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A ABSTRACT

In this paper, the set of all bivariate positive quadrant dependent dis-
tributions with fixed marginals is shown to be compact and convex. Extreme
points of this convex set are enumerated in some specific examples. Applica-
tions are given in testing the hypothesis of independence against strict
positive quadrant dependence in the context of ordinal contingency tables.
Various procedures based upon certain functions of the eigenvalues of a random
matrix are also proposed for testing for independence in two-way contingency
table. The performance of some tests one of which is based on eigenvalues of

a random matrix is compared. 5(;“
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1. INTRODUCTION

Cross-classified data having ordered categories arise in many investiga-
tions conducted by medical, physical, natural and social scientists. Statistical
methods have been developed and continue to evolve to analyze such data., Many
of these methods are tailored to answer specific questions and issues raised.
For reviews: of the literature in this area, the reader is referred to Agresti 1]
and Goodman [6].

We begin with a“"general description of a problem tackled in this paper.
Let B be the Borel ¢ - field on the real line, R and B8xB the product ¢ - field
': - on RxR, Let u be a probability measure on BxB and My and Mo the corresponding

marginal probability measures onB, i.e., “I(B) = u(BxR) and u,(B) = u(RxB)

for every B in B, Following Lehmann [14], u is said to be a positive quadrant

. - e T e e L e e e e . RO G e et et e e N e A PRSI
SURSCING AL R AP I SR T R O R s -‘._~'-.- T T I PRI T N
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dependent if
u{[c.w)x[d.°)_} > ulifc.“)‘\?uz{ d,=);
for every c¢,d in R, In the jargon of random vairables, the
above notion can be rephrased as follows. Let X and Y be two
random variables with some joint probability distribution
function F., X and Y are said to be positive quadrant dependent if
P{X > ¢, ¥ > d} > Pix > c} piy > d}
for all c¢,d in R. For various properties of positive quadrant
dependence, see Lehmann ﬁtﬂ or Eaton [3] In this paper, we
look at the notion of positive quadrant dependence from a global

point of view. Let M denote the set of all positive
PQD
quadrant dependent probability measures u on B8 x® . It is

natural to think along the following iines., If M is a convex
PQD
set and compact in some decent topology, then the set of extreme

points of M will be non-empty. See Phelps [20]. Moreover,
every memberpgg M can be expressed as a mixture (in some
sense) ot extreme gg?nts of M . There are certain properties
of distributions which are preESEved under mixtures. Under these

circumstances, it suffices to examine extensively the extreme

points so as to make comments on the .members of M . But this
PQD
line of reasoning fails since M is not a convex set as the
PQD
the following example demonstrates.
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Let u be a probability measure on ® x® with
support contained in {(1,1), (1,2), (2,1), (2,2)}. Such a

probability measure can be written as

1 2
1
P Pial P
Moo= )
P2 pzz P,
LI
4 q2
where p  =u{(i,j)}, i =1,2; 3§ =1,2;p =u1({i}), i=1,2
L i
and q =y ({j}¥), j =1,2. Then u e M if and only if
j 2 PQD
p q < p < p Ag , where p Aq denotes the minimum of
22 T 22 T 2 2 2 2

p2 and q2. For the desired example, let u and n be the
probability measures with the same support <{(1,1), (1,2), (2,1),
(2,2)} given by

1 2 1 2
1 % % ] 1 2/9 1/9 1/3
u = n =
2 4% % A 2 4/9 2/9 2/3
L L 1 2/3 1/3 1

u and n are positive quadrant dependent but X%u + 4%n is not.




We can identify some natural subsets of M as
PQD
convex sets, Let x and v be two probability measures on @ .

Let M (r,v) be the collection of all probability measures
PQD

in M such that uy = ) = vy, i.e.,
PQD 1

M (A,v) = {pue M
PQD

In Section 2, we show that M (r,v) 1is a compact convex set
PQD

in the weak topology on the space of all probability measures

M on @ x® .using this result, one obtains a decomposition of

M as
PQD

M = UU M ()\9\’) ’
Aoowv

PQD PQOD

where the union is taken over all probability measures

on ® .

In Section 3, we concentrate on the case when both
> and v have finite support. We describe a method of
enumerating all extreme points of M (x,v) with the help of
some examples, In Section 4, using tﬁgostructure of M (xyv),
we compare the performance of some tests for testing iiggpendence-

against strict positive quadrant dependence.

2. Main Results

In this section, we show that for any two probability

measures » and v on @ , M (yv,v) is compact and convex.
PQD
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We need the following definitions and results in this connection.

Let (X,d) be a Polish space, i.e., a complete

separable metric space. Let (@B be the Borel o-field on X
X
and Mx the space of all probability measures on GBX. M is

equipped with weak topology.

Definition 1, A subset S of MX is said to be uniformly

tight if for every ¢ >0 there exists a compact subset C of

X such that

u(C) > 1-¢ for every wu in S,

The following is known as Prohorov's theorem.

Proposition 2 A subset S of MX is relatively compact if
and only if S is uniformly tight., S is compact if and only if
S is closed and uniformly tight.

Proof. See Billingsley [ , Theorems 6.1 and 6.2, p.37].

Theorem 3 Let M(a,v) be the collection of all probability

measures u on OB x@ such that b= and 4 = v
2

Then M(x,v) 1is compact.

Proof. It is obvious that M(x,v) 1is a closed subset of M ,
the space of all probability measures on (B xB . We show that
M(x,v) is uniformly tight. Let ¢ > 0. There exist compact
subsets C1 and C of R such that x(C?) < €/2 and

2
<

v(Cz) < e/2. CGC2 is a compact subset of RxR. Let u e M(x,v).

Then
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c c ' c
o wllex€,)%] < w(cyxR U RxC3)
o
2 < wl(CIxR) + w(RxCH)
A

< c c

:‘: = Ul(cl) + Uz(cz)
N _ c c
_. < £
7 This completes the proof in view of Proposition 2.
5 The following result is the main result of this section.
. Theorem 4 For any given probability measures 2 and v on 1,
- MPQO(A,v) is compact and convex.
. Proof. MPQD(A,v) is a closed subset of M(a,v) follows from
f the following observation. Let un, n>1 be a sequence in
- MPQD(A,v) converging weakly to a u in M(x,v). Then for any
z c,d in R, (See Billingsley | 2, p. 117]),
- w{lc,»)x|d,=)} > Tim sup u"{|c,=)x|d,=)}
Y ’ N
"o > A{]c,=)vi{¥d,=)}.
” o .
- Hence u ¢ MPQD(x,v). This implies that MPQD(A,v) is compact.

We now show that MPQD(x,v) is convex. Let wu,n =« MPQD(x,v)

and 0 < a < 1. Then for any c,d in R,




(au  + (1-a)n){[c,»)x[d,=)} - A{[C,w)}\){fd,w)}

au{[C,M)X[d,W)} + (]-G)H{EC,m)X[d,‘”)} -

M [e,o)tvi[d,=)}

|v

ar{fc,=)r vild,=)r + (T-a)a{fc,=)Ivi[d,=)}
- af{fe,)vi{[d,=)} = o0,

Consequently, au + (l-4)n ¢ MPQD(x,v). This completes the

proof.




3. Extreme Points

In this section, we assume that the support of A is {1,2,+-.,m}
and that of v 1is {1,2,..-,n}. Let Py = p({iy), i = 1,2,++-,m and 9 =
v({j})s § = 1,2,+++,n. In this case, we use the suggestive notation

MPQD(plspzs"'apm; qlqus"'sqn) for MPQD()\,\)). Any u in MPQD()\,\)) can

be written in the following form

ql q2 ce qn 1 s

where Py =u{(1,3)}, i =1,2,¢«e,m; j = 1,2,+++,n. In other words,
MPQD(pl’DZ"°°’pm; ql’qZ""’qn) is the collection of all matrices (pij)

of order mxn such that each pij > 0, row sums PysPpse=*sP column sums

m’
915955 5q, and the joint distribution is positive quadrant dependent. The
compact convex set MPQD(pl,pZ,--»,pm; ql,qz,---,qn) has a finite number of
extreme points. We now describe a method of enumerating the extreme points
in some special cases for illustration from which the general technique can
easily be perceived., As we shall see shortly in Section 4, the knowledge

of extreme points has considerabie bearing on the power of tests of indepen-

dence against strict positive quadrant dependence.

o, S L R o S R R I O OO




Let P1sPps 9150, be specified such that each of P1sPy»0150, is
positive and Pyt Py = 1= 9 *9,. It can be easily verified that if a

matrix

with non-negative entries, row sums PPy and column sums 91:9 belongs

to Mpop(PysPps a740,),  then

szZ < p22 < pzl\qz.

Conversely, if the number P22 satisfies the above inequality, then the matrix

P1=92*P22  927P22
P2-P22 P22
belongs to MPQD(pl,pz; ql,qz). There are only two extreme points

MPQD(pl’pZ; ql,qz). These are given by

'—plql P19y

| P29 P2

(P9, P9,
and if P, A G, = q,.

2 M 92 7 9
P91 PR P R

Every member of MPQD(pl,pZ; ql’qz) is a convex combination of these two

extreme points.
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Example 2 m=2 and n = 3,

2

L, Let P1sP259150,505 be five positive numbers satisfying Py * Py =
[}
WX 1= qp * 9, * Q3. If the matrix (pij) belongs to MPQD(pl‘pZ; ql,qz,q3), then
% P93 < Pp3 < Pp A4y and
)

<

" (Ppdz * P293) v Ppg < Ppp * Pp3 < Py A {4y + Py,

- where ay b indicates the maximum of the numbers a and b. Conversely,
E' if Poo and p,3 are two numbers satisfying the above inequalities, then

the matrix
917P2*™P22"P23  927P22  937P23
P2~P227P23 P22 P23

;: belongs to MPQD(pI'pZ; ql,qz,q3). The impact of this observation is that
B . . . .
: the numbers Poo and Pog3 in the matrix (pij) determine whether the matrix
J (pij) belongs to MPQD(pl’pZ; ql,qz,q3) or not. These two inequalities

L determine a simplex in the p,, - p,; plane. As a simple illustration, take
3 Py =Py = L3 9 = 9, = 43 = 1/3. The determining inequalities are

1/6 < Pog < 1/3 and

| These inequalities determine the following simplex in the Pry = Pp3 plane.
3

o,

“%s
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A
P22
1/3 g
16 1. ;
2 \
0 7% 7% P’

There are four extreme points of the set MPQD(1/2,1/2; 1/3,1/3,1/3)

given by
1/6 1/6 1/5 - 1/3 0
1/6 1/6 1/6 , 0 1/3] ,
1/3 1/6 0 1/6
0 1/6 1/3 | , 1/3  1/6
corresponding to the four points Pl’ 9 3, respectively. Every

member of MPQD(1/2,1/2; 1/3,1/3,1/3) is a convex combination of these

four extreme points.
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Example 3 m=3 and n =4,
Let pl,pz,p3,q1,q2,q3,q4 be seven positive numbers satisfying
Pyt Pyt Py =1=0) +qy+ag+a,. If (py) e Myp(pyaPssPys 4155593:9)
then
(1) P39 < P3y < P34 Gy,

(2) p34 v (p3Q3+p3Q4) +

A
A

p33 p34 P3 A (Q3+p34)9

(3)  p3q V (Pyagtp,a,) +

IA
A

Poy P34 Qg A (pz+p34)’
(4) (p33+p34) v (p3q2+P3Q3+P3Q4) 2 Py + P33 + P3qg =

p3 A (q2+p33+p34).

(3)  (P33*Poa*P3s) V (Pya3+Pyas*P4a3+P3a,) = Ppy * Pyy *+ P33 + Py
< (Py#py3*Pay) A (a3%Pys*P3,) s

and

(6) (Py3*PogtP3a*P3o*P33) ¥ (p2q2+p2q3+p2q4+p3q2+p3q3+p3q4) <

+ <

Pag * Pa3 * Py * Py P33 * P3g
(Pp*P3p*P33*P3q) A (Qp¥P ¥Ry *+Py3+Pa,) .

Conversely, if P3gs» P33s Ppgs P3os Pp3s Poy are six numbers satisfying the
above inequalities, then these six numbers determine uniquely a member of
MPQD(pl,pz,p3; ql,qz,q3.q4). We explain how to enumerate all extreme points |
of the convex set in the simple example Py = Pp =Py = 1/3 and 9y = 9, =-

93 = Gy = 1/4. (The technique in the general case is similar to this special

example.) The six inequalities above now become
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(1) 1712 < 3/12,

P3g =

(2) p3q V212 < py3+ Py

A

4/12 p (3/12 + p34) = 4/12,

(3) P34 V2/12 < Pog * P3y

IA

3/12 n (4712 + p34) = 3/12,

(4) (p33 + p34) vV 3/12 Y p32 + p33 + p34 < 4/12 n (3/12 + P33 + P34)
= 4/12,

(8) (P33 + pyg + P3g) V4/12 < ppy * Py * Py3 * Pyy <
(8712 + pyy + pag) A (3/12 + pyy + p3g) = 3/12 4 pyy + Pays

(6)  (ppy * P3p * Ry3 * P * P3q) ¥ 6/12 <

P22 * P23 * Paq * P3z * P33t Py =
(4712 + p3p + P33 + P3q) & (3712 + py3 *+ Ppy + P33 * Pyq)-

The first step in the determination of extreme points is to get
rid of the maximum and minimum symbols by splitting some or all inequalities
above. For example, inequality (1) can be written as 1/12 < P3g < 2/12
and 2/12 < P3g < 3/12. Inequality (3) can be written as P34 V2/12 <

3/12 and 3/12 < 4/12. The above set of

P33 * P3g = P33 ¥ Py =
inequalities are equivalent to the following four sets of inequalities.

I (1) 17212 < Pyg = 2/12
(2) 2/12 < P33 * P3g < 3/12
(3) 2/12 < Pog + Pyg < 3/12
(4)  3/12 < Pyp + Pgg * Py < 4/12

(5) Same as above

(6) Same as above




112 < pyy < 2/12

3/12 4/12

P33 * P3q

2/12 < pyy + Py < 3/12

< < 4/12

P33 * P3q P32 * P33 * P3q

Same as above

Same as above

2/12

Py < 3/12

3/12 < 4/12

P33 * P3g

P3g < Ppq * P3y < 312

P3g + Py < P3p * P33+ Py < 412

Same as above

Same as above
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The maximum and minimum symbols in inequalities (5) and (6) stay
put in spite of splitting the inequalities (1) and (2). In order to neutralize

these symbols, we introduce the following auxiliary inequalities.

(2,3) p33 + p24 + p34 < 4/12

or
/12 < P33 * Py * Py
(2,3,4,5) pp3 + P3p * P33 * Ppg * Py < 6/12
or
6/12 <

Pag * P3p ¥ P33 * Pyy * Pyyq

(4,5)  4/12 % p3p *+ P33+ pyy < /12 4 py3 * Py * Py3 * Py
or
3/12 + Pog * Pog + P33 * Py < 4712 + Py, *+ P3g + Pag-

Now, a choice of each of the auxiliary inequalities (2,3), (2,3,4,5)
and (4,5) 1is appended to each set of the inequalities I, II, III and IV. This
would generate 32 sets of inequalities equivalent to the four sets I, II, III
and IV of inequalities. To save space, we will not reproduce these 32 sets

of inequalities. A sample set of inequalities is produced below for further

discussion.
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A sample set of inequalities chosen from 32 sets of inequlities described above

(1) 2/12 3/12

Ia

Pyg =

(2) 3/12 < 4/12

P33 ¥ P3g =
(3)  p3q = Ppg * Py = 312

P33 * Pag * P3q < /12

(4) P33 * Pyg < P3p * P33t Py < /12

(2,3,4,5) 6/12

A

Pa3 * P3p * P33 * Pyg * Py
(5) 4/12

A

Pa3 ¥ Ppg * P33 ¥+ P3p & 3/12 + pyy * pgy
(8,5)  8/12 + pap + Pag * Pyg < 3/12 % pyy + poy * P33 * Py

(6)  Ppg * Pyp * P33 * Py * Py

Ia

Pog * Pp3 * Ppg ¥ P3p * P33t Py

| A

8/12 + p3p + P33 * P3y-

The above set of inequalities is obtained from the set IV of
inequalities by appending the first choice of (2,3), the second choice of

(2,3,4,5) and the first choice of (4,5).

In order to obtain a member of MPQD(1/3,1/3,1/3; 1/4,1/4,1/4,1/4)
we proceed as follows. Set the central expression in each of the main six
inequalities equal to the guantity either on the left or the right of the

inequalities and then solve the system of equations thus arize in the unknowns
P3g> P33s Pogs P3ps Po3s Py making sure that the constraints imposed by

the auxiliary inequalities are satisfied.These system of equations are easy

to solve. The solution will give a member of MPQD(1/3,1/3,1/3; 1/4,1/4,1/4,1/4).

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
.................................................
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Generate members of MPQD(1/3,1/3,1/3; 1/4,1/4,1/4,1/4) by following
the above procedure for each set of the 32 sets of inequalities. The set of
extreme points of the convex set of interest is a subset of these solutions.
There will be a large amount of duplicates and some of the solutions obtained
are already convex combinations of other solutions. After considerable amount
of weeding, we got the following matrices as the entire collection of extreme

points of the convex set M 1/3,1/3,1/3; 1/4,1/4,1/4,1/4),

PQD(

1.01/12 1712 1712 1/12 2. 2712 o 1712 1712
1/12 1712 1712 1712 0 2/12 1712 1/12
1712 1712 1712 1712 112 112 112 112

3. {1712 1712 1712 1712 4. [2/12 0 1712 1/12
2/12 0 /12 1/12 /12 1/12 1712 1712

2/12  1/12 1712 0 2/12 1712 1712

5.13/12 0 0 1/12 6. [1/12 2/12 0 1/12

0 1712 2/12  1/12 1/12 0 2/12  1/12
0 2/12  1/12  1/12 /12 /12 /12 1/12!
7. 12712 1712 0© 1/12° 8. (3/12 1/12 0 0o |
0 1712 2/12  1/12 0 0 2/12  2/12
|
1/12 1712 1712 1/12) 0 2/12 1712 1/12

9. [2/12 0 2/12 0 10. [1/12 1712 2712 0~

/12 1/12 0 2/12 2/12 0 0 2/12
0 2/12 1712 1/12 0 2/12  1/12  1/12

................................................
.................................................







-------

25.

27.

29.

31.

33.

35.

37.

.....

-
2/12

| 1/12

[ 1/12

LZ/IZ

[ 2/12
1/12

1/12
2/12

3/12

2/12
1/12

1/12
2/12

3/12

2/12

1/12

3/12

2/12
1/12

1/12
2/12

2/12

1712

1/12

2/12

1/12

2/12

2/12

1/12

3/12

1/12
2/12
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1/12

2/12

1/12

2/12

1/12 ]

2/12 |

1/12 ]

2/12 ]

A NIt )

26.

28,

30.

32.

2/12
1/12

1/12
0
2/12
1/12
2/12

| 1/12
1712
1712

1712
1/12
 1/12

1/12
2/12

1/12
2/12

1/12
2/12

3/12

2/12
1/12

1/12
2/12

3/12

2/12

1/12

3/12

1/12
2/12

3/12

1/12
2/12

2/12
1/12

3/12

1/12

2/12

2/12

1/12

1/12

2/12 .

1/12
2/12

1/12 7]

2/12

3/12

bl ot m o am




A

[N

39. 2/12 2/12 0 0

1712 1712 2/12 O
0 0 1/12 3/12

4. Testing independence against strict positive guadrant dependence

Let X and Y be two random variables with known marginal
distributions and unknown joint distribution. We want to test the hypothesis
that X and Y are independent against the hypothesis that they are strictly posi
tive quadrant dependent. By strict positive quadrant dependence we mean positive
quadrant dependence but not independence. The data consist of N independent
realizations of the vector (X,Y). Let =t be a test proposed for testing
the hyposthesis of independence based on the given data. Let 1\ be the
distribution of X and v that of VY. Let MPQD(A,v) be the collection
of all bivariate distributions with fixed marginals A and v which are
positive quadrant dependent. The power function of the test =t can be
defined formally as follows.

81(“) = Pr{ t rejects the null hypothesis / u}

for u in MPQD(x,v). The above probability is computed when the joint




distribution of X and Y is yu. The calculation of the power function

of the test 1 whose domain of definition is MPQD(A,v) is very tedious.
Moreover, if we wish to compare the performance of two tests to discriminate
the null hypothesis of independence against the alternative hypothesis of
strict positive quadrant dependence, we need to compare their power functions.
This comparison then becomes doubly more difficulit to achieve. But the
following theorem asserts that it suffices to compare the powers at the

extreme points of MPQD(A,v) only.

Theorem 5 Let ., ul, uz,..., uk be members of MPQD(A,v) such
- 1 2 k
that u = aqu + aou + oeee + apu for some Aps Qo ttt s > 0
k
with ooy = 1. Then
i=1
K i
B (u) = T a, B8 (n)

The above result can be used as follows. Suppose each of X and Y takes
finitely many values. Then the convex set MPQD(x,v) has finitely many
extreme points and every member of MDQD(A,v) can be written as a convex

combination of these extreme points. Then the power of the test ¢
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evaluated at any given yu in MPQD(x,v) is precisely the same convex

combination of the powers of the test evaluated at each of the extreme points.
This result also points out that in order to compare the performance of

two given tests, it suffices to compare the powers evaluated at the extreme
points. As an illustration, we consider the case when X takes values 1 and 2,
and VY takes values 1, 2 and 3. let nij = total number of (X,Y)'s

with X =1 and Y =j,i=1,2and j =1,2,3. The data can be arranged

in tire form of a contingency table as follows.

In this section, we compare the performance of two tests for testing
the null hypothesis of independence against the alternative of strict positive

quadrant dependence in the context of 2 x 3 contingency tables above.

Ty ¢ Test based-on gamma ratio

Let the bivariate distribution of X and Y be given by

2p11(Ppp * Pp3) + 2py,py3  and My = 2py3(pyy * pyp) * 2PyoP,y

One can show that y = 0 if X and Y are independent. See
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Agresti (1984, p.160). One can also show that y > 0 if X and Y are

positive quadrant dependent. An estimate of y based on the sampie given

above is given by

v _ C-D
C D
where C = The total number of concordant pairs "11("22 + n23) * Nyofag
and D = The total number of discordant pairs n13(n21 + n22) pLIPLUPR

The following is a natural test based on ; for testing the above null

hypothesis against the specific alternative mentioned thereby.

fv
-9

Test T1 : Reject the null hypothesis if ;

T2 : Test based on eigen values

Let the marginal distribution of X be given by p, and Pos and

that of Y by dys G, and 9. Let

P —
P P12 P13
q - Mt M A1
P21 P22 Pa3
P Pl s

Let <9 and P be the eigen values of QQT, where T denotes

operation transpose on matrices. We give some properties of these eigen values

below. For further details, see Lancaster [11] and [12], 0'Neill ([17], [18],

ahd [19]).
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Properties

1. One of the eigen values is always equals unity. Let us use K

for this eigen value.
2. If X and Y are independent, Ky = 0.

3. If X and Y are strictly positive quadrant dependent, then Ky > 0.

We estimate ST based on the data given above as follows.

Let

A
"1 M2 M3
Notm Ny Ny

21 N22 N23
FE1 N N

Let ;f and 25 be the eigen values of BBT. Then we propose «

as an estimator of <1 + Koo

Test T2 : Reject the null hypothesis if K > a,
We discuss the performance of these two tests in the case of two

specific examples given below.

Example 1 Py =Py = 1/2 and 9 =G, = Gy = 1/3.

=1/2, 9, = 1/4, s = 1/4.

Example 2 Py = 1/4, Py = 3/4 and a4
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Let us now elaborate on some of the properties of the eigen

values of QQT. The second eigen value of QQT, K can be worked out

2)
explicitly.
(Py1Pry = PioPpy)’ (pyqPyq = Py3Pyy)
‘ 11722 12521 + 11723 13721
2 P1P,9;4, P1P,3;95
(Py,Pys = PyaPyy)”
12723 13722
P1P29393 '
From this it follows that Ky = 0 if and only if X and Y are independent.

At this juncture, we want to make some remarks on the definition

of the matrix B above. In order to develop an estimator of Kos it is

natural to divide each frequency n in B by the square root of the

1]
product of the corresponding marginal totals n,., and n'j. See 0'Neill

({171, {181, [19]). 1If we had proceeded as outlined by 0'Neill, one of the
eigen values of BBT would always be equal to unity. In our definition of
B, it is not true that one of the eigen values of BBT would always be
equal to unity. Since we know the marginal probability laws of X and Y,

we need to estimate only pij's by nij/N's. This what motivated us

to define the matrix B the way it was defined above. However, in view of

the above formula for Kys oOmE could estimate « directly without having

2

to define the matrix B. Accordingly, let

(n,.n - n,.n )2 (n,.n - n_.n )2
N 1122 1221 11723 12721
Ky = 7 + z +
N'p1Pr9;9, N pyPy9)93
(n,.n - n,.n )2
1223 13722

&
P1P5454,
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We can build a test based on the statistic ;2.
Test T3: Reject the null hypothesis if ;2 > a.

We discuss the performance of these three tests in the case of two

specific examples given below,
Example 1 Py =Pp = 1/2 and 9 =9 =43 = 1/3.
Example 2 Py = 1/4, Py = 3/4 and qq = 172, q, = 1/4, qq = 1/4,

The performance of T1 and T3 was compared in detail in Subramanyam and
Bhaskara Rao [12]. We now compare the performance of the tests Tl’ T2 and T3
together under the level of significance « = 0,01, 0.025, 0.05 and N = 15, 20
and 25. The exact distribution of ;, < and ;2 is evaluated for each of the

sample sizes N = 15, 20 and 25 and the power of the tests T., T, and T, is

1* 2 3

evaluated at each of the extreme point distributions of the above examples using
these exact distributions. The graphs*of these distributions are given at the
end of this section. Nguyen and Sampson [8] evaluated the powers of tests based
on some other statistics at some specific alternative distributions by simulating

these distributions.

*The authors wish to thank Ron Chao for his valuable help in the computations,
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Example No. Extreme Points Y K

~N
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Conclusions

1. The power of the test T1 dominates the power of the other two tests
at the extreme point distribution P3 in Example 1 and P7 in Example 2.
This is not surprising as the Gamma Ratio achieves the perfect value

unity under P3 in Example 1 and P7 in Example 2,

2. On the whole T2 seems to perform well in comparison with the other
two tests. Even under the distribution P3 in Example 1 and P7 in

Example 2, T2 is not overpowered by Tl‘

3. Some extensive studies are needed to be carried out to see whether
T2 is preferrable to the other two under different sets of marginal

distributions.
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GRAPHS OF THE DISTRIBUTIONS OF ¥ FOR N= 10,15,20,25 UNDER P, AND P2_.
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THE DISTRIBUTIONS OF y FOR N= 10,15,20,25 UNDER P5 AND P8.
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5. Inference on the structure of dependence

In two-way contingency tables, the x2 test for independence has
been widely used. When the test for independence is rejected, it is of
interest to study the structure of dependence between the a+l rows and b+1 columns.

In this section, we write the matrices F = (fij) and B = (bij) in terms

of their eiganvalues and eigenvectors by singular value decomposition;
here f'IJ = p]J/'p-qus b1J = nij/'ninj’ p1 = p1'| + ...
+ ...t ni,b+1 and nij= "1j + ..ot na+1,j

Taking advantage of the above decomposition, we propose procedures to

PPy pers 95 T

Prj * oee * Payy g TS My

find out as to which of the last teigenvalues of FF' are zero. The
distribution theory associated with the above procedures are also in-
vestigated. Some aspects of the above problem were discussed by 0'Neill
([171, 187, [199).. The problem of determination of the rank of

F is discussed in a forthcoming paper of Z.D. B8ai, P.R. Xrishnaiah and
L.C. Zhao from the point of view of model selection using an information
theoretic criterion. The above authors also established the strong con-

sistency of their procedure. In this section, we use the notation n= 2

is fixed and the marginal totals "i and n j are random,

Consider the model
(5.1)
Without losing generality we
assume that a < b. Under the above model, it is of interest to test for
the structure of gij’ From singular value decomposition of a matrix, it
is known (e.g., see Lancaster [12]) that

)

*. %!
uz1au§u3u
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. - x i
where 60 > 6] > .. > Ga are the eigenvalues of F, 60 1, §u is the

eigenvector of FF' corresponding to sﬁ and ”E is the eigenvector of

. F'F corresponding to 65. In (5.2)
: * = —— '
%u (/5;5u1’ Tt pa+15u,a+1)
o
- * = s — 1
' Ju (/a;nul’ Teee qb+1nu,b+1) (5.3)
i o1 = =vr T Egasl T 1Ml T eer TG pyy T
y We are interested in finding out as to how many Su's are equal to zero.
: This problem is analogous to the problem of studying the structure of
; interaction term in two-way classification model with one observation per
i cell. So, we will briefly discuss the above model.
Let
E(XiJ) =qu t U-.i + Bj +A.Ij (5-4)
for i =1, 2, ..., (a+1), 3=1,2, ..., (b+1),
Ya, = )B. = YA, . = JA.. =0,

) 71053 1§

Also u, @iy Bj and Aij respectively denote the general mean, i-th row
5 effect, j-th column effect, and interaction in i-th row and j-th column,

Also, let A = (Aij) and a < b, We assume that xij's are distributed in-
; dependentally and with variance 02. The problem of testing the hypothe-

sis Ao = 0 was first considered by Fisher and MacKenzie [4], and later by
Williams: [23], Tukey [22] and others when the underlying distribution is
4 normal. Fishar and MacKenzie [4] considered this problem using eiger-

values of certain matrix. For a review of the literature, the reader is

‘‘‘‘‘‘‘‘‘‘‘‘‘ . L P R . AT et e
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referred to Krishnaiah and Yochmowitz [10], Now, let E(xi.) =

J
log pij’ u= log ¢, a; = log Pis Bj = log pj and Aij = log 6ij‘ Then
the model (5.4) can be written as
Pij = CP{93%45- (5.5)

But, here we do not assume that the conditions (5.5) are satisfied. But,

log (Zp.

) 1) = log (%qj) = 0. (5.6)

We may assume that ¢ = 1 (i.e., p = 0), We can write (5.6) as

p1J = CP]qJexp(n]J) (5'7)

and express n = ( ) in terms of its eigenvalues and eigenvectors using

nij
spectral decomposition of a matrix. Then, we can draw inference on the
rank of n. This problem is different from the problem of drawing in-

ference on the rank of ¢ except for the special case when the rank of

n is zero. This special case is equivalent to the statement that the
rank of 7 is one. In studying the interaction term in two-way classifi-
cation model, Tukey [22] and Mandel [15] assumed certain structures
on interaction term. We can assume similar structures on the models
(5.6) and (5.7). As far as the models (5.6) and (5.7) are concerned,
they are analogous to the well known two-way classification model with
interaction and one observation per cell, But, the problems of estima-
tion and distributions of test statistics are of different nature. In
general we may also consider models of the form

n. )

p.. = f(ai, BJ., i

1)

-----------------
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where f(:) is a syitably chosen function of a, 85, and n, For

i
example f(x,y,z) = f;(x)f,(y)f,(z). As another possibility, we may

also consider the model

as in two-way classification with interaction.

Goodman [6] discussed the model (5.7) when n is written in
terms of its eigenvalues and eigenvectors. 0'Neil -([17], (18], 91
discussed some aspects of the asymptotic distribution theory associated with
finding the rank of the matrix z. In this section, we propose various
test procedures for determination of the rank of ¢ and investigate some
problems on the asymptotic distributions of the test statistics.

We now ciscuss the problem of testing for the rank of the matrix .
If we know in advance the rank of ¢, we can use that knowledge in esti-
mating the unknown parameters more accurately. For example, the maximum
1ikelihood estimates of pij's when the rank of F is one are not the same
as when the rank of F is greater than one.

Now, let B = (bij) where

a a . . .
B = ganx's  + Z 8 bims (5.10)
u=l
where 60 =1,
e 1/2; 1722
E; ((n,‘./n) §U1""’(na+1—/n) Eu,a+1)’




n* = 1/2; 1727 '
AR TLDR R TR NS VAD R MWD
%O] = LR =§O,a+] =], n01 = .. =n0,b+1 =1.’ (5031

-~

Also, 6 > 6y > ... > §, are the eigenvalues of B, £*, 1is the eigen-

vector of BB' corresponding to 65 and ”G is the eigenvector of B'B

corresponding to &5. Now, let Hizéf =0(i=1,2, ...,a)and H = ingi'
We can use w(s?, cees 62) to test H where y(+) is a suitable function of

22 22 22 22

5], ee.s 3.. For example, we can use 61 + ...+ 6a or 81 as test statistics.

a

Here we note that n(df + ... 04 62) is equivalent to Xg where

(5.12)

2 -
21

Cot~1

{nij ) (nifn-j/n)}z/ni'n'j'

When H. is true, 0'Neil [17] showed that the ioint distribution of

1
néf, cees nés is the same as the joint distribution of the eigenvalues

of the central Wishart matrix with ab degrees of freedom. Percentage
points of the largest eigenvalue of the central Wishart matrix are given
in Krishnaiah [8].

We have discussed before some procedures to test for the overall
hypothesis 5% = ... = 6§ = 0. We will now discuss procedures for testing
the subhypotheses Ht when H, is rejected. The hypothesis Ht is the same
as the hypothesis that the rank of F is t. We will first consider the
test procedure based upon T] where Tq = &g + .04 ég. In this pro-

cedure, we accept or reject H] according as

c (5.13)

la

—
VA

where

PLTy < € IHT = (1 - a). (5.14)

........
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If H1 is rejected, the hypothesis Hq is accepted or rejected according

as

Crgt (5.15)

Starting with the test based upon T1 we can also draw inference on test-

ing the hypothesis Hij as described below; here Hij denotes the hypothesis

pij = p}.qj for given values i,j. The Xg test statistic can be written as

z (5.16)

where

7|

-

= (Zypseen2y puyseeZan e e pa)

and

z.. = (n.. = (n

i3 i 1..n'j/n))/\/ni.n_j.

?
But xi = max{(c'z)" when the maximum is taken over all non-null ¢ subject

-~ o~

to the restriction that c'c = 1, So, when H, is rejected, we can test
1

~ o~

the subhypotheses Hij as follows. We accept or reject Hij against two-

sided alternatives according as

2
z1.j < Cly (5.17)
t u
We can test the hypothesis -~ Hij as follows. We accept or reject
i=1 j=1

the above hypothesis against two-sided alternatives according as

E d 2 <
L L Zis > Cy
s g
t u
The hypothesis N N0 Hi' implies the hypothesis
j=1 g=1 M
t o t 4
poosopee= 0oy 0 al)
21 321 Y i )

R ‘.'.\ .........................
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We will now discuss the problem of testing the hypotheses Hij against
the alternatives Aij simultaneously where Aij:pij > piqj, We accept
or reject Hij against Aij according as

Z.. ¢
ij > 20

P{max 25 2 c2a1H11= (1-a) (5.19)

and max 245 denotes the maximum of the elements of Z, The asymptotic joint
distribution of the.lelments of z is a singular multivariate normal distrnibution.
But, bounds on the critical values ¢y, can be obtained by using Poincare's
formula. Similarily, we can propose procedures to test hypotheses Hi‘

J
i * * .
against Aij where Aij'pij < psq

J'o
We now discuss the test based upon p%. We accept or reject 4]

according as

(5.20)

~2

P[.o] N C2a1H1J = (1-a).

If H, is rejected, we accept or reject Hi according as

A2 <
Oj > CZa' (5.22)

We will now derive the asymptotic nonnull distributions of certain

functions of noi,...,ngi. The following lemmas are needed in the sequz2l.

Lemma 5.1 Let U: » x p be a symmetric matrix which can be expressed as

2

U=A7A+c¢ U(]) + ¢ U(Z)

+ (5.23)
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when A = diag(i\l,...,A ). Also, let

Pl
2¥s%2 2 a

P

X S hee = A = 6 (5.24)
q1+,,,+qa_]+1

for o = 1,2,.4.40, q = 0 and 9, = a. In addition, let P2 el 2 2

denote the eigenvalues of U, Then

To=8 + EE(]) + 825(2) + e (5.25)
o4 [0 o1 ¢4
where
E(]) = Ler U(1)
q aa
o
702 = Lee o2y g 07 u(;) Ué”'
qa l‘aa 8#0 a a a
eaB = ea - 88
- . . =
(i) (i) (1)
UTT U'Iz - Y ] UTr
: - (i) (i) (i)
:. U - U2-l U22 s oo Uzr .
() ) ()
B Upy" U =ee Uy _
The above lemma is implicit in Kato [24]. It is also proved in

Fujikoshi [5]

Lemma 5.2 Let

Lyseeenty@round Ay,..) and let A;s have multiplicities as in (5.24),

We assume that

by following the same lines as in Lawley [13].

o (iyheeant )y (i=1,2,...,k), be analytic functions of

a




3'1‘1(9,

l)on',la)
- a
azjl %jl ia
L)

2
a Ti(ll,. ..,R.a)

= c
133, = 3458
fL=)

~ -

c -
= C13)d,05 = Ay

=)

~ -

= ()\lgoocha) and Ja

for i) e J,s Jp € dgs Jg e JY, 2= (2g,00008,), A

denotes the set of integers q, +...+q _; + 1,...,q; +...+ g . Then

L, = /n {Ti(zl,...,za) - ri(xl....,xa)}

)y, 1 (2) -1 (1) (1)
tru C+ er{u >’ + Bga %6 Yap Vga

(1) (1)
g iaBtrUaa trUBﬁ +...

for i = 1,2,...,k. Let H and K be orthogonal matrices and let

R1 = H'BK.

If we choose the first columns of H and K such that

4 .
h10 (n’i./n) 1,2,.-. ,(a+1)

- (n.j/n)i i = 1,2,...,(b+1),




/1 0 '
R.RY = ' Q.0

It is known (see O0'Neill [17] ) that ;% >0 82 are the eigenvalues of RR'

2

5 are the eigenvalues of o0', Next, let

whereas oi 2002 0

X = /n (R=Q) = (Xij) (5.28)

where R = (rij) and o = (wij)’ Then xij's are known (see 0'Neill [171) to
be asymptotically distributed as multivariate normal with mean vector 0 and

the elements of the covariance matrix are given by

Covix;55%yy) = 945 Ky (say).
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Using (5.28), we obtain

RR' = o' + n‘*(ﬂx' + Xa') + n'IXX'. (5.30)
Now, let M: axa and L: bxb be such that

ML = (diag(pl,...,oa)IO) =D..

P
Then,
. A '\,..
S = MRR'M = V L v(l) + i.v(o’ (5.31)
ey n
-nnt vl 2Dy 2p 7 ' - - M (2) . (y(2)
where V DQDO, v (Vae ) DpZ + ZDo’ z (zij) M'XL, and V (Vae )
= M'XX'M. Here Vié) and Vig) are of order G %Gge Now, let Py = o?, Ai = o?

and Ai's have multiplicities as in (5.24). Then, usina (5.26), we obtain

L'i = /ﬁ{Ti(li,oo.,Qp) - Ti(Alao-o,}‘ )}

p

r
(2) -1,(1),(1)
a. tr V(l) + 1 [ 2 aiatr{vaa +Bzaeaﬁva8 VBa }

1 ia ao S a=1

ne~—1-g

a n
g tr gy tr V)
+ terms of higher order. (5.32)
But,
| 21711 (g215 * P12g)) +++ (gP1a * P1Za1
v . (py25) + 032y7) 202272 vee (pgZoa + P2250)
(plzal * P, la) (922 2t oaZZa) ' 2pa aa
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55
{ 3
[} [} L [} ] ]
M) XX Ml Mlxx My oes Mlxx Mr
v(z) - MIXX'M M!XX'M MIXX'M
277 1 2000 72 et TR0 Y

|‘! l.l l.v
| MAXR'M)  MIXX'M, ... MIXX'M
/

where M = (Ml"“’Mr) and Mi is of order axqs. So,

r
L, =2 ) a, 8 (z +oo0t Z )
B B A S LIS P L Atesetdyaa1*..4a,
where
| - ]

and zb = (211""’Zaa)‘ The asymptotic distribution of B'z is multivariate

*
normal with mean vector C and covariance matrix B'c B where Z* is the
covariance matrix of z and B = (bl""’bk)' We can summarize the above results

as follows:

Theorem 5.1 We assume that pi'S have multiplicities as given below:

=...= = e .
Pay*tee oty Payteeeta,  a (5.37)

fora = 1,2,...,r where 9y = 0, 9 +eeotq

5?,...,52 satisfying the assumptions (5.25). Then, as n -~ =, the joint distri-

p = A Also, let Ll""’Lk be functions of

bution of Ll""’Lk is multivariate normal with mean vector 0 and covariance

matrix B'Z*B where 3" is the covariance matrix of z, B = (bl""’bk) and bi's

are defined by (5.36).

- - - v ‘o
- & N P P B . e e e
ORI S S R i) "~ PR PRT P CTGT R W S o) .
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r
Now, let 7§ a. trv(l) = 0 for each i. Then, .
G.=1 Ta ac 3

*
L-i = n{Ti(Zl".cglp) - T_E(Al,co. ,Ap)}
) /N1
- %(Vlgooo ’Vr) Ai[ :
Ve
where
Ai = (3544)
Vi = 2(pq21q *eeet p. Z )
1 1°11 ql 9%

= 2(p, ,12 toout o0 z )
q,+17q,+1,q,+1 444,701 +G5,5G7 4,

<< ®ee
]

2(p z +ous
Apteceta (t1oa +eaata, 1 +la b kg gt

+
Pa % ¥, 50 e G 0 et )

Since oi's have multiplicities, we can write v = (vl,...,v Yas v = Ez, where

r

£ = (2seennt),

r
ey = 291(1&{ 0.....0)
?é = 262(0"- ’091(!; 2’0"' . !0)
e = 28,(0,.....0, 1)

As n > =, v is distributed as a multivariate normal with mean vector 0 and co-

* * *
variance matrix EZ E', So, the joint distribution of Ll""’Lk is the same

as that of correlated quadratic forms discussed in Khatri, Krishnaiah and Sen [7].
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