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Abstract

Two classes of finite and infinite moving average sequences of bivariate

random vectors are considered. The first class has bivariate exponential mar-

ginals while the second class has bivariate geometric marginals. The theory of

positive dependence is used to show that in various cases the two classes consist

of associated random variables. Association is then applied to establish moment

inequalities and to obtain approximations to some joint probabilities of the

bivariate processes.

' ' t . i.
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- Key Words: bivariate exponential and geometric distributions, association,
* - bivariate moving averages and bivariate point processes.
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1. Introduction and Summary

.* A primary stationary model in time series analysis is the pxl moving average

- (MA) model given by:

(1.1) X(n) A(J)c(n-J), nO0,+l,+2,...,

where A(j), j m0,+l,+2,..., is a sequence cf pxp parameter matrices such that

S_-i IA(i)I < , and E(n), n=0,+l,+2,..., is a sequence of uncorrelated pxl random

vectors with mean zero and common covariance matrix. It is well known that this

model emerges from many physically realizable systems (see, for example, Hannan

(1970), p. 9). However, in some physical situations where the random vectors X(n)

are either positive or discrete, the preceeding assumptions on the E(n) sequence are

inappropriate (see Lewis (1980), p. 152).

-Several researchers, addressing themselves to this problem, have been con-

'-]- structing univariate stationary MA models and univariate stationary autoregressive

* moving average (ARMA) models where the random variables X(n) have exponential

or gamma distributions, and discrete models where X(n) assumes values in a common

set. Lawrance and Lewis (1977, 1980) present stationary MA models where the

random variables X(n) have exponential distributions; Gaver and Lewis (1980)

consider stationary ARMA type models where the random variables X(n) have gamma

distributions. Jacobs and Lewis (1978a,b, 1983) construct ARMA type models where

. the random variables X(n) are discrete and assume values in a common finite set.

The aforementioned models have been used in the various fields of applied prob-

ability and time series analysis, for example, these models have been used to

* .model and analyze univariate point processes with correlated service and correlated

interarrival times (see Jacobs (1978)). Details concerning univariate

* * jjgeometric MA processes and the corresponding point processes may be found in

- Langlerg and Stoffer (1985).

7o" .7o

o- ..,- °*



2

In this paper we present two classes of finite and infinite MA sequences

of bivariate random vectors. The first class has exponential marginals while

the second class has geometric marginals. Within each class of models, the se-

quences are classified according to their order of dependence on the past. For

the sake of clarity we restrict ourselves to bivariate MA sequences. However

these models can be extended in a straight forward way. We *ise the theory of

positive dependence to show that in a variety of cases the two classes of MA

sequences are associated. We then apply the association to establish some moment

"- - and probability inequalities.

In Section 2 we define the bivariate exponential and geometric distributions

• which are the underlying distributions of our two classes, and present a variety

of examples of such distributions. Further in Section 2 we define the concept of

.association and present a variety of bivariate exponential and geometric distribu-

tions that are associated. In Section 3 we construct the two classes of MA

sequences proving that they have exponential or geometric marginals and showing

that if the underlying distribution is associated, so is the related MA sequence.

Finally in Section 3 we present the autocovariance matrices

for both classes of sequences. In Section 4 we indicate how to relate bivariate

point processes to the bivariate exponential or geometric MA processes discussed

in Section 3. Also, in Section 4 we utilize positive dependence properties

to obtain some probability bounds and moment inequalities for the bivariate processes

2. Preliminaries

In this section we present definitions and prove some basic results to be

used in the sequel. First, we present a definition of a bivaraite geometric

distribution.

Definition 2.1. Let M,N be random variables assuming values in the set fl,2 ....

l:I: a o
* . *. . *
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We say that (MN) has a bivariate geometric distribution if M and N have goemetric

distributions.

Examples 2.2. (a) Let N be geometric. Then (N,N) is bivariate geometric.

(b) Let M and N be independent geometric random variables, then (M,N) is bivariate

geometric. (c) Let N1 ,N2,N3 be independent geometric random variables, and put

M = {min(N 1 ,N3 )}, N = {min(N2 ,N3 )}. Then (M,N) has the Esary-Marshall (1974) bi-

variate geometric distribution. (d) Let PooPo1,Plo,Pll be in [0,1] such that

(i) P00+P01+P10+P l= 1, (ii) Po1+PI< 1 and P1 0+P1 1 < 1, and let M, N be random var-

iables assuming values in the set {l,2,,..} determined by:

a lb-a

P 11[P 1 +P il ,b> a,

(2.3) P(M> a, N> b) Sb ]a-b,L 11[P +o+Pill , b< a, a,b= 1,2,....

Then (MN) has the Block (1977) fundamental bivariate geometric distribution

(see also Block and Paulson (1984)). (e) Let (MI,M2 ) be bivariate geometric and

let (NI(J),N 2 (j)), j= 1,2,..., be an iid sequence of random vectors with bivariate
•~ .2M 1 M

geometric distributions which are independent of (MIM 2). Then (7.INI(J) ,M=_ N2())

has a bivariate geometric distribution.

In the following remark we show that Examples 2.2a, 2.2b, 2.2c, but not 2.2e,

are particular cases of Example 2.2d.

Remarks 2.4. (a) Let P = P01= 0 in equation (2.3). Then we obtain the dis-

tribution introduced in Example 2.2a. (b) Let PI= (P +P )(P +P ) in (2.3).
11 11 10 11 01

Then we obtain the bivariate geometric distribution introduced in Example 2.2b.

(c) Let PI>I(PII+PI0 )(PII+PoI) in (2.3) and let N192N3 be independent geometric
11' -i -1 0  11 01

random variables with parameters PII(P o +PP 01) -I , P +1 (PP ( +P0)

respectively, Put M = {min(Ni,N3)) and N = {min(N 2 ,N3 )}. Then (M,N) is stochas-

tically equal to the Esary-Marshall bivariate geometric distribution given in

Example 2.2c.
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A"'. Next, we present a definition of a bivariate exponential distribution.

Definition 2.5 Let E1 E2 be random variables assuming values in (0,-). We say

that (EVE ) has a bivariate exponential distribution if E and E have exponential
12 1 2

distributions.

Examples 2.6 (a) Let E be exponential. Then (E,E) is bivariate exponential.

(b) Let E,E 2 be independent exponentials. Then (E,E 2) has a bivariate ex-

ponential distribution. (c) Let XI,X X be independent exponentials and put
1'2' 3

E 1 -min(XlX3)), E2 = {min(X2,X3)}. Then (E,E 2) has the Marshall-Olkin (1967)

bivariate exponential distribution. (d) Let (M,N) have a bivariate geometric

distribution and let (E (J),E 2 (j)), j= 1,2,..., be an iid sequence of random

4r" vectors with bivariate exponential distributions, independent of M and N. Then

M- " E (j)) has a bivariate exponential distribution. (e) Let
(' E (j), 7=

O< a< 1. Then (E1,E2) determined by P{E > x, E2 > y} = exp{-x-y-axy}, x,y> 0,

has a Gumbel (1960) bivariate exponential distribution. (f) Let jal __.

Then (E1,E2) determined by P{E 1 <, E2 <y} (1-eX)(l-eY)(l+cexY), x,y> 0,

has a bivariate Gumbel (1960) exponential distribution. (g) Let a> 1. Then
1 x~ /a

(E1 ,E2) determined by P{EI> x, E2 > y) = e , x,y> O,is bivariate expo-

nential. (h) Let (X,Y) be a random vector with continuous marginal distributions

F and G, respectively. Then the random vector (-ln[l-F(X)], -ln[l-G(Y)]) is bi-

variate exponential.

Example 2.6(d) has been used by several researchers to generate bivariate

distributions (for example Arnold (1975), Downton (1970), and Hawkes (1972)

to mention a few). In the following remarks we illustrate how some of the bi-

variate exponential distributions are obtained from Example 2.6(d).

Remarks 2.7. (a) M = N and let El(J), E2(j) be independent exponentials,

J= 1,2,.... Then we obtain the distribution introduced bv Downton (1970).

(b) Let (M,N) be as in Example 2.2(d) and let E(J), E2 (j) be independent exponen-

tials, j= 1,2, .... Then we obtain the bivariate exponential distribution intro-

duced by Hawkes (1972) and Paulson (1973). (c) Let (M,N) be as in Example 2.2(c)

'zq-p

*~ A
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and let E (J) = E2(J), j= 1,2,..., Then we obtain the Marshall-Olkin (1967)

distribution given in Example 2.6(c) (for details see Marshall-Olkin (1967)).

r--. Finally we present a concept of positive dependence.

- Definition 2.8 Let T= (TI,...,T), n= 1,2,..., be a multivariate random vector.

We say that the random variables T1 ,...,T n are associated if for all pairs of

measurable bounded functions fg: Rn - R both nondecreasing in each argument

cov(f(T),g(T))> 0.

Remarks 2.9. (a) Note that independent random variables are associated and

that nondecreasing functions of associated random variables are associated (cf.

Barlow and Proschan (1975) pp. 30-31). Thus the components of the 'ector given

in Example 2.2(c) and the components of the v ector given in Example 2.6(c) are

associated. (b) Let (E,E 2 ) be as in Example 2.6(e) with a> 0, or as in 2.6(f)

with -l<a < 0. Since P{EI> x , E2> y}< P{EI> x}P{E2> y} for x,y> 0, E and E
1 2 1 2 1 2

are not associated. (c) Let (XY) be as in Example 2.6(h). Then -ln[l-F(X)]

and -ln[l-G(Y)] are associated if and only if X and Y are associated (cf. Barlow

and Proschan (1975), Proposition 3, p. 30).

The following lemma provides sufficient conditions for some of the bivariate

distributions presented in Examples 2.2 and 2.6 to be associated.

Lemma 2.10. Let Q = (Q.,Q2 ) be a random vector with components assuming values

in the set {1,2, ... } and let R(J) - (RI(J), R2 (j)), j= 1,2,..., be an iid sequence

of nonnegative random vectors independent of Q. If Q1 and Q2 are associated, and
" "Q1 Q2

R (1) and R2 (1) are associated, then _j1IRI() and 2=R2() are associated.

Proof: Let f,g: R2 - R be measurable bounded functions nondecreasing in each

SQl Q2
argument and let X = IR (j) and Y = Qj=IRI(J). First note that

cov{f(XY),g(X,Y)} = E{cov(f(X,Y),g(X,Y)< Q}

+ cov{Ef(X,Y)jQ, Eg(X,Y)'Q.

..

? i i ; ) .. . . .! . . . . . . ..
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Now, Ef(X,Y)IQ and Eg(X,Y)IQ are nondecreasing functions of Q and Q2 ' Since Q
21

and Q2 are associated we have

cov{Ef(X,Y)IQ, Eg(X,Y)IQ}> 0.

Now, let Q - max(Q,Q 2). Since f(X,Y)IQ and g(X,Y)IQ are nondecreasing functions

of R (1),...,R (Q),R2(1),...,R2(Q), these random variables are associated1 2 2

(cf. Barlow and Proschan (1975), Theorem 2.2). Thus

cov{f(X,Y)IQ, g(X,Y)IQ}> 0.

Consequently, cov{f(X,Y),g(X,Y)}> 0 and X and Y are associated. ]

Remarks 2.11 In particular, we conclude from Lemma 2.10 that: (a) The

components of the bivariate geometric distribution given in Example 2.2(e) are

associated provided that M1 and M2, and N (1) and N2(1) are associated.

(b) The components of the bivariate exponential distribution given in Example

2.6(d) are associated provided that M and N, and E(l1) and E2 (1) are associated.

3. Model Constructions

In this section we construct two classes of finite and infinite MA sequences

of bivariate random vectors. We denote the first class of sequences by

{X(n,m) (X (n,m),X 2 (n,m)), n= 0,+l,+2,...} m = 1,2,.... , and the second class

of sequences by {G(n,m) = (G (n,m), G2(n,m)) , n = 0,++2 m = 1,2....
1 2_

We show that each random vector X(n,m) has a bivariate exponential distribution

with a vector mean that does not depend on n or m and that each G(n,m) has a bi-

. variate geometric distribution with a vector mean independent of n or m. Within

each class of sequences the order of dependence on the past is indicated by the

parameter m. For each positive integer m, X(n,m) and G(n,m) depends only on the

• .
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previous m variates {X(n-l,m),...,X(n-m,m)} and {G(n-l,m),...,G(n-m,m)},

respectively, while X(n,-) and G(n,-) depends on all the preceeding random vectors

{X(nl,-),X(n-2,-),...} and {G(n-l,w),G(n-2,-),...}, respectively. After con-

structing the various models we present sufficient conditions for the random

variables {X (n ,m)} and {G (n ,m)}, t - 1,2; j = 1,2,...,k to be associated,

where k = 1,2,..., and nl< n2< ... < nk {O, +1,+2,...}. We conclude this section

by comuting the autocovariance matrices for the two classes of sequences.

First, we construct the exponential class of sequences. Some notation is

needed.

Notation 3.1. Throughout, n ranges over the integers and m,j over the positive

integers. Let E(n) = (E1(n),E 2 (n)) be iid bivariate exponential random vectors
-1 -2

with mean vector (X1 , 2 ); Xl >0. Let 8l(n,j) and B2 (n,j) be parameters tak-
1 2 1921

ing values in [0,1] and let B(n,j) be a 2x2 diagonal matrix with B(n,j) =

diag{S (n,j), 82(n,j)}. Further let (Il(n,j),1 2 (n,j)) be independent bivariate

random vectors independent of all the E(n) such that II(n,j) and 12(n,j) are

Bernoulli with parameters I- B (n,j) and 1- 62 (n,j), respectively. Let

V (n,j) be a 2-2 random diagonal matrix defined by V (n,j)= diag{ fl I (n,k), 12 (n,k)qq 12q.k=q k=q
qE {1,2, ...,j}, and for ease of notation we put V1 (nj) V(n,j). Finally let a

- sum (product) over an empty set of indices be equal to zero (one).

We now present the class of exponential sequences. For m= 1,2,..., and

n =0, +1,+2,.. ., let

(3,2) X(n,m) = Vmv(n,r)B(n,r+])E(n-r) + V(n,m)E(n-m)

and

(3.3) X(n,-) = Ir=0V(n,r)B(nr+l)E(n
-r) "

We show in Corollary 3.8 and Lemma 3.9 that for all n,m, X(n,m) and X(n,,) have

% .? bivariate exponential distributions. Next, we construct the geometric class

Some notation is needed.
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Notation 3.4. Let pI, P2 be real numbers in (0,1] and let al(n) and a2(n) be a

sequence of parameters such that p.< a.(n)< 1, j = 1,2. Further, let N(n) =
(I gw

()N (n)) be independent bivariate geometric vectors with mean vector

(p i al(n), p2 C 2 (n)) and let M(n) = (M1 (n), M2 (n)) be iid bivariate geoemtrics, in-

dependent of all N(n),with mean vector (p 1 p2
1 ). Finally, let (J (n,j),J 2 (n,j))

be independent random vectors, independent of all M(n) and N(n), such that J.(n,j)

is Bernoulli with parameter (1- cz.(n)), i= 1,2, and let U (n,j) be a 2-2 random
.i '

diagonal matrix U (n,j) = diag{ E J1 (n,k), E J2 (n,k)}, qE {l,2,. ..,j). To ease
q k=q k=q

the notation we put U1 (n,j) --U(n,j)

We now present the class of geometric sequences. :or m 1,2,... .. and

n = 0, +1,+2,... , let

(3.5) G(n,m) = Um0 u(n,r)N(n-r) + U(n,m+l)M(n-m)

and

(3.6) G(n,-) - r0 U(n,r)N(n-r).

Next, we show that X(n,m) and G(n,m) have bivariate exponential and geometric

distributions, respectively. The following lemma is needed.

Lemma 3.7 For n = 0,+l,+2,..., and m,q = 1,2,..., let

Y (nm) m-1V (nr+q-l)B(n,r+q)E(n-r-q+l)+V (n,m+q-l)E(n-m.-q+l)
qr0q q

and

H (n,m) = U (nr+q-)N(n-r-q+l) + U (n,m-q)M(n-m-q+l)
qq -

• Then for all n,m, and q, Y (n,m) has a bivariate exponential distribution with
-q

-1 -1
|mean vector ( '2 ) and H (n,m) has a bivariate geometric distribution with mean

1- -1

vector (p P )

-
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Proof: We prove the result of the lemma by an induction argument on m.

Ui For m= 1,

Y (n,l) = B(n,q)E(n-q+l) + V (n,q)E(n-q)
-q q

and for m= 0,

H (n,O) = N(n-q+l + U (n,q)M(n-q+l).
-q q

S.By computing the characteristic functions of the components of Y (n,l) and
-q

* H (n,O) one can verify that the results of the lemma hold for all n,q. Assume now
-q

• -- that the results of the lemma hold for m, and all n,q, Noting that

Y (n,m+l)= B(n,q)E(n-q+l)+ V (n,q)[\ iV,(nr+q)B(nr+q+l)E(n-q-r)
'q q ar=Oq+l

+ V q+l(n,m+q)E(n-m-q)I

and

H (n,m+l)= N(n-q+l)+ U (n,q)[ m= U (n,r+q)N(n-q-r)

-q q r0 q+l

+ U (nm+q+l)M(n-m-q)]
q+l

we see that, by induction, the terms in the brackets are bivariate exponential

with mean 01l 2) and bivariate geometric with mean (p -ll'wth2ean( ,p2  , respectively.

Since these terms are independent of E(n-q+l) and N(n-q+l), respectively, it follows

as in the case m= 1 and m= 0, respectively, that Y (n,m+l) and H (n,m+l) have the
q -q

appropriate distributions for all n and q. Li

Note that X(n,m) and G(n,m) given by (3.2) and (3.5), respectively, are

equal to Y (n,m) and H (n,m), respectivelY. Thus, we conclude from Lemma 3.7 that:

!.-.-
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Corollary 3.8 For all n and mn, X(n,m) has a bivariate exponential distribu-

tion with mean vector (Xi PX2 ) and G(n,m) has a bivariate geometric distribution
-l -2

with mean vector (p1 ,p2

Next, we show that G(n,-) given by (3.6) is bivariate geometric, and if for

all n and i =1,2

m
(3.9) lim n 1 6 l (n,j)] 0

m j=l

then X(n,-) given by (3.3), is bivariate exponential.

Lemma 3.10. (a) For all n, G(n,-') has a bivariate geometric distribution

with mean vector (p 1
1,p2

1  (b) If condition (3.9) holds, then for all n,

-1 -1
X(n,-) has a bivariate exponential distribution with mean vector (? 9X2

Proof: Let m be a positive integer. Since lim [l1c1.(nYI)h< liin (1-p. 0,

j=1,2, G(n,m) p -> G(n,-) as m- -. By (3.9), X(n,m) -- >X(n,-) as m- Thus

in particular G(n,m) G(n,-) and X(n,m) ->X(n,-~) as m- and the results of

the lemma follow from Corollary 3.8. 0

Note that for (3.9) to hold, it suffices that for all n and i= 1,2,

inflS.(n,j), j =1,2....> 0. Next, we investigate some of the dependency aspects
1

of both classes.

Remarks 3.11. (a) For fixed m, the sequences {X(n,in), n= 0,+l,+2,.. .. and

{G(n,in), n= 0,+l,+2,. .. l are r-dependent (that is, if n 1 and n 2 are integers such

that In1-n2 > m, then X(n ,m) and X~ )are independent as are G(n in) and
211 ~2 9m -1

G(n 2in)). (b) Clearly if we choose m to be a function, say ',of n with

11n ~,2,,..)} for all n, then the dependency of X(n, 4(n)) and G(n, .(n)) on the

past varies with n. (c) It is easy to see that for all n, X(n,') and G(n,-) de-

pends on all preceeding random vectors {X(q,=), q~ n} and {G(q,c-), --- q< n' ,

respective lv

.,...- . . . .. . . . . . .*A d. . .



We now investigate a positive dependence aspect of both classes.

'' Lemma 3.12. Suppose that E (1) and E (1) are associated. Then for all
1 2

positive integers m,k and all integers n1 < n2 < ... < nk, the random variables

{Xi(n.,m), i= 1,2; J= 1,...,k} are associated.

Proof: By Barlow and Proschan (1975, Theorem 2.2, p. 31 and Proposition 4,

p. 30) the random variables E.(n ) I (n ,q), i= 1,2; J= 1,...,k, and q= 1,...,m

are associated. Since the Xi(nj,m), i= 1,2; J= 1,...,k are nondecreasing functions
ii

of the previous collection of associated random variables the result of the lemma

follows by Barlow and Proschan (1975, Proposition 3, p. 30).

In a similar way one can prove the following lemma.

Lemma 3.13. Suppose that M (1) and M2(1) are associated and that for all n.

Nl(n) and N2 (n) are associated. Then for all positive integers m,k and all

integers nl< n 2 < ... < nk , the random variables {G,(n,m), i 1,2; j l,...,k} are

associated.

Now, we prove similar results for the infinite dependence sequences

{X(n,-), n= 0,+l,+2, . } and {G(n,-), n= 0,+l,+2,... .

Lemma 3.14.(a)Suppose that M (1) and M (1) are associated, and that for1 2

all n, N (n) and N (n) are associated. Then for all positive integers k and all
1 2

integers n1 < n2  ... < nk, the random variables {i(n j0.), i 1, 2; j 1, .... k} are

associated. (b) If E (1) and E (1) are associated and condition (3.9) holds
1 2

then for all positive integers k and all integers n1 < n2 < < n , the random

variables {Xi(nj, ), i= 1,2 and j= 1,...,k) are associated.
2. J

Proof: By similar arguments to the ones given in the proof of Lemma 3.10

we conclude that the two sequences {Gl(nl,m),G 2 (nl,m),...,G(nk,m),G2 (nk,m)} and

Xl(nl9m)'X 2 (nl9m)'''.'Xl(nk m) X2 (nk'm)} converge in distribution as m- - to

G, (n . ,G1 (nkc-),G 2 (nk, )(x and {X (n1 ,c),X2(n1,.),...,X (nk ,) ,X2(nk,)

respectively. By Lemma 3.12 the random variables {X (njm), i= 1,2; j= 1,.. ,k) are
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associated for all m and by Lemma 3.13 the {G (n ,m), i= 1,2; J= 1,...,k) are

associated for all mn. Consequently, the results of the lemma follow by Esary,

Proschan and Walkup (1967. Proposition 4).

Next, we compute the autocovariance matrices for both classes of sequences.

Some notation is needed.

Notation 3.15. Let and 'E(n) be the covariance matrices of E(l), M.(l),
E9 M9'

and N(n), respectively. For h= 0,1,2,..., let F (n,h) =cov(X(n,m),X(n+h,m)) and

"m
(n h) = cov(G(n,m), G(n+h,m)), n =0,+l,+2,.. ., and m =12.., Further,

let A(n,j) be a 2x2 diagonal matrix, A(n,j) =diag{[l-a 1 (n)]j, 11-A (n)]j), I be

the 2>2 identity matrix, and X the indicator function.

By some simple calculations we obtain for n= 0,+l,+2,.... M=12. ,, and

h =1,2,... (but not zero),

,, r-m-h-l r r+h
(31) m(n,h) ~ BIrl) P[IBnjl 1I-B (n+h,j)]}B (n+h, r+h-l)

j=l J=l

rn-h m
+ B(n,m-h+l){ Rl [I-B(n,j)]J} { Rl [I-B(n+h,j)]}.

j=l Ej=l

We max' obtain the off-diagonal elements of F (n, 0) from (3.16) by setting B(n,m+l)= Ix
and h =0. The diagonal elements of r (n,0) are the variances of X (n,m) and

X2 (n,m), namely, X - and X 2, respectively. In a similar way we obtain for

n =0, +1,+2,. .. , m =12.., and h 1,2,... (but not zero),

rn-h
4(3.17) r (nh) =Y A(n,r) E(n-r)A(n+h,r+h)

G r=0 N

+X(h)A(n,m+l)_zMA(n,m+l).

We may obtain the off-diagonal elements of FTn(n ,0) from (3.17) by setting h=0;

the dignlelements are the vracsof 1 (n ,m) and G nm namely, (l-pdp1 -

and -2
ad(1-p )p2  respectively.

% 2
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4. Inequalities

Throughout this section we fix m, m = 1,2 .. , , and hence suppress it from

cur notation, that is, X(n,m) and G(n,m) are represented by X(n) and Gkn), re-

spectively.

In the point process theory of the models, the behavior of the vector

of sums S (r) = (S (r S (r2)) where Sx (r) = (n), i= 1,2 and

TG(r) =T (rl), Twhere T (r ) . n1 G.(n), are of interest, rl,r ?.7,...

For example, if X(n) is a vector of bivariate exponential interarrival times of a

point process (M (t (t2)) which are the number of arrivals by times

.lt 2
> 0, then

P{MX (t < rl Mx2(t < r2 PX (r)> t9 S (r) > t2}
1' 2x t 2  r 1 = SC 2 2

Similarly, if G(n) is a vector of bivariate geometric waiting times of a count

process N (r) = (NG (rl),NG (r2)) which are the number of occurrences by trials
1 2

rl,r 2= 1,2,..., then N (r.) ( T (rI )  i = 1,2.
2G i G i

We now utilize positive dependence properties to obtain probability bounds for

the sums S (r) and T (r) and moment inequalities for the processes X(n) and G(n).

X-G.

First, we define two concepts of positive dependence.

Definition 4.1 Let q = 2,3,..., and let X = (X1,...,Xq) be a random vector. We say
q

that X is positively upper orthant dependent (PUOD) [positively lower orthant

" dependent (PLOD)] if for all real numbers t1 ..... q

.- zo

S......................................................................



J-1

q

IPiX < tip j- 1,...,q)> nI P{X t.]
~J=1 it

Remarks 4.2. (a) In the bivariate case (q=2) X is PUOD iff X is PLOD.

(b) For q> 2 the two concepts of positive dependence are not equivalent. (c) If

.,t''X (Iare associated then clearly X is PUOD and PLOD. (d) Let.........f
IL q

~~ [0,') be measurable nondecreasing (nonincreasing) functions and let X be

PUOD (PLOD). Then

q q
(4.3) E nI f (X )> nI Ef (X)

j=l j-1

(see Lehman (1966)). For the sake of completeness we present the following

definition.

Definition 4.4 Let X,Y be random variables. We say that X is stochastically less

5
than or equal to Y, and write X < Y is for every real number, t,P(X>t) < P(Y>t).

Remark 4.5. Let f: (.a~D~~[0,a) be a measurable nondecreasing function and

5
let X < Y. Then Ef(X) < Ef(Y) (see Lehmann (1966)).

Next, we discuss the inheritance of positive dependence properties.

Lemma 4.6. Suppose that for q =1,2,..., the random variables (X.(n), i= 1,2;
1

n= 1,2,. ..,q} are associated and the random variables {G .(n), i= 1,2; n= 1,... ,q)

are associated. Then for r1 ,r2 = 1,2,..., and tilt 2 > 0 we have that (i){LS (r ) ,i=1,212 2x. i

are associated, (ii) {T (r.), i= 1,21 or equivalently {N (r ) , i= 1,21 are asso-
G. 1 G. i

0 ciated and (iii) {kM (t.) i= 1,2) are PUOD and PLOD.

Proof: Parts (i) and (ii) follow from the facts that S X.(r i and T G.(r.i),

i= 1,2, are nondecreasing functions of associated random variables (cf. Remark 2.9a).

To show (iii), let f. ; S (r t ). and g. = xS (r )t.} i=1,2 where is
1 X. 1 i 1 X. i-i

the indicator function. By Barlow and Proschan (1975, Proposition 3,p. f'~ f

' 'and gip 1 1,2 are associated since S (r.) i =1,2, are associated. }Hne t- A.)
-p X.



- . - ., W- -Or

2 2 2
P{M (t > r i , i= 1,2) E , f.> P. Ef. = P {M t) > r

x i=1 I - i=l i=l M i

and
2 2 2

P{MX (t.) r., i= 1,2) E R gi> R Egi  n P{M v (t i )r.}.
1w. i=l i=l i=l 1

For the stationary models, we may obtain bounds for sums S (r) and TG(r)

using gamma and negative binomial distributions, respectively. First, we concen-

trate on S (r).

Lemma 4.7. Assume that B (n,l) and E2(nl) are equal to i and 2 respectively,
1 2 _i)

for all n. Let Yi(r.,e.) i= 1,2, be gamma random variables with parameters (r , •"- ' 1 1 1

s -
Then S (r.) > Yi(ri' . l. i= 1,2. If in addition, the random variables

{X.(n), i= 1,2; n q= 1,2,..., are associated, then for xlX2> O,

(4.8) P{Sx (rI)>xISX ( r 2 ) >x 2 >_ P { Y ( r xI B- 1)>x IP{Y2 (r 2  I >1 x

1 2 )x 2}>{ 1( 1 1 1  -1 2 2*22 )x 2 .

Proof: From equation (3.2) and (3.3) we see that X.(n)> a Ei(n), i= 1,2.
1 i

Hence

r.
P{S (r > x.) I P{ X _ (n)> x.)

X. -i -n=l i• .r-

j 1 E (n) > xi

Lnlii i

,---.-t'"N" =PY(ri,xi Bl)> xi} i= 1,2,

and the first assertion is proved. Equation (4.8) now follows from the first

assertion and the fact that since SS(r I ) and Sx(r 2) are associated (Lemma 4.6)

they are also PUOD. D

In a similar manner we obtain the following lemma for the sums T (r).

.Lemma 4.9. Assume that (n) and a2(n) are equal to a and a respectively,I. for all n. Let NB.(r", *), i 1,2, be negative binomial random variables with

b i .'. . . . .

. . .. . . . . . . . . . . . .. . - . . -
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S -
parameters (r ,e ) Then T (r )> NB (rjop c. 1- 1,2. If in addition, the

i G i

random variables {C.(n), i= 1,2; n= 1,... ,q), q- 1,2,..., are associated, then
1

for a > r1 and a2 > r2

(4.10) P{TG(rl)> al,T ( a >PNB 2 2 P{B (r,p CE )> a }P{NB (r, a-cz1)> a2

Proof: From equation (3.5) or (3.6) we have that G.(n)> N.(n), i= 1,2;

n= 1,2,......Hence

r,

PT (r(n) > a

1-

P{NB .(ri9 pp za i )>a , i=1,2,

and the first assertion is proved. Equation (4.10) now follows from the associa-

tion of T (r )and T (r2)
G1 1

Finally, we address ourselves to some moment inequalities.

Lemma 4.11. Let us assume that the random variables {X (n), i= 1,2; n=1,...,h'
1 -

h= 1.2,..., are associated. Let k1,.. .,k be positive integers and let £ £ ,
q 1V ...9 q

1, 2; q 1, 2,.. Then

q k. q -k
E nfl X P*) > 1k p

j=1 3 j=l

Proof: The result follows by Corollary 3.8 and the association of the random

Lemma 4.12. Let us assume that the random variables {G.(n), i= 1,2; n= 1,...,h',1

h= 1,2,..., are associated. Let k1,. ...,k be positive integers and let £1,£2, . x
q 29 ' ' q

1,2; q =1,2,.... Then

A.-,
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q k4  q k.

i=l J 11 j

*Note that G (1), is, by Corollary 3.8, a geometric random variable with mean
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