' (NLOD) which in turn are

weaker than NA (see the next section for thd iiti6n5. We show that

| ''!(t i

.... ' " 1. K.L?F2]

1 A ."



-2-

without the monotonicity resulting from PF such a negative dependence con-

dition does not hold.

2. Results.

Next we define some of the standard notions of negative dependence.

Let Y= .(Y, ..., Yk) be a k vector with real valued component random

"* variables. The vector Y is said to possess 'negative association' (NA) if

for every partition of {1, 2, ..., n} into A, A and every pair of co-ordi-

natewise nondecreasing functions f, g,

(2.1) COV[f(Y i , iEA), g(Y, j EA)] 0.

Condition (2.1) is stronger than 'negative upper orthant dependence' (NUOD)

which requires

k
(2.2) P[Y>c i=i ... , k] nT P[Yici],

1 i=l 1 1

for every set of constants cl, ..., ck. By reversing inequalities in the

square brackets on both sides of (2.2) one obtains NLOD. It is easy to

check that NA implies NLOD; however, between NUOD and NLOD neither implies

the other for k>_3. For k =2, the bivariate case, these two are equivalent

" and the condition is referred to as 'negative quadrant dependence' (NQD).

It also follows that pairwise NQD condition is weaker than all the above.

Let Xi, i = 1, ... , n, be independent random variables from log concave

densities. Efron (1965) shows that the conditional expectation,

E[g(X,- .... X) I =s] is nondecreasing in s, where g is an arbitrary

co-ordinatewise nondecreasing function. This is the key tool in the proof

given in Joag-Dev and Proschan (1983), to show NA for the conditional distri-

tion of (Xi } given IX..

S "•
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Theorem 2.1. Let XI, X2 be independent random variables and suppose there

exist real numbers c, t1, t 2 such that t2 > t 1 and

(2.3) P[X 1 >_ cIX1 +x 2 =t] > P[X1 >_cX 1 +X 2 = t 2 ] ,

where conditioning events have positive probability. Then there exists a

random variable X3, independent of (XI, X2 ), such that the conditional dis-

3
tribution of (X,, X , X3 ) given the sum X., is not pairwise NQD.

Proof. Define X to be a binary random variable such that
*1 .3

P[X 3 
= ]=P[X =t 2 -t l ] 1

3 3. 2

3
Let X. be independent of (XI, X2). Let the event X. =t 2 be denoted by'-___a_ oi= 1

A. The event A may be written as a disjoint union of A1 and A2 denoting the

events [X1 +X 2 = tip X3 = t2 - t ] and [XI +X 2 = t 2 , X3 = 0] respectively. Using

this notation, we have

(2.4) P[X c A]  P[A 1] P[X > P[A 2]

-[:--A] --[A] [X cIAI + l P[A P[XIcIA 2]"

44 Using the independence of X and (XI, X2) in (2.4), we get

K P[X c cI otl)[X 1 > cX 1 + = tl] + (1 - c)P[X1 > cJX 1 + X= t2, -

where -A=P[Al 1 L/P[A ] 0<a< 1. Due to assumption (2.3) and the independence

of X3 , it follows that

(2.5) P[X1 - c X3 = t 2 - +1  + = t 1 ] > P[X1 - cIA] .
1 3 1 2

i" > I
-o "- .- j
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However after some manipulation, we see that (2.5) is equivalent to

(2.6) P[Xl >C, X3 > t 2 - tlA] > P[Xl - cIA]P[X 3 > t2 -tlA].

Inequality (2.6) shows that conditionally, (X1, X3) is not NQD.

One may ask whether the assumption of a common distribution function

will create NLOD. The following example shows that it does not. Let

X1, X2 , X3 be independent random variables having a common discrete distri-

bution on 0, 2, 3, with corresponding probabilities P0 ' P2 P P3 respectively.

Let T denote the sum, 3Now

= 3/ 2 +3

P[X i !5 2, i 1, 2, 31T=6] =p/(3 0 P+p),

while
3 2

P[X:5 IT 61P2 + P3P0
P[X_ -,2 3

3p P3 + P2

Thus the NLOD condition would be violated if

3 r 3 2 3
(2.7) P2  P +pop 33pp 3 3pP + P2

P3+ P2 3P2

Put a=pI, b =pop'. Then condition (2.7) is equivalent to

(2.8) !a ____a l3 3)2bab a ~ + b)3b3 2 3 2.
(2.8) 1a7 3b < <-=> a(a+ 3b > (a +b) <=> 3a(a + 2b) >bIla 3b a+3

The last inequality in (2.8) can easily be met when b is small or equiva-
1

lently, p, is large. For example if p2 - then it certainly holds.

k
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3. Final Remark.

It seems that either a very strong negative dependence holds with the

monotonicity condition while without it, even a somewhat weak condition does

not hold. This brings out the crucial role played by the PF2 property inJ2

conditional negative dependence.

4.
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