

and the should be should be

 1.0
 2.8
 2.5

 1.1
 1.315
 2.2

 1.1
 1.4
 1.6

 1.0 S UTALE CONTRACTOR 35555555

	AD-A1	69 954 J	MENTATION	PAGE		
1a. REPORT SECUL			1b. RESTRICTIVE			
Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	AVAILABILITY O	FREPORT		
2b. DECLASSIFICATION	DOWNGRADING SCHED	DULE	"A" Approv	ed for Public Relea	ise; distributio	n unlimited.
	NIZATION REPORT NUME	BER(S)	5. MONITORING	ORGANIZATION R	EPORT NUMBE	R(S)
LMI Tašk AL611				<u> </u>	<u> </u>	
6a. NAME OF PERFOR Logistics Manag	MING ORGANIZATION	6b.OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGAN	NIZATION	
6c. ADDRESS (City, Sta 6400 Goldsboro I Bethesda, Maryl	coad		7b ADDRESS (C	ty, State, and ZIP C	iode)	
8a NAME OF FUNDIN ORGANIZATION Office of the Dep Defense (Product	ity Assistant Secretary of	8b OFFICE SYMBOL (if applicable)	9. PROCUREMEN MDA903-8	IT INSTRUMENT ID 5-C-0139	ENTIFICATION	NUMBER
8c. ADDRESS (City, Sta	te, and ZIP Code)		10. SOURCE OF	UNDING NUMBER	S TASK	
			ELEMENT NO	NO	NO	ACCESSION NO
13a. TYPE OF REPORT Final 16. SUPPLEMENTARY	Donna J. S. Peterson, and 13b. TIME C FROM	OVERED	14. DATE OF REP June 1986	DRT (Year, Month,	Day) 15 PAG	GECOUNT
	SATI CODES	18. SUBJECT TERMS (Conti		-		nber)
FIELD GRO	JP SUB-GROUP	ferroalloys, industria	il base, industrial pr	eparedness, mobili	ization	
19 ABSTRACT (Contir	ue on reverse if necessary	and identify by block numb	per)			<u></u>
	domestic ferroalloy capa nounts of ferroalloys woul acetime and mobilization nused capacity worldwide here would be shortages o	of steel and superalloys, an city on the defense industr ld have to be imported to me conditions. e to meet U.S. ferroalloy rec f certain ferroalloys if the U rended that domestic ferroal	rial base and indus eet U.S. industry rec quirements during p inited States lost all	trial preparedness. juirements: This st peacetime: Depend domestic capacity.	. If the United tudy assesses t ling on the am . The domestic	d States had no domes he worldwide availabili ount of supply disrupti ferroalloy industry see
capacity, additional a offerroalloys under pe There is ample u during mobilization, t					\mathbf{N}	· .•
capacity, additional a offerroalloys under pe There is ample u during mobilization, t to have stabilized at c	F 000					<u>101 : 100</u>
capacity, additional a offerroalloys under pe There is ample u during mobilization, t to have stabilized at c	LE COPY		· · · · · · · · · · · · · · · · · · ·			
capacity, additional a offerroalloys under pe There is ample u during mobilization, t to have stabilized at c	AILABILITY OF ABSTRACT		21 ABSTRACT		CATION CT	F
capacity, additional a offerroalloys under pe There is ample u during mobilization, t to have stabilized at c DTTC FI 20 DISTRIBUTION / AN	AILABILITY OF ABSTRACT NLIMITED SAME A			SECURITY CLASSIFIC		TICE SYMBOL

THE EFFECTS OF A LOSS OF DOMESTIC FERROALLOY CAPACITY

ANALYTICAL ANALYTICAL AREALISES ANALYTICAL ANA

Acencia · 1* 1.7. Ţ A-/

⊥ V9

Myron G. Myers Donna J. S. Peterson Robert L. Arnberg

Prepared pursuant to Department of Defense Contract MDA903-85-C-0139 (Task AL611). The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official Department of Defense position, policy, or decision, unless so designated by other official documentation. Except for use for Government purposes, permission to quote from or reproduce portions of this document must be obtained from the Logistics Management Institute.

> LOGISTICS MANAGEMENT INSTITUTE 6400 Goldsboro Road Bethesda, MD 20817-5886

> > 86

Executive Summary

THE EFFECTS OF A LOSS OF DOMESTIC FERROALLOY CAPACITY

Three principal ferroalloys – ferrochromium, ferromanganese, and ferrosilicon – and their related metals are essential to the production of steel and superalloys and, therefore, many items needed for national defense. Because of large increases in ferroalloy imports and the consequent decline in domestic production, Congress asked for a study "... to determine what effect the loss of all capacity by the United States to produce domestic ferroalloys would have on the defense industrial base and on the industrial preparedness of the United States."

There is now substantial excess capacity, worldwide, for production of ferroalloys. The available capacity in reliable countries could easily compensate for a total loss of U.S. production at today's (i.e., peacetime) level. In the event of a peacetime disruption of the Republic of South Africa's large mining and processing industries, ferroalloy markets would tighten, but we believe the United States could acquire necessary supplies from other reliable sources.

In the event of a U.S. mobilization with no domestic ferroalloy capacity, the additional ferromanganese required for defense needs could be met by supplies from abroad even in the face of severe supply disruptions. In contrast, defense requirements would create a shortage of silicon metal that could not be overcome unless new processing capacity could be built.

Ferrosilicon shortages would also appear with a U.S. mobilization and worsen if supply disruptions occurred. Minor shortages could be dealt with by converting excess processing capacity abroad, but more severe shortages could only be relieved by new processing capacity. Ferrochromium shortfalls would also occur but could be met by a combination of plant conversion and drawdown of the U.S. strategic

ii

stockpile. Should African or European supplies become unavailable, the ferrochromium in the stockpile would last for only 15 months of a mobilization. Because of a worldwide shortage of processing capacity, the chromite ore in the U.S. strategic stockpile could not be processed into ferrochromium either here or abroad unless new processing capacity could be added.

Sufficient worldwide capacity to process ferromanganese is available. For the other ferroalloys, the current level of domestic processing capacity can just meet emergency needs, even with severe supply disruptions. DoD should monitor trends in domestic processing capacity and be prepared to react to any further significant erosion of ferrochromium, ferrosilicon, and silicon metal processing capacity.

TABLE OF CONTENTS

	PAG	Ē
		ii
CHAPTE	R	
1.	INTRODUCTION	1
	Background1-The Domestic Industry1-Study Assumptions1-Cases Analyzed1-Study Content1-	3 4 7
2.	FINDINGS AND CONCLUSIONS	1
	Findings 2- Conclusions 2-	1 3
3.	ANALYSIS OF SUPPLY AVAILABILITY	1
	Methodology.3-Demand for Ferroalloys.3-Ferroalloy Processing Capacity3-Ferroalloy Availability During Peacetime3-Ferroalloy Availability During A Mobilization3-Metals3-Summary of Findings3-	2 3 7 0 7

APPENDIX

- A. U.S. AND WORLD SUPPLY RELATIONSHIPS
- **B. DEMAND FOR FERROALLOYS**
- C. LEGISLATIVE HISTORY
- D. INDUSTRY STATISTICS

E. UNCLASSIFIED MOBILIZATION PLANNING SCENARIO

in the second

1. INTRODUCTION

BACKGROUND

Ferroalloys are essential ingredients in the production of finished steel and cast iron. The principal ferroalloys are those of chromium, manganese, and silicon, although a multitude of others are added to molten metal to produce various types of steel and cast iron. Ferroalloys are added to steel to remove dissolved oxygen, to control the effects of sulphur, and to change the properties of finished steel. Their introduction improves steel's hardenability, corrosion resistance, toughness, and resistance to high temperatures. The iron and steel industry accounts for about 90 percent of ferroalloy consumption.

The average ton of raw steel produced in the United States uses about 29 pounds of ferroalloys. Carbon and alloy steels require nearly 14 and 34 pounds of ferroalloy per short ton of raw steel, while stainless steel requires nearly 450 pounds of ferroalloys per short ton of raw steel produced. The overall average of 29 pounds of ferroalloy per short ton of steel produced reflects the dominance of carbon and alloy steel. Stainless steel accounts for only about 2 percent of total steel production.

Ferroalloy consumption is directly linked to U.S. steel production. Because of a long-term declining trend in domestic steel production, U.S. ferroalloy consumption has also declined. Domestic raw steel production peaked in 1978-1979 at 137 million short tons and fell to a cyclical low of 75 million short tons in 1982. It is now approximately 92 million short tons – far below the previous peak level. Consumption of ferroalloys as measured by domestic shipments plus imports also peaked in 1978-1979 at about 2.7 million short tons and fell to a low of 1.3 million short tons in 1982. However, the reduction in domestic ferroalloy consumption was borne disproportionately by U.S. producers: shipments by U.S. producers fell more than 50 percent (from about 1.5 million short tons to about 0.6 million short tons), while imports showed only a slight decline. As a consequence, the import market share (imports as a percentage of domestic consumption) increased from about 48 percent in 1978-1979 to 58 percent in 1982. Imports have subsequently increased even more to stand at almost two-thirds of U.S. consumption today.

The trend towards increased foreign dependence is most pronounced for ferrochromium and ferromanganese. Shipments of domestically produced ferrochromium fell from about 275,000 short tons in 1978-1979 to 117,000 short tons in 1982 and 38,000 short tons in 1984. Imports also decreased from an average of 269,000 short tons in 1978-1979 to 148,000 short tons by 1982, but they increased rapidly to 434,000 short tons by 1984. Imports held over 90 percent of the domestic market by 1984.

A similar situation occurred for ferromanganese. Domestic shipments averaged 485,000 short tons in 1978-1979. They declined to 170,000 short tons in 1982 and to 140,000 short tons by 1984. Imports amounted to an average 824,000 short tons in 1978-1979, declined to about 555,000 short tons in 1982, and remained at that level in 1984. The market share captured by imports exceeded 80 percent in 1984.

Finally, for ferrosilicon, the domestic industry has remained relatively more competitive than it has for the other ferroalloys. Domestic ferrosilicon shipments averaged nearly 700,000 short tons in 1978-1979, while imports averaged 136,000 short tons. Domestic shipments decreased by half to 334,000 short tons by 1982, but recovered to nearly 500,000 short tons by 1984. By 1984, imports had regained the absolute level reached in 1978-1979 and accounted for more than 20 percent of the domestic market.

Several other industries also require ferroalloys. The aluminum, iron castings, and semiconductor industries account for half of ferrosilicon consumption and

1-2

virtually all silicon metal consumption. The production of superalloys also requires ferroalloys and their pure metals. Superalloys accounted for all of the consumption of chrome metal in 1984 and a large portion of the consumption of manganese metal and silicon metal.

THE DOMESTIC INDUSTRY

ACCESSES RECENCE PRESERVE RECENCED AND THE STREET STREET.

With the decline in domestic shipments, the U.S. ferroalloys industry has experienced a substantial reduction in employment and capacity. Table 1-1 displays industry employment and processing capacity for the most recent cyclical peak in 1978, the recession year of 1982, and the most current year. These data were provided by the Ferroalloys Association and are in substantial agreement with similar data available in Census of Manufacturers and Bureau of Mines publications.

STATISTIC	1978	1982	1985
1. Number of Plants	29	24	17
2. Number of Employees	8,500	4,900	4,100
3. Number of Submerged Arc Furnaces	90	76	40
4. Shipments (000 Short Tons)	1,595	684	697
5. Capacity (000 Short Tons)	2,136	1,868	1,166
6. Capacity Utilization 4 ÷ 5 (%)	75	37	60

TABLE 1-1. DOMESTIC FERROALLOY INDUSTRY

NOTE: All values as of January of the year reported. SOURCE: The Ferroalloys Association, Washington, DC.

Domestic shipments of ferroalloys declined from nearly 1.6 million short tons in 1978 to about 700,000 million short tons by 1985. During that same time period, employment in the industry fell by nearly 50 percent and processing capacity decreased from 2.1 to 1.2 million short tons. The industry also reports about 600,000 short tons of standby capacity that could be brought on line in an emergency.

STUDY ASSUMPTIONS

AND ANALY CREATER SALARY ALAMAN YARAAA

Additional application (Additional Provideration

The major assumption in our assessment is in accordance with the congressional requirement¹ directing the Secretary of Defense to "...conduct a study to determine what effect a loss of all capacity by the United States to produce domestic ferroalloys would have on the defense industrial base and on industrial preparedness of the United States." Thus, throughout our assessment, we assume that no U.S. domestic capability is available for the production of ferroalloys.

We make five additional assumptions in the assessment:

- Plants can be converted from the production of one ferroalloy to the production of certain other ferroalloys with specified losses in efficiency.
- All existing unused processing capability is immediately available when needed, and no leadtime is necessary to establish an infrastructure for its use.
- No country except the United States increases steel production.
- No shipping losses occur.
- U.S. demand for imported ferroalloys has priority over that of other countries.

These assumptions have the effect of understating the demand for ferroalloys and overstating their availability in the world market. Thus, we measure shortages in ferroalloys as conservatively as possible.

One final point: we have not considered the need for production of other minor ferroalloys (ferromolybdenum, ferronickel, etc.) and, consequently, have not accounted for use of some of the unused production capacity in satisfying the much lesser demand for those ferroalloys.

Section 1613, 1986 Defense Authorization Act.

No Domestic Ferroalloy Production

We consider two levels of ferroalloy demand:

- Peacetime (the same as the current level)
- Mobilization (increased demand).

For both levels, our assessment assumes that the United States has no domestic capacity for producing ferroalloys and that *additional* imports must be available to replace those ferroalloys now produced domestically. (The possibility of building new processing capacity or reactivating unused capacity once shortages develop has not been considered in detail.)

At the peacetime level, that assumption means:

- Ferrochromium and ferromanganese imports will have to be increased only slightly since most of today's U.S. consumption is already imported.
- Ferrosilicon and silicon metal imports will have to be increased significantly since most of today's U.S. consumption is produced domestically.

At the mobilization level of demand, it means that imports of all ferroalloys will have to be increased significantly.

Conversion of Plants

アント・シント

Ferroalloy furnaces are configured to produce a specific product. Converting to a different product entails a reconfiguration cost and some loss of efficiency. We have ignored the cost and have allowed for the possibility of converting some capacity to cover shortages during wartime. For example, some ferromanganese capacity can be converted to produce ferrochromium and some ferrochromium capacity can produce ferrosilicon, albeit both at reduced efficiencies. The production of silicon metal requires such a specialized configuration that it is not feasible to convert other capacity to produce silicon metal.

Availability of Unused Capacity

We assume that all existing unused capacity is immediately available when needed. If a major source of supply were lost suddenly, the effects would be much more disruptive than if the supply were lost over a period of years. We have assumed that all countries can immediately produce ore and ferroalloys at full-rated capacity when required without leadtime to purchase any missing infrastructure or to train skilled labor. However, if a country wishes to increase its existing capacity, it cannot do so without incurring a leadtime to purchase and install the necessary infrastructure. At the present time, plant construction leadtime is about a year and a half.

Foreign Steel Production

We assume that the major steel-producing countries do not increase their production when the United States mobilizes. If other steel producers were to increase production at the same time as the United States, the supplies of ore and processing capacity would be tighter than indicated in our analysis.

Shipping Losses

We presume no shipping losses during wartime. Under our mobilization cases, the United States becomes increasingly dependent on Japan, India, and Brazil for ferroalloys. The domestic steel industry will be worse off to the extent that shipping across the Pacific Ocean is cut off.

<u>U.S. Priority</u>

We assume that the United States can obtain ferroalloys produced from unused capacity, provided the required ores are also available. Demand by other countries for additional products is satisfied after U.S. demand. In some of our cases, the United States would require all available unused capacity worldwide to meet its requirements.

1-6

CASES ANALYZED

In analyzing the effects of having no domestic ferroalloy processing capacity, we considered six different cases covering peacetime and mobilization levels of demand. The cases are as follows:

• Peacetime:

- Current steel production
- Current steel production and a disruption of supply from the Republic of South Africa
- Mobilization and War:
 - Steel production at full capacity
 - Steel production at full capacity and a disruption of supply from the Republic of South Africa
 - Steel production at full capacity and a disruption of all African supplies
 - Steel production at full capacity, disruption of all African supplies, and disruption of European supplies.

For each case, we estimate the worldwide supply-and-demand balance for ores and ferroalloys. If supplies are short, possible solutions, such as drawing down the U.S. strategic stockpile or converting foreign capacity from production of one ferroalloy to production of another, are explored. The analysis also indicates the countries that the United States would depend on for supplies.

STUDY CONTENT

Chapter 2 presents the findings and conclusions of our assessment. It is followed by a discussion of the methodology we used to analyze the effects of a loss of domestic ferroalloy capacity and the results of the two peacetime and four mobilization cases we evaluated. A series of appendices follows with detailed backup data and analysis.

Appendix A presents production, capacity, and trade flows for major ore-, ferroalloy-, and steel-producing countries. Those data are a compendium of several sources and are arranged in a format showing the origin and destination of ores, ferroalloys, and steel in world trade. Appendix B contains an analysis of demand for ferroalloys for a U.S. mobilization. Appendix C contains a brief legislative history of actions affecting ferroalloys. Appendix D contains a series of tables presenting data used for the study. Appendix E reproduces the unclassified mobilization planning scenario that has been used in recent mobilization exercises.

2. FINDINGS AND CONCLUSIONS

FINDINGS

Upon the loss of its domestic capacity, the United States must rely on imported ferroalloys. How much it relies on other countries depends on the economy's overall demand for ferroalloys. During peacetime, ferroalloy imports would have to increase by exactly the amount of today's lost domestic production – 750,000 short tons. During a mobilization, however, imports would not only have to replace current domestic production but more ferroalloys would be needed to meet the higher levels of industrial production. We find that in a mobilization, U.S. steel production would increase to full capacity – about 45 percent above what, by historical standards, represents a depressed level of 92.5 million tons in 1984. About 1.4 million short tons of additional ferroalloy imports would be needed to make up for lost domestic capacity plus the increased demand during mobilization.

Peacetime

Under peacetime conditions, we find that there is more than enough available worldwide processing capacity to make up for lost U.S. production. The tightest supply-demand balance is in ferrosilicon since the lost U.S. production is a significant portion of world capacity. Nevertheless, there is still sufficient unused ferrosilicon capacity worldwide. Even a disruption of ferroalloy and ore supplies from the Republic of South Africa, a major world supplier of chromite and manganese ores and ferroalloys made from those ores, would have little adverse effect. Although supply and demand for silicon metal would be just in balance, no major shortages would occur in this or other ferroalloys. Certainly, some conservation could easily maintain supply-demand balance.

Mobilization

Without any U.S. domestic ferroalloy production capability and with no possibility of constructing new capability, the additional demands of mobilization create shortages of ferrosilicon and silicon metal even with no supply disruptions. The ferrosilicon shortage can be overcome by converting the excess capacity of foreign ferrochromium plants. However, the silicon metal shortages (about 50,000 short tons) cannot be overcome, and the shortfall worsens as supplies are reduced by successive disruptions. The combination of mobilization and a supply disruption in the Republic of South Africa creates a shortage of ferrosilicon that cannot be relieved through plant conversion. Additional disruption of supplies spreading to all of Africa and/or Europe leads to an even more serious ferrosilicon shortage.

Serious ferrochromium shortages occur once supply from the Republic of South Africa is disrupted. In that case, a drawdown of the U.S. stockpile of ferrochromium can cover the shortage. However, the severe shortages of both chromite ore and ferrochromium that occur once disruptions worsen to include all of Africa can be overcome by drawdown of the U.S. strategic stockpile for only the first 15 months of a mobilization. The chromite ore still available in the U.S. strategic stockpile could not be exported for processing into ferrochromium because of a worldwide shortage of processing capacity. By assumption, it could not be processed in the United States either unless new processing capacity could be constructed. A further disruption of European supplies would deepen the shortage of both chromite ore and ferrochromium. Although the United States could, at high cost, reopen U.S. mines and produce chromite ore, that option would be of no value since such ore could not be processed without new domestic capacity.

Finally, supplies of ferromanganese are always sufficient to satisfy requirements. Ample supplies of manganese ore available in Australia and Brazil

2.2

can be processed, if necessary, in readily available blast furnaces. Any shortage envisaged could easily be satisfied from the ferromanganese available in the U.S. strategic stockpiles.

CONCLUSIONS

3

and the second in the second s

DEDUCTION REPORTED DECEMBER PERSONNEL PROVIDENT

Substantial excess capacity now exists worldwide, for production of ferroalloys. Available capacity in reliable countries could easily compensate for a total loss of U.S. capacity at today's (i.e., peacetime) level of industrial production. A peacetime disruption of supplies from the Republic of South Africa's large mining and processing industries would tighten supplies of ferrochromium, but the United States could acquire enough ferrochromium from other reliable sources. Silicon metal used primarily for the production of aluminum and superalloys would also be in tight supply, but other sources would be available.

In the case of a mobilization with no domestic ferroalloy processing capacity, the additional ferromanganese required to meet U.S. defense needs could be supplied from abroad. If the supply disruptions are severe, a small drawdown of the U.S. stockpile of ferromanganese would be necessary.

In contrast, however, defense requirements during a mobilization would create immediate shortages of silicon metal and ferrosilicon and those shortages would worsen if supply disruptions occurred. Minor shortages of ferrosilicon could be dealt with by converting unused processing capacity abroad from one ferroalloy to another, but more severe shortages would require construction of new plant capacity. Silicon metal shortages cannot be overcome without construction of new capacity because plant conversion is not technically feasible.

Ferrochromium shortfalls would also occur during disruption of supplies from South Africa, but they could be met by a combination of plant conversion in Japan and Europe and drawdown of the U.S. strategic stockpile. Should all African supplies become unavailable, the ferrochromium in the stockpile would last for only 15 months of a mobilization. The chrome ore in the U.S. strategic stockpile could not be processed into ferrochromium either here or abroad because of a worldwide shortage of processing capacity. The United States would require about 1 million tons of combined processing capacity for the missing ferroalloys.

A total disruption of African and European supplies with no U.S. ferroalloy processing capacity would result in severe shortages of ferrochromium, ferrosilicon, and silicon metal during a war. The United States would have to build new processing capacity and start up high-cost domestic chrome ore mines to supply its ferroalloy requirements. About 1.4 million tons of processing capacity would be needed to cover the shortages of ferrochromium, ferrosilicon, and silicon metal.

These conclusions are based, of course, on the major assumption mandated for the study — the United States has no domestic capacity for the production of ferroalloys. If, in fact, U.S. domestic ferroalloy production capacity should remain at its current level, it would just meet the needs imposed by the most extreme disruption considered here.

In the event that the U.S. domestic capacity to produce ferroalloys is permitted to deteriorate completely, a possible solution to extreme disruptions would be to construct new capacity at the time the disruptions occur. We have not considered that solution in detail, but we have determined that neither the United States nor Canada has the capability to construct new processing plants. In the West, that capability is restricted to three firms: one in Japan, one in Germany, and one in Norway. The Norwegian firm is the subsidiary of a major foreign ferroalloy producer with plants in the United States. Current plant construction time is 15 to 18 months, but that time reflects a "soft" market for new capacity and the availability of such equipment as specialized electric transformers. Under mobilization conditions, longer leadtimes would almost certainly occur. DoD should

2-4

not depend on the timely construction of new plants to meet those shortages identified in this study.

5

3

P.,

A complete loss of U.S. capacity to produce ferroalloys has not yet occurred. Changing economic conditions suggest, in fact, that the industry capacity is stabilizing at the current level. We recommend that DoD closely monitor industry trends and be prepared to react to further significant erosion of capacity.

3. ANALYSIS OF SUPPLY AVAILABILITY

METHODOLOGY

PERSONAL PRODUCTS (CONTRACTS) VERSONAL PERSONAL (PERSONAL PERSONAL PERSONAL)

This chapter presents our analysis of the effects of a loss of capacity by the United States to produce ferroalloys. The evaluation is based on a comparison of the U.S. requirement for ferroalloys with its ability to obtain them. When essential requirements for ferroalloys exceed their supply, the industrial base is considered to be unable to produce all necessary defense material. The specific steps of the analysis are as follows.

- Determine the additional demand for ferroalloys. During peacetime, additional ferroalloys must be imported to replace lost domestic production. During mobilization and war, the additional imports must replace domestic production and provide for increased demand caused by mobilization.
- Determine the location and amount of unused ore-mining capacity worldwide (chromite and manganese ore).
- Determine the location and amount of unused ferroalloy processing capacity worldwide.
- Compare the additional U.S. demand with the lesser of unused processing capacity or unused mining capacity.
- If the processing capacity is inadequate, determine whether other ferroalloy processing capacity is available for conversion.
- Eliminate a country or a region from the world supply as a disruption occurs.
- Replace that country's exports by using a portion of the available unused capacity.
- Recompute the amount of unused capacity available.
- Compare the additional U.S. demand for ferroalloys to the lesser of the unused processing capacity or unused ore capacity.
- Repeat the last three steps above with progressively larger amounts of supply withdrawn from the world market, corresponding to more severe disruptions.

DEMAND FOR FERROALLOYS

A loss of domestic ferroalloy processing capacity requires additional imports to replace those currently produced domestically. Imports of ferrochromium and ferromanganese would increase only slightly since the United States already relies on imports for most of its requirements for those ferroalloys. Imports of ferrosilicon would increase substantially since about 75 percent of the ferrosilicon consumed in the United States is produced here.

During a mobilization, DoD's demand for steel would increase, with a resulting increase in the demand for ferroalloys. The domestic steel industry would produce at its current full capacity of 135 million tons.¹ Appendix B presents a derivation of steel demand under mobilization conditions. It shows DoD direct and essential civilian demand pushing U.S. steel production to its capacity. Demand for aluminum, iron castings, and semiconductors would also increase during mobilization. Imports would have to replace the lost domestic production and at the same time, supply the additional requirements imposed by higher levels of industrial production.

Table 3-1 shows the quantities of ferroalloys required during peacetime and mobilization. During peacetime conditions, current domestic production of 756,000 short tons would have to be replaced by imports. During a mobilization, an additional 637,000 short tons would have to be imported to meet the total production requirements of 1,393,000 short tons.

¹Capacity figure from Department of the Interior, Bureau of Mines, Minerals Facts and Problems, 1985.

TABLE 3-1. FERROALLOY DEMAND

(Thousand Short Tons – Gross Weight)

	PEACETIME		MOBILIZATION				
COMMODITY	Ferroailoy Requirements	Net Domestic Production	Additional Imports Required to Replace Domestic Production	Ferroalloy Requirements	Imports Required to Replace Domestic Production	Additional Imports Required for Increased Production	Totai Additional Imports
Ferrochromium	442	23	23	621	23	179	202
Ferromanganese	628	124	124	893	124	265	389
Ferrosilicon	619	469	469	771	469	152	621
Silicon metal	165	140	140	206	140	41	181
Total	1,854	756	756	2,491	756	637	1,393

FERROALLOY PROCESSING CAPACITY

The additional imports needed by the United States would require unused capacity in foreign countries to be placed into production. The production of ferroalloys depends on access to both ore and processing capacity. The United States does not have economic reserves of chromite or manganese ore, and so all ore processed domestically into ferroalloys is imported. Table 3-2 lists the countries that produce chromite and manganese ores and their unused mining capacity. The ore used to produce ferrosilicon is abundant in the United States and worldwide.

Although the Communist countries are major producers of ores, they have very little unused mining capacity. Africa is the major source of ores for the non-Communist world, and the African countries tend to have large amounts of unused mining capacity. Large deposits of manganese ore are also available in Brazil and Australia.

	CHROMITE			MANGANESE		
COUNTRY	1984 Production	1984 Capacity	Unused Capacity	1984 Production	1984 Capacity	Unused Capacity
Albania	960	1,066	106			
Australia				1,874	3,611	1,737
Brazil	310	413	103	2,425	3,750	1,325
China				1,760	1,826	66
Finland	280	617	337			
Gabon				2,336	3,611	1,275
Greece	30	56	26			
India	485	627	142	1,433	2,222	789
Japan	7	7	0	68	83	15
Mexico				571	833	262
Philippines	300	561	261		1	
South Africa	3,314	4,818	1,504	3,361	9,250	5,889
Turkey	670	792	122]	
USSR	3,300	3,300	0	11,100	12,667	1,567
Yugoslavia						
Zimbabwe	500	1,244	744	30	30	0
Other Africa	96	172	76	195	637	442
Other Asia	113	126	16	38	81	43
Other South America	41ª	96	55	6 ⁵	42	36
Eastern Europe				141	192	51
Middle East	<u> 62</u>	_106	44			
Total	10,468	14,001	3,536	25,338	38,835	13,497
Communist	4,301	4,462	161	13,007	14,727	1,720
Non-Communist	6,167	9,539	3,375	12,331	24,108	11,777

TABLE 3-2. WORLDWIDE CHROMITE AND MANGANESE ORE MINING CAPACITY

(Thousand Short Tons – Gross Weight)

^aCuba. ^bChile.

SOURCE: Department of the Interior, Bureau of Mines, "Minerals Facts and Problems," 1985.

Table 3-3 displays worldwide ferroalloy production and unused processing capacity. The countries listed in Table 3-3 would be potential sources for the additional ferroalloys required by the United States. The loss of U.S. processing capacity would require the activation of 756,000 tons of this unused capacity.

The non-Communist world has about 4 million tons of unused processing capacity. The continuing trend is for processing capacity to move to those countries

COUNTRY	1984 PRODUCTION	1984 CAPACITY	UNUSED CAPACITY
Australia	145	166	21
Brazil	753	932	179
Canada	244	350	106
China	989	1,029	40
France	776	998	222
West Germany	453	640	187
Greece	77	105	28
India	251	625	374
Italy	236	391	155
Japan	1,564	2,394	830
Mexico	258	258	0
Norway	1,057	1,291	234
Philippines	56	98	42
South Africa	1,617	1,966	349
Spain	275	542	267
Sweden	196	446	250
Turkey	61	176	115
USSR	3,643	4,122	479
Yugoslavia	335	356	21
Zimbabwe	220	323	103
Other Africa	7	68	61
Other Asia	487	491	4
Other South America	208	267	59
Other Western Europe	454	746	292
Eastern Europe	<u>1,033</u>	<u>1,258</u>	225
Total	15,395	20,038	4,643
Communist	6,000	6,765	765
Non-Communist	9,395	13,273	3,878

TABLE 3-3. WORLDWIDE FERROALLOY PRODUCTION AND UNUSED CAPACITY

(Thousand Short Tons - Gross Weight)

10000000

SOURCE: Department of the Interior, Bureau of Mines, "Minerals Facts and Problems," 1985.

that produce ore. South Africa is now the largest producer of ore and ferroalloys in the non-Communist world. Table 3-4 gives an indication of the importance of South Africa as an exporter of ore and ferroalloys. That table shows those countries that import the largest portions of South Africa's production and the percentage of their imports.

5

COMMODITY	IMPORTING COUNTRY	PERCENT OF COUNTRY'S IMPORTS
Chromite Ore	Japan	47
	West Germany	55
	Uni ted Kingdom	92
	USA	76
Manganese Ore	Japan	52
	Belgium-Luxemburg	43
	France	23
	West Germany	67
	Italy	57
	United Kingdom	52
	Norway	30
	Spain	45
	Other OECD ^a	30
Ferrochromium	Japan	48
	France	25
	West Germany	36
	Italy	17
	United Kingdom	18
	Spain	42
	Canada	51
	USA	62
Ferromanganese	Italy	22
-	United Kingdom	67
	Turkey	28
	USA	26

TABLE 3-4 IMPORTANCE OF SOUTH AFRICAN EXPORTS TO UNITED STATES AND ITS TRADING PARTNERS

^aOECD: Organization for Economic Co-operation and Development.

SOURCE: OECD Import Microtables, 1983, Series C.

For the United States, 62 percent of its ferrochromium imports come from South Africa. The United States imports very small quantities of chromite ore, but 76 percent of it comes from South Africa. Japan and West Germany depend on South African supplies of ore and ferroalloys, and since those two countries are major exporters of steel to the United States, the United States also depends on South Africa indirectly through them.

FERROALLOY AVAILABILITY DURING PEACETIME

The cases presented here as well as those presented for mobilization-level demand are all based on the assumptions specified in Chapter 1. The major assumption, of course, is that the United States has no ferroalloy processing capability.

Case 1

100 million

In this case, steel production remains at its current (i.e., peacetime) level, approximately 92.5 million short tons. To support that level of steel production and other peacetime industry requirements, an additional 23,000 tons of ferrochromium, 124,000 tons of ferromanganese, 469,000 tons of ferrosilicon, and 140,000 tons of silicon metal would have to be imported (see Table 3-1).²

The unused capacity available worldwide to supply the U.S. requirement for additional imports is presented in Table 3-5. Since the United States does not produce ore, the amount of excess mining capacity available worldwide does not change. Worldwide processing capacity decreases for two reasons. First, it decreases by the amount of unused capacity assumed lost from the United States, and second, a portion of the worldwide unused capacity must be put into production to replace current U.S. production.

Table 3-5 provides information about changes in supply and demand attributable to the assumptions of this case. The first column lists the unused mining capacity worldwide for ores used in producing ferroalloys. The second column gives the amount of ferroalloy that could be processed from the quantity of

²Supply and demand for silicon metal are included in this and all other cases because it is the predominant metal consumed.

COMMODITY	UNUSED ORE CAPACITY (1)	FERROALLOY PROCESSED FROM ORE (2)	UNUSED PROCESSING CAPACITY WORLDWIDE (3)	ADDITIONAL IMPORTS REQUIRED BY U.S. (4)
Ferrochromium Ferromanganese Ferrosilicon Silicon metal	3,536 13,497 a a	1,414 6,748	931 2,887 715 152	23 124 469 140

TABLE 3-5. PEACETIME SUPPLIES OF FERROALLOYS WITH NOUS. PROCESSING CAPACITY

(Thousand Short Tons – Gross Weight)

aQuartz ore is abundant and is not a constraint.

ore listed in Column 1 based on engineering relationships.³ Information on excess ore capacity for ferrosilicon and silicon metal is not presented since supplies are essentially infinite. The third column lists unused worldwide processing capacity, excluding the United States. The fourth column lists the additional imports required to replace U.S. production (from Table 3-1). Comparison of the second and third columns indicates whether there is encugh ore to supply the processing capacity or conversely whether processing capacity limits production. In this case, as in most of the cases analyzed, more ore is available than processing capacity. When the third column (unused processing capacity) exceeds the fourth column (additional imports required), U.S. requirements can be met.

For ferrochromium and ferromanganese, the unused ore capacity exceeds the unused processing capacity; i.e., the world cannot process as much ore as can be mined. However, there is more than enough unused processing capacity to replace the lost U.S. production. Loss of the U.S. processing capacity has the biggest effect

³The approximate relationships between ores and processed ferroalloys are:

 $^{2.5 \}text{ tons ore} = 1 \text{ ton ferrochromium}$

² tons ore = 1 ton ferromanganese.

on ferrosilicon and silicon metal because of the current large U.S. production that we have assumed to be lost. Although the worldwide unused capacity is great enough to replace the lost U.S. production, the margin is the smallest of the three bulk ferroalloys. The United States is the third largest producer of ferrosilicon in the world and replacing its production absorbs a large portion of the world's unused processing capacity. Virtually all the unused capacity for silicon metal would have to be put into production to replace lost U.S. production.

<u>Case 2</u>

いいいいと

This case differs from the first case in that it assumes a disruption of all supplies from the Republic of South Africa. Such a disruption would not only affect U.S. imports from South Africa but also those of anajor processing countries such as Japan and West Germany. The importance of South African exports in world markets is shown in Table 3-6. South Africa is a significant producer of ores and ferroalloys and has substantial unused mining and processing capacity.

TABLE 3-6.	SOUTH AFRICAN SUPPLIES LOST THROUGH DISRUPTION
	(Thousand Short Tons – Gross Weight)

COMMODITY	NON-COMMUNIST WORLD PRODUCTION	SOUTH AFRICAN PRODUCTION FOR EXPORT	SOUTH AFRICA AS PERCENT OF NON-COMMUNIST WORLD
<u>Ore</u>			
Chromite	6,167	841	14
Manganese	12,331	2,439	20
Ferroalloy			
Ferrochromium	2,222	1,006	45
Ferromanganese	4,114	461	11
Ferrosilicon	2,462	134	5
		I	

SOURCE: OECD Import Microtables, 1983, Series C.

Table 3-7 shows the world supply-and-demand balance after eliminating South African ore and ferroalloy exports to the world markets. Column 4, the additional U.S. needs, does not change from the previous case because U.S. demand does not change. The decline in the first three columns of Table 3-7 is due to the disruption of South African supplies. For example, unused chromite ore capacity declines by 2.345 million tons – a loss of 1.504 million tons of unused mining capacity plus 0.841 million tons of chromite ore production that was exported. Even though unused ore and processing capacities both decline, adequate unused capacity is available elsewhere to replace South African supplies in the world market and to fill most of the U.S. requirement for additional imports. The small shortfall – 4,000 short tons – of silicon metal capacity (Column 4 less Column 3) cannot be replaced since the United States does not stockpile silicon and other ferroalloy capacity cannot be converted to produce silicon metal. However, a combination of conservation and substitution should make the shortfall manageable.

TABLE 3-7. PEACETIME SUPPLIES OF FERROALLOYS WITH SOUTH AFRICAN SUPPLY DISRUPTION
(Thousand Short Tons – Gross Weight)

COMMODITY	UNUSED ORE CAPACITY (1)	FERROALLOY PROCESSED FROM ORE (2)	UNUSED PROCESSING CAPACITY WORLDWIDE (3)	ADDITIONAL IMPORTS REQUIRED BY U.S. (4)
Ferrochromium	1,191	476	120	23
Ferromanganese	5,228	2,614	2,372	124
Ferrosilicon			693	469
Silicon metal			136	140

FERROALLOY AVAILABILITY DURING A MOBILIZATION

We now consider the world supply-and-demand balance with the supply reduced by the loss of U.S. capacity and the demand increased to support full capacity steel production in the United States. Ferrochromium imports to the United States must increase by 202,000 short tons, ferromanganese by 389,000 short tons, ferrosilicon by 621,000 short tons, and silicon metal by 181,000 short tons. Communist Bloc countries are assumed to discontinue exports to the West during a mobilization.

Case 1

Contraction of the second

Table 3-8 shows the supply of ferroalloys available and those needed by U.S. industry during mobilization and wartime. In this case, no disruptions to the non-Communist world supplies are assumed. Ample ore and processing capacity exists to meet U.S. demand for ferrochromium and ferromanganese. However, a shortage of processing capacity occurs for ferrosilicon and silicon metal. To relieve the ferrosilicon shortages, furnaces can be converted from the production of ferrochromium.⁴ In this case, 75,000 tons of the remaining ferrochromium capacity would have to be converted to meet U.S. demand for ferrosilicon. For the silicon metal shortage, the United States would need to develop a processing capacity of

COMMODITY	UNUSED ORE CAPACITY (1)	FERROALLOY PROCESSED FROM ORE (2)	UNUSED PROCESSING CAPACITY WORLDWIDE (3)	ADDITIONAL IMPORTS REQUIRED BY U.S. (4)
Ferrochromium Ferromanganese Ferrosilicon Silicon metal	3,214 11,813	1,285 5,906	538 2,427 583 129	202 389 621 181

TABLE 3-8. SUPPLIES OF FERROALLOYS DURING MOBILIZATION (Thousand Short Tons – Gross Weight)

⁴The rate of conversion is 1 ton of ferrochromium capacity equivalent to 0.5 ton of ferrosilicon capacity. This rate is based on materials supplied by the Ferroalloys Association.

52,000 short tons (the difference between the 181,000 short tons required and the 129,000 short tons of unused capacity available) or would have to accept the shortage.

<u>Case 2</u>

Case 2 combines the assumptions of the previous case with that of a disruption of supplies from the Republic of South Africa to the West. That disruption causes serious shortages, as shown in Table 3-9. Column 3 shows that ferrochromium processing capacity is short by 273,000 tons. When the additional U.S. demand of 202,000 tons is added, the total shortfall is 475,000 tons.

TABLE 3-9.	FERROALLOY SUPPLIES DURING MOBILIZATION			
WITH SOUTH AFRICAN SUPPLY INTERRUPTION				

UNUSED ORE CAPACITY (1)	FERROALLOY PROCESSED FROM ORE (2)	UNUSED PROCESSING CAPACITY WORLDWIDE (3)	ADDITIONAL IMPORTS REQUIRED BY U.S. (4)
869	347	- 273	202
3,544	1,777		389 621
			181
	CAPACITY (1)	CAPACITY PROCESSED (1) (2) 869 347	UNUSED ORE CAPACITYFERROALLOY PROCESSED FROM OREPROCESSING CAPACITY WORLDWIDE (1)(1)(2)(3)869347- 273

(Thousand Short Tons - Gross Weight)

Table 3-4 lists some of the Western countries dependent on ore from South Africa. The interruption of South African supplies means that countries that export ferroalloys to the United States would have to find new ore sources. India and Zimbabwe have unused ore and processing capacities. Brazil, the Philippines, Finland, and Turkey have excess ore capacity but no excess ferrochromium processing capacity. Brazil and Turkey could, however, convert some of their excess ferromanganese processing capacity to the production of ferrochromium. Japan and Sweden currently produce ferrochromium and also have excess ferromanganese capacity. They could produce more ferrochromium provided ore were available.

If all possible ferromanganese capacity were to be converted to ferrochromium, there would still be a shortage of 130,000 tons. At that point, the non-Communist world would have no excess chromite ore mining capacity and no unused ferrochromium processing capacity and no more unused ferromanganese processing capacity left to convert. The United States would then be forced to draw down the ferrochromium in the stockpile.

Shortages of processing capacity for ferrosilicon and silicon metal now total 174,000 tons; the United States would need 60,000 tons of ferrosilicon capacity and 114,000 tons of silicon metal capacity to meet its requirements.

Case 3

Case 3 adds to the assumptions of the previous case the disruption of supply from all African countries to the West. The shortages that develop under the assumption of the previous case worsen. Table 3-10 displays the effects of the loss of all supplies from Africa on the supply-and-demand balance for ferroalloys.

TABLE 3-10. FERROALLOY SUPPLIES DURING MOBILIZATION
WITH ALL AFRICAN SUPPLIES INTERRUPTED

COMMODITY	UNUSED ORE CAPACITY (1)	FERROALLOY PROCESSED FROM ORE (2)	UNUSED PROCESSING CAPACITY WORLDWIDE (3)	ADDITIONAL IMPORTS REQUIRED BY U.S. (4)
Ferrochromium Ferromanganese Ferrosilicon Silicon metal	49 1,545	20 772	- 744 1,912 500 67	202 389 616 181

(Thousand Short Tons - Gross Weight)

There is a shortage of 946,000 tons of ferrochromium processing capacity (744,000 tons from Column 3 plus 202,000 tons from Column 4), and unused capacity^{*} for mining chromite ore has about disappeared. Even if processing capacity could be found, the available ore is insufficient to supply the United States' ferroalloy requirements for mobilization. In this situation, the United States would have to draw down supplies of ferrochromium from the strategic stockpile.

The strategic stockpile currently holds both processed ferrochromium and chromite ore in the following amounts:

Chromite ore – 1,835 thousand short tons – gross weight Ferrochromium – 751 thousand short tons – gross weight Chrome metal – 4 thousand short tons – gross weight

Under the existing stockpile upgrading program, additional amounts of chromite ore will be processed into ferrochromium. Because the worldwide shortage of processing capacity is so severe, the United States will not be able to import ferrochromium and will have to supply all ferrochromium requirements domestically. The stockpile of ferrochromium could supply U.S. needs for about 15 months. The stockpile also contains ore, some of which could be processed if foreign countries converted excess ferromanganese capacity. Allowing for the maximum amount of conversion, the West would still have a shortage of 500,000 tons of ferrochromium processing capacity. Adding the United States' additional demands from Column 4 of Table 3-8, the total shortage is 702,000 tons of processing capacity worldwide.

Unused ferromanganese processing and ore capacity are nearly equivalent and adequate. However, the countries with ore capacity do not have enough excess processing capacity to process their ore. Japan would have the most excess processing capacity followed by Spain, Sweden, and Norway. They would receive ore from Brazil and Australia. This calculation assumes no losses during shipment among these countries.

3.14

Ferrosilicon processing capacity and silicon metal capacity continue to be in short supply. The United States would need about 1 million tons of processing capacity to satisfy ferroalloy requirements. The capacity for ferrosilicon and silicon metal would be needed immediately while the ferrochromium capacity would be needed after the ferrochromium in the stockpile is depleted.

<u>Case 4</u>

Silicon metal

とうという

Consider all and the consider

Case 4 is the worst case scenario assessed; it adds a disruption of European supplies to the disruption of Case 3. The disruption of European supplies means the loss of a great deal of processing capacity. Severe shortages exist for chromite ore and for processing capacity for ferrochromium, ferrosilicon, and silicon metal. Table 3-11 shows the severity of the shortages. For the first time, the supply and demand of ferromanganese (Column 3 compared to Column 4) are nearly equal.

TABLE 3-11. FERROALLOY SUPPLIES DURING MOBILIZATION WITH SUPPLY INTERRUPTIONS

		Short Tons – Gross	_	
COMMODITY	UNUSED ORE CAPACITY (1)	FERROALLOY PROCESSED FROM ORE (2)	UNUSED PROCESSING CAPACITY WORLDWIDE (3)	ADDITIONAL IMPORTS REQUIRED BY U.S. (4)
Ferrochromium Ferromanganese Ferrosilicon	- 425 1,545	- 170 772	- 1,260 381 - 640	202 389 616

The non-Communist world would be completely dependent on Brazil, India, and the Philippines for chromite ore. Australia, Brazil, India, and Mexico would produce manganese ore. Much of both ores would have to be exported by these countries for processing elsewhere.

23

181

Because of the magnitude of the shortages, the United States would probably need to be self-sufficient in the production of ferrochromium, ferrosilicon, and silicon metal. The ferrochromium in the stockpile would satisfy industry requirements for about 15 months. After that, the United States would need to process the ore in the stockpile, but would be unable to unless domestic processing capacity is available. If the stockpiled ore could be processed, it would satisfy U.S. requirements for an additional 15 months, after which the United States would have to rely on its domestic reserves of high-cost chromite ore.

At today's prices, the chromium deposits found in the United States are not competitive with foreign sources of supply and consequently none are mined. In times of national emergency when cost is not a consideration, those resources could be utilized. Table 3-12 indicates the potential domestic sources of supply of chromite, estimated annual production measured by chromium content, and time required to bring production on line. Again, this option is only feasible with U.S. processing capacity.

Within 2 years, U.S. production would reach 132,000 metric tons, and within 3 years, it would reach its maximum production of 235,000 metric tons of chromite ore. Since the worldwide shortage of processing capacity precludes the processing of domestic ore in another country, the United States would need 1.4 million tons of processing capacity to meet its requirements.

In order to satisfy its demand for ferrochromium, ferrosilicon, and silicon metal, the United States would need the following processing capacity during a mobilization and war:

> Year 1: 797 thousand short tons Year 2: 1,252 thousand short tons Year 3: 1,427 thousand short tons Year 4: 1,350 thousand short tons

TABLE 3-12. POTENTIAL U.S. CHROMITE PRODUCTION

SOURCE	ANNUAL PRODUCTION CHROMIUM CONTENT	LEADTIME (YEARS)
Gish	16	2
Bar Rich Mine	16	2
McGuffy Creek	NA	2
Pilliken Mine	65	2
Southwest Oregon	_35	2
Subtotal	132	
Mouat/Benboe	72	3
Seiad Greek/Emma Bell	17	3
Gasquet Mountain	_14	NA
Subtotal	103	
GRAND TOTAL	235	

(Thousands of Metric Tons)

SOURCE: Office of Technology Assessment, Strategic Materials: Technologies to Reduce U.S. Import Vulnerability, Washington, DC Table 5-12, p. 151.

The capacity requirement declines in Year 4 because the United States would be completely dependent on domestic production of chromite ore, which cannot satisfy total demand.

In addition to producing ferrochromium from the chrome ore in the stockpile or from mining domestic ore, the United States could also produce ferrosilicon and silicon metal from abundant domestic quartz provided processing capacity were available.

METALS

Nonstantin and subscreet se

Chrome metal, manganese metal, and silicon metal are used to give aluminum and cast iron certain desirable properties. Although consumed in small quantities, they are necessary in the production of many defense goods. Chrome and manganese metals are produced by electrolysis or by a metallothermic process. Silicon metal is produced in a submerged arc furnace like other ferroalloys. Table 3-13 shows the supply and consumption of the pure metals. Imports of chrome metal are substantial on a percentage basis, but actual consumption is small. Imports are a small portion of consumption of manganese and silicon metals.

	1980	1981	1982	1983	1984
Chrome Metal					
Domestic Shipments	4	3	2	3	3
Net Imports	4	4	2	3	5
Reported Consumption	6	4	3	4	4
Net Imports as a % of Consumption	67	100	67	75	125
Manganese Metal	1				
Domestic Shipments	22	20	15	17	14
Net Imports	- 4	5	2	0	9
Reported Consumption	25	24	17	18	28
Net Imports as a % of Consumption	i –	21	12	0	32
Silicon Metal			Į		
Domestic Shipments	125	124	81	123	139
Net Imports	7	20	24	24	20
Reported Consumption	123	123	82	100	114
Net Imports as a % of Consumption	6	16	29	24	18

TABLE 3-13. U.S. METALS SUPPLY AND CONSUMPTION: 1980-1984

(Thousand Short Tons)

AND CAALARY SUSSESS ACCOUNT ADDITION SUSSESSES

SOURCE: Department of the Interior, Bureau of Mines, "Minerals Yearbook," 1984.

Only 4,000 tons of chrome metal were consumed in 1984, most of which was used to produce superalloys. The important property of the superalloys is an exceptional resistance to corrosion and oxidation at temperatures above the range where steel can be used. Since the superalloys retain their strength under conditions of high temperature and stress, they are critical for certain parts of jet engines that must operate in a high-temperature, highly corrosive environment. Turbine blades and vanes, turbine disks, and combustion liners are made from superalloys. Superalloys are also used in land- and sea-based turbine engines. While superalloys may be producible with reduced amounts of chrome, another critical material, e.g., cobalt, would have to be substituted for the chrome. Chrome cannot be eliminated completely from superalloys. Since many weapon systems use turbine engines, chrome metal is essential for the production of these weapon systems.

Some pure manganese metal is also used in producing steel. Most of the manganese metal consumed domestically goes into nonferrous alloys, predominantly aluminum alloys and some copper alloys. Aluminum alloys with manganese added can better resist corrosion. Aluminum alloys are used in electrical products and in containers and packaging. Manganese adds strength to copper alloys and is also used as a deoxidizer. Copper alloys with manganese are used in propellers and marine fittings.

Silicon metal is also used by the aluminum and chemical industries as a deoxidizer and a strengthening agent. Silicon is processed into lubricants, low-temperature hydraulic fluids, electric insulators, and moisture proof agents.

Ultra-high-purity silicon is used to produce semiconductors, photovoltaic cells, and infrared optical devices. Computers and most sophisticated electrical equipment use integrated circuits that require semiconductors.

Silicon could become much more important as technology progresses. Silicon metal is used in advanced ceramics that have applications in electronics and as a metal substitute. As a metal substitute, ceramics would have better heat, wear, and corrosion resistance than metals and their use could lead to lighter and more efficient turbine engines.

SUMMARY OF FINDINGS

CANGER PREPARE REPAIRED INSTRUCT

In this chapter, we have evaluated the implications of a loss of domestic ferroalloy processing capacity. The evaluation has been conducted for supply-anddemand levels experienced in peacetime and expected during mobilization and

3-19

across a number of supply disruptions affecting the availability of ferroalloy imports to the United States and other Western countries.

The major findings for each of these situations are summarized in Table 3-14. The display traces the supply situation for each ferroalloy and indicates actions possible to counter a shortage.

فالمتحد والمسالية

TABLE 3-14. SUMMARY OF FINDINGS

		SUPPLY ASSUMPTIONS	UMPTIONS	
DEMAND ASSUMPTIONS	No Supply Disruptions	Supply Disruption Republic of South Africa	Supply Disruption All of Africa	Supply Disruption All of Africa and All of Europe
P <u>eacetime</u> • Nu U S Processing Capacity	 Ample processing capacity Worldwide (includes Soviet bloc) 	 Large FeMn excess capacity worldwide Extremely tight supply/demand balance in silicon metal 	Not Analyzed	Not Analyzed
Mobilization Avo U S Processing Capacity • Steel Output at Full Capacity • Nu Soviet Bloc Supplies	 Ample ore and processing capacity for FeCr and FeMn Shortage of FeSi processing capacity, but more than sufficient FeCr excess capacity for conversion Silicon metal processing capacity shortfall (conversion impossible) United States needs 50,000 tons of ferroallcy processing capacity 	 FeCr shortage requires Japanese and European conversion of processing capacity (FeMn to FeCr) and drawdown of U S. chrome ore stockpile Adequate FeMn processing capacity and ore capacity and ore Shortfall of FeSi capacity and silicon metal; no capacity available for conversion United States needs 175,000 tons of ferroalloy processing capacity 	 Severe shortage of chromite ore and FeCr processing capacity Chrome ore available in U S stockpile cannut be processed anywhere FeCr in stockpile good for 15 months Adequate supplies of manganese ore (Australia, Brazil, India, Mexico) and processing capacity (Brazil, Europe, and Japan) Shortages of FeSi processing capacity of ferroalloy processing capacity of ferroalloy processing capacity 	 Deepening shortage of chrome ore and FeCr processing capacity Chrome ore in U 5 stockpile cannot be processed anywhere FeCr in stockpile good for 15 months Manganese ore adequate but FeMn processing capacity inadequate FeMn stockpile drawdown adequate for 3 * years Shortage of FeSi processing worldwide and silicon metal United States needs 1 4 million tons of ferroalloy processing capacity Us ore production also required

KEY: FeCr, ferrochromium; FeMn, ferromanganese; FeSi, ferrosilicon.

x

APPENDIX A

U.S. AND WORLD SUPPLY RELATIONSHIPS

U.S. INDUSTRY STATISTICS

Approximately 90 percent of the ferroalloys consumed in the United States are used in the domestic steel industry, and thus much of the demand for ferroalloys depends on the level of domestic steel production. Table A-1 shows the trends for steel consumption, production, and imports.

TABLE A-1.	SUPPLY STATISTICS FOR THE STEEL INDUSTRY: 1975-198	4
	(Million Short Tons)	

	1975	' 976	1977	'978	1979	[:] 980	*98 1	·982	·983	-984	AVERAGE ANNOAL PERCENT CHANGE
Raw Steel Production	117	128	125	137	•36	112	•2,	25	85	92	- 2 6
Steel Mill Product Shipments	30	89	-91	98	:00	84	88	62	68	74	29
Net imports	9	11	• 7	19	'5	1 1	17	'5	·6	25	120
Apparent Consumption	89	101	108	117	115	95	105	76	84	-39	12
Net Imports as a Percent of Consumption	10	11	16	' 6	:3	21	16	20	•9	25	

SOURCE: Department of Commerce, "U.S. Industrial Outlook," 1984 and 1986.

During the 10-year period 1975 through 1984, the steel industry had a period of expansion, followed by two recessions: a mild one in 1980 and a severe one in 1982. Domestic steel consumption increased at an average rate of 1.2 percent per year during the 10-year period. However, domestic steel production actually decreased by 2.6 percent a year while imports increased by 12 percent a year. The domestic steel industry has contracted while the market share for imports has about doubled to one-fourth of the market. Because of the decline in domestic steel production, the demand for ferroalloys also declined.

During the same period, the ferroalloy industry experienced trends similar to those in the steel industry. Domestic shipments have declined while imports have increased. Table A-2 shows the import share has doubled, going from 32 percent in 1975 to 63 percent in 1984. While the overall import share for ferroalloys is around 63 percent, the import shares for certain ones are much higher. The United States imports 94 percent of the ferrochromium consumed and 85 percent of the ferromanganese consumed. Ferrosilicon is the only bulk ferroalloy for which the domestic industry still has a major share of the market.

	<u>`975</u>	[•] 976	:977	1978	·979	1980	1981	<u> 1982</u>	1983	બનવ	ниераце амисни Никоема снатися
Ferrochromium											
Dumestic Shipments	227	267	275	248	284	234	191	•••7	50	38	19.0
Net-imports	310	245	228	309	227	270	-426	143	. 79	319	3.1
Apparent Consumption	600	533	496	527	 388	502	529	238	295	:46	25
Net imports as a Percent - of Consumption	52	-16	46	59	17	54	90	60	94	94	
cerromanganese		ļ									
Comestic Shipments	682	n26	460	47.	498	355	340	•70	: : 0	40	- 6 -
Net Imports	420	511	617	762	586	554	780	539	26.	532	27
Apparent Consumption	1,187	1 0 3 7	:060	• •54	+ 370	1.004	1,117	220	ei e	528	
Net Imports as a Percent of Consumption	35	-19	58	56	55	65	/0	· 4	86	35	
Ferrosilicon											
Domestic Shipments	543	689	710	585		557	514	334	359	-198	• 0
Net imports	30	36	·04	· 24	192	- 13	: 39	52	146	114	16.0
Apparent Consumption	580	774	804	325	798	586	593	373	463	618	37
Net Imports as a Percent - ht Consumption	5	11	:3	15	·2	;	20	•,	32	.8	
Ferroalloy Industry											
Comestic Shipments	1,452	1.582	1,345	1:04	· 193	1.146	1,045	621	549	576	в т
Net Imports	760	842	949	1,195	1 205	967	1,345	744	885	1.065	38
Apparent Consumption	2,367	2,344	2.360	2.516	2.655	2.092	2.439	1,341	1.297	1 692	- 37
Net Imports as a Percent of Consumption	32	36	40	47	45	-16	55	55	ხშ	5 9	

 TABLE A-2.
 FERROALLOY CONSUMPTION, PRODUCTION, AND IMPORTS: 1975-1984

 (Thousand Short Tons – Gross Weight)

SOURCE: Appendix D, Table D-1.

WORLD TRADE FLOWS

The Organization for Economic Co-operation and Development (OECD) collects import data for countries belonging to the OECD.¹ The trade flow in ferroalloys is intertwined with the trade flows in steel and the ores used to make ferroalloys. A

¹OFCD Import Microtables, 1983, Series C.

very complex set of interdependencies emerges. A few countries, South Africa and the Soviet Union for example, mine ore; process ferroalloys; and, especially in the case of the latter, produce steel. Ore production is limited to countries with economically producible reserves, but most countries that produce steel have at least some ferroalloy-processing capacity. Each country is unique in how it divides its dependency between its domestic industry and imports. Many countries both import and export large quantities of ferroalloys while others only import or only export a single one.

Tables in this appendix present the 1983 trade data for chromite and manganese ores, ferroalloys, and steel products. They show the amount of trade between each importing and exporting country. The importing countries are necessarily limited to those belonging to the OECD-most of Europe plus Canada, the United States, Japan, Australia, and New Zealand. The OECD countries account for 50 percent of world steel production and 83 percent of non-Communist steel production.²

Each trade table shows import-export trade flows, measured in gross weight of the commodity.³ The importing countries are those belonging to the OECD and are arranged across the top of the table. The exporting countries, not limited to the OECD, are listed down the first column. The column labeled "Domestic Production" is taken from the Bureau of Mines' "Minerals Yearbook" and has been converted into metric tons.

The last column shows, for each exporting country, domestic production less exports to the OECD countries. This column indicates how much of the exporting

²Yugoslavia participates in the OECD under a special status.

³Quantities are in metric tons so the OECD data must be converted to conform to data from the Bureau of Mines, which is given in short tons (1 short ton = 0.907 metric ton).

country's production is consumed internally (or perhaps exported in more finished form). The data do not cover trade flows for the non-OECD world (Africa, South America and Asia), nor do the data show the extent to which countries in Africa, South America, and Asia trade with each other. However, the OECD produces 83 percent of the free world's steel, and so these trade flows must be relatively small. The tables also do not show trade flows within the Communist Bloc.

The data are nearly complete with a few exceptions. For example, data on imports into Australia are almost never available, but other sources show that Australia is not a major steel producer. U.S. imports of manganese ore were not available from the OECD tables, but those data are available from the Bureau of Mines.

The OECD classification scheme breaks ferroalloys into ferromanganese, ferrosilicon, and other ferroalloys. This last category contains ferrochromium and other alloys, so it is impossible to break out ferrochromium alone. Data from the Bureau of Mines indicate that ferrochromium accounts for about one-half of the other ferroalloys produced. For some countries, the quantities reported contain mostly ferrochromium; for others very little.

Trade Flows in Steel Products

In 1983, worldwide steel production was 662 million metric tons (730 short tons). The major producers were the Soviet Union (23 percent of total), Japan (15 percent), the United States (12 percent), West Germany (5 percent), and other Communist countries (7 percent). Table A-3 shows the large and complex trade in steel throughout the world. Approximately 10 percent of world production enters world trade – an average 10 percent of the steel produced by any one country is consumed elsewhere. Many countries that produce steel products are both importers and exporters of steel. For example, West Germany is the largest exporter

 TABLE A-3.
 WORLD TRADE IN IRON AND STEEL: 1983

 (Gross Weight – Thousand Metric Tons)

SOURCE: OECD Import Microtables, 1983, Series C.

TABLE A-3. WORLD TRADE IN IRON AND STEEL: 1983 (Continued)

				•							
				Ξ	MPORTING COUNTRY	NIHY				EXPORTING COURTHY	CONTRACT
בארטטוואט נטטקואי	Nurway	Portugal	uirdş	sweden	Switzerland	lure,	kı uyoslarıd	Other ⁴	lutal	Production Production	Production Less Exports To OECE
Canada	10		96	0 2	17	8 91		R I	2,274 6	0 428.21	4 bc2.01
v S	90	10	63	11	~	66	11	50	6 695	8 461,41	10,175 9
UPdPT	823	88	777	113	1/ 0	1 101	41	3184	4.141.E	1 801.14	42 4JU 4
Australia								1 611	0 668	4-6795	5. 802.C
billa	1.81	R 7	53	60.4	0 201	282	8/9	÷7	8 67 5,1	4 404 F	2 830 0
Beigium - Luiemburg	109.4	113	215	£ 157	1912	ر ل و ا		517	2 196.9	1 844.51	4.056 b
Lenmark	434	60	10	1145	61			t J	456 9	5 765	3'5 to
Finland	1 01	70	50	5 821	6 01	م ۱	د ()	C1 R2	1 886	1,4153	1,431 6
France	2 55	R 71	0218	1683	300 0	697	-10 -1	515	6,63-1 Z	11,6194	10.985 2
West Germany	189.9	6177	8112	5054	590.9	1-18 7	1 311	318	1 892'01	£ 177,2E	112451
(Ital)	6/	1 07	¢	4 b	1 562	105 2	106 3	132	4,585 5	21,609.1	1/ U83 8
Netherlands	1147	416	414	1111	8 07	8 67 1	202	591	3.7163	4,4/60	1 451
Norway		18	15	2.61	60	10	10	64	6 282	8108	د دار ر
Spain	b 4	175		105	671	511	1 67	5.6	2.253 8	12,728.8	ן הילד טו
Sweden	5177	1 52	283		() 9)	348	151	18.0	1 861.5	t 607't	2.6713
Switzerland	17	10	:	53		46 /	-		146 0	F /56	206.4
л ж	0711	117	1136	0 401	1223	F 87	1 91	5 677	1 518/7	14 962 /	12,107 6
USSR	\$ 0	17				1160	3025	10	151	0 285.561	118/161
t ast Germany		8 66	ć ći	426	1/2	35.2	817	17	2 665	61171	1 812.0
Poland	677		§ 0	خ 0 خ	5 D	12 8	8 951	` n	1 064	16,232.6	C 282 21
Czechioslovania	8 /	10	4 0	38.4	66	68	4158	-	0.20£.1	8 270 51	13/188
Hungary	80	17		43	15	75.0	6/8		3 646	1.6153	2.021.2
Rumania		11	5 4 3	62	0 ¢	3 9 b	116		1 66 8	1.2,596.1	U 127.21
Bulgana		10	0 67		60	~ ++1	209		1 418	1.8307	0 15F.Z
S whice		t 77	213		11	۲۲		0 5	5 F/ R	6 200 7	6,123-4
Merico									8 864	19/61	L 5/18
v erner2 uerl s					10	U 0 I			6 667	11551	B / 5/ 7
1121-21		ę ę	147	11	4 5	(t:R		- 0	6 705'1	1 1,050 2	152553
S Pudea	- 0	0.01		01		ŝ		70 17	81441	271611	1 0/1 01
Other	8/		104 \$	ه ک	15	50 8	1/ 3		1.062 \$	82 464 1	81.306.8
1.,1.4	8.61-0.1	U 1-ca	1,140.0	1,834 B	1 821 9	1,4129	F F85'T	5 5 4 5	6-1-985-4	6623739	5 068 765
^a Other = New Zealand. Iceland. and Ireland	New Ze	saland. I	celand	and Ir	eland						
									-		

^bSource: U.S. Department of Interior, Bureau of Mines, Minerals Yearbook, 1984

NOTE: Totals may not add due to rounding. SOURCE: OECD Import Microtables, 1983, Series C.

لمنسنين فكك

(Gross Weight – Thousand Metric Tons)

of steel products to the OECD, but West Germany imports slightly more than it exports.

Table A-4 lays out the trading partners and dependencies for ferroalloys of the major steel producers. The Soviet Union and other Communist Bloc countries are self-sufficient in ore and ferroalloy-processing capacity. Japan, the United States, and West Germany are all heavily dependent on the Republic of South Africa.

	SOURCES OF FERROCHROMIUM AND OTHER FERROALLOYS ('s of imports)	SOURCES OF FERROMANGANESE ("n of imports)	SOURCES OF FERROSILICON (14-of Imports)	SOURCES OF CHROMITE ORE (15-01 imports)	SOURCES OF MariGanese ORE (1- of imports)
Soviet Union and Communist Bloc	Self	eit	Spit	Self	Seif
URDR.	South Africa (48) Brazil (21)	a	Norway (24) Brazil (23) Venezuela (10)	South Africa (47) Communist Bloc (22)	South Africa (52) Australia (25)
United States	South Africa (43) Zimbabwe (12) Yugoslavia (11)	France (34) South Africa (26)	Norway (20) Canada (19) Brazil (19)	South Africa (76)	Gabon (46) Brazii (21)
West Germany	South Africa (36) Norway (12) Zimbabwe (10)	Norway (42) France (35)	Norway (51) France (16)	South Africa (55) Albania (31)	South Africa (67) Australia (23)

TABLE A-4. TRADE RELATIONSHIPS OF MAJOR STEEL PRODUCERS

^aNegligible quantities of imports.

The largest importers of steel products are the United States (23 percent of all imports), West Germany (18 percent), France (12 percent), and Italy (8 percent). Table A-5 shows the sources of steel imports for those countries.

	SOURCE COUNTRY	THOUSAND METRIC TONS	SOURCE COUNTRY IMPORTS AS A PERCENT OF TOTAL IMPORTS
United States	Japan	3,697	25
	Canada	2,093	14
	South Korea	1,418	10
	West Germany	1,249	8
	Brazil	1,128	8
West Germany	Belgium-Luxemburg	2,731	24
	Italy	1,515	13
	France	1,513	13
	Netherlands	940	8
France	Belgium-Luxemburg	2,898	38
	West Germany	1,913	25
	Italy	1,383	18
Italy	France	1,447	29
	Belgium-Luxemburg	781	16

TABLE A-5. SOURCES OF STEEL PRODUCT IMPORTS FOR THE OECD

Trade Flows in Ferroalloys

World trade flows for each of the major bulk ferroalloys are tabulated in this subsection. Table A-6 shows trade flows in ferromanganese. The major producers are the Soviet Union and Japan. Each country uses most of its production for home consumption in steelmaking and exports only token quantities to the OECD.

No one country is the dominant supplier of ferromanganese for the OECD. The three largest suppliers are the Republic of South Africa (23 percent), France (28 percent), and Norway (22 percent). South Africa exports about half its ferromanganese production to the OECD, and France and Norway each exports about 70 percent of its production to the OECD. France and Norway depend on South Africa and Gabon for 80 to 90 percent of their ore requirements.

The United States is the largest importer of ferromanganese within the OECD, taking 40 percent of all exports. The largest source of U.S. imports is France accounting for one third of all ferromanganese imports into the United States.

TABLE A-6. WORLD TRADE IN FERROMANGANESE: 1983 (Gross Weight – Thousand Metric Tons)

A SALE STATES

ALLER A DESCRIPTION OF SECTION AND A DESCRIPTION

				IMPORTING COUNTRY	O) DNI	UNTRY					EXPORTIN	EXPORTING COUNTRY
EXPORTING COUNTRY	U S	Belgum - Luxemburg	France	West Germany	Italy	צ כ	Sweden	Turkey Other ^a	Other	Total	Domestic Production ^b	Production Less Exports to OECD
Belgium – Luxemburg	2.2		2 4 7	٤ ٤					0.2	14.4	8 68	75.4
France	100 9	264		34.5	22 8	7.0	5 6	19	86	207.7	2748	67 1
West Germany	49	60	18		55	61	04	06	64	275	1515	1240
Norway	22.7	19.0	141	41.3	6.6	216	20.7	27	10 3	162 2	2240	618
Portugal	15.2		9:0		4.1	13		03	13	22 8	33 6	10.8
S Africa	75.6		0.8	4.1	14 4	66 1	2 0	62	44	173.6	350 1	176.5
Mexico	313								77	39.0	1388	8 66
Brazit	24 6							27	68	341	1034	69 3
Other	15.7	2.7	08	11.0	80	10	0 1	75	14 1	6 09	3,828 0	3,767 1
Total	0 263	541	22.8	5 86	647	686	28.8	219	8 65	742 2	5,194.0	4,451.8
aOther = Can	l ada, J	apan, New	Zealand	, Denmari	e U U	ece, Ir	eland, N	letherla	nds. Au	stria. F	inland, Icela	^a Other = Canada, Japan, New Zealand, Denmark, Greece, Ireland, Netherlands, Austria, Finland, Iceland, Norway,

ius, Austria, rimanu, iceianu, ivorway, Portugal, Spain, Switzerland, and Yugoslavia.

^bSource: U.S. Department of the Interior, Bureau of Mines, "Minerals Yearbook," 1984. ^cThe USSR accounts for 1,751.4 tons in the other category. USSR production is consumed within the Communist Bloc.

SOURCE: OECD Import Microtables, 1983, Series C. NOTE: Totals may not add due to rounding.

A-9

France depends on Gabon and South Africa for almost all the ore it processes. South Africa supplies an additional 20 percent of U.S. imports of ferromanganese. The remaining U.S. imports are spread fairly evenly among Norway, Portugal, Mexico, and Brazil, all with a 5 to 10 percent share of imports.

As shown in Table A-7, the largest producers of ferrosilicon are the USSR, the United States, and Norway. The USSR and the United States produce mainly for their own consumption and do not export appreciable quantities to the OECD. Norway is the major exporter to the OECD with 30 percent of total OECD imports, followed by Brazil (11 percent) and France (9 percent).

AND REPORT SEALSHED AND DURING THE AND DURING A

Japan and West Germany are the largest importers of ferrosilicon. Japan depends on Norway and Brazil; West Germany depends on Norway and France. The United States accounts for 16 percent of the ferrosilicon imports into the OECD. The largest source of supply for the United States is Norway with 20 percent of U.S. imports.

Table A-8 shows trade flows of all other ferroalloys combined. Ferrochromium is the largest component in this category with the remaining flows accounted for by a number of minor or specialty ferroalloys. The USSR, the Republic of South Africa, and Japan are the largest producers of other ferroalloys. They account for 92 percent of world production. South Africa exports almost all of its production (predominantly ferrochromium) to OECD countries. Japan and the Soviet Union consume most of their ferrochromium production.

The major sources of ferrochromium and other ferroalloy imports to the OECD are South Africa, Zimbabwe, Sweden, and Brazil. The United States depends on South Africa, Zimbabwe, Yugoslavia, and Brazil for its ferrochromium imports. South Africa, Zimbabwe, and Brazil process their own chromite ore into ferrochromium. Sweden depends on Finland and South Africa for ore; Yugoslavia depends on Albania. TABLE A-7. WORLD T. ALL M. C. RROSILICON: 1983

Production Less Export to OECD 'Other = Canada, Denmark, Greece, Ireland, Netherlands, Austria, Finland, Iceland, Norway, Portugal, and (19) **EXPORTING COUNTRY** 33.8 658 424 2710 1130 33 0 90 2 0 6889 50 2 88 3 1,018.0 2,487.7 0 Domestic Production^b 2848 192.3 70.7 508 345 6 154 81.6 **96** 463 1569 3,338.0 7202 20 0 1,1683 853 849.3 314 115 524 20.0 1503 138 79.3 17.8 255 4 153 313 116 42.9 36.9 Total Other. 51.4 126 12 2 25 0 6 60 126 35 54 08 0 3 Sweden (Gross Weight - housand Metric Tons) 23.9 0 2 216 0.1 0 6 1 4 p/ 69 697 Š 46 1 0 5 Italy 105 1.2 58 13 5 13 2 08 0 6 IMPORTING LULINTRY West Germany 188 0 34.9 30.8 18 06 08 95.0 59 7.4 86 2 2 264 France 13.8 10 2.2 03 10 01 3 8 8 51 Belgium – Luxemburg 32.9 58 105 04 6 18 97 n M ŝ 2739 627 20 0 22 0 neder 04 19.9 65 6 104 284 158 85 4 2 60 151 137.0 270 263 143 218 265 5.7 21 71 03 1 2 47 SO West Germany EXPORTING COUNTRY Yugoslavia Philippines Total Venezuela Sweden S Africa Norway teland France Canada Brazıl USSR Other SO

Spain.

bSource: U.S. Department of the Interior, Bureau of Mines, "Minerals Yearbook," 1984

c27.3 tons classified secret.

dAll secret.

NOTE: Totals may not add due to rounding.

SOURCE: OECD Import Microtables, 1983, Series C.

TABLE A-8. WORLD TRADE IN FERROALLOYS OTHER THAN FERROMANGANESE AND FERROSILICON: 1983

(Gross Weight – Thousand Metric Tons)

 						IMPORT	IMPORTING COUNTRY	IIKY						111100 CONTINY	COURTRY
EXPORTING COUNTRY	Canada	S D	updpr	fungwarn t) tance	West Germany	Italy	¥ T	hinland	unedy	Sweden	Othera	Total	Domestic Production ^b	Production Less Exports to OECU
\$ 11	10.2		42	7		80		70			10		181	8 f 7 f	1 205
updri		45			11	62	10				01		ç çı	1117	645 G
Pristand		14 0	ç 0									10	ć čl	817	63
Belgium Luxemburg	51	70	10		5.0	61	2				80		14.8	0	(14 8)
t-ntand					81	30					6 Q	0 1	181	0.65	40.9
tran.e	77	50	53	69		151	5 OI	/ ۲	~ [/ 3	6 0	50	5.25	2385	186.0
West Germany	(0)	51	16	08	15		63		10	13	24	2	298	1 01	40 4
-(Lat,	10	70	04	6.0	16	13.3		۹ م			÷ 0		30.6	96.1	6 23
factor as		57	57	149	19 61	60 7	155	319	13		571	57	551	2734	98 4
interprov		06	34	10		267	~ ~			07		38	481	0.65	60
Sueden (60	45	10	10	18.0	57.0	65	701	01	4 3		° 0	976	1614	68.8
[utery		671		66	1 5	10		-~			10		32.0	6.67	(17)
ILSSH		10	16	47 B	61	37	20		68		38		30.4	149 2	118.8
Levinskinder I				51	70	011	24	۹7 ۲				04	671	41/	238
Albama		53		57	15	15	11			14	16	10	25.7	35.4	16
brodienten f	٢٢	416	51	4 8	0 2	0 2	RB			5 D	5 O		608	1 29 1	689
Z.mbabwe	17	45 3	928	17	6 0	52 6	284	10.6	03	د د	70	10	1941	15/8	(196 3)
S milita	4 07	16/3	2204	14	56.4	185 2	193	254		100	164	52	/35.8	5 067	55 1
fule-occ		49	114		_								16.3	45 4	1 67
Thumon an Republy	۹ S	16.0	0 /	14	4/	17	76	67	57	0 /	~ 7		153	54 4	111
Brazit	60	36.4	95.4	5 0	17	149	0.8	05	50	10	٩٢	06	155 3	327.4	1 221
10d.oftestia		ĥ	10 6	10	7 0	44			16		51		<i>۶ 77</i>	6.07	(16)
Philippines			517			_							517	218	€ O
ften Calediania		77 19	168		1 89	181	16			E 0	41		0111	869	(7 64)
Uther	ر ۲	9.6	238	10.2	42	45 ع	14	18.9	ę 4	۶۲	55	1 41	1514	1.360.4	0.602.1
listat	7 0t	/ 868	1631	730	8777	5081	{ FI1	0.681	29.8	7 65	670	30 5	5.151.5	0.01-8 5	3,708.7
aOther =	New Ze	saland	, Denm	^a Other = New Zealand, Denmark, Greece, Ireland, and Netherlands	ce, Irelai	nd, and No	etherle	spue.							

bSource: U.S. Department of the interior, Bureau of Mines, "Minerals Yearbook," 1984. NOTE: Totals may not add due to rounding.

A-12

Trade Flows in Chromite and Manganese Ores

Ore production is concentrated in a few countries that have economically producible reserves. Table A-9 shows trade flows in chromite ore. The largest producers are the Soviet Union (35 percent of world production), South Africa (26 percent), and Albania (11 percent). The Soviet Union exports small quantities of ore to the OECD countries. South Africa exports only a small proportion of its ore production and instead processes most of its ore into ferrochromium.

	1			MPORTI	NG COL	UNTRY	<u></u>		EXPORTIN	G COUNTRY
EXPORTING COUNTRY	US	Japan	West Germany	Italy	UK.	Yugoslavia	Other ^a	Total	Domestic Production ^p	Production Less Exports to OECD
Turkey		213	189	376	2.3	4 .0	64	90.5	5115	421 0
USSR		66 6	1	55		54.2		126.3	2, <mark>9</mark> 38.7	2,812.4
Albania	54	76 6	77 8	120 2		144 6	45 0	469.6	897.9	428.3
Madagascar	183	298						48.1	45.4	(2.7)
S Africa	124 3	301 7	135 1	216	91 9		88.7	763 3	2,231 2	1,467 9
India		777						777	421 8	344 1
Philippines	111	36 9	39	12	05		10	546	266 7	212 1
Other	51	34 5	120	59	56		32 4	95 5	1,200 8	1,105 3
Total	164 2	645 1	247 7	192.0	100 3	202 8	1735	1,725 6	8.5140	6,788.4

TABLE A-9. WORLD TRADE IN CHROMITE ORES AND CONCENTRATES: 1983 (Gross Weight – Thousand Metric Tons)

^aOther = Canada, Belgium – Luxemburg, Denmark, France, Greece, Ireland, Netherlands, Austria, Finland, Iceland, Norway, Portugal, Spain, Sweden, Switzerland, and Turkey. ^bSource: U.S. Department of the Interior, Bureau of Mines, "Minerals Yearbook," 1984.

NOTE: Totals may not add due to rounding.

SOURCE: OECD Import Microtables, 1983, Series C.

Japan is the largest importer of chromite ore accounting for 37 percent of OECD imports. Although Japan gets some ore from all major producers, it depends on South Africa for almost half its imports. The United States produces only small quantities of ferrochromium domestically, depending on South Africa for most of the small amount of chromite ore it requires.

Table A-10 describes trade flows and production of manganese ore. The Soviet Union is the largest producer in the world, accounting for 44 percent of production. South Africa (13 percent of world production), Brazil (10 percent), and Gabon (9 percent) are the major non-Communist producers of manganese ore.

South Africa and Gabon provide most of the exports to the OECD, accounting for 41 percent and 25 percent, respectively, of the manganese ore imported by OECD countries. Japan is the largest importer with 31 percent of the total. France (14 percent), Norway (12 percent), and West Germany (8 percent) also import substantial quantities of manganese ore.

The United States imports relatively small amounts of manganese ore from Gabon (46 percent of imports) and Brazil (21 percent).

TABLE A-10. WORLD TRADE IN MANGANESE ORES AND CONCENTRATES: 1983

. .

÷.

\sim
<u>s</u>
C
č
-
. =
-
a,
ē
>
_
70
~
and
a l
Ś
ā
<u> </u>
2
Thousa
·
- 1
=
<u> </u>
eigh
. = 1
a)
-
<
_
Š
~
0
ross
ច
0
\sim

					IMPC	RTING C	IMPORTING COUNTRY						EXPORTIN	EXPORTING COUNTRY
EXPORTING COUNTRY	u S ı	Japan	Belgium – Luxemburg	France	West Germany	Italy	ч С	Norway	Şpaın	Yuguslavia	Otherb	Total	Domestic Production	Production Less Exports to OECD [.]
Australia	266	404 1	194	121	5 66		3.2	264		15	0 6	6066	1,353 2	746 6
Communist					06		40			314		371	11,604 6	11.567 5
nodeo	1551	446		484 5		129.4		304 3	1112	40 5	38.7	1,308 3 (1,866 6	5583
S Africa	230	846 2	69 8	1735	2917	2182	1931	184 4	95.8		639	2,159.6	2,885 2	725 6
Other Africa		32.6	42.6	30.4	15.9	87	35.0	15.0	2.5	419	318	2564	2467	(2 6)
Brazil	216	33.1	225	427	11 5	15.9	119 2	70 5			264	4134	2,091 5	1,678.1
India		2062					<u>. – – – – – – – – – – – – – – – – – – –</u>					2062	7 616,1	1,1135
Other	577	563	8 2	2 0	160	154	22 8	4 2	12	52 7	10.0	2465	485 2	2387
Total	334 0	1,623.1	162 5	745 2	4349	383 3	369 9	6234	2137	130 0	1412	5,2341	21,852 7	16,618 6
⁴ Bure	au of f	Vines da	4Bureau of Mines data – U.S. data are	a are no	not available in OECD tables	in OEC	D table	S.						

Dother = Canada, Ireland, Italy, Netherlands, Finland, Portugal, Sweden, New Zealand, Denmark, Austria, Turkey. Source: U.S. Department of the Interior, Bureau of Mines, "Minerals Yearbook," 1984.

NOTE: Totals may not add due to rounding. SOURCE: OECD Import Microtables, 1983, Series C. Totals may not add due to rounding.

APPENDIX B DEMAND FOR FERROALLOYS

INTRODUCTION

Ferroalloys have no utility on their own; rather, they are used in the production of other products, principally cast irons, steel, aluminum, and superalloys. Thus, projections of the demand for various ferroalloys are based on projections of U.S. production of those principal products.

Table B-1 displays the consumption of each ferroalloy by end use. On a totaltonnage basis, 89 percent of consumption is for the production of steel and cast iron. Ferrochromium is vital to stainless steel and ferromanganese to carbon and alloy steel, while ferrosilicon is used mostly in cast irons and aluminum alloys.

	FERROCHROMIUM	FERROMANGANESE	FERROSILICON	TOTAL	PERCENT OF TOTAL CONSUMPTION
Carbon Steel	92	457.9	75.3	542 4	34.2
Alloy Steel	48.5	98.9	39.4	186 8	118
Stainless Steel	313 1	19.3	57.6	390.0	24 6
Other	<u><u> </u></u>	<u> 1 8 </u>	_38.3	45 1	29
Total Steel	375 8	577 9	210.6	1,164.3	73 5
Cast Irons	76	176	217 5	242 7	15.3
Superalloys	115	05	03	123	0.8
Aluminum Alloys and Other	<u>_60</u>	<u> 26 9</u>	<u>131 9</u>	<u> 164 8</u>	<u>10 4</u>
Total	400 9	622 9	560 3	1.584.1	100 0

TABLE B-1. DEMAND FOR FERROALLOYS: 1984

(Thousand Short Tons – Gross Weight)

SOURCE: U.S. Department of the Interior, Bureau of Mines, "Minerals Yearbook," 1984.

CURRENT PEACETIME DEMAND

The U.S. domestic steel industry produced 92 million tons of raw steel and shipped 74 million tons of steel products in 1984.¹ The United States also imported 25 million tons of steel products, for a total U.S. consumption of 99 million tons.

DoD buys very little steel directly. It does, however, buy tanks, ships, ammunition, and the like, all of which contain large amounts of steel. Since steel is a controlled material under the Defense Production Act of 1950, DoD collects steel usage data by prime contractors and subcontractors as part of the Defense Priorities and Allocations System (DPAS).

The DPAS identifies steel requirements by defense program. It reports total direct demand — defined as steel bought by prime contractors and subcontractors to produce end items purchased by DoD. The system does not include indirect demands for steel; e.g., equipment made of steel that the contractor uses to make the defense end items. Table B-2 shows DoD demand for steel annualized on the basis of DPAS data for 1984 and part of 1985. Total direct demand by prime and subcontractors in peacetime is about 2 million tons per year. Again, indirect demand for steel by industries supplying subcontractors is not measured.

The other major source estimating the DoD demand for steel is the Defense Economic Impact Modeling System (DEIMS). That system defines DoD demand as steel bought directly by DoD plus the steel used by prime contractors to manufacture defense products and that used indirectly by suppliers and subcontractors to prime contractors. An input-output model relating inputs at each stage of production is used for this purpose. DEIMS also calculates ferroalloy production needed to satisfy steel production.

¹The difference between raw steel production and shipments of finished steel products is the result of a processing loss of about 20 percent.

L	DEFENSE PROGRAM	STEEL DEMAND			
A1	Aircraft	16.4			
A2	Missiles	16.3			
A3	Ships	452.1			
Α4	Tank/Automotive	182.6			
A5	Weapons	8.9			
A6	Ammunition	626.0			
A7	Communications	1.7			
B1	Building Supplies	8.4			
B8	Production	0.3			
C2	Construction	473.1			
C3	Maintenance	1.0			
C8	Controlled Materials	64.5			
C9	Miscellaneous	7.6			
D1	Canada	0. 9			
	TOTAL	1,859.8			

TABLE B-2. DOD DIRECT STEEL DEMAND – DPAS

(Thousand Short Tons)

SOURCE: DD Form 614, "Materials Requirements."

DEIMS estimates of demand are in dollars rather than tonnage and thus are not strictly comparable to DPAS estimates. DEIMS breaks demand into DoD purchases and purchases by industrial sectors supplying goods to DoD. "Direct" defense purchases are those made by DoD and are very small.

Since DEIMS is based on an input-output model of the economy, "indirect" purchases include all purchases throughout the economy that are used to produce defense goods. Thus, some of DEIMS indirect demand by subcontractors to DoD prime contractors would be included in the DPAS report of direct demand. However, the DEIMS-reported indirect demand is much broader than DPAS-reported direct demand. The sum of direct and indirect demand in DEIMS is *conceptually* the most inclusive estimate of steel required to produce the end items required by DoD.

For 1984, DEIMS estimates show total (direct plus indirect) DoD steel purchases of \$4.8 billion, or 7.6 percent of domestic steel production. If the United States shipped 74 million tons of steel products in 1984, DoD direct and indirect purchases would be 5.6 million tons. This compares with 1.8 million tons reported by DPAS for its less-inclusive measure of demand.

MOBILIZATION

Mobilization is

"1. The act of preparing for war or other emergencies through assembling and organizing national resources. 2. The process by which the armed forces or part of them are brought to a state of readiness for war or other national emergency. This includes assembling and organizing personnel, supplies, and material for active military service."²

A mobilization can be selective, partial, full, or total depending on the resources required. A selective mobilization is oriented toward domestic emergencies that are not the result of enemy attack; other levels of mobilization that call for more extensive resources are directed toward war or other emergencies involving an external threat.

The demand for steel during a mobilization must be placed in context. The current unclassified mobilization planning scenario involves full mobilization with a worldwide conventional conflict lasting 3 years. In that scenario, the United States commits forces in the Middle East, Western Europe, and the Pacific. The current unclassified mobilization planning scenario is reproduced as Appendix E.

During the period of tensions preceding the conflict, the United States engages in a series of preparations. Some of the actions that would have an effect on the demand for steel would be surge production of critical war reserve materiel items, filling DoD war reserve stocks, and increasing military support to friendly nations.

²Joint Chiefs of Staff Dictionary of Military and Associated Terms, 5CS Publication 1, 1984.

Other Studies

No complete, systematic study of DoD demand for steel during wartime has been made. A few studies have looked at parts of the problem and have made some estimates or provided "rules of thumb." Considerable evidence supports the conclusion that a mobilization would require the domestic steel industry to produce at today's full capacity. That capacity corresponds to actual U.S. steel production of 137 million tons of raw steel in 1978 and in 1979. Much of that capacity has since been retired as a result of the pressures of foreign competition. Current U.S. steel capacity is about 135 million tons of raw steel, or about 108 million tons of finished steel products.

A study team at the Industrial College of the Armed Forces (ICAF) concentrated on the demand for steel plate during peacetime and mobilization.³ Its report also presents a brief discussion of military requirements for all steel. Based on World War II experience and more recent information from the Arab-Israeli War, the ICAF study estimates military requirements to be 52 million tons per year of raw steel, or 41.6 million tons of finished steel products.

In 1985, DoD and the Federal Emergency Management Agency (FEMA) prepared a joint study of steel plate rolling capacity.⁴ The study reports demand estimates for steel plate from the FEMA Macro Model, which includes direct and indirect demand. During the first year of mobilization, defense-related demand is 10.5 million tons, an amount equal to total U.S. production of steel plate in 1979 – the most recent peacetime peak. During peak usage in the third year of the war, defense needs are projected to be 11.2 million short tons, exceeding 1979 steel

³John G. Coburn, *et al.*, "The U.S. Steel Industry-Implications for National Defense," The Industrial College of the Armed Forces, National Defense University, May 1984.

⁴FEMA, "An Analysis of Domestic Steel Plate Rolling Capacity," September 1985.

plate production by 7 percent. Steel plate accounts for about 9 percent of steel consumption, and the results of the FEMA Macro Model indicate that defense direct and indirect requirements would consume the full capacity of this segment of the steel industry during mobilization and war.

COTAL RECEVENCE PRODUCTS COUNTRY CONTRACTOR IN

A study conducted by Georgetown University Law Center on international steel trade⁵ discusses defense requirements for steel during wartime. The basis of the estimate in that study is a FEMA study published in 1979. FEMA calculated that, after mobilization, during a 3-year war, 26 percent of steel industry output would be required for direct military purposes and 56 percent would be required for essential support of the military. The FEMA tonnage numbers are classified, so it is impossible to know its demand estimate. Trozzo uses 1974 production of 147 million tons of raw steel to estimate that 120 million tons of raw steel would be needed in the war years to support the military effort. Such a level of production would nearly coincide with full steel capacity and would leave little room for nonessential civilian demand.

A recent unpublished study by the National Security Council (NSC), the Department of Commerce, FEMA, and DoD estimates wartime requirements for critical materials. The DEIMS model was used in conjunction with an input-output model of the economy. Although most of the study is classified, Table B-3 shows unclassified estimates of the increase in output above current levels for certain defense-related industries. The input-output model provides the dollar value of output for the various industries in the economy. The model results indicate that U.S. steel production would increase to full capacity. The study also concludes that imports would have to increase over current levels.

⁵Charles Trozzo, "Steel Trade," Chapter 3 in U.S. International Economic Policy 1981: A Draft Report, International Law Institute, Georgetown University Law Center, 1982.

INDUSTRY	WAR OUTPUT AS A PERCENT OF PEACETIME PEAK
Ammunition	823
Other Ordnance	822
Tank Components	564
Shipbuilding	499
Military Facilities	448
Small Arms	401
Aircraft	192
Aircraft and Engines and Parts	200
Aircraft and Equipment Not Elsewhere Classified	215
Guided Missiles	185
Electronic Measuring Instruments	514
Semiconductors	486
Radio and TV	443
Metal Products Not Elsewhere Classified	337

TABLE B-3. MOBILIZATION-INDUCED INCREASES IN DEFENSE-RELATED OUTPUT OF STEEL PRODUCTS

Steel Demand

We need to estimate the demand for steel during mobilization and war in order to derive the demand for ferroalloys. Since no definitive estimate of defense demand for steel is available, data from a variety of sources must be combined. DoD wartime demand added to current peacetime demand gives a total demand of 145 million tons of raw steel, which is an overestimate since it does not allow for any austerity in the civilian economy. The DPAS data in Table B-2 are a good estimate of DoD direct peacetime demand for defense programs. Other studies cited also provide information on the behavior of specific defense programs under mobilization. By using the best available information for each defense program, we have built an estimate of wartime steel demand.

The Army Armament and Ammunition Command performed a special analysis for LMI to estimate wartime demand in the weapons and ammunition program categories. Ammunition would be the largest consumer of steel in a conventional war.

The Air Staff provided information on the wartime steel demand for aircraft and missiles. The ICAF study contains a specific estimate for the tankautomotive category and a general factor of 5 for mobilization demand. The NSC study provided the factors listed in Table B-3. Table B-4 shows the DoD direct demand for steel during mobilization and war. These figures are based on the factors mentioned above. We estimate that DoD direct demand for steel would increase from 1.9 million tons in peacetime to 15.6 million tons in wartime; i.e., mobilization would increase defense steel demand by a factor of 8.4.

C	DEFENSE PROGRAM	PROJECTED STEEL DEMAND	SOURCE OF FACTORS USED TO PROJECT DEMAND		
A1	Aircraft	130.8ª	Air Staff		
A2	Missiles	130.0°	Alf Stall		
A3	Ships	2,256.0	ICAF study		
A4	Tank/Automotive	1,318.4	ICAF study		
A5	Weapons	312.8	Army Armament & Ammunition Command		
A6	Ammunition	9,039.4	Army Armament & Ammunition Command		
A7	Communications	7.5	Table B-3		
81	Building Supplies	37.6	Table B-3		
B8	Production	1.5	Table B-3		
C2	Construction	2,119.5	Table B-3		
C3	Maintenance	4.5	Table B-3		
C8	Controlled Materials	322.5	Table B-3		
C9	Miscellaneous	38.0	Table B-3		
D1	Canada	0.9	No factor		
	TOTAL	15,589.4			

TABLE B-4. DoD DIRECT STEEL DEMAND – DURING MOBILIZATION (Thousand Short Tons)

^aActual factors are classified.

It is not enough merely to supply the steel necessary for direct defense requirements. During a war, indirect defense requirements and essential civilian needs must also be supplied. Indirect defense requirements cover goods and equipment needed to produce defense goods; e.g., machine tools, trucks for shipping, computers to control production, replacement of worn-out items, etc. Essential civilian requirements are the goods and services needed to provide a minimum level of food, clothing, shelter, transportation, medical care, etc., to the civilian population.

From DEIMS, we know that DoD direct plus indirect requirements were 7.6 percent of finished steel production in 1984. By applying the mobilization factor of 8.4, we estimate defense-related steel demand of 64 percent of current domestic production. This yields 47 million tons of finished steel for DoD direct and indirect requirements.

The 1979 FEMA study indicated that the amount of steel required for essential civilian support is twice the military steel requirement. Using that estimate, we arrive at the need for 94 million tons of steel products for essential support. Table B-5 shows our estimates of the mobilization-level requirements for steel products.

. –
47a
_ 94 b
141
108
33¢

TABLE B-5. STEEL PRODUCT REQUIREMENTS DURING MOBILIZATION AND WAR (Million Short Tons)

> ^aBased on defense demand as a proportion of total from DEIMS and an average factor for mobilization demand from Tables B-2 and B-3. ^bBased on relationship between military demand and essential support in 1979 FEMA study. ^cThe shortfall would be expected to be made up by imports.

Table B-5 shows a shortfall of 33 million tons of finished steel products. Some of the shortage could be alleviated by imports. The United States imported 25 million tons of steel in 1984. About 36 percent of the imports came from the Pacific (Japan, Australia, and South Korea) and 27 percent came from Europe. These areas, however, may not be able to supply the United States with additional imports during a war. Any remaining shortfall would require a combination of conservation, substitution, and austerity.

FERROALLOYS

The quantities of ferroalloys required to produce a given quantity of steel can be derived from engineering relationships. Table B-6 shows the "pounds per ton" relationships between steel and ferroalloys. The last line shows the weighted average pounds of each ferroalloy in an average ton of steel. In 1984, 86 percent of steel production was carbon steel, 12 percent was alloy steel, and 2 percent was stainless steel. Although stainless steel requires the largest amount of ferroalloys, it is a very small percentage of total production.

	FERROCHROMIUM	FERROMANGANESE	FERROSILICON	TOTAL
Carbon steel	02	115	19	13.6
Alloy steel	89	183	73	34 5
Stainless steel	358 3	22 1	717	452 1
Weighted average	84	12 5	77	28 6

TABLE B-6 POUNDS OF FERROALLOY PER TON OF STEEL

Table B-7 shows the quantities of ferroalloys required for the steel industry to produce at full capacity of 135 million tons. Stainless steel production is about 2 percent of total production or 2.7 million tons. Carbon steel production would be 116.6 million tons and alloy steel production would be 15.7 million tons.

<u> </u>	FERROCHROMIUM	FERROMANGANESE	FERROSILICON	TOTAL
Carbon steel	12	670	111	793
Alloy steel	70	144	57	271
Stainless steel	485	30	97	612
Total	567	844	265	1,676

TABLE B-7. FERROALLOY REQUIREMENTS FOR FULL CAPACITY STEEL

(Thousand Short Tons – Gross Weight)

Full capacity steel production would require 1.7 million tons of ferroalloys. An additional 230,000 tons of ferroalloys would be used in iron castings and an additional 560,000 tons would be required by the aluminum and semiconductor industries.

APPENDIX C LEGISLATIVE HISTORY

COMPENDIUM OF LEGISLATION

Sec. 12

Trade-Related Legislation

The Trade Expansion Act of 1962. This Act provides, in part, the authority for Presidential action against imports that threaten to impair the national security. Specifically, Section 232 of the Act directs the Secretary of Commerce upon "application of an interested party," to make an appropriate investigation "immediately" to determine whether the article in question "... is being imported into the U.S. in such quantities or under such circumstances as to threaten to impair the national security." Absent a contrary Presidential finding, the Act directs the President to "... take such action, and for such time as he deems necessary to adjust imports [so that they] will not threaten to impair the national security."

Section 232(c) defines "national security" rather broadly. The national security includes the "economic welfare of individual domestic industries" whose "weakening...may impair the national security."

<u>Trade Act of 1974 (P.L. 93-618, Title IV, Sec 406)</u>. The relevant sections of this Act provide for investigations and possible relief when imports are injuring domestic industry. The applicable section is 19 U.S.C. Sec 2251, which replaced Section 301 of the Trade Expansion Act whereby a representative of the industry may petition the International Trade Commission (ITC) for import relief "for the purpose of facilitating orderly adjustment to import competition"

The investigation must determine whether imports are in such quantities as to be a "... substantial cause of serious injury, or the threat thereof, to the

C-1

domestic industry producing an article like or directly competitive with the imported article." The Commission is to take into account all relevant economic factors including but not limited to (1) the significant idling of productive facilities; (2) significant unemployment; (3) the inability of a significant number of firms to operate profitably; (4) a decline in sales or a downward trend in production, profits, wages, or employment; and (5) a decline in the proportion of the market supplied by domestic producers. Relief granted pursuant to this Act is meant to be temporary to allow the industry to adjust to import competition.

Another relevant part of the Trade Act of 1974 provides for investigation of domestic market disruption due to imports of a product produced by a Communist country. Market disruption exists whenever

"... imports of an article, like or directly competitive with an article produced by such domestic industry, are increasing rapidly, either absolutely or relatively, so as to be a significant cause of material injury, or threat thereof, to such domestic industry." (19 U.S.C. Sec 2436(e)(2).)

The investigation is conducted the same as under Section 2251 above.

<u>Tariff Act of 1930 (P.L. 17-361)</u>. Section 303 of the Tariff Act (19 U.S.C. Sec. 1303) provides for the levying of countervailing duties to protect domestic industry from subsidized imports. The countervailing duty is to be equal to the net amount of the subsidy and applies to direct subsidies as well as indirect subsidies.

Production and Material-Related Legislation

Defense Production Act of 1950 (50 U.S.C. App 2061 *et seq.*). This is the single most important statute affecting DoD's ability to secure materials. Only Titles I, III, and VII from the original legislation remain in effect today. The Act is "ordinary course legislation" meaning that the powers of the Act are available in everyday situations as well as in emergencies.

Title I provides the authority to place defense production ahead of civilian demand for production. Title III authorizes loan and purchase authority to expand industrial capacity. Title VII provides for industry-Government cooperation. Of particular interest are the provisions of Title III. It authorizes: (1) loan guarantees to expedite production under Government contracts; (2) loans for capacity expansion for production or mining of strategic materials; (3) purchases of metals, minerals, and other materials for transfer to the Strategic and Critical Materials Stockpile; and (4) installation of Government-owned equipment in private facilities.

<u>The Strategic and Critical Materials Stockpiling Act (50 U.S.C. App 98</u> <u>et seq.</u>). (Discussion adapted from Strategic and Critical Materials for Defense Needs, Volume I, Main Report, Institute for Defense Analyses, Report R-264, October 1981, pp. 143-155.)

As the name implies, this Act provides for a stockpile of materials for use if imports are interrupted and industrial requirements expand in an emergency. The Act dates back to 1939, but a major revision occurred in 1979. The objective of the stockpile remains to acquire stocks of materials deficient or insufficiently developed domestically to supply the military, industrial, and essential civilian needs of the United States for national defense. Precluded is the use of stockpile materials for "economic or budgetary purposes," or for "controlling or influencing commodity prices" (Senate Report 96-201, p. 3; P.L. 96-41, Sec 3(b)(1)). The Act defines strategic and critical materials as those "... needed to supply the military, industrial, and essential civilian needs of the United States during a national emergency and not found or produced in the United States in sufficient quantities to meet such needs" (P.L. 96-41, Sec 12(1)). With respect to stockpile goals, the 1979 Act requires that quantities in the stockpile "... be sufficient to sustain the United States for a period of not less than three years in the event of a national emergency" (P.L. 96-41, Sec 3(b)(2)). Finally, disposal of materials excess to stockpile

C-3

requirements requires congressional authorization (P.L. 96-41, Sec 5(b)). In addition, acquisitions and disposals are to be conducted by means of competition, with U.S. industry and consumers given first call on surplus materials (P.L. 96-41, Sec 6(b)(3); Senate Report 96-201, p. 5).

<u>National Materials and Minerals Policy, Research and Development Act</u> (P.L. 96-479). This Act, passed in 1980, provides a coordinating framework for Executive Branch material policy decisions, which are now highly decentralized in a number of agencies. Pursuant to the Act, the President submitted to Congress a plan of action to be taken in four areas – land availability, materials research and development, minerals data collection, and strategic and critical materials stockpiles.

<u>National Critical Materials Act of 1984 (P.L. 98-373)</u>. This Act establishes a National Critical Materials Council to advise and assist the President in formulating critical materials policy.

GOVERNMENT INTERVENTIONS

There have been several investigations of the effects of ferroalloy imports on the domestic industry and on national security.

In 1962 and 1970, there were investigations under Section 232, the national security clause of the Trade Expansion Act of 1962. Both investigations resulted in a finding that imports of ferrochromium were not in quantities large enough to harm national security.

The ITC began an investigation July 1977 to determine whether the domestic industry was being injured by imports. The initial finding was that imports of lowcarbon ferrochromium were not a threat to the domestic industry. In December 1977, the same investigation resulted in positive findings for high-carbon ferrochromium. The ITC recommended increased tariffs for high-carbon

C-4

ferrochromium. In January 1978, the President ruled that the relief recommended by the ITC was not in the nation's interest.

A second investigation in early 1978 again produced positive findings for highcarbon ferrochromium. The ITC again recommended increased tariffs to protect the domestic industry against imports of high-carbon ferrochromium. In November 1978, the President raised the duty on high-carbon ferrochromium for 3 years. The tariff was increased 4 cents per pound of chromium content on highcarbon ferrochromium valued at 38 cents per pound or less.

たちともためた

e e e e

When the tariff increase was due to expire, the ITC advised the President that termination of the relief would have an adverse economic impact on the domestic industry. In September 1981, the President extended the tariff increase for 1 year and it was not extended thereafter.

Just prior to the President's decision on tariffs, the Ferroalloys Association petitioned the Department of Commerce for relief from imports under the national security clause (Section 232) of the Trade Expansion Act of 1962. Immediately before the investigation was completed, the President began a 10-year program to upgrade the chromium and manganese ores in the national defense stockpile into ferroalloys. The program was authorized for 3 years with the option to renew each year for another 7 years. Actual processing of the ores began in 1984. Also, the Generalized System of Preferences tariff was terminated for high-carbon ferromanganese to provide some relief to the domestic industry.

The Department of Commerce concluded its Section 232 investigation with positive findings that imports of high-carbon ferrochromium and high-carbon ferromanganese are a threat to national security. In May 1984, the President decided that imports are not a threat to national security and that the stockpile upgrade program is adequate protection. Two other major actions affecting the industry occurred in 1984. An investigation of imports of ferrosilicon from the Soviet Union under Section 406 of the Trade Act of 1974 found that Soviet exports to the United States were not harming the domestic industry. The other action concerned ferrochromium imports from Spain. A Department of Commerce investigation under the Tariff Act of 1930 had led to countervailing duties on imports from Spain. The government of Spain requested another investigation which resulted in revocation of the duties.

APPENDIX D INDUSTRY STATISTICS

INTRODUCTION

STATES STATES

The analysis of worldwide ferroalloy supply and demand conducted for the study necessitated the compilation of a consistent industry data base. These data portray the behavior of the ferroalloys market in the United States plus production, capacities, and exports of producers and supplies in the world at large.

Numerous sources were used to develop the data base. The primary source was various editions of the *Minerals Yearbook*, Volume 1, "Metals and Minerals," published by the U.S. Department of the Interior, Bureau of Mines. In certain instances, reasonable judgment had to be applied to this and other sources to reconcile differences that arise due to differences of definition, revisions, or possibly error. Reconciliation was especially necessary when data were drawn from different sources. Association data (the Ferroalloys Association, American Iron and Steel Institute) were employed and sometimes differed from Government data due to use of different definitions or coverage.

CONTENTS

The following tables display the ferroalloys statistics compiled for this study. The table titles are listed below in the order in which they appear.

TABLE NO.	TITLE
D-1	Ferroalloy Industry Statistics: 1975-1984
D-2	Metal Industry Statistics: 1975-1984
D-3	Domestic Shipments of Ferroalloys: 1975-1984
D-4	U.S. Exports of Ferroalloys: 1975-1984
D-5	U.S. Imports of Ferroalloys: 1975-1984
D-6	U.S. Reported Consumption of Ferroalloys: 1975-1984
D-7	Ferroalloy Consumption Factors: 1984
D-8	U.S. Chromite Imports, Worldwide Production, and Capacity: 1984
D-9	U.S. Manganese Ore Imports, Worldwide Production, and Capacity: 1984
D-10	Worldwide Ferroalloy Production and Capacity: 1975-1984
D-11	U.S. Ferrochromium Imports, Worldwide Production, and Capacity: 1984
D-12	U.S. Ferromanganese Imports and Worldwide Production: 1984
D-13	U.S. Ferrosilicon Imports, Worldwide Production, and Capacity: 1984

TABLE D-1. FERROALLOY INDUSTRY STATISTICS: 1975-1984

fredity (1)	ferroalloy																				
214 1.67 234 1.40 1.11 1.1 5.1 5.0 3.0 34 272 1.9 2.1 1.4 2.1 1.1 1.1 5.0 3.0 34 272 1.9 3.2 1.4 1.1 2.1 1.1 2.1 1.1 1.1 2.1 1.1 2.1 1.1 1.1 2.1 1.1 1.1 2.1 1.1 1.1 2.1 1.1 1.1 2.1 1.1 1.1 2.1 1.1 2.1 2.1 1.1 2.1		1975 19	5	1976 61	5	1791 19	5	N 9 8/61	5	4791 19	5	986 F	5	1861 1861	5	1982 64	5	2 86 13	5	1994 19	5
ZH 107 7.34 140 171 104 135 105 134 141 135 132 141 131 <th>Ferrochroniun Monachir Shimmedia</th> <th>ļ</th> <th>5</th> <th>2</th> <th>1</th> <th>2</th> <th></th> <th></th> <th>:</th> <th></th>	Ferrochroniun Monachir Shimmedia	ļ	5	2	1	2			:												
(23) (10) (2) (4) 12 8 (22) (11) (23) (11) (23) (11) (23) (11) (23) (11) (23) (11) (23) (11) (23) (11) (1	Todates Charl Parts	5		è i	ň,	5	162	248	2	204	169	234	?	161	104	117	67	ጽ	ĝ	2	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Image y acoun then y		5	5 ş	•	S	Ē	<u>8</u>	<u> </u>	(23)	(0])	2	€	12	6 0	(22)	(11)	(23)	(22)	(11)	(E)
13 9 32 19 14 9 5 3 4 3 15 537 19 11 67 33 52 33 52 33 53 34 37 375 501 481 375 355 253 340 251 110 124 140 101 140 141 111 135 641 130 251 117 157 365 53 53 56 36 <		57	R '	ć	2	242	9	378		242	136	302	176	91	221	8	87	282	164	434	245
488 285 502 731 6.27 5.35 2.34 141 275 168 771 971 971 501 481 601 601 701 773 523 535 536 546 140 107 140 11,10 13) 121 131 122 131 121 261 130 136 141 161 141 161 141 161 <th></th> <th>2</th> <th>Ð</th> <th>± ;</th> <th>0-</th> <th>13</th> <th>•</th> <th>2</th> <th>12</th> <th>2</th> <th>•</th> <th>32</th> <th>61</th> <th>Ξ</th> <th>•</th> <th>5</th> <th>•</th> <th>-</th> <th>n</th> <th>13</th> <th>07</th>		2	Ð	± ;	0-	13	•	2	12	2	•	32	61	Ξ	•	5	•	-	n	13	07
537 318 417 247 257 351 353 251 171 571 971 971 908 375 355 243 340 251 170 124 100 101 140 916 701 601 535 223 340 251 171 617 641 371 161 171 161 1	Apparent Consumption	89	342	533	309	446	2 8 2	527	202	188	285	502	293	629	355	238	E	£	871	464	248
501 401 101 <th>Reported Consumption</th> <th>111</th> <th>86 T</th> <th>413</th> <th>54</th> <th>611</th> <th>265</th> <th>ŝ</th> <th>262</th> <th>537</th> <th>318</th> <th>111</th> <th>247</th> <th>2.4</th> <th>749</th> <th>242</th> <th>: 2</th> <th></th> <th>2</th> <th>ŝ</th> <th></th>	Reported Consumption	111	86 T	413	54	611	265	ŝ	262	537	318	111	247	2.4	749	242	: 2		2	ŝ	
478 375 355 2Å3 340 251 170 124 140 107 140 916 701 601 533 123 10 13 20 171 164 916 701 601 533 123 100 535 125 401 546 30 23 800 607 535 171 187 730 535 539 601 678 1,700 1,002 1,004 754 1,117 187 730 535 539 611 678 1,118 911 617 722 731 741 911 679 911 679 911 679 911 679 911 679 911 679 911 670 676 614 911 911 913 910 614 911 611 611 611 611 611 611 611 611 611 611 611 611 611 611 611 611 611 611 611	Import Share	241	251	264	201	181	501	421	109	202	181	209	109	707	Ĩ	621	627	196	116	116	5
498 375 355 251 310 231 170 124 140 101 140 916 701 601 533 123 100 535 125 401 549 568 916 701 601 531 100 535 125 401 558 539 401 558 568 568 568 568 568 568 568 568 568 568 568 568 568 568 578 568 578 568 578 568 578 568 578 568 578 568 578 568 578 568 578 568 578 568 578 5	Ferro a anese																				
(10) (11) (23) (20) (30) (40) (41) 916 701 163 730 231 73 733 736 731 16 133 623 641 16 916 701 163 730 731 111 137 736 111 16 136 164 164 1,130 1.002 1.004 736 1,117 183 730 535 539 901 628 641 641 641 641 641 641 641 641 641 641 641 641 641 641 641 641	Bosestic Shippents	482	225	474	487	140	15.0	104	151	007	175	766					ļ		1		
111 111 121 101 131 101 131 101 131 101 141 141 141 141 153 546 141 153 546 141 153 546 153 535 153 153 161 171 161 171 161 171 161 171 161 171 161 171 161 161 161 161 161 161 161 171 161 171 161 171 161 171 161 171 161 171 161 171 161 161 161 161 161 161 161 161 161 161 161 171 161 1	Industry Stock Change	8	1	8	ŝ	<u> </u>	200	1071		944			(Q)	010	<u>c</u>	21	171	•	107	1	Ē
γ_{10} γ_{11} ϕ_{11} z_{23} θ_{11} z_{23} θ_{11} z_{23} θ_{11} z_{23} z_{24} z_{11}	l mort c	2				101		101				Ê :	9	12	9	7	14	(29)		3	(33)
y_0 z_0 $1/2$ $1/3$ z_0 $1/1$ $1/6$ $1/1$ $1/6$ $2/6$ $1/1$ $1/6$ $2/6$ <t< td=""><td>Esnorts</td><td>1 2</td><td>; x</td><td>2</td><td></td><td>770</td><td></td><td>2:</td><td></td><td></td><td>10</td><td>i i</td><td>57C</td><td>00B</td><td>607</td><td></td><td>422</td><td>181</td><td>358</td><td>548</td><td>113</td></t<>	Esnorts	1 2	; x	2		770		2:			10	i i	57C	00B	607		422	181	358	548	113
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Maaraat Cassimution						2	:	2		3	2	8	62	1	91	=	2	17	91	2
I,1(46 B(1 9(5) 722 977 747 546 626 529 391 595 671 671 671 722 721 741 546 626 529 391 991 991 711 391 557 304 514 278 334 186 359 198 498 711 391 557 304 514 278 110 77 52 199 498 711 71 71 71 516 110 77 52 199 498 798 525 510 710 712 211 271 411 71 711 711 711 711 711 721 211 271 211 271 211 271 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211			5	1,00,1		1	100	1,164	/ 89	-	042	1,004	12	1,117	839	230	555	539	10	629	172
672 671 691 722 721 761 711 872 891 872 871 711 391 557 304 514 278 334 186 359 198 478 711 391 557 304 514 278 334 186 359 198 478 711 391 557 304 514 718 313 220 463 276 6 778 452 586 314 169 77 52 463 276 6 6 778 452 586 514 271 281 313 220 463 276 6 6 798 452 586 712 191 175 340 190 104 798 452 586 412 281 211 241 381 231 404 151 173 281 171 341 381 231 404 161 175 281 171 341 381 231 404 151 173 281 131 791 491 147 151 171 <td>A THE LAND CONTRACT OF</td> <td>1,015</td> <td>E</td> <td>750,1</td> <td>808</td> <td>1,034</td> <td>166</td> <td>1,150</td> <td>BB3</td> <td>1,148</td> <td>18</td> <td>945</td> <td>727</td> <td>119</td> <td>147</td> <td>546</td> <td>426</td> <td>529</td> <td>391</td> <td>545</td> <td>124</td>	A THE LAND CONTRACT OF	1,015	E	750,1	808	1,034	166	1,150	BB3	1,148	18	945	727	119	147	546	426	529	391	545	124
711 397 557 304 514 278 334 186 359 198 498 75 (3) (14) (9) 61 278 110 72 121 421 14 75 (14) (7) (55 110 77 52 159 106 144 722 16 286 228 693 399 373 220 613 276 618 798 452 586 228 693 399 315 220 613 276 618 604 337 482 247 316 173 200 613 276 618 141 161 123 141 273 281 211 211 311 311 311 311 313 276 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 611 611 611 611 611 611 611 611 <td>laport Share</td> <td>IR</td> <td>182</td> <td>ŝ</td> <td>242</td> <td>592</td> <td>242</td> <td>1/9</td> <td>17</td> <td>671</td> <td>119</td> <td>189</td> <td>169</td> <td>121</td> <td>121</td> <td>762</td> <td>ш</td> <td>168</td> <td>268</td> <td>871</td> <td>188</td>	laport Share	IR	182	ŝ	242	592	242	1/9	17	671	119	189	169	121	121	762	ш	168	268	871	188
711 377 557 304 514 278 334 186 359 198 498 (5) (5) (14) (9) 40 17 52 159 106 144 22 16 28 14 16 8 15 8 13 6 30 798 452 586 328 693 399 315 340 190 604 337 482 261 316 17 52 463 276 618 798 452 586 323 482 261 316 17 52 340 190 614 798 452 563 482 261 315 341 381 235 141 161 721 281 272 281 315 341 391 235 142 163 712 711 713 711 711 711 711 711 711 711 711 711 714 134 235 61	Ferrosi licon																				
(3) (4) (7) (Boaestic Shipsents	543	295	689	372	710		685	346	111	197	155	191	514	976	711	101	360	8	-	į
11 71 71 71 71 72 115 71 71 52 16 14 22 16 28 14 16 16 17 52 15 16 14 798 452 584 328 693 399 311 220 63 276 618 604 337 482 24 316 175 340 190 401 141 161 121 141 221 281 211 241 381 231 147 161 121 141 221 281 211 241 381 231 147 161 121 141 221 281 217 340 190 149 147 161 121 141 231 340 351 231 147 161 121 141 231 341 135 361 491 147 161 179 63 131 171 131 131 491 <td>Industry Stock Change</td> <td>1</td> <td>-</td> <td>Ξ</td> <td><u>0</u></td> <td>(10)</td> <td>10</td> <td>16</td> <td>9</td> <td></td> <td>2</td> <td></td> <td>ie)</td> <td></td> <td>9 9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ē,</td>	Industry Stock Change	1	-	Ξ	<u>0</u>	(10)	10	16	9		2		ie)		9 9						ē,
The first of the	leports	2	(†	8	64	115	2	12	BK.		2	Ì.				i i				•	~ ;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Esports	Ş	11	[]	•	=		: 2	: =	5		2 2	; ;	3 3	2	: :	7	ACI :	9	Ξ	9
710 721 100 231 613 601 513 602 263 602 263 603 214 115 136 175 340 190 604 147 161 127 141 221 281 212 241 341 381 231 1493 941 1,146 707 1,045 6.33 6.21 377 549 335 676 1,272 911 1,057 746 1,395 968 780 564 922 6.61 1,272 911 1,057 746 1,395 968 780 564 126 6.1 1,272 911 1,057 746 1,395 968 7.12 2.09 1,991 1,272 911 1,057 746 1,395 968 7.12 2.09 1,992 6/5 1,712 911 915 1,124 7.31 7.12 7.11 7.12 2,289 1,536 1,808 1,253 1,888 1,263 1,124 7.12 7.11 2,289 1,536 1,124 7.51 7.11 7.11 7.11 671 1,394 2	Apparent Consumption	200	319	114	178	BOA	444	: 2	: 5	3 <u>8</u>			5 921	2 2	•	c ;	*	2	۽ م	0	9
007 331 912 231 316 113 340 190 001 141 161 127 141 221 281 211 241 341 381 231 1,493 941 1,146 707 1,045 6.33 6.21 377 549 335 676 (42) (23) (19) 49 25 (24) (3) (137) (90) (49) 1,272 911 1,057 746 1,395 948 700 549 972 628 1,126 67 48 90 59 1,341 915 1,297 946 1,692 1, 2,455 1,779 2,092 1,395 1,124 753 1,124 1,37 1,134 1,124 2,159 1,804 1,232 1,908 1,124 753 1,294 1,394 1,425 482 513 513 541 1,257 1,291 1,291 1,394 1,394 1,425 482 513 513	Reported Consumption	195	305	420	Ş	11	1	270			7		870	24	F. (272	077	1	276	618	366
1,493 941 1,146 707 1,045 633 621 377 549 335 676 (49) (42) (25) (21) (19) 49 25 (24) (3) (137) (90) (49) (49) 1,272 911 1,057 746 1,395 948 780 564 922 628 1,126 61 61 245 1,719 2,092 1,375 2,439 1,592 1,341 915 1,297 896 1,692 1,394 482 517 511 511 531 511 511 511 581 611 582 621 711 741 672 488 1,556 1,919 1,297 800 1,394 672 488 1,555 1,719 7,91 672 1,394 672 1,394 1,232 1,888 1,253 1,124 753 1,257 807 1,394 672 488 1,255 1,124 753 1,279 806 1,692 1,394 682 1,596 1,595 1,394 672 511 511 511 511 511 511 581 611 582 621 1,294 672 1,289 1,555 1,184 1,232 1,888 1,255 1,124 753 1,279 807 1,394 672 1,994 672 511 511 511 511 511 511 511 511 511 51	laport Share	121	151	131	151	141	1/1	162	161	142	141	127	(Q)	2 1	197	516	51	240	061 100	ā i	225
1,493 941 1,146 707 1,045 6.33 6.21 3/7 549 335 676 ((42) (23) (21) (19) 49 25 (24) (3) (13/7) (90) (49) 1, 1,272 911 1,057 746 1,395 968 780 564 922 628 1,126 7 67 48 90 59 30 34 36 24 37 26 61 2,455 1,779 2,072 1,597 846 1,692 1,6 2,655 1,779 2,092 1,375 2,439 1,592 1,341 915 1,297 846 1,692 1,6 2,289 1,536 1,844 1,232 1,888 1,243 1,124 753 1,257 807 1,394 9 482 512 512 541 572 611 582 627 711 741 671 57 800 1,844 1,232 1,888 1,245 1,124 753 1,257 807 1,394 9 482 512 512 541 572 611 582 627 711 741 671 671 7 500rces: Minerals Yearbook 1975 - 1984 Ferroalloys Association											5			4 7 7	407	117	747	110	190	121	197
1,493 941 1,146 707 1,045 6.33 6.21 377 5.49 335 6.76 ((42) (23) (21) (19) 49 25 (24) (3) (137) (90) (49) 1 1,272 911 1,057 7.46 1,395 9.68 7.80 5.64 9.22 6.28 1,126 7 67 48 90 59 50 34 36 24 37 26 6.1 2,655 1,779 2,092 1,375 2,439 1,592 1,341 915 1,297 846 1,692 1,0 2,659 1,536 1,844 1,232 1,888 1,243 1,124 753 1,257 807 1,394 9 482 512 512 541 572 6.11 5.82 6.27 711 742 6.71 Sources: Minerals Yearbook 1975 - 1984 Ferroalloys Association	Ferrealloy Total																				
(42) (23) (19) (11) (2) (11) (Poer stic Shippents	1,452	94 8	1,582	800	1,445		1.404		269.		. 146	707	1045		104		640		14.1	
1,272 911 1,057 746 1,395 948 700 54 922 628 1,126 7 67 48 90 59 30 34 36 24 37 26 61 2,455 1,779 2,092 1,375 2,439 1,592 1,341 915 1,297 946 1,692 1,0 2,458 1,779 2,092 1,375 2,439 1,592 1,124 753 1,257 807 1,394 9 482 512 512 541 572 611 582 621 712 742 672 672 482 1,0 682 512 512 541 572 611 582 621 712 742 672 672 1,0 800 1,975 - 1984 1,232 1,889 1,245 7,000 1,975 - 1984 7,000 1,000	Industry Stack Change	133	98	(08)	(69)	(34)		(83)	-	(42)	-	020	101	2							
67 48 40 59 50 34 50 24 37 26 61 2.655 1,719 2,072 1,319 1,592 1,341 915 1,29 1,692 1,0 2.655 1,719 2,092 1,319 1,592 1,134 915 1,297 846 1,692 1,0 2.655 1,719 2,092 1,232 1,888 1,263 1,124 753 1,234 94 1,994 97 2.299 1,512 512 512 512 512 512 512 512 677 672 482 512 512 512 512 512 617 512 672 Sources: Minerals Yearbook 1975 1984 Acroalloys Association	leports	845	268	875	691			1.240		110	_	120	144	105							
2,655 1,779 2,072 1,375 2,439 1,592 1,341 915 1,297 846 1,692 1,0 2,655 1,779 2,072 1,375 2,439 1,592 1,341 915 1,294 9 2,289 1,536 1,844 1,232 1,888 1,263 1,124 753 1,257 807 1,394 9 482 512 512 512 542 572 611 582 622 712 742 672 50urces: Minerals Yearbook 1975 - 1984 Ferroalloys Association	Exports		90	11	22			ł				5									Č,
402 1.77 2.072 1.772 2.437 1.972 1.541 913 1.297 846 1.692 1.6 2.289 1.536 1.844 1.232 1.888 1.263 1.124 753 1.757 807 1.394 9 482 512 512 512 572 611 582 623 712 672 672 50urces: Minerals Yearbook 1975 - 1984 Ferroalloys Association	Apparent Consumption			7.344	804	_					-					2		2			34
2,200 1,336 1,814 1,232 1,888 1,263 1,124 753 1,257 807 1,394 9 482 512 512 541 572 611 582 621 712 742 672 50urces: Hinerals Yearbook 1975 - 1984 Ferroalloys Association	Rear ted Consumption			200 0	101									-	-	3	_	1247			68 5
482 512 512 541 572 612 582 621 712 742 672 Sources: Minerals Yearbook 1975 - 1984 Ferroalloys Association	Innet Chara			- - -											-	124	-	1521		1 ^{,394}	906
Sources:		2			101	714	10	744	75C	285	210	212	145	272		285		21/		178	69I
													Sour	(es:							
															nerals 1	earbook	1975 - 1	184			
reperant consumptions - eventual superants + Leanges in Inventory Stocks + Leports - Exports Lebort Share = Leborts/Apparent Ensuestion	and a sector that the sector of the sector o	ation Chin			-	i								ĩ	rroal lay	S ASSOCI	ation	į			
	lasort Share - Jacorts/Anna	arent Con	und for	ruanjes	10 IQVE	ntory st	ocks + <u>1</u>	ports -	Exports												

TABLE D-2. METAL INDUSTRY STATISTICS: 1975-1984

عمدينهما

2 2 4 4 4 4 3 3 2 2 3 2 2 4 4 4 4 4 4 1 1 1 1 1 1 1 1 3 3 3 3 4 4 4 4 4 4 1	7 7		ľ	5	1676 64	5	177 113	~ E	826	5	1479 61	CN 1980		CM 1981		1987 1982	5	1463 694	5	1484 CM	5
7 7	7 7																				
0 0	0 0	N N N	~	2	2	~	2	~		-								~	~	~	n
7 7	2 2 2 2 4 4 4 4 4 2 2 2 3 6	~ -	•	•	0	•	•	•		•								•	•	•	0
• •	0 0	~ -			~	ç	~	ſ										•	-	5	in a
1 1	No. No. <td>~ -</td> <td></td> <td></td> <td>• •</td> <td>• •</td> <td>• •</td> <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td>• •</td>	~ -			• •	• •	• •	• •										•	•	•	• •
• •	No. Sol Sol <td>~ -</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>0</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>></td> <td>.</td> <td>></td> <td>5</td>	~ -	•	•	•	•	•	0		2								>	.	>	5
1 1	1 1	-	-	-	-	-	-	-		80								-0	-0		•
• 901 501	• •01 501			-	•	•	-	-		'n								-	-	-	-
1 1	1 1 21 <td></td> <td></td> <td>201</td> <td>201</td> <td>201</td> <td>201</td> <td>201</td> <td>_</td> <td>201</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>202</td> <td>201</td> <td>631</td> <td>631</td>			201	201	201	201	201	_	201								202	201	631	631
1 1 21 21 21 21 21 21 21 21 21 21 21 1 <t< td=""><td>1 1 21 21 22 23 23 24 24 25 25 25 25 25 15</td></t<> <td></td>	1 1 21 21 22 23 23 24 24 25 25 25 25 25 15																				
0 0	0 0	Branchin Shissonts		a	31	10	"	"		10								1	1	1	-
7 7	No. N			a •	; <	; <	: 5	: 5		2 5								: 5	: 6		
• •	2 2 2 2 2 3	INGUSTEY STOCK LAANGE		>	-	>	9	5		5								2	2	•	•
0 0	0 0	leports		-	-	~	~	-		•								•	-9	13	13
22 23 24 27 27 30 31 31 31 30 30 31 31 31 30 30 32 24 17 17 19 20 22 23 23 23 23 23 23 23 23 23 24 17 17 19 7 10 10 10 10 10 10 10 10 10 10 10 11 10 11 11 10 11 11 10 11 11 10 11 10 10 10 10 10 10 10 10 10 10 10 11 11 10 10 11 <t< td=""><td>22 22 28 27 27 30 31 31 30 30 31 31 30 30 31 31 30 30 31 31 30 30 31 31 30 30 31 31 30 30 31 <td< td=""><td>Exports</td><td></td><td>•</td><td>•</td><td>•</td><td>0</td><td>•</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td>•</td><td>•</td></td<></td></t<>	22 22 28 27 27 30 31 31 30 30 31 31 30 30 31 31 30 30 31 31 30 30 31 31 30 30 31 31 30 30 31 <td< td=""><td>Exports</td><td></td><td>•</td><td>•</td><td>•</td><td>0</td><td>•</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td>•</td><td>•</td></td<>	Exports		•	•	•	0	•		0								•	•	•	•
27 27 28 <td< td=""><td>Zi Zi <thzi< th=""> Zi Zi Zi<!--</td--><td>Ansyred Costantian</td><td></td><td></td><td>٣</td><td>BC BC</td><td>"</td><td>11</td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ž</td><td>20</td><td>"</td><td>"</td></thzi<></td></td<>	Zi Zi <thzi< th=""> Zi Zi Zi<!--</td--><td>Ansyred Costantian</td><td></td><td></td><td>٣</td><td>BC BC</td><td>"</td><td>11</td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ž</td><td>20</td><td>"</td><td>"</td></thzi<>	Ansyred Costantian			٣	BC BC	"	11		10								ž	20	"	"
12 12 <td< td=""><td>22 22 23 <td< td=""><td></td><td></td><td>;;</td><td>9 8</td><td>9 8</td><td></td><td></td><td></td><td>3 5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3 9</td><td>3 9</td><td>5 8</td><td>5 8</td></td<></td></td<>	22 22 23 <td< td=""><td></td><td></td><td>;;</td><td>9 8</td><td>9 8</td><td></td><td></td><td></td><td>3 5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3 9</td><td>3 9</td><td>5 8</td><td>5 8</td></td<>			;;	9 8	9 8				3 5								3 9	3 9	5 8	5 8
• 181 187 251 261 301 311 231 231 231 231 231 231 231 231 231 231 241	Field IB: Z51	Keported Consumption		22	R	87	12	17		97								Ri	R	R	87
69 67 13<	By By 131 128 116 114 130 127 143 139 125 122 123	laport Share		181	151	251	262	261		301								301	301	482	181
9 87 131 128 116 114 130 127 143 139 125 121 121 121 121 121 121 121 131 133 132 131 133 133 133 135 131 131 133	# # 13 <td>liree</td> <td></td>	liree																			
0 0 1	0 0 1	Presetie Chinemis	_	11		801	-			11								121	121	62.1	146
0 0	0 0 0 0 24 24 25 14 17 24<	total the first of the second	-															1		2	2 -
8 10 10 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3	0 0	Industry stock change				€ :				2:						-		5	17	• ;	• ;
0 0 0 0 0 0 2 2 3 3 7 7 10 10 10 10 11 15 18 11 82 80 105 7 7 103 10 112 109 12 12 12 12 12 13 23 2 2 3 8 8 10 11 11 17 17 17 18 14 14 16 2 2 3 3 3 16 10 10 10 10 11 14 1	0 0 0 0 0 0 2 2 3 3 7 7 10 117 130 126 17 17 191 15 181 181 82 80 105 73 72 103 101 117 101 117 191 151 181 181 182 80 105 10 107 154 151 140 171 171 171 181 181 182 80 105 10 107 154 151 140 172 151 181 141 41 71 72 2 3 3 10 107 154 157 154 171 171 171 141 41 41 41 41 41 41 41 41 41 41 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43	leports		10		2												1	17		
97 95 140 137 130 128 17 17 156 118 115 184 181 82 80 105 73 72 103 101 103 101 112 109 123 120 82 80 100 81 81 72 103 101 112 109 123 120 82 80 100 81 107 154 151 140 138 157 154 171 171 181 141 41 41 41 41 41 41 41 41 41 41 43	97 95 140 137 130 128 179 175 160 156 118 115 184 181 82 80 105 73 72 103 101 103 101 112 109 123 120 82 80 100 109 107 154 151 140 138 157 154 171 171 171 181 187 161 321 331 20 90 100 109 107 154 151 140 18 157 154 171 171 171 181 181 181 20 <t< td=""><td>Exports</td><td></td><td>•</td><td></td><td>•</td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>~</td><td>•</td><td>•</td></t<>	Exports		•		•				2								~	~	•	•
73 72 105 101 105 101 112 109 123 120 123 120 82 80 100 8 8 72 105 101 112 107 171 171 191 161 161 321 331 281 109 107 154 151 140 138 157 154 171 171 171 181 141 141 321 331 281 109 107 153 151 140 138 157 154 171 171 171 181 141 141 731 281	73 72 103 101 103 101 112 109 123 120 123 120 82 80 100 8 8 72 72 131 131 171 171 171 171 181 181 181 181 181 181 181 181 181 331 331 331 341 331 331 341 341 341 341 151 169 161 161 161 161 161 161 161 161 331 331 341 351 351 351 161	Apparent Consumption		5		137				22								105	<u>10</u>	165	172
e B1 71 71 181 171 171 181 181 181 231 331 261 109 107 154 151 140 138 157 154 171 161 151 148 141 144 98 96 143 109 107 154 151 141 14 151 148 141 141 151 141 141 153 33 34 96 143 14 14 19 19 19 13 33 34 41 41 133 33 36 133 121 112 149 149 14 14 13 33 34 41 41 33 35 37 </td <td>e B1 71 71 181 191 171 171 181 181 131 231 231 281 109 107 154 151 140 138 157 154 171 161 181 141 98 96 143 109 107 154 151 140 138 157 154 171 163 151 148 141 141 151 151 151 141 141 151 <</td> <td>Reported Consumption</td> <td></td> <td>12</td> <td></td> <td>101</td> <td></td> <td></td> <td></td> <td>39</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>001</td> <td>86</td> <td>11</td> <td>112</td>	e B1 71 71 181 191 171 171 181 181 131 231 231 281 109 107 154 151 140 138 157 154 171 161 181 141 98 96 143 109 107 154 151 140 138 157 154 171 163 151 148 141 141 151 151 151 141 141 151 <	Reported Consumption		12		101				39								0 01	86	11	112
109 107 154 151 140 138 157 154 171 167 151 148 147 144 98 96 143 1 0 0 (1) (12) (12) 14 14 151 141 14 14 14 14 14 163 154 163 1 <td< td=""><td>109 101 154 151 140 138 157 154 171 151 148 147 144 98 96 143 10 0 0 (1) (12) (12) 151 14 16 141 14 14 14 141 141 143 153 154 153 154 153 154 153 154 153 154 153 154 153 154 153 154 153 154 153 154 153 154 151 151 151 153 154 157 157 153 154 157 157 151</td><td>leport Share</td><td></td><td>18</td><td>11</td><td>Ľ</td><td></td><td></td><td></td><td>197</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>261</td><td>261</td><td>152</td><td>141</td></td<>	109 101 154 151 140 138 157 154 171 151 148 147 144 98 96 143 10 0 0 (1) (12) (12) 151 14 16 141 14 14 14 141 141 143 153 154 153 154 153 154 153 154 153 154 153 154 153 154 153 154 153 154 153 154 153 154 151 151 151 153 154 157 157 153 154 157 157 151	leport Share		18	11	Ľ				197	_							261	261	152	141
109 107 154 151 140 138 157 154 171 167 151 148 147 144 98 96 143 14 14 171 167 151 141 14 151 141 141 141 98 96 143 14 14 19 17 141 14 151 151 151 151 151 151 151 151 153 153 153 153 153 153 153 151 153 153 151 151 151 151 151 153 154 151 151 153 154 151 151 153 154 151 151 153 151	109 107 154 151 140 138 157 154 171 167 151 140 14 98 96 143 14 14 17 121 121 121 121 121 123 124 14 14 14 14 14 14 14 151 151 153 154 153 154 153 154 153 154 154 153 154 153 153 153 153 153 153 151																				
Momentic Skipeents 109 107 154 151 161 151 168 147 144 98 96 143 Industry Stock Change 0 0 (1) (12) (12) 14 14 53 53 (14) 14 14 78 96 143 Industry Stock Change 0 0 (1) (12) (12) 12 14 14 11 13 33 35 36 33 33 36 35 36 35	Momentic Supervis 109 107 154 151 161 151 168 147 144 98 96 143 Industry Stock Change 0 0 (1) (1) (12) 14 14 16 11 167 151 144 98 96 143 Industry Stock Change 0 0 (1) (1) (12) 121 123 133 33 34 41 41 33 33 36 Imports 0 0 0 0 0 0 2 2 5 14 14 13 33 36 Exported Consumption 123 121 172 169 161 159 162 163 131 151 151 163 131 169 152 131 132 151 151 151 163 163 131 142 163 162 103 131 151 151 151	rraalioy Metal Total																			
Industry Stock Change 0 0 (1) (12) (12) 14 14 (5) (14) (14) 41 (24) (23) (35) Imports 14 14 19 19 33 33 48 47 38 33 33 41 41 33 33 36 Imports 0 0 0 0 0 2 2 5 14 14 41 33 33 36 Imports 0 0 0 0 0 0 2 2 5 14 14 41 33 33 36 Upports 123 121 172 169 161 159 151 151 163 103 131 Import Share 112 121 111 201 212 197 192 103 131 221 217 192 100 122 121 101 111 121 111 111 201 211 212 192 103 131 2	Imports 0 0 (1) (12) (12) 14 14 (5) (5) (14) 41 41 (24) (45) Imports 14 14 19 19 13 33 34 41 35 36 36 36			97		151					-							E	Ξ	156	163
Imports 14 14 19 19 33 33 48 41 38 33 31 41 41 33 35 36 Exports 0 0 0 0 2 2 5 5 14 41 33 35 36 Exports 0 0 0 0 2 2 5 5 14 4 9 9 2 2 3 Exported Consumption 123 121 172 169 161 159 216 151 151 165 103 131 Exported Consumption 99 98 132 143 132 142 162 159 154 151 151 162 100 122 Import Share 111 121 111 111 201 211 221 221 211	Imports 14 14 19 19 13 33 48 11 38 33 31 41 33 33 34 Exports 0 0 0 0 2 2 5 5 14 14 33 33 34 Operation 123 121 172 169 161 159 210 121 199 195 156 153 220 217 105 103 131 Operation 99 135 133 134 132 145 142 162 163 159 156 151 151 162 100 122 Import Share 111 121 111 121 111 201 211 221 221 191 311 321 321 312 Gross Weight 112 121 111 121 111 201 211 201 211 221 221 191 312 312 371 <t< td=""><td>Industry Stock Change</td><td></td><td>•</td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(42)</td><td>(21)</td><td>-9</td><td>-</td></t<>	Industry Stock Change		•		8												(42)	(21)	-9	-
Contained Netal O <td>Experts 0<!--</td--><td>Imate</td><td></td><td>1</td><td></td><td>01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>71</td><td>72</td><td></td><td>5</td></td>	Experts 0 </td <td>Imate</td> <td></td> <td>1</td> <td></td> <td>01</td> <td></td> <td>71</td> <td>72</td> <td></td> <td>5</td>	Imate		1		01												71	72		5
Generation 12 12 16 16 16 15 12 19 19 15 13 13 Generation 79 13 13 13 13 13 13 13 Import Share 111 127 13 13 13 13 13 13 Import Share 111 127 111 111 201 211 271 191 172 172 Gross Weight 111 111 111 201 211 221 191 191 131 321 Gross Weight 111 111 111 201 211 221 191 191 131 321 Gross Weight 111 111 201 211 221 191 201 211 271 Gross Weight 111 111 111 201 211 201 211 201 311 321 321 Gross Weight 111 111 111 201 211 201 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 </td <td>Wearent Consumption 123 121 172 164 161 159 195 156 153 121 105 131 Reported Consumption 99 135 133 134 132 145 162 103 131 Import Share 112 121 111 111 201 211 221 221 159 156 151 165 103 131 Import Share 112 121 111 111 201 211 221 221 191 201 211 221 211 211 212 221 221</td> <td></td> <td></td> <td></td> <td></td> <td>: -</td> <td></td> <td>; ~</td> <td>? ~</td> <td></td> <td>•</td>	Wearent Consumption 123 121 172 164 161 159 195 156 153 121 105 131 Reported Consumption 99 135 133 134 132 145 162 103 131 Import Share 112 121 111 111 201 211 221 221 159 156 151 165 103 131 Import Share 112 121 111 111 201 211 221 221 191 201 211 221 211 211 212 221 221					: -												; ~	? ~		•
Operent Consumption 123 121 139 195 156 153 220 217 103 131 Reported Consumption 99 135 131 132 145 142 162 159 151 151 148 102 100 122 Reported Consumption 99 135 131 132 145 132 142 162 100 122 Import Share 112 121 111 111 201 211 221 271 271 271 271 271 271 271 Broort Share 112 121 111 111 201 211 221 271 201 211 271 <td< td=""><td>Upper Feat Consumption 123 122 199 195 155 123 103 123 123 123 124 123 121 211 211 211 212 213 221 2</td><td></td><td></td><td>> ;</td><td></td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>י ו</td><td>•</td><td>•</td><td>-</td></td<>	Upper Feat Consumption 123 122 199 195 155 123 103 123 123 123 124 123 121 211 211 211 212 213 221 2			> ;		>												י ו	•	•	-
Consumption 99 135 132 145 142 162 154 151 148 102 100 122 Consumption 99 135 131 132 132 142 162 100 122 Import Share 112 121 111 111 201 211 221 221 271 191 191 191 312 321 271 Import Share 112 111 111 201 211 201 211 271 191 311 321 271 Import Share 112 111 111 201 211 201 211 271 <t< td=""><td>Legorted Consumption 99 98 135 133 134 132 145 142 162 159 154 151 151 148 102 100 122 Legort Share 111 121 111 111 201 211 221 221 191 201 211 221 191 191 191 311 321 271 Gross Meight Contained Metal Contained Metal Levert Consumption = Dimentic Stimmeter + Channels Context</td><td></td><td></td><td>21</td><td></td><td>169</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>131</td><td>671</td><td>200</td><td>207</td></t<>	Legorted Consumption 99 98 135 133 134 132 145 142 162 159 154 151 151 148 102 100 122 Legort Share 111 121 111 111 201 211 221 221 191 201 211 221 191 191 191 311 321 271 Gross Meight Contained Metal Contained Metal Levert Consumption = Dimentic Stimmeter + Channels Context			21		169												131	671	200	207
Import Share 11 12 11 11 201 211 201 211 212 271 27	Import Share 111 121 221 221 201 211 221 271 271 Gross Weight Sources: Sources: Sources: Sources: Sources: Contained Netal Ferroalloys Association	Reported Consumption		96		133				_	-							122	2	146	ŧ
Gross Weight Contained Metal	Gross Weight Contained Metal arrent Concumation = Boametic Shismeete + Channee in Eventee + Evente - Evente	leport Share		121		111												112	18 2	212	201
Bross Height Sources: Contained Metal	Gross Weight Contained Metal Jarent Concumation = Boametic Shisments + Channes in Eventery Storts + Family - Events																				
Contained Netal	Contained Metal scent foncimation = Boasstic Stisseets + Phanass in Eventry Storts + Learnts - Events												Sourc								
	ventery Storts + Lawris - Erects													Hine	rals Yeau	rbook 1975	- 1984				
	vanturv Sturte + laanste - Evanste													Ferru	alloys (Associatio	Ę				
Apparent Consumption = Bomestic Shipments + Changes in Inventory Stocks + Imports - Exports	AND LEU CONSTANTINE - ANESTIC SHIRESHIE , CHARGES IN INTERIOR] AND AND A RADIES CONSTANTS	Apparent Consumption = Domesti	ic Shiper	ents + C	hanges i	in Invent	tory Stor	ks + lop	orts - E	upor t s							E				

D-4

TABLE D-3. DOMESTIC SHIPMENTS OF FERROALLOYS: 1975-1984

Ferroalloy	5/61		1976		1477		1978		6/61	-	980		1981	_	1982		1983		1984	
	3	5	3	5	3	5	3	5	1 9	5	3	CN	3	5	3	5	3	5	3	5
æ						,		;							;	i	:	i	i	i
ferrochroniun	165	107	161	2	215	38	8	128	229	146	186	117	135	8	82	ጽ	ş	26	21	21
ferrochrosius-silicon	¥	2	22	\$	Ş	16	22	12	2	13	12	-0	8	.	-	~	2	-	-	~
Other chroniun	2	•	18	2	5	æ	16	-	6	9	2	16		11	21	=	-	•		
Chromium alloys	121	131	267	154	275	162	248	148	284	169	234	140	191	104	117	67	8	9 5	1	74
Chronium metal	2	2	2	2	7	2	-	-	-	-	-	-	ñ	2	2	7	~	m	•	m
		919	101	104	110			755	411	376	145	271		721	ä			12	ž	"
rer roeanyanese 5.1		5	5 5					39	100	3	5 5		2 2			8 9	8 2	: 2	2 4	1 1
acamemory and the second states of the second s	e; 69	2	464	187	TYU I	2 P	66	e é			101	747		22	8 5	5 7	5 9	3 2	3 9	5
Nanganese betal	18	19	?≂	;	2	3	33	; R	2	24	ខ្លួន	32		12	5	5	=	-	Ξ	: z
-	1	į		;		;	5				1			ļ	ş				Ģ	
	-	<u>8</u> ;	5	22	C10		è s	5		אנג יי	<u> </u>	297		₽, ;	5			2 8		1.7
Other silicon	5	5	83	44	£	8	₽	2	8			36		8	ç	79	44	2	2	7
Silicon alloys	243	295	689	372	710	382	685	366	111			304		27 8	334	106	339	198	1 98	78
Silicon metal	6	81	131	128	911	Ħ	130	127	ŝ	139	125	122	124	121	18	61	123	121	134	146
Primary alloys	1,452	948	1,582 1,008		1,445	897 1	1,404	870 1	1,493	941 1,	1,146	707 1.	1,045 &	633	621	377	549	335	676	010
c Other alloys	521		145		137		232		232		211		172		109		6		211	
Alloy total	1,973	948		1,008	1,582	897 1	1.636	870 1	1.725	941 1.		707 1.		633	730	377	882	335	887	010
Alloy & metal total		1,055		1,159		1,035		1,024		1,108 1,				ווו	828	473	198	-	.043	573
GN Gross Weight CN Contained Metal (Computed)	ooputed)									Sources:	_	merals Y	Nimerals Yearbook 1975 - 1984 4004 Abort Statistical Booked Aboriza from E Starl Latitude	1 - 5791 	t de la		: ;			
excludes domestic processing of National Defense St	cessing of	Nat i on a	l Defens	e Stocke	ockpile ferroalloys.	balloys.					i ji	rroal loy	ferroalloys Association	ition rel			5			
b includes ferrochromium silicate, chromium metal, ch c ather ferroallovs; ferroborne, ferromolybdenum, fer	silicate	, chroni Prronol	vhdenua.	, chroni ferroni	um brigu stel. fe	romium briquets, & other chromium alloys romickel, ferromhnamharous, ferrotitaniu	ther chr.	beiun al. Perrotita	loys niun. fe	romium briquets, & other Chromium alloys rantstel. Ferrachischerous. Ferratilanium ferratumeten. Ferravamadium & others	en. fer	i penevo :	ne 1 othe	T.						
other terroalloys: ter	rroeorou"	PE' L GOOI	Andenue	I EL L DU I	ckel, te	rropnospi	nor ous,	rerrotit	anıu n , ti	errotungst	m, ter	L DENEVO I	14 1 OCU1	5						

TABLE D-4. U.S. EXPORTS OF FERROALLOYS: 1975-1984

	1980 1981 1982 1983 1984 GM CM GM CM GM CM GM CM GM CM	32 19 14 9 5 3 4 3 15 10 0 0 0 0 0 0 0 0 0 32 19 14 9 5 3 4 3 15 10	12 10 13 11 10 8 8 7 7 6 6 4 4 3 3 2 6 4 5 3 18 14 17 14 13 10 14 11 12 9 12 12 3 3 3 3 7 6 6 4 4 9 30 26 20 17 16 13 20 17 16 13	28 14 16 8 15 8 13 6 30 16 14 14 9 9 2 2 3 3 4 4 42 28 25 17 17 10 16 9 34 20	78 47 47 31 33 21 31 20 57 35 26 26 12 12 5 5 9 9 8 8 104 73 59 43 38 26 40 29 65 43	
	1979 GN CN	15 0 9 9 9 9	25 20 5 3 30 23 30 23 30 23	22 16 5 5 27 21	67 48 5 5 72 53	
	1978 GN CN	19 12 0 0 19 12	► 0 4 0 4	12 11 2 2 14 13	45 33 2 2 47 35	
(contained metal)	1977 64 CM	12 0 12 9 9	*****	11 7 11 7	29 21 0 0 29 21	Steel Institute
	1976 GN CM	4 0 4 9 0 9	~ ~ ~ ~ ~ ~	12 B 12 B	33 22 0 0 33 22	-
Thousands of short tons of alloy	1975 GN CN	13 0 13 13	32 25 0 0 32 25 0 0 37 25	40 27 40 27	83 6 6 6 0 6 0 8 0 8	Himerals Yearbook 1975 - 1984 1984 Annual Statistical Report, American Iron t Ferroalloys Association
ž	Ferroal loy	Ferrochroeiue FeCr Creetai Total	Ferrowanganese Felfa Si Ma Felfa Ma wetal Total	Ferroailicon FeSi Si metal Total	Ferroalloy Total Metal Total Ferroalloy & Metal Total Bu Bross Meight CM Contained Metal	Sources: Ninerals Yearbook 1975 - 1984 1984 Annual Statistical Report Ferroalloys Association

TABLE D-5. U.S. IMPORTS OF FERROALLOYS: 1975-1984

Ferroalloy 1975 1976 Ferroalloy 64 64 64 Ferrochroaiua 519 198 243 150 Fecr 319 198 243 150 Fecr 319 198 243 150 Total 313 200 259 156 Total 323 200 259 156 Crawlal 7 <th>2261 F</th> <th></th>	2261 F															
319 198 243 4 2 16 323 200 259 7 7 7 7		5	8/61 EM	B	1979 GN	5	98 61 13 8 9	5	1861 1861	5	1982 GN	5	1983 1983	5	1984 64	5
319 198 243 i 4 2 16 al 323 200 259 tal 7 7 7					I			I				I				
4 2 16 323 200 259 1 7 7 7 7			327	181	242	136	797	174	429	247	Ξ	10	201	163	426	242
323 200 259 2 7 7 7			-	•	•	•	•	2	Ξ	-	~	5	-		æ	•
<i>c c</i>			328	181	242	136	302	176	10	152	811	6)	282	164	434	245
•	2 2	2	-	-	-	-	-	*	-	•	2	2	2	~	÷	5
fer obangantse																
397 306 438			189	531	821	639	609	1/1	1/9	522	493	384	341	266	410	322
55 35		28	56	63	2	62		4	129	82	62	Ŧ	140	92	821	16
341 518			176	594	916	701		523	900	607	555	125	181	358	548	413
~	1 1		•	0 -	1	1		80	80	-	5	ŝ	4	-0	13	13
ferrosilicon																
47 98			136	98	H	*	11	1	155	011	"	25	159	106	144	96
Simetal 8 8 10 10			33	2	11	21	21	21	£	24	26	26	12	27	24	24
78 55	4 139	66	1/1	120	141	101	26	89	184	139	103	8/	98)	133	891	120
Ferroalloy Total 845 588 875 691 Maral Intal 14 14 19 19	8/6 I	689	1,240	861	1,272	116 116	1,057	447	1,395	968	780	561	922 V	1 829	1,126	12
1 859 602 894			1,288	_	1,310		1,090			600	813	262	8 8 2	-	168	196
64 Bross Meight CM Contained Netal																
Sources:																
Nimerals Yearbook 1975 - 1984 1984 Amnual Statistical Report, American Iron 1984 Amnual Statistical Report, American Iron		k Steel Institute														

TABLE D-6. U.S. REPORTED CONSUMPTION OF FERROALLOYS: 1975-1984

	5		<u></u>	22	121	4	121	-	228	-	232		313	13	386	89	121	58	4 82		127	18	210	1	222	112	337	2	6	Ξį	1,051				
	185 1		£	1	378	11	332	~	397	*	101		101	16	492	103	55	82	623		244	601	373		404		518	10	1,396	91	1,542				
	5		ĝ	ଛ	220	4	226	•	226	•	230		2 9 6	6 3	349	5	391	18	404		104			11	06)	86	288	3	60)	120	427				
	1961 1961		342	8	372	16	386	-	389	•	393		367	61	446	63	529	8	243		217	8	313	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	340	8	940	Ξ	1,258	12	1,380				
	5		126	2	147	ŝ	152	~	124	m	151		294	62	356	2	426	11	H3		101		164	; =	521	8	222	ŝ	755	8	52				
	1987 64		215	22	247	15	262	-	266	m	269		363	"	440	901	546	11	563		209	1	242	7	316	82	398	31	1,128	201	1,230				
	5		207	5	238	æ	246	5	249	¥	253		531	113	644	103	147	24	111		155	96	751	18	267	120	(8)	1	1,263	148	Ę				
	1981 64		154	\$	90 1	22	422	-	424	•	433		681	140	821	156	119	24	100,1		171	121	92	2	482	123	605	94	1,888						
	5		202	11	235	•	244	~	247	.9	253		11	100	619	103	122	22	111		137	6	244	2	263	120	383	•	1,232						
	1980 1980		339	Ş	388	23	111	4	1	9	423		66	123	789	156	945	R	970		R7R	116	ŧ	8	482	123	605	8	1 1964						
	5		260	Ŧ	301	13	314	-	318	9	324		641	126	767	Ħ	188	2 8	909		195	Ē	306	2	151	125	462	=	1,536	124	543				
	1979 Bu	i	•33	9	193	33	528	•	537	9	243		822	154	976	172	,148	5 8	1,176		404	146	550	5	904	128	132	62	2,289 1,						
etal)	5		233	ŧ	273	2	288	-	242	Ŷ	297							2 8			161	116	307	67	374	109	483	13	1,549 2						
(gross weight à contained metal)	87.61		ŝ	3	113	Ŧ	486	•	Ê	ŝ	200		832	151	986	164	.150	82	1,178		461	152	248	12	663	112	211	13	2,308 1,						
ht & con	5		195	1 2	240	21	261	-	265	-	269							27			161	. 6	288	8	356	101	121	6-	1,415 2						
oss weig	1211 1977		318	67	197 197	5	940	•	449	-	123		748	BX 1	984	80	,034	21	190		197	127	524	E	637	103	740	51	2,120 1,						-
λo	5		159	T.	213	26	239		241	-	248						-	28	-		190	16	283	2	345	101	446	o -	1,397 2						
ons of a	1976 GN			5	332	20					11		756		168		1,052		1,080		197						723				2,220 1,				
thousands of short tons of all	- 5		124	51	175	61	194	-	198	-	202		563	110	693		799 1,		821 1.		158	5	233	5	305	22	377	13	1,302		1,400 2,			18	
ta shne	27.91 19	ł		1	273						337		748	134	882 (1,013		1,065 1		401										2,078 1,			1 - 516	tion
Ihous	-																-		-													_		irboot 1	43 SOC 1 4
	f er roal loy	Ferrochroeiua	HCFeCr	LOFECT	FeCr	FeCrSi	Total	Other	Total	Cr setal	lotal	Ferromanganese	HCF eNa	M.CF ethn	F eHn	Si Mn	lotal	He metal	Total	Carenari li com	FP5150	FeSi 75	FeSi	MafeSi	Total	Si metal	Total	Silvery Pig Iron	Ferroalloy Total	Metal Total	Ferroalloy b Metal Total	6N Gross Weight CM Contained Metal		oources: Minerals Yearbook 1975 - 1984 	Ferroalloys Association
	4	ŭ										z								ū	-										*	80	ū		

TABLE D-7. FERROALLOY CONSUMPTION FACTORS: 1984

والمتعالية المحمد والمتعالية

0.1 5.1 204.9 8.8 11.1 3.2 1.0 4.1 16.7 8.9 4.6 4.6 3.7 3 చ £ Minerals Yearbook 1984 Total Fotal Total 0.2 8.9 358.3 11.5 18.3 22.1 7.6 9.0 11.2 1.9 7.3 71.7 32.0 ð.6 Pounds of alloy per short ton of metal igross weight & contained metal) 3 3 3 0.0 0.0 0.0 Retai Metal 0.1 0.4 0.4 0.7 0.7 0.2 fet si 0.0 0.0 0.0 Source: 5 3 0.0 0.0 2.6 ę 1.0 ••• 0.2 1.2 0.3 5 £ S **FeCrSi** Alloy steel includes high strength low alloy steel Stainless steel includes tool steel Mafesi Siffe 3 0.0 9.0 9.9 ۰. 1.8 3.7 5.3 2.1 0.6 3 36 LCFeCr U Cr 0.1 1.5 7.8 0.4 1.5 2.3 0.5 0.1 -0.4 1.3 26.4 3.6 . 1.3 S FeSi75 6N Si £ **NLCFellin** 0.1 2.2 11.7 0.5 33 0.6 1.7 0.5 34.7 l.6 1.8 2.9 0.1 쿪 Gross Weight Contained Netal (computed) 0.1 3.3 193.2 6.0 10.9 1.9 0.6 2.6 17.7 10.7 0.6 3.8 **6.**0 2.2 ర ទ £ HCFeCr Fe5i 50 HCF ethn 0.1 5.8 335.5 4.6 2.4 1.3 5.4 36.9 1 é.5 7.6 3 3 39 Carbon Steel Alloy Steel Stainless Steel Carbon Steel Alloy Steel Stainless Steel Cast Iron Stainless Steel Cast Iron Iron & Steel Av Iron & Steel Av iron & Steel Av Ferroeanganese Ferrochrodius Carbon Steel Alloy Steel Ferrosilicon Cast Iron Notes: 85

تدرينين فيكما الالتك

TABLE D-8 U 5 CHROMITE IMPORTS, WORLDWIDE PRODUCTION, AND CAPACITY: 1984

ومديرة مريكية والم

Leedel 1 Leedel 1 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE D-9. U.S. MANGANESE ORE IMPORTS, WORLDWIDE PRODUCTION, AND CAPACITY: 1984

Sec. Sec.

800 709 61 20 30 15 823 41 4 310 202 823 41 4 3.430 202 823 401 40 3.430 5,689 361 401 401 3.480 1,580 961 365 401 22 99 961 365 365 10 11 0 1001 0 101 1 4 75 145 301 1 1 4 4 1 1 26 29 311 4 221 4 1<

TABLE D-10. WORLDWIDE FERROALLOY PRODUCTION AND CAPACITY: 1975-1984

D-12

TABLE D-10. WORLDWIDE FERROALLOY PRODUCTION AND CAPACITY: 1975-1984 (Continued)

....

Africa	1975 1976	1976	[19]	8791	6/61	1000	1001			1901
						1704	10/1	7841	5941	1704
rdih.	s	s	'n	ŝ	ŝ	s	s	9	4	ľ
Asia										
Ladones i a	0	61	24	22	20	8	22	24	23	11
Korea, North	•	"	8	120	120	132	132	132	132	132
Korea, Republic	23	7	11	87	124	120	Ξ	139	142	120
New Caledonia	230	173	127	68	26	145	121	120	"	101
Taywan	26	26	27	33	Ŧ	61	3 6	63	65	2
fhai land	-	n	-	£	5					
Total	280	369	350	354	402	464	472	478	439	487
Eastern Europe										
Albania	0	0	0	0	e	-	12	11	91	ł
ful ear i a	. 29	5	18	. 12	5	5	9	9	5	9
Crechael avatia	15	: 2	8	Ĩ	191	5	101	Ē	101	ē
	171	2		101	2 2	Ē	941	91.9	5	Ē
		25		5	2	3	1	3 :	2	2 :
			2 5	2 :	2 :	9 <u>;</u>		-	2 ;	= ;
Parane.	04C	000	700	160	166	979	97c	976	976	976
Total	111	710	780	701	171	971	CV1	190	100	
	201	5	3	3	2	67/		2		eca 1 1
South America										
Argentina	44	3	%	51	3	5	23	67	64	63
Chile	5	11	œ	80	2	13	•	4	13	11
col unbi a	-	-	-	-	-	-	-			
Dominican Republic	67	71	72	Ŧ	13	51	1 5	16	09	11
Venezuela	•	•	12	31	\$	89	62	28	63	61
Total	135	145	120	132	188	187	179	141	200	208
Nestern Europe										
Austria	1	e.	8	80	0	Ξ	13	15	15	15
belgius	801	53	61	96	66	86	66	66	66	501
Finland	:	ŧ	37	64	5	82	57	90	65	99
icel and	•	0	•	•	11	28	11	11	26	19
Por tugal	10	88	107	158	163	164	153	901	115	105
Switzer land	4	•	٠	٠	•	ŝ	ŝ	5	-	ç
¥	46	152	123	96	169	И	107	19	106	67
fotal	269	395	345	414	521	431	174		999	454

-

TABLE D-11. U.S. FERROCHROMIUM IMPORTS, WORLDWIDE PRODUCTION, AND CAPACITY: 1984

Second Development and the second second second second

Τ.

			Ferro	Ferrochroniun	Ferroc	Ferrochroniun		Excess
Country	U.S. I Ref	U.S. Imports GK Cr	Prod	Production W Cr	Production Capacity BM Cr	apacity Gr	Util- ization	Capacity Gu
G uctralia								i
Brazil	13.1	1.1	146	91	146	19	1001	0
Canada China			110	2	92.1	"	1001	e
			3	:	2	4		>
France			22	12	8 6	8	242	72
Ger wany	5.1	3.6	=	24	100	62	11	23
6r eec e			22	12	27	11	108	5
India	3. •	2.4	3	24	135	99	321	16
Italy	5.7	3.6	13	1	8	30	111	15
Japan	0.1	0.1	357	196	561	348	164	204
Nexico			æ	-	8	-	1001	.0
Norway	0.1	0.0	12	1	32	20	372	50
Philipoines	1	3.4	2	90	09	n	204	24
South Africa	262.9	139.3	1.004	548	1.004		1002	
Spain	0.9	0.6	15	, 6	21		121	a
Sweden	5.4	3.9	160	8	269	167	145	601
Turbay	4 01	3.01	15	ģ	11	-	500	5
USSR			476	260	677	50	101	201
USA			31	21	302	187	101	112
Yugoslavia	27.7	17.9	86	: 5	96	15	1001	0
Zinbabue	46.2	30.4	187	103	305	189	219	118
Other Africa Asia								
Eastern Europe			199	110	243	140	821	÷
Western Europe			6 6	36	66	91	1001	0
Total	425.8	242.8	3,156	1,127	4,393	2,604	121	1,237
64 Gross Meight Cr Contained chroniun	aj un					Sou	Sources: 1984 M _{in}	s: 1984 Minerals Yearbook
a Ferrochronium production capacity gross weight estimated (.62Cr)	er oduct i o	n capacity o	aross weight	t pstimate	d (.62Cr)		le ranta	Mineral facts & Problems 1985

1

TABLE D-11. U.S. FERROCHROMIUM IMPORTS, WORLDWIDE PRODUCTION, AND CAPACITY: 1984 (Continued)

- Y - Y

Excess Capacity 6W		~ ~	> <	• •	· Ŧ	ŧ	c				
Util- ization		2001	1001	1001	531	821	1001				
Ferrochromium tion Capacity 6W Cr	:	2	: :	2 82	28	140	2				
Ferrochronium Production Capacity 6W Cr	:	: 9	8 5	3 2	96	243	99			1 (.62Cr)	
Ferrochroniun Production SW Cr	:	5	: 5	: £	28	110	36			estinate:	
Ferroci Prod GN	:	;	8 F	22	3	199	99			ross weight	
iports Cr										capacity gr	
U.S. laports GN Cr									Ch (C	pr oduct i on	book
	Eastern Europe	Algania Czerbnel svabi a	Germany. N.R.	u o tran	nia	-	Western Europe Finland	Gross Weight	Contained chronium	Ferrochromium production capacity gross weight estimated (.62Cr)	es: 1984 Minerals Yearbook
Eauntry	Easter	ion Jac	Bera	Poland	Romania	Total	Western El Finland	æ ,	5		Sources: 196

TABLE D-12. U.S. FERROMANGANESE IMPORTS AND WORLDWIDE PRODUCTION: 1984

A A A

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.2 524 44 41.2 176 47 39.6 276 257 39.6 276 220 120.2 422 39 5.8 77 5.8 77 1,926 39 1,926 59 1,926 59 1,926 59 1,926 59 0 0 0 0 0 0 0 0 1,926 59 1,926 59 1,9
2.2 524 257 41.2 176 47 39.6 276 220 39.6 216 220 5.8 422 39 5.8 94 77 5.8 94 77 5.8 94 77 5.8 94 77 5.9 1,926 39 12.9 1,926 39 0 0 0 0.0 1,926 28 0.0 0 0 0.0 165 25 0.0 35 25 0.10 165 25 0.11 198 110
41.2 176 47 39.6 $27b$ 220 5.8 94 77 5.8 94 77 5.8 94 77 5.8 94 77 5.8 94 77 5.8 94 77 5.8 94 77 $1,92b$ 39 96 $1,92b$ 75 65 12.9 $1,92b$ 39 12.9 $1,92b$ 39 0.0 0 0 0 0.0 0.0 0 0 0.0
9,1,2 0 0 0 120.2 422 39 5.8 94 77 5.8 94 77 5.8 94 77 5.8 94 77 5.1 75 65 75 65 39 1,926 39 0 0 0 0 1,926 39 12.9 46 28 0.0 0 0 0.0 165 25 0.1 165 25 0.1 35 25 14.8 221 17
120.2 42 39 5.8 42 77 5.8 77 5.8 77 1,926 39 1,926 39 75 65 75 75 75 65 75 65 76 70 75 75 75 65 76 70 75 75 75 65 76 70 76 70 75 75 75 65 76 70 75 75 75 65 76 70 76 70 76 70 75 75 75 65 75 75 75 75 75 65 76 70 76 70 70 70 76 70 77 70 70 77 70 70 77 70 77 70 70 77 70 70 77 70 70 70 70 70 70 70 70 70 70 70 70 700
5.8 94 77 5.8 0 0 0 1,926 39 12.9 1,926 39 75 65 75 65 75 65 0 0 0 0.0 0 0 0.0 165 25 0.1 10 14.8 23 110
0 0 1,926 39 75 65 75 65 75 65 0.0 28 0.0 28 0.0 28 0.0 0 0.0 0 165 25 0.0 0 14.8 110 14.8 25
1,926 39 12.9 1,926 39 75 65 65 75 65 65 0 2 0 0.0 0 0.0 165 25 0.0 35 25 110 112 10 112 25 113 25 114.8 221 17
12.9 46 28 2 0 2 0.0 0 0 0 6.1 165 25 0.0 35 25 14.8 23
0.0 0 0 0.0 0 0 0.0 165 25 0.0 35 25 14.8 25
0.0 0 0 0.0 165 25 0.1 498 110 0.0 35 25 14.8 221 17
0.0 165 25 6.1 498 110 0.0 35 25 14.8 231 17
6.1 498 110 0.0 35 25 14.8 221 17
0.0 35 25 14.8 221 17
14.8 221 17

-

•

.

TABLE D-12. U.S. FERROMANGANESE IMPORTS AND WORLDWIDE PRODUCTION: 1984(Continued)

Sand presses were applicated were and the second

	1	r er romanganese Product i on	
ea, Worth 0.0 0			Si Mn Total
Iic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			
It 0.0	0.0	11	
a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	66	
a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0	22	25 47
a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0	165	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.1 9.1 9.1 0.0 0.0 0.0 9.1 9.1 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
 0.0 	0.0	37	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	110	0 110
0.0 0.0 0.0 0.0 0.0 9.1 9.1 0.0 0.0 0.0 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	72	
0.0 9.1 9.1 0.0 0.0 9.1 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	183	
0.0 9.1 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	b.1	96	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.1	865	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	27	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.8 0.8	0.0	-9	
0.0 0.0 0.0 0.0 0.8 0.0 0.8 0.8	0.0	2	10 12
0.8 0.0 0.8 0.8	0.0	35	
0.8 0.0 0.8 0.8			
	0.8	501	
0.8 18.2 13.5	14.0	Ĩ	17 50
	0.0	83	
0.8 19.0 14.3	14.8	221	
Sources: 1984 Minerals Yearbook			

TABLE D-13. U.S. FERROSILICON IMPORTS, WORLDWIDE PRODUCTION, AND CAPACITY: 1984

	U.S. leearts				Production				Production Capacity	scity				Excess
Country	Bross Neight		Contained Si	I Si	Gross Weight		Contained Si	1 Si	Gross Meight	:	Contained Si	íí	utit-	Capacity
	feSi		FeSi	Si	FeSi		FeSi	Si	FeSi	Si	FeSi		ization	21
Australia	0.0	0.0	0.0	0.0	9 2	0	81	0	33		12	9	841	2
Brazil	35.0	b. 0	22.0	6.0	174	30	117	23	822	39	153	8	762	*
Canada	16.0	5.0	11.0	5.0	8	5 8	70	27	128		102	11	269	32
China	0.0	0.0	0.0	0.0	215	24	150	24	258	26	180	36	832	8
Fr ance	5.0	9 .0	3.0	4.0	220	62	108	59	301	85	801	18	131	ŧ
Ger nany	3.0	1.0	2.0	0.1	8	80	25	8	128	13	Ŧ	=	612	16
Br eece	0.0	0.0	0.0	0.0	3	0	;	0	59		5	0	196	2
India	0.0	0.0	0.0	0.0	45	•	11	-	88	89	65	80	212	32
ltaly	1.0	0.0	0.0	0.0	51	5	\$	51	101	27	65	12	261	37
negel	0.0	0.0	0.0	0.0	169	0	128	•	317		240	•	531	112
Neisco	0.0	0.0	0.0	0.0	26	0	16	0	31		23	•	101	1
Nor way	28.0	1.0	20.0	1.0	381	11	286	R	453	86	340	96	198	5
Philippines	0.0	0.0	0.0	0.0	22	0	16	0	32		23	•	101	-
South Africa	1.0	0.1	1.0	0.1	011	2	82	24	119	0	8	9	126	1
Spain	0.0	0.0	0.0	0.0	83	61	52	19	123	36	76	36	221	4 2
Sweden	1.0	0.0	1.0	0.0	11	16	10	16	11	23	61	23	1001	0
Turkev														
USSR	12.0	0.0	5.0	0.0	194	70	480	69	913	82	564	81	851	84
USA					861	140	274	137	753	}	Ę	•	199	9
Yugoslavia	0.0	0.0	0.0	0.0	6	ę	61	39	116	51	8	8	181	19
Zi shabwe	0.0	0.0	0.0	0.0	30	•	17	0			0	•		
Other														
Africa	9.6	0.0	3.0	0.0	1	0	ŝ	•	12		15	0	101	44
Ası J	0.0	0.0	0.0	0.0	3	•	3	•	3 2		67	¢	199	23
Eastern Europe	1.0	0.0	1.0	0.0	23	Η	33	Ξ	55	Ξ	33	=	1001	0
South America	28.0	0.0	21.0	0.0	89	0	94	•	110		12	•	119	26
Vestern Europe	1.0	1.0	5.0	1.0	24	32	19	35	32	42	22	÷	191	4
lot a t	142.0	19.0	95.0	19.0	3,376	605	2,187	568	4,576	585	179,5	614	741	202
Sources: 1984 Ninera	rs: 1984 Minerals Yearbook													
Mineral Fac	Mineral Facts & Probless 1985	ŗ												

AL AL AVELOW

TABLE D-13. U.S. FERROSILICON IMPORTS, WORLDWIDE PRODUCTION, AND CAPACITY: 1984 (Continued)

	IS OF SHOFT TO	ons igross	מבולעו בר	Ihousands of short tons igross weight a contained siticum									FeSi	FeSi Production
U.S.	U.S. leports				Production				Production Capacity Course Works				-1141	Excess
Country	Gross Weight		Contained Si	i Sı	Gross WeightContained Si	ei ght	Contained	51	r_c:	3	LUMIDINE SI	-		
	FeSt	Şı	FeSi	51	FeSi	Si	feSi	Si	1631	10	1021			5
Africa		•	•	•		e	c	¢	11		15	0	101	46
Egypt	0.0	0.0	0.0	0.0	-	>	'n	\$						
isreal	6 .0		3.0		•	e	w	c	11		51	•	101	9 4
lot al	0.1	0.0	3.0	0.0	-	•	7	>	:					
Asia					i		;	ĸ	84		11	e	111	10
Korea, North	0.0	0.0	0.0	0.0	3	•	12		56		ន	• •	211	=
Total	0.0	0.0	0.0	0.0	3.3	• •	: I	c	85		67	•	199	23
factera furode										:::::::::::::::::::::::::::::::::::::::	:	:		•
Pol and	1.0		1.0		55	Ξ	ÎÌ	=	55	=	8	=	2001	Þ
South America									:		3		103	~
Argentina	2.0	0.0	1.0	0.0	11	ø	-	0	5		5	>	125	-
Chile	1.0	0.0	1.0	0.0	i		ļ	4	7		92	¢	171	•
Yenez uel a	0.0	0.0	0.0	0.0	21	0	61	•	0/		2	>		
Other	25.0	0.0	19.0	0.0	4		:	4	911		"	c	442	26
Total	2 8 .0	0.0	21.0	0.0	89	•	9	9	211		•	•		ł
Mestern Europe											4	c		
Austria	0.0	0.0	0.0	0.0	6	c .	0	• •			•	,		
bel gi vo	0.0	0.0	0.0	0.0	0 (•	-	-			• c			
Finland	0.0	0.0	0.0	0.0		•	•				• •	• •		
Icel and	3.0	0.0	2.0	0.0		> ¥	• <u>•</u>	s بآ	5	54	22	Ş	762	-0
Portugal	1 .0	0.1	2.0	1.0	5	2 0	5	ç -	5	ļ	0	0		
Suitzerland	0.0	0.0	0.0	0.0	> c	,	,	• c			ð	•		
ž	0.0	0.0	0.0	0.0	> ;	- y	-	> ¥	1	5	Ŕ	5	762	4
fotal	7.0	1.0	5.0	1.0	87	5	1	5		2	:	!		
Sour ces:														
1984 Minerals Yearbook	tar boot													
Mineral Facts & Problems 1985	Probless 198	ŕ												

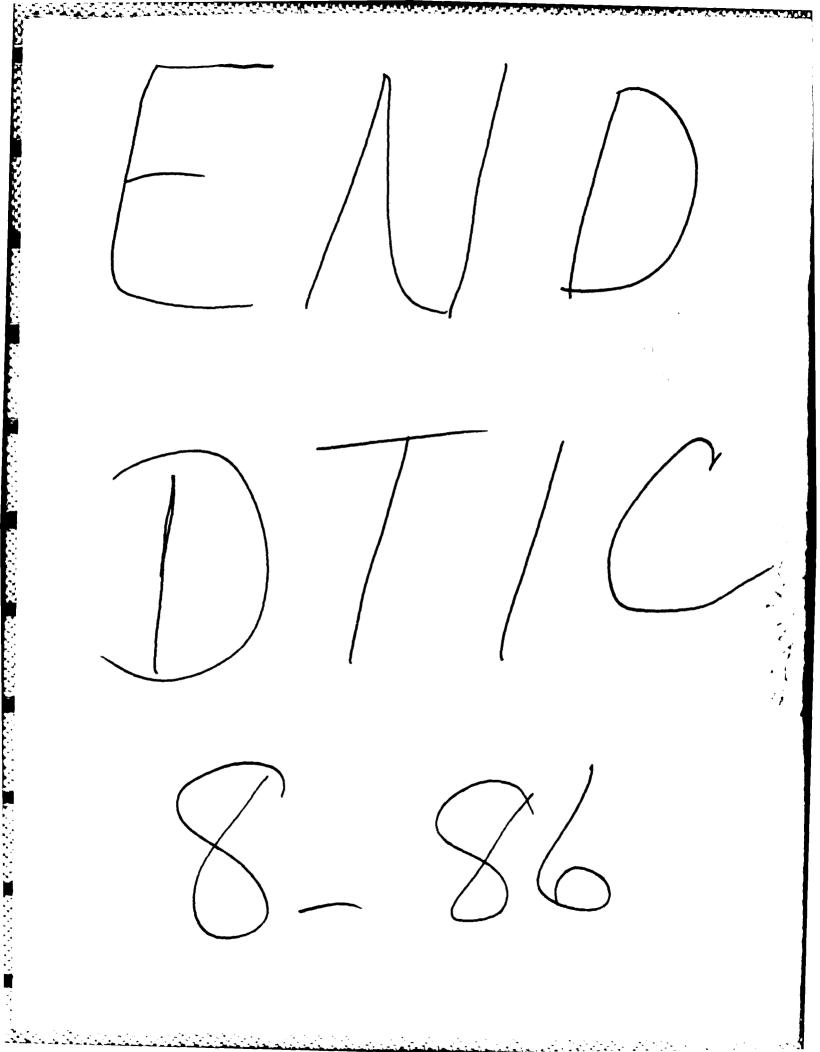
APPENDIX E

UNCLASSIFIED MOBILIZATION PLANNING SCENARIO

<u>Summary Scenario involving full mobilization with a worldwide conventional</u> <u>conflict of 3 years duration, after 60 days of rising tensions</u>:

Unrest in the Persian Gulf reduces oil supply for the Free World to the point of enactment of international energy sharing arrangements. After a short period of rising tensions, conflict ensues between a Persian Gulf nation and the Soviet Union. U.S. and Soviet forces become engaged in the conflict in the Persian Gulf area which escalates to a global conflict involving North Atlantic Treaty Organization (NATO)/Warsaw Pact and Korea/United Nations (UN) forces. The period of increased tensions causes the United States to take the following kinds of actions during the month preceding the decision to deploy forces: evacuation of U.S. Nationals from the Persian Gulf area directed, domestic energy conservation measures instituted, recall of 100,000 reservists ordered, Declaration of National Emergency to invoke authorities of International Emergency Economic Powers Act against selected nations made in consultation with Congress, Military Sealift Command/Military Airlift Command/Sealift Readiness Program/Ready Reserve Force, Civil Reserve Air Fleet (CRAF) alerted, foreign military and nonmilitary support to friendly nations increased, initial surge production of critical war reserve materiel items directed, fill of Department of Defense war reserve stocks implemented, and forces for U.S. Central Command (USCENTCOM) alerted for deployment.

Shortly before M-Day, the President amends and extends an earlier Declaration of National Emergency, after consulting with Congress about requirements of the National Emergencies Act, and on M-Day commits U.S. ground forces in the Persian Gulf conflict. Partial mobilization is declared, CRAF II is activated, and deployment of the USCENTCOM units to Southwest Asia with substantial ground and carrier-based air support is begun.


Soon thereafter, the President orders full mobilization, Selective Service System (SSS) induction at 100,000 per month begins, CRAF III is activated and the U.S. and Soviet forces are engaged in conventional air and naval combat in the Persian Gulf area. Warsaw Pact forces begin mobilizing against NATO and the U.S./NATO allies react with progressive buildup. Warsaw Pact forces attack with conventional weapons including chemical agents, and NATO resists. U.S./NATO allies declare war against the Soviet Union and prepare for a protracted conflict. North Korea attacks South Korea and U.S. and Soviet air and naval forces and their respective allies engage in combat in the Pacific because of Soviet efforts to interdict the Sea Lines of Communications (SLOCS). The intensity of the combat increases during the first two months. For the next ten months, moderate-to-light contact continues in Western Europe with moderate casualties and severe resource attrition. NATO Allies then mount a major offensive to regain lost territory and restore prewar boundaries. Later, a worldwide ceasefire is negotiated followed by a negotiated peace at the three-year mark following M-Day.

A CONTRACT OF A

Contraction of the second s

Post-war actions of the United States are aimed toward rebuilding the military strength with an induction rate of 50,000 per month. Additionally, the United States continues to support the rehabilitation of Western Europe. The President establishes National post-war economic objectives and requests legislation and appropriations from Congress. The United States meets its economic recovery goals during the three-year recovery period.

E 2

