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Abstract
Two classes of finite and infinite moving average sequences of bivariate

random vectors are considered., The first class has bivariate exponential mar-

ginals while the second class has bivariate geometric marginals. The theory of

positive dependence is used to show that in various cases the two classes consist

of associated random variables, Association is then applied to establish moment

inequalities and to obtain approximations to some joint probabilities of the

bivariate processes.
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l. Introduction and Summary

A primary stationary model in time series analysis is the pxl moving average

(MA) model given by:

(1.1) X(n) =Y

js-co

A())e(n-3), n=0,+1,+2,...,

where A(j), j =0,+1,+2,..., is a sequence ¢f pxp parameter matrices such that

E;=_w ”A(j)H <o, and S(n), n=0,+1,+2,..., is a sequence of uncorrelated pxl random
vectors with mean zero and common covariance matrix., It is well known that this
model emerges from many physically realizable systems (see, for example, Hannan
(1970), p. 9). However, in some physical situations where the random vectors X(n)
are either positive or discrete, the preceeding assumptions on the c¢(n) sequence are
inappropriate (see Lewis (1980), p. 152).

Several researchers, addressing themselves to this problem, have been con~-
structing univariate stationary MA models and univariate stationary autoregressive
moving average (ARMA) models where the random variables X(n) have exponential
or gamma distributions, and discrete models where X(n) assumes values in a common
set, Lawrance and Lewis (1977, 1980) present stationary MA models where the
random variables X(n) have exponential distributions; Gaver and Lewis (1980)
consider stationary ARMA type models where the random variables X(n) have gamma
distributions., Jacobs and Lewis (1978a,b, 1983) construct ARMA type models where
the random variables X(n) are discrete and assume values in a common finite set.
The aforementioned models have been used in the various fields of applied prob-
ability and time series analysis, for example, these models have been used to
model and analyze univariate point processes with correlated service and correlated
interarrival times (see Jacobs (1978)). Details concerning univariate

geometric MA processes and the corresponding point processes may be found in

Langherg and Stoffer (1985),

- c.
AT
D

.. e - Y
e e Ty e L RN .
O ) A I SN s
Pl SN 5 ST .
. -"‘QI-\ R

NN




Eladeo A iR S Sk Sad toichal Aol Enth Sl Dol Sl Sah el Sak Aol mad sl s 2 Sl “ e " Al e Sl * G “Aladiae" A Sk A8

AN At A R AL S AL She S0 U SR She A Ale Sa Sie Sie gie &' ) |

In this paper we present two classes of finite and infinite MA sequences
of bivariate random vectors. The first class has exponential marginals while
the second class has geometric marginals, Within each class of models, the se-
quences are classified according to their order of dependence on the past. For
the sake of clarity we restrict ourselves to bivariate MA sequences. However
these models can be extended in a straight forward way. We ase the theory of
positive dependence to show that in a variety of cases the two classes of MA
sequences are associated. We then apply the association to establish some moment
and probability inequalities,

In Section 2 we define the bivariate exponential and geometric distributions
which are the underlying distributions of our two classes, and present a variety
of examples of such distributions, Further in Section 2 we define the concept of
association and present a variety of bivariate exponential and geometric distribu-
tions that are associated. 1In Section 3 we construct the two classes of MA
sequences proving that they have exponential or geometric marginals and showing
that if the underlying distribution is associated, so is the related MA sequence.
Finally in Section 3 we present the autocovariance matrices
for both classes of sequences., In Section 4 we indicate how to relate bivariate
point processes to the bivariate exponential or geometric MA processes discussed
in Section 3. Also, in Section 4 we utilize positive dependence properties

to obtain some probability bounds and moment inequalities for the bivariate processes

2. Preliminaries

In this section we present definitions and prove some basic results to be
used in the sequel, First, we present a definition of a bivaraite geometric
distribution,

Definition 2.1. Let M,N be random variables assuming values in the set {1,2,...1}.
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We say that (M,N) has a bivariate geometric distribution if M and N have goemetric

distributions.

Examples 2.2. (a) Let N be geometric. Then (N,N) is bivariate geometric.

(b) Let M and N be independent geometric random variables, then (M,N) is bivariate

geometric. (c) Let N be independent geometric random variables, and put

1°N2N3
M= {min(Nl,N3)}, N = {min(Nz,N3)}. Then (M,N) has the Esary-Marshall (1974) bi-

variate geometric distribution, (d) Let P be in [7,1] such that

00°Fo1°F10°F11
(i) P +P _+P

4P = . i
00 "01 10 P11 1, (i1) P01+P11< 1 and P10+P11< 1, and let M, N be random var

iables assuming values in the set {1,2,,..} determined by:

b-a b> a,

a
PlalPort Pl b2

(2.3) P(M> a, N>b) =
a-b

b
PialPio* Pl

b<a, a,b=1,2,...

Then (M,N) has the Block (1977) fundamental bivariate geometric distribution
(see also Block and Paulson (1984)), (e) Let (MI’MZ) be bivariate geometric and

let (Nl(j),Nz(j)), j=1,2,..,, be an iid sequence of random vectors with bivariate

M M
geometric distributions which are independent of (Ml,Mz). Then (EjilNl(j),EjilNz(j))

has a bivariate geometric distribution,
In the following remark we show that Examples 2.2a, 2.2b, 2,2c, but not 2.2,
are particular cases of Example 2.2d,

Remarks 2.4. (a) Let P

0~ P . =0 in equation (2,3). Then we obtain the dis-

1 01

tribution introduced in Example 2.2a. (b) Let P11= (P11+P10)(P11+P01) in (2.3).

Then we obtain the bivariate geometric distribution introduced in Example 2.2b,

+ . . .
(c) Let Pllz_(P11+P10)(Pll POl) in (2.3) and let Nl’NZ’N3 be independent geometric

-1 -1 -1
100 ¢ PiiPrptPe) s By (PpytPy,

respectively, Put M = {min(Nl,Nz)} and N = {min(Nz,N3)}. Then (M,N) is stochas-

. . + +
random variables with parameters Pll(Pll P )(Pll P

01

tically equal to the Esary-Marshall bivariate geometric distribution given in

Example 2.2c.

),
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?}: Next, we present a definition of a bivariate exponential distribution,

N Definition 2.5 Let El’E2 be random variables assuming values in (0,~). We say
:ti that (EI’EZ) has a bivariate exponential distribution if El and EZ have exponential
o
o distributions.

X 3 Examples 2.6 (a) Let E be exponential. Then (E,E) is bivariate exponential.

‘i (b) Let E|»E, be independent exponentials. Then (El’Ez) has a bivariate ex-

o
. ponential distribution. (c) Let xl’XZ’X3 be independent exponentiails and put

A.‘

2\. El = {mln(Xl,X3)}, Ez = {mln(xz,x3)}. Then (El’EZ) has the Marshall-Olkin (1967)
ij bivariate exponential distribution. (d) Let (M,N) have a bivariate geometric
- distribution and let (El(j),Ez(j)), j=1,2,..., be an iid sequence of random
& vectors with bivariate exponential distributions, independent of M and N. Then
b M N
BN (Zj_lEl(j), Ej_lEz(j)) has a bivariate exponential distribution. (e) Let
- < N = =
ﬁE“ 0<a<l. Then (El’EZ) determined by P{El> X, E2> vy} = exp{-x-y-axy}, x,y> 0,

: has a Gumbel (1960) bivariate exponential distribution. (f) Let ]al:_l.

L Then (El’Ez) determined by P{Ellix, EZ:_Y} = (1-e %) (1-e7) 1+ ), x,y> 0,
;j: has a bivariate Gumbel (1960) exponential distribution. (g) Let a> 1. Then
- . —(x%+ a)l/a
C) (El’EZ) determined by P{El> X, E2> vyl=e y , X,y>0,is bivariate expo-
E:f nential. (h) Let (X,Y) be a random vector with continuous marginal distributions
;lf F and G, respectively. Then the random vector (-ln[l-F(X)], -1n{1-G(Y)]) is bi-
R
s variate exponential.

E{i Example 2.6(d) has been used by several researchers to generate bivariate
ixi distributions (for example Arnold (1975), Downton (1970), and Hawkes (1972)

?! to mention a few). 1In the following remarks we illustrate how some of the bi-

::if variate exponential distributions are obtained from Example 2.6(d).

::i: Remarks 2.7. (a) M = N and let El(j), Ez(j) be independent exponentials,
* _‘

!5 j=1,2,... . Then we obtain the distribution introduced by Downton (1970).

~

ﬁﬁ (b) Let (M,N) be as in Example 2.2(d) and let EI(J)’ E2(j) be independent exponen-
o

L

:E gials, j=1,2,.... Then we obtain the bivariate exponential distribution intro-

!! duced by Hawkes (1972) and Paulson (1973). (c) Let (M,N) be as in Example 2.2(c)
l- %‘

B
At el el R I R
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and let El(j) = Ez(j), j=1,2,..., Then we obtain the Marshall-Olkin (1967)
distribution given in Example 2.6(c) (for details see Marshall-Olkin (1967)).
Finally we present a concept of positive dependence.

Definition 2.8 Let T= (Tl""’Tn)’ n=1,2,..., be a multivariate random vector.

We say that the random variables T .,Tn are associated if for all pairs of

10
measurable bounded functions f,g: Rn*-R both nondecreasing in each argument
cov(f(T),g(T)) >0,

Remarks 2.9. (a) Note that independent random variables are associated and
that nondecreasing functions of assoclated random variables are associated (cf.
Barlow and Proschan (1975) pp. 30-31). Thus the components of the vector given
in Example 2.2(c) and the components of the vector given in Example 2.6(c) are
associated. (b) Let (El,EZ) be as in Example 2.6(e) with a> 0, or as in 2.6(f)
with -1<a<0. Since P{El> X, E2> y}< P{El> x}P{E2> y} for x,y> 0, E, and E,
are not associated. (c¢) Let (X,Y) be as in Example 2.6(h). Then -1n[l-F(X)]
and -1n[1-G(Y)] are associated if and only if X and Y are associated (cf. Barlow
and Proschan (1975), Proposition 3, p. 30).

The following lemma provides sufficient conditions for some of the bivariate
distributions presented in Examples 2.2 and 2.6 to be associated.

Lemma 2.10. Let ? = (Ql’QZ) be a random vector with components assuming values

in the set {1,2,...} and let R(j) = (Rl(j)’ Rz(j)), j=1,2,..., be an iid sequence

of nonnegative random vectors independent of Q, If Q1 and Q2 are associated, and

Q -
R, (1) and R, (1) are associated, then ) 1R (j) and Z,E R, (j) are associated.
1 2 j=11 j=172
Proof: Let f,g: R2+ R be measurable bounded functions nondecreasing in each J
-4 % |
=\ 3 = R,(j). i C
argument and let X ~j=lR1(J) and Y j=1 1(J) First note that

covif(X,Y),g(X,Y)} = E{cov(f(X,Y),g(X,Y)) Q}

+ cov{Ef(X,Y)|Q, Eg(X,Y) Q.

. P

= N . - - - » . . - - . - - . B LR - - . . . . - . - N " . .
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Now, Ef(X,Y)|Q and Eg(X,Y)|Q are nondecreasing functions of Ql and QZ' Since Ql

and Q2 are associated we have
cov{Ef(X,Y)|Q, Eg(X,Y)|Q}> 0.

Now, let Q = max(Ql'QZ). Since f(X,Y)|Q and g(X,Y)|Q are nondecreasing functions
of Rl(l)""’Rl(Q)’RZ(l)’""RZ(Q)’ these random variables are assocjiated

(cf. Barlow and Proschan (1975), Theorem 2.2). Thus
cov{f(X,Y)]Q, g(X,¥)|qQ}> 0.

Consequently, cov{f(X,Y),g(X,Y)}>0 and X and Y are associated. {J

Remarks 2.11 In particular, we conclude from Lemma 2.10 that: (a) The

components of the bivariate geometric distribution given in Example 2.2(e) are

associated provided that M, and MZ’ and Nl(l) and N2(1) are associated.

1
(b) The components of the bivariate exponential distribution given in Example

2.6(d) are associated provided that M and N, and El(l) and Ez(l) are associated.

3. Model Constructions

In this section we construct two classes of finite and infinite MA sequences
of bivariate random vectors. We denote the first class of sequences by
{¥(n,m) = (Xl(n,m),Xz(n,m)), n=0,+1,+2,...} m = 1,2,...,=, and the second class
of sequences by {9(n,m) = (Gl(n,m), Gz(n,m)), n=0,+1,+2,...} m = 1,2,...,=,
We show that each random vector X(m,m) has a bivariate exponential distribution
with a vector mean that does not depend on n or m and that each G(n,m) has a bi-
variate geometric distribution with a vector mean independent of n or m, Within
each class of sequences the order of dependence on the past is indicated by the

parameter m. For each p¢sitive integer m, X(n,m) and G(n,m) depends only on the

.- - - . L . . - e LT .t RERAE
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previous m variates {X(n-1,m),...,X(n-m,m)} and {G(n-l,m),...,Q(n-m,m)},
respectively, while X(n,») and G(n,~) depends on all the preceeding random vectors
{X(n,1,*),X(n-2,),...} and {6(n-1,=) ,6(n-2,~),...}, respectively. After con-
structing the various models we present sufficient conditions for the random

variables {Xg(n ,m)} and {Gz(n ,m}, £ =1,2; j =1,2,...,k to be associated,

3 3

where k = 1,2,..., and n <m, < ...<n € {0, #1,+#2,...}. We conclude this section

by computing the autocovariance matrices for the two classes of sequences.

First, we construct the exponential class of sequences. Some notation is
needed.
Notation 3.1. Throughout, n ranges over the integers and m,j over the positive
integers. Let F(n) = (El(n),Ez(n)) be iid bivariate exponential random vectors
with mean vector (A;l,lzl); Al,A2> 0. Let Bl(n,j) and Bz(n,j) be parameters tak-
ing values in [0,1] and let B(n,j) be a 2x2 diagonal matrix with B(n,j) =
diag{Bl(n,j), Bz(n,j)}. Further let (Il(n,j),Iz(n,j)) be independent bivariate

random vectors independent of all the E(n) such that Il(n,j) and I,(n,j) are

2
Bernoulli with parameters 1- Bl(n,j) and 1~ Bz(n,j), respectively. Let

]
Vq(n,j) be a 2x2 random diagonal matrix defined by Vq(n,j)= diag{ 10 Il(n,k), D1

qe {1,2,...,j}, and for ease of notation we put Vl(n,j)z V(n,j). Finally le

sum (product) over an empty set of indices be equal to zero (one).

We now present the class of exponential sequences. For m=1,2,..., and

n =0, +1,+2,..., let

(3.2) X(n,m) = " V(n,1)B(n,r+1)E(n-r) + V(n,m)E(n-m)
and )
(3.3) X(n,=) = zj=0V(n,r)B(n,r+l)?(ﬂ'r)-

We show in Corollary 3.8 and Lemma 3.9 that for all n,m, X(n,m) and x(n,“) have

APAS

AN ,

NN i i i i i i eometric class.

*j\ bivariate exponential distributions. Next, we construct the g

e

AN Some notation is needed.
St K R PRSI ) o

"/.' N '_,‘.‘_ K -','.1_-(, ‘e .. v_.../.'.'.—..._ . R Lo o ._‘-,- L R R .‘-“‘-:
I UG- W, YRR T, S P P WS TR, "Ry T Y B . P W . O W, U0 SV S I SN S oo PO PR Y S Y A U DR YRR YR SO TO0 VR DA o) W WAL Sy P Sy




i Sl Al S-S B fhadh et ae g 49 Ty o W W ey fey

Notation 3.4. Let Py» Py be real numbers in (0,1] and let al(n) and az(n) be a
sequence of parameters such that pj:_aj(n):_l, j = 1,2, Further, let N(n) =
(Nl(n),Nz(n)) be independent bivariate geometric vectors with mean vector

(le al(n), p;laz(n)) and let M(n) = (Ml(n), Mz(n)) be iid bivariate geoemtrics,in-

dependent of all N(n),with mean vector (le,pzl). Finally, let (Jl(n,j),Jz(n,j))

.
3
. be independent random vectors, independent of all M(n) and N(n)’such that Ji(n,j)
is Bernoulli with parameter (1- ai(n)), i=1,2, and let Uq(n,j) be a 2-2 random
3 h
diagonal matrix Uq(n,j) = diag{ Il Jl(n,k), ) Jz(n,k)L ge {1,2,...,j}. To ease

k=9 k=q
the notation we put Ul(n,j)E U(n,j).

We now present the class of geometric sequences. ¥or m=1,2,..., and

n =0, +1,42,..., let

oo Aol "Y"'T"T A
DN . . D N ]

ey
el

[
b

F} (3.5) G(n,m) = Z:=OU(n,r)N(n—r) + U(n,o+1)M(n-m)
) and
(3.6) G(n,®) = ] __ U(n,T)N(n-1).

Next, we show that X(n,m) and G(n,m) have bivariate exponential and geometric
distributions, respectively. The following lemma is needed.

Lemma 3.7 For n = 0,+1,+2,..., and m,q = 1,2,..., let

Y (n,m) = jf;évq(n,r+q-1)3(n,r+q)s(n—r-q+1) +V_(n,mHq-1)E(n-n-q+1)

. i ) )

=

Pt and

‘e H(n,m) = '" C (n,r+q-1)N(n-r-q+1) + U_(n,mrq)M(n-m-q+1) .

. -q “r=0"q - q -

-

:u‘ Then for all n,m, and q, Y (n,m) has a bivariate exponential distribution with
r - -1 - -

L‘ mean vector (11 ,121) and H (n,m) has a bivariate geometric distribution with mean
f: vector (le,pgl).
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Proof: We prove the result of the lemma by an induction argument on m.

For m= 1,
Yq(n,l)= B(n,q)E(n-q+l)+~Vq(n,q)E(n—q)
and for m=0,

Hq(n,0)= N(n~q+l)+~Uq(n,q)M(n—q+l)-

By computing the characteristic functions of the components of Y (n,1) and

Hq(n,O) one can verify that the results of the lemma hold for all n,q. Assume now

that the results of the lemma hold for m, and all n,q, Noting that

~m-1
?q(n,m+l)= B(n,q)?(n-q+l)+ Vq(n,q)[E?=0Vq+l(n,r+q)B(n,r+q+l)?(n—q-r)

+ vq+l(n,m+q)§(n-m—q)]
and

?q(n,m+l)= ?(n—q+l)4—Uq(n,q)[Z?=0Uq+l(n,r+q)§(n—q-r)

+U (n,m+q+1)M(n-m-q) |
q+l N

we see that, by induction, the terms in the brackets are bivariate exponential

with mean ()Il,xgl) and bivariate geometric with mean (pzl,p;l), respectively.

Since these terms are independent of E(n-g+l) and N(n-gq+1), respectively, it follows
as in the case m=1 and m= 0, respectively, that Yq(n,m+1) and ?q(n,m+1) have the
appropriate distributions for all n and q. [J

Note that X(n,m) and G{(n,m) given by (3.2) and (3.5), respectivelv, are

equal to Yl(n,m) and H, (n,m), respectively. Thus, we conclude from Lemma 3.7 that:

1

Aleamtia.s . atala aT aa® et aTat At ey o
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Corollary 3.8 For all n and m, X(n,m) has a bivariate exponential distribu-
tion with mean vector (AII,XEI), and G(n,m) has a bivariate geometric distribution
with mean vector (le,pgl).

Next, we show that G(n,=) given by (3.6) is bivariate geometric, and if for

all nand i = 1,2

m
(3.9) lim 1 [1-8,(n,j)] =0
m j=1 1

then X(n,~) given by (3.3), is bivariate exponential.

Lemma 3.10. (a) For all n, G(n,») has a bivariate geometric distribution
with mean vector (le,pgl). (b) If condition (3.9) holds, then for all n,
X(n,=) has a bivariate exponential distribution with mean vector (lzl,kzl).
Proof: Let mbe a positive integer. Since lim [1-a_(n)]m:_1im (l—p.)m= 0,
i gard J m>e J
j=1,2, 6(n,m) P, G(n,») as m+ =, By (3.9), X(n,m) P, X(n,»®) as m+ . Thus

D

in particular G(n,m) D > G(n,~) and X(n,m) > X(n,»®) as m and the results of
the lemma follow from Corollary 3.8, [

Note that for (3.9) to hold, it suffices that for all n and i=1,2,
inf{ei(n,j), j=1,2,...}>0, Next, we investigate some of the dependency aspects

of both classes.

g Remarks 3.11. (a) For fixed m, the sequences {X(n,m), n=0,+1,+2,...} and
E;;: {F(n,m), n= O,ii,iZ,...} are m-dependent (that is, if n1 and n, are integers such
E;;E that ]nl—n2|> m, then ?(nl,m) and ?(nz,m) are independent as are §(nl,m) and

;;; g(nz,m)). (b) Clearly if we choose m to be a function, say ¥, of n with

:;i~ v(n)e f1,2,...} for all n, then the dependency of X(n,y(n)) and G(n,¢(n)) on the
L . - -

;f past varies with n. (c) It is easy to see that for all n, X(n,») and G(n,») de-
k.l pends on all preceeding random vectors {X(q,=), -~< g<n} and {G(q,*), -=< q<n},

respectively,
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We now investigate a positive dependence aspect of both classes.
Lemma 3.12. Suppose that El(l) and Ez(l) are associated. Then for all

positive integers m,k and all integers n n,<...<n

l< 2 the random variables

K’
{Xi(nj,m), i=1,2; j=1,...,k} are associated.

Proof: By Barlow and Proschan (1975, Theorem 2.2, p. 31 and Proposition 4,
p. 30) the random variables Ei(nJ), Ii(nj,q), i=1,2; 3=1,...,k, and 9=1,...,m
are associated. Since the Xi(nj,m), i=1,2; §j=1,...,k are nondecreasing functions
of the previous collection of associated random variables the result of the lemma
follows by Barlow and Proschan (1975, Proposition 3, p. 30). [

In a similar way one can prove the following lemma.

Lemma 3,13. Suppose that Ml(l) and Mz(l) are associated and that for all n,
Nl(n) and Nz(n) are associated., Then for all positive integers m,k and all
integers n

1

associated.

Tn, < ... <, the random variables {Gi(nj,m), i=1,2; j=1,...,k} are

Now, we prove similar results for the infinite dependence sequences
{X(n,®), n=0,+1,+2,...} and {G(n,®), n=0,+1,+2,...}.

Lemma 3.14.(a)Suppose that Ml(l) and MZ(l) are associated, and that for
all n, Nl(n) and Nz(n) are associated. Then for all positive integers k and all

integers n, <n,< ,,.< o the random variables {Gi(n ,°), i=1,2; 3=1,...,k} are

172 3

associated. (b)) If El(l) and Ez(l) are associated and condition (3.9) holds

then for all positive integers k and all integers n,<n_< ...<n the random

1 2 k’

variables {Xi(nj,“), i=1,2 and j=1,...,k} are associated.

Proof: By similar arguments to the ones given in the proof of Lemma 3.10
we conclude that the two sequences {Gl(nl’m)’G2(n1’m)""'Gl(nk’m)’GZ(nk’m)} and
1X1(nl,m),x (nl,m),...,Xl(nk,m),Xz(nk,m)} converge in distribution as m— = to
{ « o © ) ) o @ o 9 o«
1Gl(nl, )’GZ(nl’ )’°"’cl(nk’ ).Gz(nk, )} and {Xl(nl' ),Xz(nl, ),..,,Xl(nk. ), X (nk, )

respectively. By Lemma 3.12 the random variables {Xi(n ,m), i=1,2; j=1,...,k} are

3
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associated for all m and by Lemma 3.13 the {Ci(n ,m), 1=1,2; 3=1,...,k} are

]
associated for all m., Consequently, the results of the lemma follow by Esary,
Proschan and Walkup (1967, Proposition 4). 0

Next, we compute the autocovariance matrices for both classes of sequences.

Some notation 1s needed.

“E’ "M

Notation 3.15. Let = , and EN(n) be the covariance matrices of F(l), v(l),
and ?(n), respectively, For h=0,1,2,..., let F:(n,h) = cov(?(n,m),?(n+h,m)) and
Fg(n,h) = cov(G{(n,m), G(n+h,m)), n = 0,+1,+2,..., and m = 1,2,...,=. Further,
let A(n,j) be a 2x2 diagonal matrix, A(n,j) = diag{ll—al(n)]j, [l—uz(n)]j}, 1 be
the 2+2 identity matrix, and x the indicator function.

By some simple calculations we obtain for n=0,+1,+42,...; m=1,2,...,=, and

h=1,2,... (but not zero),

m emeh-l r . _ r+h
(3.16) xx(n,h)—-Lr= B(n,r+1){ N [I-B(n,j)1} :E{ I [I-B(n+h,j)]}B(n+h,r+h-1)
3=1 3=1
m-h m
+ B(n,m-h+1){ 1 [I-B(n,q)]} EE{ M [I-B(n+h,3)]}.
j=1 j=1

We may obtain the off-diagonal elements of Ti(n,O) from (3.16) by setting B(n,m+l) =1
and h = 0. The diagonal elements of Fi(n,O) are the variances of Xl(n,m) and
Xz(n,m), namely, XIz and A;z, respectively. In a similar way we obtain for

n=20, +1,+2,..., m=1,2,...,, and h = 1,2,... (but not zero),

m-h
(3.17) Fg(n,h) = Zr=OA(n,r) EN(n—r)A(n+h,r+h)

+x (o) (A, D+ E AN, D)

We may obtain the off-diagonal elements of Tg(n,O) from (3.17) by setting h=20;
)
the diagonal elements are the variances of Gl(n,m) and Gz(n,m), namely, (1-p1)p1“

and (l-pz)pzz, respectively.




Inequalities

Throughout this section we fix m, m= 1,2,...;w, and hence suppress it from
cur notation, that is, X(n,m) and G(n,m) are represented by X(n) and G{n), re-
spectively.

In the point process theory of the models, the behavior of the vector

T,
= S =Y1 i =
of sums ?X(f) (le(rl), sz(rz)) where Xi(ri) ~n=lxi(n)’ i=1,2 and
Y.
= = 7 i .
?G(f) (Tcl(rl), TG2(r2)) where TGi(ri) Ln=lci(n)’ are of interest, r

For example, if X(n) is a vector of bivariate exponential interarrival times of a

= el
,r2—1,-,..

1

point process MX(t) = (MX (tl),Mx (tz)) which are the number of arrivals by times
R 1 2

tl,t2> 0, then

PiMy (t)<r, M (£))<r,} = P{s, (r))>¢t,, Sx
1 2

(r,))>t,}.
1 2 2, 2

Similarly, if G(n) is a vector of bivariate geometric waiting times of a count

process ?G(f) = (hcl(rl).NGZ
1,2,..., then NGi(ri) = TGi(ri)’ i=1,2.
We now utilize positive dependence properties to obtain probability bounds for

(rz)) which are the number of occurrences by trials

T,,r,=

1772

the sums S_.(r) and T

% (r) and moment inequalities for the processes X{(n) and G(n).

G

First, we define two concepts of positive dependence.

Definition 4.1 Let q = 2,3,..., and let X = (Xl,...,Xq) be a random vector. We sav

that X is positively upper orthant dependent (PUOD) [positively lower orthant

dependent (PLOD)] if for all real numbers tl,...,tq
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] ) q }
P{X,>t,, ngv"-’qzl nP':X,>l
N 3 j=1 J J
{ 1 } X {x <t.)
[P Xj:_tj, j=1,...,q Z_jzlp Xj__tj ].

Remarks 4.2. (a) In the bivariate case (q=2) X is PUOD iff X is PLOD.
(b) For q> 2 the two concepts of positive dependence are not equivalent. (c) If

X .,X‘l are associated then clearly X is PUOD and PLOD. (d) Let f.,....f

1 q:

(-=,»)~ [0,») be measurable nondecreasing (nonincreasing) functions and let X be

1’

PUOD (PLOD). Then
(4.3) E I f (X)> T Ef.(Xj)

(see Lehman (1966)). For the sake of completeness we present the following
definition.

Definition 4.4 Let X,Y be random variables. We say that X is stochastically less

than or equal to Y, and write X E_Y is for every real number, t,P(X>t) < P(Y>t).

Remark 4.5. Let f: (~»,»)+ [0,») be a measurable nondecreasing function and
let X g_ Y. Then Ef(X) < Ef(Y) (see Lehmann (1966)). s

Next, we discuss the inheritance of positive dependence properties.

Lemma 4.6. Suppose that for q = 1,2,..,, the random variables {Xi(n), i=1,2;
n=1,2,...,q} are associated and the random variables {Gi(n), i=1,2; n=1,...,q}
are associated. Then for r,,r

=1,2,..., and t1hty> 0 we have that (i){Sx (ri),i=l,2

1°°2 2 i
are associated, (ii) {TG (ri), i=1,2} or equivalently {NG (ri), i=1,2) are asso-
i i
ciated and (iii) {MX (ti), i=1,2} are PUOD and PLOD.
i
Proof: Parts (i) and (ii) follow from the facts that SX (ri) and TG (ri),
i i

i= 1,2, are nondecreasing functions of associated random variables (cf. Remark 2.9z).

. P =,I . = { - PR o) . ‘x.
To show (iii), let fi ~Sxi(ri) ti} and 8, X‘SXi(ri)—-ti}' i=1,2 where .\ is

the indicator function, By Barlow and Proschan (1975, Propositicn 3,p. 3™, fi

and g i = 1,2 are associated since SX (ri), i=1,2, are associated. Hence by (4.3),
i
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2 2 2
P{Mx,(ti)> T i=1,2} = E T fiz_.ﬂ Efi = ] P{Mx (ti)> ri}
i i=1 i=1 i=
and
2 2 2
P\M.xi(ti)iri, =1,2} = E izlgiiizlagi = 1=1 {r& (t)<r ) 5

For the stationary models, we may obtain bounds for sums S_(r) and TG(g)

using gamma and negative binomial distributions, respectively, First, we concen-

trate on Sx(r).

Lemma 4.7. Assume that Bl(n,l) and Bz(n,l) are equal to 81 and 52, respectively,
for all n. Let Yi(ri,ei), i=1,2, be gamma random variables with parameters (ri,%i)'

Then S, (r.) 2 Y.(r.,k.Bfl), i=1,2. If in addition, the random variables
Xi i - i1 ii
{Xi(n), i=1,2; n=1,...,q}, q=1,2,..., are associated, then for X1aX, > 0,

-1 -1
(4.8) P{s 1(r 102 %,8 2(r )2 %, > PAY, (rp,008,7) 2 %y IPLY,(r,,2,8,7) 2 %, ).

Proof: From equation (3.2) and (3.3) we see that Xi(n):_BiEi(n), i=1,2,

Hence

T
P{sxi(‘i)ixi} = p{ 2 1 RCIER
r

>p{Y ek (n)>x}

tn=1

= P{Yi(ri,kisi )Z_xi), i=1,2,

l and the first assertion is proved., Equation (4.B) now follows from the first
LA

kfff assertion and the fact that since SX (rl) and Sx (rz) are associated (Lemma 4.6)
ASAD

A 1 2

L

:Q}} they are also PUOD. O

}‘"-.... N . . .

e In a similar manner we obtain the following lemma for the sums TG(r).

N o

oWy Lemma 4.9, Assume that 2. (n) and a,(n) are equal to a, and u,, respectively,
\?q —_ 1 2 1 2

*:f for all n. Let NBi(ri’ “i% i= 1,2, be negative binomial random variables with
Y

4
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|iﬂ_ s -1
- parameters (ri,Fi). Then TG (ri) > NBi(ri,piai ), i=1,2. If in addition, the
7 . i
‘,f. random variables {Gi(n), i=1,2; n=1,...,q}, q=1,2,..., are associated, then
qii: for a2’ and a,2T,,
) . -1 -1
- (4.10) P{Tcl(rl);_al,Tcz(rz)3_a2}z_P{NBl(rl,plal )2_al}P{NBZ(r2,p202 )2 a,lt.
'-:::.
I.“\'
\}: Proof: From equation (3.5) or (3.6) we have that Gi(n)i_Ni(n), i=1,2;
?‘ n=1,2,.... Hence
}i' r,
{ =
o PlTg, (r3) 2 2! P o1 Gy (M) 2 )
| “ ri
!_ Z_P{Enlei(n)z_ai}
;? = P{NB,(r_,p a—1)> a .}, i=1,2
.- i i? i1 %y’ s <y
{ and the first assertion is proved. Equation (4.10) now follows from the associa-

tion of TG (rl) and TG (r,). 0

1 2 2
Finally, we address ourselves to some moment inequalities.

Lemma 4.11. Let us assume that the random variables {Xi(n), i=1,2; n=1,...,h},

v - i
s 1%
PRI g, *. G L
, . et
y o W
AT PPN TN

tf; h=1,2,..., are associated. Let kl,...,kq be positive integers and let il,iz,...,iq =
'.;'::.‘_ 1,% g=1,2,.... Then

.3 q k, q -k

E n(x, (D)3 > ok, 1 ).

R R | - . JTe,

j=1 73 j=1 3

o Proof: The result follows by Corollary 3.8 and the association of the random

'Y

:{: vairables {Xi (), j=1,...,q}. O

._:.._ j

i:_ﬂ Lemma 4.12. Let us assume that the random variables {Gi(n), i=1,2; n=1,...,h},
::_;. =

h=1,2,..., are associated. Let kl,...,kq be positive integers and let &

P X

1,12,...,iq

1,23 9=1,2,00.. Then

TR
) lI ..l .

LSO

Y

.y

O
\'.'.‘*’
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q k q k.
E N6, (PII > 1 Efe, (1),
=1 7 i=1 ]
Note that G2 (1), is, by Corollary 3.8, a geometric random variable with mean
-1 . j
Py 3= l,...,q9.
J
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