AD-A169 952

unclassified
SECUNITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE w’:,f.g”gg:,;ggg,‘;}g",jom

- REPORT NUM 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

€ / ©8-06-03

4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED
Declarative Descriptions for VLSI Generators Technical, interim
| 6. PERFORMING ORG. REPORT NUMBER
!

7. AUTHOR(S) 5. CONTRA ANT NUMBER(s)

Meei-Chiueh Y. Liem NOAPO3-83-50072
ARPA-4563, #2, code 5D30.

9. PERPORMING ORGANIZATION NAME AND ADDRESS 5. PROGRAM ELEMENT, PROJECT, TASK
UW’NW VLSI Consortium, Dept. of Computer Science ARER & BOREUNIT NUNDERS
FR-35, University of Washington, Seattle, 98195
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA - IPTO June, 1986

1400 Wilson Boulevard "'10"8“"“" OF PAGES

Arl [o) Virgi

" MCONITORING AGENCY NAME & ADDRESS(I! different from Controlling Office) | 18. SECURITY CLASS. (of thie report)
. unclassified

University of Washington

315 University District Building [Tea B‘gﬁt“&nci'ﬂoﬂoowonome "
1107 NE 45th St., JD-16, Seattle, WA 98195

™
16. DISTRIBUTION STATEMENT (of thia Report)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

ELECTE
JUL 2 4 1986

Q E

18. SUPPLEMENTARY NOTES

15. KEY WORDS (Continue on reverse side il necesesary and identify by block number)
VLSI, VLSI Generators, CIF, DRC, CFL, Caesar

20. ABSTRACT (Continue on reverse eside If y and identify by block number)

This paper presents a declarative generator model which can be used to guide
the generation of a circuit in VLSI design. The descriptions in the model
provide four equivalent representations of a circuit. They are correlated
through corresponding components. The syntax and semantics of the declarative
descrijtions are introduced. Their applications are illustrated by examples.
The declarative descriptions are shown to greatly facilitate the VLSI desiga
process and serve as a comprehensive tool that documents the designer's ideas

as well as the complexities of a circuit

DD ," 5%, 1473 eoimion oF 1 NOV 68 1S OBSOLETE -
. S/N 0102-LF-014-6601 —unclassified

slrgmG cu";ncnz/@u{gr THIS P}Q,T.as Deta Bntered)
; . J < ;

Declarative Descriptions
for VLSI Generators

Meei-Chiueh Y. Liem

University of Washington
Seattle, WA 98195

Technical Report 86-06-03
June 1986

Accession For

NIIS CRA%I
DTIC TAB

Uniannounced £
Justification
By

_p}:tribution/ £

e |

Availability Codes

T lAvail and/or
Dis | Special

e e

DTiIC

Copy
INSPECTED

3

o8 85

Ctetetalal

Declarative Descriptions for VLSI Generators

by
MEERI-CHIUEH Y. LIEM

A thesis submitted in partial fulfillment

of the requirements for the degree of
Master of Science

University of Washington
1986

Approved By

(Chairperson of Supervisory Committee)

Program Authorized

to Offer Degree Computer Science Department

Date June 12, 1986

Chd i i)

Master's Thesis

In presenting this thesis in partial fulfillment of the requirements for a
Master’s degree at the University of Washington, I agree that the Library shall
make its copies freely available for inspection. I further agree that extensive
copying of this thesis is allowable only for scholarly purposes, consistent with “fair
use” as prescribed in the U.S. Copyright Law. Any other reproduction for any
purposes or by any means shall not be allowed without my written permission.

Signature

Date June 12, 1986

University of Washingtoa
Abstract
DECLARATIVE DESCRIPTIONS FOR VLSI GENERATORS
by Meei-chiueh Y. Liem

Chairperson of the Supervisory Committee: Professor Jean-Loup Baer
Computer Science Department

This thesis presents a declarative generator model which can be used to guide
the generation of a circuit in VLSI design. The descriptions in the model provide
four equivalent representations of a circuit. They are the layout description, the
mixed mode description, the schematic description, and the functional description.
Each serves a unique purpose in the VLSI design process. They are correlated
through corresponding components. These descriptions are declarative, abstract,
robust, and structured in a hierarchical manner. The syntax and semantics of the
declarative descriptions are introduced. Their applications are illustrated by
examples. The declarative descriptions are shown to greatly facilitate the VLSI
design process and serve as a comprehensive tool that documents the designer’s

ideas as well as the complexities of a circuit.

Bl Sl Yk ‘g Nl "G AN A NIV BN S I A

%ﬁ:v -

TABLE OF CONTENTS

e
&)
LY
t‘ Page
Chapter 1. INTRODUCTIONcc00reeenonns ettt reea 1
o
“ 1.1 Description of the VLSI Generator Project 1
. 1.2 Multiple Representation Problem 3
1.3 Survey of Languages for Design and Documentation 6
- 1.4 Structureof the Thesis 1
.
- Chapter 2. DECLARATIVE DESCRIPTIONS Ceeeeeeaeaes e, 12
2.1Main Features ittt 12
2.110verview e e e e 12
. 212Declaration e e 14
: 2.130bjects e e e 16
: 2.1 40Perators e e e e 18
i 2.141GeometricOperatorscc v, 19
2.1420therOperatorscounvvuunnenn. 23
. 21S5FlowofControl 24
g 2.2 Multiple Representatioas 25
¥ 22.1LayoutDescription 26
2.2.2 Mixed Mode Description 36
3 2.2.3 Schematic Description 42
~ 2.2.4 Functional Description 46
N 2.3 A More Complex Example -- Multiplier S0
| 230 Algorithm 51
2.3.1.1 Unsigned Multiplication 51
o 2.3.1.2 Signed Two’s Complement Multiplication 53
: 2.3.2D€SCHiptions 58
2.3.2.1 The schematic Description 58
2.3.2.2 The Functional Description 68

.
.
<
-

anpm’-r“mmuON.--.-.-..................o-.. 75

3.1 Instances with Different Attributes 75
32Catalog e e e e e e . 80
33Changeof Technology iinnnnnn. 3

m’m‘.coNcLUsIoNs ® o & 5 & 2 8 8 & 0 0 5O 0O 0 S 0 P P s AL SO0 e s s g0 e e e “

Blbllographyciitiieeeirerecnersseenssasnssanannnsnns 88
Appendix A.EBNFDeflnitloncci0teievecccsnssacese 90
Appendix B. Leaf Cells in the Decoder Layoot ceesssecvanse. 93
Appendix C. Layout Descriptionof aMoltipliercccevveee.. 99

Appendix D. Mixed Mode Descriptioncco0c0evevsasee. 101

- [
i :
™
N
I LIST OF FIGURES
;'. Number ‘ Page
" 1-1. The generation Processuoouvveeeeeennn., 3
! 2 T N - 19
O 202, A B it e e 20
& 23, A B oottt P 20
: 244 ALDOB ottt 21
2-5. Aisrotated-90degreeiiiiiiaann 21
26. Mirrorinx00 ittt L.o2
2-7. Mirroriny e, e T
2-B. OPErators vvivviionnonnoeseenneennnseass 24
29. dec_ma_one i e i e e e 28
2-10. dEC_MA_ZBTOt i ittt e e e e 29
2-11. decoder = row[2**n]i(Krow[i}(i=2**n-1..0))) 30
2-12. row[2**n])=dec_na_|ll-(--(dec_na_i_inv(n)))--dec_na_lc 3
2-13. row[i]=dec_na_low--select_wire[i}--dec_na_high—-dec_na_out 32
2-14. select_wire[i]=(--(X[i,j]j=0..1))) 32
2-1S.select_wire 2] e 33
2-16. Layout representationttt 4
2-17. Hierarchy of objects in layout description 35
2-18. Leaf cells for mixed mode description 38
2-19. Flattened representation of row (2] in mixed mode description 39
2-20. Mixed mode representation, 40
2-21. Hierarchy of objects in mixed mode description 41
2-22. Leaf cells for schematic description 43
2-23. Flattened representation of row [2] in the schematic description ... 44
2-24. Schematic representation0, 45
2-25. Hierarchy of objects in schematic description 46
2-26. Hierarchy in functional description 50
2-27. Multiplication of two unsigned binarynumbers 52
2-28. Signextension bit e, 55
2-29. Block diagram of the two’s complement implementation 57
2-30. SIgNEXt e 60
2-31 LSIgnEXt e 61
2232 FullMult 62
2-33. Add e e 63
]
y
[

N “op gy i " " ¥ . - 5 ‘gl ot 0 A el [el o8- “« T TH W TN W

Y
g p . R 0 . 2 64
: 2-35. RCOMP ... cvi it it ittt ittt it 65
o 2-36. Schematic diagram of a 3 x 3 multiplier 67
. 2-37. Graphic representation of the fuactional description 73
: 3-1. Schematic diagram of a 3 x 3 unsigned multiplier n
3-2. Hierarchical structure of signed 2's complement muiltiplier Yz
3-3. Hierarchical structure of unsigned multiplier 78
- Bl dec_pa_ll it e e 93
9 B-2. dec_Da_i_inV i e i i e e e 94
B-3.dec_ma_le i i e i e 95
B-4. decma_low............ ... i 96
B-5. dec_na_high i 97
B-6. dec_ba_out i e i e 98
D-1. SignExt, LSignEXt i, 102
D-2. FullMult i i et e 103
D3. Comp,RComp i it 104
D4, Add e e e e 105
N
.
s’
L4
v v

, . &
R)

ACKNOWLEDGEMENTS

I express here my sincere gratitude to Professor Jean-Loup Baer and Professor
Lawrence Sayder. I am deeply indebted to Professor Baer for his guidance,
assistance, patience, and encouragement. He introduced me to VLSI which is a
field I found most challenging and fascinating. He is the major driving force
throughout the course of this thesis research. I am also deeply indebted to
Professor Snyder for his numerous invaluable ideas, guidance, and inspiration. He

has been most instrumental in shaping the major topics of this work.

Dr. Larry McMurchie has been most kind and helpful in introducing me to
the intricacies of VLSI tools. He carefully read this thesis and corrected my
grammatical errors. This is very much appreciated. [am grateful to Wayne
Winder for sharing with me his design on the multiplier which is presented here
for illustrating the application of this thesis. My colleagues, Chyan Yang and Wean-
Hann Wang, were always there to unfreeze the keyboard and unclog my idea
generation process. Their help is appreciated. Thanks are also due to the VLSI
Consortium members who provided me the invaluable constructive criticism on this

work.

I am most grateful to my husband, Ronnie, for providing me the devotion and
eacouragement without which this master’s program could not have been

completed. Lastly, I would like to thank my parents (all four of them) who have

given me support and understanding all these years.

CHAPTER 1. INTRODUCTION

VLSI design is an inherently complex process. This thesis presents the

development of a declarative generator model which can be used to guide the

. generation process of a circuit. The description in the model is robust, natural,
simple, expressive, abstract, and is structured in a hierarchical manner. It can

precisely describe a circuit across its multiple representations at the optimal level of

abstraction. It also serves as a comprehensive tool that documents the designer’s

ideas as well as the complexities of the circuit. This thesis is developed in the

context of the VLSI generator project in progress at the University of Washington.

1.1 Description of the VLSI Generator Project

"Quality VLSI Design Generators” is a research project conducted by the
University of Washington/Northwest VLSI Consortium. A design generaror is
defined as a program that produces a family of circuit designs, each one solving a

N different instance of a particular problem. The input is a problem-specific set of

s

parameters; the output is, among other things, a CIF (CalTech Intermediate Form)
definition of the layout of the mask layers [UW/NW 84). The objectives of the

design generator research are as follows [UW/NW 84]:

1. Build a set of generators that produce quality circuits and which form
a complete set with respect to some application. A quality design is a
robust design that will operate well over a wide range of conditions
and that can be consistantly produced.

2. Develop a generator construction methodology with appropriate
abstractions, procedures and tools to assure production of correct,
quality parts.

. 3. Demonstrate the efficacy of the approach on substantial designs.

This thesis shows the efforts made towards a generator construction methodology.

\ The primary components of a design generator are as follows [UW/NW 84]. "

(1) paramezer validation: establish that parameters are in the acceptable range

. of values and possibly “optimize” them if the inputs include, for example, logic

equations.

(2) model construction: "grow” an abstract version of the circuit. The term
“model” refers to a complex data structure that guides the generation process. It
~ includes a logical circuit description, schematic structure of the layout, a catalog of
s design characteristics (e.g. size, power requirements, etc.) and all the other
information needed to synthesize the design. The model fills the gap between the

"high level” input and various outputs such as the layout.

(3) load balancing: customize the various constituents of the design to the

particular situation, e.g. set channel widths.

(4) generate, using the model: layout, Design Rule Checking (DRC) interface,

ERC interface, simulator interface, etc.

It is hoped that standard generator procedures can be developed and used in

a variety of generators. The role that the model plays in the generation process is

illustrated in Figure 1-1. In the user frontend interface, the software routines

allow the user to specify what he/she wants, such as test to see if the parameter is

in the acceptable range, build the model, perform the transformations on the

parameters if the input can be optimized, etc. The model is an overall static

description of one instance of a circuit. It conmsists of leaf cells, a set of
descriptions, and a catalog which includes the appropriate characteristics of this
circuit. These components are produced by execution of the software routines.
Under the guidance of the model, the generator routines can generate the layout or
the schematic diagrams at the gate or the transistor level of the circuit. The DRC

interface, simulator interface etc. are also obtained.

3

Software Routines Model Generator Routines

declarative.
description

catalog

[J []
® []
[[]

Figure 1-1: The generation process

The model should be sufficiently complete, so that a program which is guided
by the model can generate the layout or other circuit descriptipns. On the other
hand, it should be sufficiently abstract to be able to capture the complex data
structure of a design. This thesis concentrates on the declarative description of the

model.

1.2 Multiple Representation Problem

The strategy used for building a generator is an implementation of the divide
and conquer paradigm. After a complex design is partitioned into small modules,
each module is defined with a high level description (text, block diagram or
schematics) according to the specifications. Then a network of transistors is
created and simulated. This step may require a number of iterations to assure the
design is stable. When the transistor network behaves as expected, the design is
implemented as a collection of integrated circuit layers. It shopld be noted that in
order to build a circuit, the designer goes through a complex, iterative but
complete, problem solving process. During this process, the designer needs to

constantly interact with the "information base,” which may consist of a high level

\
\
1
v
L]
1
|

LS CANYERY S Y Y R S L

(description, a transistor diagram, or a collection of integrated circuit layouts.
These multiple representations of the same circuit must be systematically organized
and immediately available to the designer to reduce the complexity of the work.
Moreover, in order to design successful circuits, it is important to have a
description which not only represents the complexity of the circuits but also allows
the designer to express his ideas and design decisions. Without an adequate
description of the generator, it is difficult for the designer to build the circuit,

check the accuracy of his design and communicate his ideas to others.

However, this facility is not found in the current tool set. The functional
descriptions and schematic diagrams are not well documented on line. A generator
which creates the layout of a circuit is basically a C program with a lot of
Coordinate Free Lap (CFL) calls. CFL is a library of C procedures mainly
intended to be used for assembling CAESAR formatted cells! into modules. A
detailed description of CFL can be found in [UW/NW 85]. Some of the important

features of CFL are cited below:

® The system is organized algebraically in that there is a data type called
SYMBOL, a set of primitive operands of this type, and a set of operators
which generate new SYMBOLs by forming combinations of existing
SYMBOLs.

® Box and label are two primitive symbols.

@ The operators can be grouped into six classes:

alignment operators
linear transformations
array constructors
tiling operators

library access operators
miscellaneous operators

'Lower level cells or tiles are generated by the graphical editor CAESAR

T TR e A ¢S % a L

® There are two types of routing facilities available in CFL: planar
routers and non-planar routers. [Each router is specialized to a
particular routing situation. ¢

® CFL has two groups of macros -- technology independent macros and
technology dependent macros, which can be used to generate frequently
used structures such as contacts.

® Wire facility is provided to allow the use of symbol relative coordinates,
which is helpful in routing. ' ‘

Although CFL greatly facilitates the construction of generators, the C
program is not precise and expressive enough to capture the hierarchical structure
of the circuit layout. When a design is changed, the efforts in modifying the
program are not trivial. Therefore, a special need exists for high level descriptions
which can precisely describe a circuit across its multiple equivalent represeatations
at the optimal level of abstraction. With this abstraction, the designer can better
understand the data structure that guides the generation process. The abstraction
will capture the “knowledge” of how an instance of the circuit is built and how the
circuits vary with the parameters. Furthermore, it permits us to identify
components of the circuit which are independent of the parameters. The isolation
of this type of components can reduce the complexity of the design space, which is
important in the verification of the correctness of a circuit over the entire space of
parameters. Such a high level description will be used to describe the multiple
representations of a circuit in the model. The multiple representations will include
layout, schematic diagram (gate level and tramsistor level), and functional
description. They must have some acceptable degree of correspondence to better

maintain their correctness. Thus the descriptions in the model will serve two

functions: (1) design guide, and (2) documentation.

1.3 Survey of Languages for Design and Documentation
This section will survey some research in design languages and information

management for VLSI &esign. Recent major efforts are reviewed here.

Design descriptions are an integral part of the design process. A number of
design languages have been published in the literature. According to German &
Lieberherr [German 85], hardware description languages (HDLs) can be divided

into three categories:

1. Languages that are purely functional specifications and do not
necessarily imply a specific structure of the described circuits.

2. Languages that allow both functional and structural specifications.
They can be further divided into procedural and non-procedural
classes. The latter offers safer descriptions than the former in the
sense that more compile-time checks can be done.

3. Languages that are only concerned with structure.

CFL is in category 3. The rest of this section will review laliguages in each

: category.

Sheeran [Sheeran 83] proposes a structured hierarchical design language, u FP
(a variation of the Functional Programming language FP), to describe both the
semantics (behavior) of a circuit and its layout (a floor-plan). Strictly speaking, it
belongs to category 1. The descriptions of u FP are expressions, made from a small
number of primitive functions (functions for manipuiating sequences, arithmetic
functions and predicates) and combining forms (functions that map functions into
functions). These functions and combining forms were chosen because ofr their
algebraic properties. Since each combining form has a simple geometric
interpretation, every u FP expression has an associated floor-plan. It is claimed

that circuit descriptions can be easily manipulated using the algebraic laws of the

language. r

.......................

~

(
ALI, Zeus and concurrent Prolog are examples in category 2. Lipton, North,

Sedewick, Valdes and Vijayan [Lipton 82] use ALI, a procedural language, to
specify VLSI layouts. The main feature of ALI is that it allows its user to design
layouts at a conceptual level in which neither sizes nor positions of layout
components may be specified. A layout is regarded as a collection of recrangular
objects and a set of relations (primitive operations, such as above, gluerighs, inside,
etc.). One result generated by an ALI program is a set of linear inequalities that
embody the relations between the layout elements. These inequalities are then
solved to generate the positions and sizes of the layout component. Since the
design rules are incorporated as a table which is used by the primitive operations
and completeness of the layout descriptions is checked hierarchically, the layout
generated is free of design rule violations and is relatively easy to update to new
y design rules. However, ALI can not handle rectangles whose sides are not parallel
: to the cartesian axes. The use of the cell mechanism creates a certain waste
because the minimum separation between cells is the maximum of all the minimum
separations for two layers in the design rules. In addition, ALI can not make
inferences as to the relations between boxes beyond those implied by the
transitivity of some primitive operations; this leaves the user with a fair amount of
drudgery to make sure that the program is complete.so that the layout will be free

of design rule violations.

_ Zeus (German 85] is an HDL whose principles of structuring and much of the
) syntax are modeled after MODULA-2; however the semantics are radically
‘ different. The notations in Zeus can simultaneously express both the structure and
Sunction of a circuit, and emphasize the design of reguiar structures in hardware
algorithms. Zeus provides facilities for describing circuits by recursive and
. iterative methods. It allows the designer to specify and prove the functional

correctness of entire parameterized families of designs.

................
..................

..
................
...............

Suzuki [Suzuki 85] describes VLSI chips as concurrent building blocks
connected by wires. Thus, concurrent Prolog was chosen to write input and output
assertions as well as hardware specifications. System components are described
hierarchically -- circuits as predicates and connectors as predicate parameters.
Since the processes and scheduling are inside the language processor and therefore
inaccessible to the programmer, it is hard for the user to write a more sophisticated

simulation system.

Examples of languages that are only concerned with structure are Regular
Structore Generator (RSG), Escher, and SLL. Abstraction mechanisms including
macro abstraction, delayed Sinding, interface inheritance, and the complete decoupling
of graphical and procedural design information are implemented in the RSG [Bamji
85] to provide the designer with the most profitable level of abstraction and make

the regular circuit structure generally accessible.

A circuit layout is generated from three input files: design file, layout file,
and parameter file. Local and global efficiency are achieved by completely
decoupling the graphical and procedural domains. The RSG uses previously
defined cells to hierarchically build larger cells. By macro abstraction, i.e. the
specification of macrocells as interconnections of smaller celis whose binding on
location and orientation can be delayed to any desired time, the designer can
concentrate oanly on the coanectivity of the subgraph. The inserface between two
cells is defined as the ordered pair of interface vector and interface orientation.
Interface inheritance provides a powerful means to define interfaces: A new
interface between two macrocells can be computed from any legal interface
between a subcell in the first macrocell and a subcell in the second. The relative
placement of cells in the final layout is performed using an interface between cells

and not by using the sizes and shapes of the bounding boxes of those cells. This

AR A A% s e W Al B

PN

AR N alh

makes cell design and design rule check easier. However, decisions based on the
size and shape of the final layout such as placement and routing are difficult to

make.

Escher, a geometricé.l layout system for recursively defined circuits, is
described by Clarke and Feng [Clarke 85]. An Escher circuit description is a
hierarchical structure composed of cells, wires, connectors between wires, and pins
that connect wires to cells. Cells may correspond to primitive circuit elements, or
they may be defined in terms of lower level subcells. Unlike other geometrical
layout systems, a subcell may be an instance of the cell being defined. When such
a recursive cell definition is instantiated, the recursion is unwound in a manner
reminiscent of the procedure call copy rule in Algol-like programming languages.
Cell specifications may have parameters that are used to control the unwinding of
recursive cells and to provide for cell families with varying number of pins and

other internal components.

SLL, a Symbolic Layout Language [Ellis 81], is the human-readable form of
the schematic, logic, layout, and simulation information about a circuit in the Ruby
database system used at the University of California, Berkeley. It also serves as a
general interchange format for integrated circuit geometric data. Connectivity
information and the hierarchy and regularity present in circuits are stated explicitly
in SLL. It is claimed that any geometry that can be expressed in CF can also be
expressed in SLL. Cell parameters and special constructs for arrays and busses
replace lengthier equivalents in CIF. SLL also allows symbolic naming and

arbitrary nesting of cell definitions.

Research in information management for VLSI design has received more and

more interest recently. Chu and Lien [Chu 84] describe the VLSI design database

(Vdd) system as a set of programs targeted to assist a circuit designer in layout

S SR 2 2 IR

..

10

design, verification, and simulation. There are three goals that the Vdd software

should achieve:
@ support a layout description language. (
® be technology independent as much as feasible.
® be complete in its own right for a layout designer.

The database techniques used include:
® use of a relational schema to describe a silicon processing technology.

¢ model the chip information by a set of relations, each of them
representing a component type.

® swap data in and out of the main memory storage according to data
semantics.

® implement the design session as a database transaction.

Katz argues that design data management is one of the most important areas
of VLSI design, yet it is also one of the least understood. He discusses a lot of
critical issues in information management for VLSI design [Katz 82, Katz 83a, Katz

&3b, Katz 85a, Katz 85b]. Some of the important ones are summarized below: .

® No existing commercially available system supports the complete range
of facilities needed to support design activities. In particular, the
features missing include: an explicit representation of the design
hierarchy, support for a flexible choice of design representations, and a
multi-level architecture.

® A design database should organize the design information across
representations, alternative implementations, and evolutionary versions.
By making the dependencies among parts of the design explicit, the
ramifications of design changes can be more easily discovered and
propagated in a controlied manner.

® Designs are organized into a richly interconnected data structure using
an object data model. Objects can be representation objects, index
objects, equivalence objects, alternative objects, version objects or generic
objects. Representation objects have interface descriptions specifying
their abstract behavior, usage information, and associated performance
(speed, power, area).

® A prototype design management system should consist of storage
component, object system, recovery subsystem, design librarian, design
validation subsystem. design transaction, tools, browser and chip
assembier.

[
]
{
\
|
1
i

1.4 Structure of the Thesis

The remainder of this thesis is structured as follows. In the next chapter, we
will provide the notations used for describing a circuit. The description of multiple
design representations is illustrated through a simple example, d:scoder, and a more
complex design, multipller. Chapter 3 presents parameterization issues involved in
the use of notations to describe a circuit. Finally, chapter 4 summarizes the
material presented in chapters 2 and 3. The contributions made by this thesis in

design and documentation of VLSI circuits and suggestions on further work will

also be presented.

=

PLPLELESL

CHAPTER 2. DECLARATIVE DESCRIPTIONS

‘ A set of unambiguous notations is needed for the high level descriptions to

aid the designer in the design and documentation process. The purpose of this
A chapter is to introduce a set of notations and show how these notations are used to
describe the multiple equivalent representations of a design. Section 2.1 gives the
main features of the high level descriptions in the model. Data elements —~ leaf

cells and abstract objects -- will be described. The syntax as well as the semantics

of operators will also be discussed. Section 2.2 illustrates how the notations are

0
oy ‘e

used to describe a simple circuit -- decoder. Four types of representations - /ayout,
mixed mode (mixture of transistors and gates), schematic diagram, and functional

description -- are examined in detail, to see how design and documentation work

O W Y i

can be enhanced by using these notations. Section 2.3 gives a more complex

-

example -- multiplier -- to show the versatility of the notations.
2.1 Main Features

2.1.1 Overview
The high level descriptions which will be used for design and documentation

[
in the generator project should have the following fundamental properties.

(1) Simplicity and Naturalness. Simplicity is an important language design
principle. A simple set of notations makes the description easier to read and write.
The notations should also be as natural as possible to increase the understandability
of the description. A simple correspondence between the geometric notations and

the actual placement relationships will allow changes in relative positions to be

easily reflected in the changes in the notations.

13

(2) Expressiveness. While the notations should be simple, clear and natural,
they should also be sufficiently descriptive to allow designers to fully describe the
hardware aspects and other design decisions that a particular instance of a design
intended to include. Otherwise, effective and efficient communication between
designers is impossible. A very detailed description of a circuit, however, can
blind one to its general properties. As a result, the desired expressiveness of the

notations is a compromise between these two extremes.

(3) Abstraction and Hierarchical Structure. In order to reduce the complexity
of the VLSI generator design process, hierarchical decomposition and abstraction
have to be employed. The circuit eventually has to be specified in terms of the
primitive modules before it can be implemented. However, with abstraction the
complexity of the circuit is better handled. Designers can specify circuits in
increasing order of complexity. Information about lower levels in the hierarchical
tree are completely hidden from higher levels. Abstraction makes the data

structure explicit.

(4) Technology Independence. In response to the rapid development in VLSI
circuit research, the notations should be robust across different kinds of
technology. In other words, the circuit description of a design using technology X
should be the same as that of the same design using technology Y. The only
changes that a designer has to make due t» the change of technology are the
izhards of leaf cells, since they are the primitive components of a circuit. This will

simplify the conversion of a description to support a new technology.

With these desired properties, the high level description can precisely

describe a circuit across its multiple equivalent representations at the optimal level
of abstraction. In our research, each description describes an instance of a family

of circuit designs in one of four possible representations. A description consists of

".*?—.-“."_“:'"v'_":'_"."‘*' R

8 1

A

3

| two parts: (1) the declarative part, which includes the name of a circuit, the type
N of the representation, a list of parameters, a collection of leaf cells, and a set of
2 imported functions; and (2) the imperative part, which begins with the keyword

MAIN. In this part, a collection of statements is used to describe an instance of a
circuit, e.g. a decoder with three select wires in NAND gate style. The description
for the layout or the schematic representation can be regarded as a collection of
R objects (leaf cells or abstract objects) and a set of relations among these objects.
For the functional description, the intermediate hidden mechanisms between inputs

and outputs are described.

Free-format input is used in a description. In other words, statements can be
o positioned anywhere in the input line. This will help avoid syntax errors due to
improper positioning of tokens and permit the whole description to be laid out so
.- that it is easy to read. Hierarchical structure can also be shown by indentation.
The syntax of this new high level description is designed to be as close to that of
the "C" programming language as possible since the generators are written in
C. The Extended Backus Naur Formalism (EBNF) definition for the declarative
description is given in Appendix A while the rest of this section‘describes the main
features of this description in its four subsections: deciaration, objects, operators

and flow of control.

2.1.2 Declaration

The syntax of the declarative part of a description is of the form:
NAME <circuit_name> ;

TYPE <representation_type> ;

PARAMETER <parameter_list> ;

LEAF CELLS <cell_list> ;

i pape aue e daraier A 4w~w. AL ol AR~ dun- o MY IR - A S/l AL MR S SR SRt svh abicard gal ares i DAL B A QAT S A i dis A A A Al Ank Al Ml Sl Sl St S g

15

FUNC <function_list> ;

Boldface characters are used to indicate keywords and required syntactic elements.
FUNC <function_list> is optional and LEAF CELLS <cell_list> are not used in
the functional description. <representation_type> is either LAYOUT, MIXED,
SCHEMATIC or FUNCTIONAL for layout, mixed mode, schematic diagram or

functional description, respectively.

<parameter_list> is a list of inputs to the circuit. For example, in the case of
a 4 bits by 3 bits multiplier, it is the number of bits in the multiplicand (say, m = 4)
and the number of bits in the multiplier (say, n = 3). Thus, the <parameter_list>
ism=4,n =3 The names m and n are arbitrarily chosen; however, the values
that they are bound to in the declarative part are constant through the entire
description. Parameter declarations allow implicit dcpende?cies to be made
explicit, which makes the modification of the circuit description very easy when the
inputs are changed. Suppose that it is decided that the number of bits for the
multiplicand should be changed to 8 (say, to accomodate bigger numbers). This
will imply that the limits on some of the iterative contructs such as the number of
partial product generated should also be changed. The designer can simply change
the parameter list without having to find all numbers that implicitly depend on the
changed bit size and make appropriate changes. Therefore, parameter declaration

enhances the readability and maintainability of a description.

Leaf cell is the lowest level module in the hierarchy of a description. It is a
primitive component. More details about leaf cells will be given in the next
subsection. <cell_list> contains all the leaf cells that are used in a description to
generate a geometric representation (the layout or schematic diagram in gate level
or transistor level) of a circuit. The leaf cells should be copied from the system
library to the user’s working directory. They are unaltered across the family of

instances.

16

Following the <cell_list>, the functions that aid in the circuit description are
specified. This part must begin with the keyword FUNC followed by a list of
functions delimited by commas. Functions are user-defined. For example, binary
can be a function which will return a binary representation of a aumber. To
specify a circuit in a clean and understandable manner, the implementation parts of
functions do not appear in the same file as the circuit description. A function
provides a convenient way to encapsulate computations in a black box, which can
then be used. In this manner, another language design principle - informarion
hiding - is achieved. Functions provide a way to cope with the potential complexity

of a large VLSI design description.

The declarative part ends on encountering another keyword MAIN which is

followed by the imperative part of a description.

2.1.3 Objects !

Leaf cells are the primitive objects to which geometric operators (discussed in
the next subsection) can be applied, and out of which more complex objects
(abstract objects) can be built in the layout or schematic representations. They are
declared explicitly in the declarative part as described in the previous subsection.
Leaf cells are giobal in scope. In general, they have some predefined, sufficiently
general, functionality. A leaf cell is a rectangle (also called box) with its sides
parallel to the axes of a cartesian coordinate system. It can be a NAND gate used
for the schematic description of a decoder or a physical layout of a half-adder used
for the layout description of a multiplier. The designer has the flexibility of
creating whatever leaf cells he needs. The choice of these leaf cells and their
suitability will depend on the graphical editor CAESAR, CFL and other
software/hardware tradeoffs. A leaf cell encapsulates implementation details such

as the layers used to fabricate the layout within a box. The implementation details

Rl - 2+ AR A e e _aatr el A

17

. are transparent to the outside, and leaf cells are unchanged across the family of

] instances.

The high level description that is developed here also has the capability of
specifying iterative (arraylike) structure. A leaf cell can be instantiated as many
times as desired by specifying the number of repetitions. For example, if
dec_na_{_Inv is a leaf cell, then | (dec_na_[_inv (n)) means to create an object
which is a collection of n copies of dec_na_{_inv and the relations among these
- copies will be defined by the geometric operator |. Array constructs allow easy
specification of regular structures without adding the additional complexity of
control flow structures to a description. A leaf cell without an argument is by

default an instance of that cell in the user's working directory.

Abstract objects are created to provide designers with the mechanism to

KR AR

describe a circuit representation hierarchically so that most of the details at one
level of the hierarchy are truly hidden from all higher levels. ‘An abstract object
can be defined recursively. An alias of a leaf cell, an array of leaf cells, a group of
heterogeneous leaf cells, or a combination of the last two is an abstract object.
Moreover, an array of abstract objects, a group of heterogeneous abstract objects or
a combination of these two is also an abstract object. It should be noted that an
abstract object represents an integrated consecutive part in the geometric
placement. Generally, it is a module which has some functionality. Since .lcaf cells
2 are represented as rectangles, a simple example of an abstract object can be a "row”
‘:‘ of leaf cells. It is obvious that an abstract object can also be instantiated as many
_ times as desired by providing the appropriate arguments. Thus, --(row[i](1=0..4))
means to generate five rows: row (0], row [1], row [2], row [3], and row [4]. The

relations among these rows are defined by the operator —-. An element of an array

of abstract objects can be accessed by specifying the subscript as in most

18

programming languages. Since row [i] is an abstract object, information about its

lower level description is hidden. At this level of abstraction, row [i] can be
thought of as a primitive component. Abstract objects are considered global.

Thus, object names within a description must be unique.

Given the features of leaf cells and abstract objects mentioned before, each
description can use many levels of abstraction. The circuit is viewed as a network
of objects at each level of abstraction. At the highest level of the hierarchy, it is a
single abstract object -- the name of the circuit that the designer intends to
describe, say, decoder. At the lowest level of abstraction, the circuit is a network
of leaf cells. To be more specific, the description of a representation of a circuit is
recursive in nature -- each abstract object is specified as a network of lower level
objects. The internal details of these lower level objects need not be known when
defining an abstract object. That is, the lower level objects can be thought of as
primitives at that level of abstraction. Since an abstract object is defined after it is
used, the description of an object can be deferred until the design is better
understood. The abstract object may itself be a named instance of a higher level

object to aid the description of the recursively defined circuit.

2.1.4 Operators

This section shows the operators which are used in our declarative
descriptions. They can be arranged in the following groups: (1) geometric
operasors, (2) arithmetic operators, (3) relational operasors, (4) logical operators, and
(5) the assignment operator (=). We will concentrate on the geometric operators in

this section.

19

2.1.4.1 Geometric Operators

As mentioned befc:e, the layout description, the mixed mode description,
and the schematic description can be regarded as a collection of rectangular objects
and a set of relations among these rectangles. The relations between objects are
defined by geometric operators. These operators take objects as arguments and
produce objects as results. A small set of geometric operators are created!. The
first four operators are used to combine objects into more complicated objects,
while the last three operators are used for linear transformations. They are

described as follows.

(1) -- : beside. A -- B denotes that object A is on the left hand side of object

B as showa in Figure 2-1.

Figore 2-1: A--B

t

rot, mx, and my are patierned after the same operators in CFL.

gt - mab it el b b SR AR Al A

...............

20

(2) | : above. A | B means that object B is above object A. The geometric

relation is shown in Figure 2-2.

Figure 2-2: A|B

(3) -- N : horizontally joined with overliap. A -- N B denotes that object A and
object B are horizontally joined and overlapping with A situated on the left hand

side of B. Figure 2-3 shows the relations.

Figure 2-3: A--NB

. ‘-‘ .-' ~-- ~.~ .A -.‘ .!‘. - .
W TS VIR

Lk ands arte gat b st st gt WAL R 8

-,
"
A
LY

21 {

(4) | N : vertically joined with overlap. A | N B represcats that object A and
object B are vertically joined and overlapping with B situated on the top of A. The

geometric relation is shown in Figure 2-4.

A

Figore 24: AINB

(5) rot : rotate. rot(A, -90) denotes that object A is rotated 90 degrees

clockwise as shown in Figure 2-5.

original position ofter rotation

Flgure 2.5: A is rotated -90 degree

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Ak Bk B A ve e gl i S Nl LA AR

22

(6) mx : mirror in x. A = mx(A) means that A’ is the mirror ima_ge of A

across the X axis, which is shown in Figure 2-6.

Flgore 2-6: Mirror in x

(7) my : mirror in y. A = my(A) denotes that A’ is the mirror image of A

across the Y axis. Figure 2-7 shows the geometric meaning of this operation.

Figore 2-7: Mirroriny

S TTETTE . R TR e

23 {

These operators can be either infix or prefix. All geometric operators have

the same precedence level and they are collectively left-associative in the absence

s asrrd

of parentheses. The interface (which will be implemented by using registration
marks) between two objects is not explicitly specified. This is also an application
of information hiding and delayed binding on the absolute locations to make the
description simple, flexible and easy to understand. Nevertheless, geometric
operators do describe the relations among objects and capture the hierarchical

structure of a circuit representation.

It is obvious that geometric operators are only used in describing the layout or
schematic representations of a circuit when graphic interpretation is the main
interest of these representations. For functional description, arithmetic operators,
relational operators and logical operators are used. Of course, these operators can
also be used in the description of the layout or schematic representations to

represent expressions, ¢.g. if conditions, arguments of an arraylike structure, etc..

2.1.4.2 Other Operators

SN R

The arithmetic operators include +, -, *, /, ** (for exponentiation), and %
(modulus operator). The relational operators are <=, <, == (equal to), != (not
equal to), >, and >=. Each of them takes a pair of expressions as operands and
returns a logical value, true or false. There are two types of logical operators.
One is called logical connectives. They are && (AND), and i (OR). Another type
is called birwise logical operators. They include & (bitwisc AND), | (bitwise
inclusive OR), ° (bitwise exclusive OR), and ~ (one’s complement). The rules for
precedence and associativity of all arithematic operators, relational operators, and
logical operators follow the convention of c2, Figure 2-8 lists all the operators

used in the declarative descriptions.

CNENENEA N T T

IExpontiation ** is the exception. It has the highest precedence.

ML A

omrawrs --,l,--ﬂ,ln,fot,mx,my

f
t
| Geometric
b
)
)
Y

Arithmetic

Operators AERPRPEARAIE

Relational
Operators oo

Logical
Operators

Assignment
Operator

Figure 2-8: Operators

2.1.5 Flow of Coatrol

Two fundamental flow-of-control coastructs are provided to enhance the
expressiveness of a description: IF (decision making) and looping. IF is used to
specify the condition. Loop is expressed in the form of (1) providing the number
of times for repetition, say, —(X(m)) means to create m horizontally joined
instances of X; or (2) providing the upper bound, lower bound and step of the loop
index, for example, (X[i](i = 4 .. 0, -2) means to create 3 instances of X. The
indices of these instances start from 4, decrement by 2 at each step, and end with
0. Thus, it creates a vertical stack with X[4] situated at the bottom, X[2] situated
in the middle, and X[0] situated on the top of the stack. The EBNF definition in
Appendix A depicts the syntax.

2.2 Multiple Representations

This section introduces four declarative descriptions which are used for
describing a circuit. Notations introduced in the previous section will be used to
illustrate the four descriptions, namely: the layout description, the mixed mode
description, the schematic description, and the functional description. Each of the
descriptions has its specific function in the design generation process. The layout
description in conjunction with an appropriate set of leaf cells can be used to
generate the layout of a circuit. The mixed mode description helps create the logic
network description for the NETLIST program and simulation. The schematic
description simplifies the construction of the mixed mode description. The
functional description serves as an excellent reference for checking intermediate

results of the circuit simulation.

A decoder provides a simple and good illustration of the efficacy of the
declarative description in design and documentation. The data structure of each
representation of the decoder will be shown by a tree. The correspondence
between these descriptions will also be discussed. A decoder takes an n-bit number
as input and uses it to select exactly one of 2° output lines. In the VLSI generator
project, decoder is a module generation program for a MOSIS 3 micron cmos
decoder layout’. It currently produces decoders both in NAND (single clock) and
NOR (two non-overlapping clocks) configurations. The user has to provide the
design specifications in order to get the desired layout. A required specification is
the number of select lines in the decoder. Other options include:

(1) the number of lambda between each decoder stage,

3he author of the decoder generator is Marty Sirkin. Readers are recommended to refer to on
line VLSI Tools Manual for more details.

(2) inverting or not inverting the output,
(3) labeling the output and select lines,
(4) output file name,

(5) prefix string for the output line,

(6) prefix string for the select lines,

(7) design style (NAND or NOR),

(8) verbose mode, and

(9) printing the version number.

These options have default values. Thus, it is straightforward to generate a
decoder. For example, by specifying "decoder -s 3°, the layout of a 3-input-8-output
NAND style decoder will be generated.

2.2.1 Layout Description .

The layout description for an instance of a circuit describes how the leaf cells
have to be placed to yield a specific structure and to satisfy design rules. Note that
leaf cells are invariant across different instances of the same fu::ily of a circuit for
a particular type of representation. In the case of the layout description, the leaf
cells are created by CAESAR and CFL. They are painted pictures which carry the
photo-mask information required on the fabrication process. However, what a leaf
cell does internally and how it is implemented are concerns Iccal to the leaf ceil
itself. The layout description only describes the relative relations among these leaf
cells. The description is expressed in the form of a hierarchy, abstract at its higher
levels, and progressively more detailed as it descends the hierarchy. The
mechanism used is subsritution. That is, a bigger abstract object is substituted by

leaf cells or conceptually smaller abstract objects.

The following statements illustrate the layout descriptioa for a 3-to-8 NAND

style decoder.
NAME decoder;

TYPE LAYOUT,;

27

PARAMETER n =3;

LEAF CELLS dec_na_ll, dec_na_i_inv, dec_na_ic, dec_na_low,
dec_na_high, dec_na_out, dec_na_one, dec_na_zero;

FUNC binary;
MAIN
decoder = row [2°*n] | (! (row [i] (i = 2**n-1.. 0)));
| row [2**n] = dec_na_ll -- (~ (dec_na_i_inv (n))) -- dec_na_lc;

- row [i] = dec_na_low - select_wire [i]
. -- dec_na_high -- dec_na_out;

select_wire [i] = (- (X [i,j] G =10 ..)

X [i,j] = dec_na_one, if binary (i,j)
= dec_na_zero, if binary (i,j)

1
0.

The T PE declaration specifies that the output of this description is a layout.
A parameter n is used to indicate the number of input of the circuit. Since we
want to describe a 3-to-8 decoder, n is assigned to be 3. To generate a NAND style
decoder, the following leaf cells are used: dec_na_ll, dec_na_I_inv, dec_na_lc,

dec_na_low, dec_na_high, dec_na_out, dec_na_one, and dec_na_zero. It is assumed

N that they are copied from the library into the user’s working directory‘. The

S

A internal details of dec_ua_oune and dec_ana_zero are shown in Figures 2-9 and 2-10.
Appendix B shows the rest of the leaf cells.

:

>

4

“The leaf cells for layout description are exactly the same as those used for the decoder generator.

RN I P I . e e e e e e T e B PO PRI “ e s e
PRI U, W I LAY SR YEATEAE S LI S Gl T W U I YT RE T G ST LT & PU M VI PV PP T VU P U WP WEPE. UG 00N vy

A,

DR o
LAy

RPN

A0 1)

3

3

«

1s

n

micra

1

Scale:

dec_na_one

Figure 2.9

A)

- - - ‘—-

st g

e

L A Sl ek ek Sl i A 4

29

=
=

15 0.1 inchecs

1 micrun

Scale:

dec_na_zero

.
.

Figore 2-10

SRS

MRS
PO R I R A |

30

Function binary is imported from some other file to help in the description of
the decoder. binary (i,j) returns 1 if the jth bit of the binary representation of i is 1

and returns 0 if it is 0.

The imperative part of the description contains information about how

instances of leaf cells are to be displayed. The fragment
decoder = row [2*°n] | ([(row [i] (i =2°*°n - 1 .. 0)));

creates an object named decoder which is made up of an abstract object, row [2°],
and 2° vertically stacked abstract objects named row [2% - 1], row [2° - 2], , TOW
(0], with row [2® - 1] situated on the top of row [27], and row [2" - 2] situated on
the top of row [2° - 1], etc. At this level of abstraction, row [2°] and row [i] can be
thought of as primitive components. The network of their lower level components
will be defined later. Figure 2-11 shows the geometric interpretation of this
fragment. In our example, n = 3, so there are nine rows, eight for the ouiput and

one for the input.

row(0]

row{2h -2]

n
rowl2 -1]

row|[2n)

Figure 2-11: decoder = row[2**n]/({row[i](i=2"*n-1..0)))

Ve a 8.4, 0.9,

iy

k)| {

The fragment
row [2*°n] = dec_na_ll -- (-~ (dec_na_i_inv (n))) -- dec_na_lc;
specifies the components of row [2"] one level lower in the hierarchy. Thus, row
[27] coansists of n horizontally joined instances of dec_na | inv with dec_na Ul on
the left hand side and dec_na_lc on the right hand side. The geometric

interpretation of this statement is shown in Figure 2-12.

dec_na_ll |dec_na_i_inv| ee ¢ |dec_na_i_inv| dec_na__lc

()

Figure 2-12: row[2**n]=dec_na_ll--(-(dec_na_i_inv(n)))~dec_na_lc

As mentioned before, the absolute locations for joins will be specified by
registration marks which are information embedded in the leaf cells and are not
shown explicitly in the description. Details about registration marks will be

discussed in Chapter 4.

The elements in the arraylike structure row are further defined by the
following fragment: '

row (i] = dec_na_low - select_wire (i]
-- dec_na_high -- dec_na_out;

For i with the values from 0 to 2% - 1, row [i] is created by horizontally joining an
instance of the leaf cell dec_na_low and an abstract object select_wire (1] with
dec_na_low on the left hand side and select_wire [i] on the right hand side. Then,
they are placed on the left hand side of an instance of the leaf cell dec_na_high.
Finally, this construct is horizontally joined with dec_na_out with the latter

situated on the right hand side of the former. Figure 2-13 depicts the geometric

placement.

N b Y A A e et ard adh i sl SELA BN mhE st

dec_na_tow | select_wireli] |dec_na_high | dec_na_out

Figure 2-13: row[i]=dec_na_low--select_wire[i}-dec_na_high--dec_na_out

Moving one level down in the description hierarchy, the abstract object
select_wire [I] is described in terms of a collection of another abstract object X.
The fragment

select_wire [i] = (- (X [i,j] (j =n .. 1)));
denotes that each select_wire consists of n borizontally joined instances of X with
indices from n to 1, from left to right respectively. The graphic representation is

shown in Figure 2-14.

Xl1]In] X(1])in-1] 000 Xl 1)

Flgore 2-14: select_wire[i]=(~(X[i,j](j=n..1)))

It is important to note that index i is required in the expression. It serves to

distinguish different instances of select_wire. The definition of X clarifies this

point.

33

Abstract object X is defined by the following statements:

X [i,j] = dec_na_one, if binary (i,j) == 1
= dec_ana_zero, if binary (i,j) == 0;

W ae s 84 R K

That is, if the jth bit of binary representation of i is 1, then substitute dec_na_one
for X. Otherwise, substitute déc_nn_zero for X. As a result, in the case of a 3-to-8
NAND style decoder, select_wire [2] will coasist of elements as shown in Figure

2-15 since the binary representation of 2 is 010.

dec_na_zero | dec.na_one dec_na_zero

.. Figore 2-15: select_wire [2]

. By substituting 3 for n in all the statements described, we obtain the layout

representation of a 3-to-8 NAND style decoder as shown in Figure 2-16.

It should be obvious by now that many levels of abstraction are used in the
layout description. Figure 2-17 shows the hierarchical structure of the objects in
the layout description. The root of the tree is an instance of a decoder, while the
leaves of the tree are instances of leaf cells. An arc denotes "consists of”. Each
internal node represents an abstract object and is created by joining its children

according to the relations specified in the description.

With this kind of abstraction, the complexity of the design process is reduced
since the lower level objects can be thought of as primitives at each level of

abstraction. The data structure that guides the generation process of decoder

AR L.

a C_4_

..
....................

PP

J);;;f,

LALLM

-
Iy
-
0
R
-
-
-

M
-o0l!
dec_na dec_ns | dec_ns | decne dec_na_high
low —Zero | _zero -Zero >
ec.na_out
-0 2!
dec_ns dec_ne | dec_na | decna dec_ns_high
~low ~Lero ~Zero one =
ec.ne_out
' - 0. 3!
dec_ns dec.nas | dec_na | dec_na dec_ne_high
_low —£ero —one ~Lero
dec_ns_out
- o 4!
dec_ne dec_ns | dec_ns | dec_ns dec_na_high
Jdow ~Zero —one ~one ;—J
ec.neout
-0 9!
dec_ns dec_na | decns | decra dec._na_high
Jow —one ~Iero ~Lero
ecna_out
- 0. 6!
dec_na dec.ne | dec_na | dec_ra dec_na_high
~low ~One ~Z0X0 ~one - ¢
eC_ns_ou
* o7
dec_na dec_ns | dec_na | dec_ns dec_na_high
Jow -Lero one -one I~
ecrwout
dec_rna dec_na | dec_ne | dec_na dec_na_high
low -Zexo —one one —J
dec.naout
dec.ns dec_nas | dec.ns | dec_na dec_ns _lc
1 ddnv dddny

—-dAny

Flgore 2-16: Layout representation

35

decoder

N

rowl2) row(2n-1} ”' rowlt]l o rowl O}

/N

doc.na il doc.pa lLinv(n) dec.nalc dec.nalow select.wireli] dec.na high dec.ne_out
X(ila] Xliln-1] eee XUN1}

doc.na.one or dec.ne.sero

Flgure 2-17: Hierarchy of objects in layout description

becomes explicit, which allows the designer to communicate his ideas and design

. |
Ll AR N A

decisions to others. Moreover, it is relatively easy to identify components of the
g circuit which are dependent on or independeat of the parameter from tke
description. For example, the number of instunces of dec_na_i_Ilnv in row [27]
depends on the size of the input. So, for a 4-to-16 decoder, there will be 4
instances of dec_na_{_lnv. However, the structure of row [2°] is invariant. In
other words, dec_na_ll is always the leftmost component and dec_na_lc is always
the rightmost component regardless of the number of instances of dec_na_i_iav in

% _ the middle. This observation is important in the understanding of a decoder over

the eatire space of parameters.

2.2.2 Mixed Mode Description

While the relations among leaf cells, which contain information about mask
layers, are described in detail by its layout description, further exploitation of the
power of a hierarchical description makes it necessary to provide for one higher
level of abstraction -- tﬁe mixed mode description. A mixed mode description
illustrates how components (gates, transistors, and intersections of wires, etc.) are
connected to perform a certain function. This representation can help create the
logic network description for NETLIST and simulation. A mixed mode description
is also expressed in the form of a hierarchy. The interconnections of leaf Acel'ls are
specified by the geometric operators. The substitution mechanism remains the

same as employed in the layout description.
The mixed mode description for a 3-to-8 NAND style decoder is as follows.
NAME decoder;
TYPE MIXED;
PARAMETER 1 =3;
LEAF CELLS gnd_mix, zero_mix, one_mix, in_mix, out_mix;
FUNC binary;

MAIN R

'/

decoder = row [2**n] | (| (row [i] (i = 2**n -1 .. 0)));
row [2°*n] = (-- (in_mix (n)));

row [i] = -- gnd_mix - (-- (X [i,j] (j = n .. 1))) — out_mix;

X [i,j] = one_mix, if binary (i,j) ==
) ==

1
= zero_mix, if binary (i,) 0.

The TYPE declaration and PARAMETER declaration indicate that the

37

output of this description is a mixed mode representation for a 3-to-8 decoder. The
leaf cells used are gnd_mix, zero_mix, one_mix, in_mix, and out_mix. They are
shown in Figure 2-18.

There is a correspondence between the leaf cells used in the mixed mode

description and those used in the layout description. For example, zero_mix and

dec_na_zero perform the same function. one_mix and dec_na_one are made to
achieve the same designated behavior. Finally, in_mix is equivalent to
dec_na | inv. They represent input and its complement. Similarly, the same
imported function binary is required in the description. The return value of binary

was discussed in section 2.2.1.

The imperative part of the mixed mode description also describes how
instances of leaf cells are to be placed. In this case, a leaf cell can be a transistor,
a gate, an intersection of wires or a combination of these symbols. The expansion
of the output of this description is a schematic diagram of a decoder at the
transistor level rather than a layout. The fragment

decoder = row [2**n] | (| (row [i] (i = 2**n - 1 .. 0)));
will result in the same display shown in Figure 2-11 as in the corresponding
statement in the layout description except for the internal details of each row. The
bottom row, row [2°), is defined as

row [2**n] = (- (in_mix (n)));
which indicates that row [2%] consists of n horizoatally joined instances of in_mix.
In our example, there are 3 instances of in_mix. The structure of the lower level
components of row [2°] is slightly simpler than the corresponding structure in the
layout description. This is also true of the description of row [i]:

row [i] = -- gnd_mix -- (-~ (X [i,j] j = n .. 1))) -- out_mix;

This fragment combines the definitions of row [i] and select_wire [i] in the layout

Ty

gnd_mix | }___

sero L
one_mix [
—+—
in.amix ‘
out_mix .
Figure 2-18: Leaf cells for mixed mode description :

»

description. The hierarchy of objects is thus compressed. Here, row (1] is created
by placing gnd_mix and out_mix on the left and right hand side of n horizontally
joined abstract object X's, respectively. X [i,n] is the leftmost component and
X[i,1} is the rightmost component. Depending on the jth bit of the binary
representation of i, X [i,j] can be replaced by either one_mix or zero_mix. This is
specified in the last two statements of the mixed mode dcscri?tion. Figure 2-19

shows the "flattened” representation of row [2] in a 3-to-8 decoder.

gnd_mix |zero.mix | one_mix | zero_mix | out_mix

Figure 2-19: Flattened representation of row [2] in mixed mode description

The expansion of the output of the mixed mode description for a 3-to-8

NAND style decoder is shown in Figure 2-20.

While the abstraction mechanism for describing the decoder is the same in
both the layout description and the mixed mode description, the leaf cells are
different. Figure 2-21 shows the hierarchy of objects in mixed mode description.
The number of levels is one less than the one in Figure 2-17. This is because the

abstract object select_wire has been removed in the mixed mode description.

The close correspondence between these two descriptions is very important

for design and documentation. The mixed mode representation provides one

higher level of abstraction in circuit representation and is more immediately

Fl
.
::. 40
I 3
-7
P —p— [==
l 3
.
—r— —
I N
lﬂ . ’
—— Samnd ——p—
' 3
I 4
[S— lfp— —p—
l Y
L
e o) ——
l N
rd
—— —p— ——
' LY
L4
I 3
Ld
—— —p—

Figure 2-20: Mixed mode representation

decoder\
rowi(2?] rowl(2%-1] ee e rowhl e o row(0]

TS

in_mix(n) gnd_mix Xlilin] Xlilln-1] ¢ e e Xlil[1] out_mix

one_mix

or
zero_mix

Figure 2-21: Hierarchy of objects in mixed mode description
¢
descriptive than the layout representation. Thersefore, the corresponding part in

the layout representation can become more understandable to the designer and
others. Moreover, suppose that after verifying the electrical correctness of the
circuit through the mixed mode representation, the designer decides to change part
of the design. It is relatively easy to locate the corresponding part in the layout
representation and make appropriate modifications. The advantages of using

multiple levels of abstraction in mixed mode description are the same as those

discussed in the case of layout description.

42

2.2.3 Schematic Description

The schematic description provides one higher level of abstraction than the
mixed mode description in the sense that the grophical version of the former is at
the gare level, while the one in the latter is at the rransistor level. As a result, the
schematic representation is more descriptive and understandable than the mixed
mode representation. 'fhe schematic description specifies the schematic diagram of
a circuit with many levels of abstraction. The hierarchy of objects is intended to
correspond to the hierarchies in other descriptions. Because of the
correspondences between different representations, design aid and documentation

are enhanced.
The following is the schematic description for a 3-to-8 NAND style decoder.
NAME decoder;
TYPE SCHEMATIC;
PARAMETER n =3;
LEAF CE!.LS nand_sche, zero_sche, one_sche, no_connec_sche, in_sche;
FUNC binary;
MAIN
decoder = row [2°*n] | (| (row [i] (i = 2**n -1 .. 0)));
row [2°**n] = (-- (in_sche (n)));
row [i] = (-- (X [i,j] (§ = n .. 1))) -- nand_sche;
X [i,j] = ((C [i,i,x] (k = 1.. 0)));
C [i,j,k] = one_sche, if binary (i,j) == 1 && j

= zero_sche, if binary (i,j)) == 0 && k
= no_connec_sche, if k !=j.

(]
I~

]

In order to generate the schematic diagram, five leaf cells are used. They include

S - A P & itk it -

43

nand_sche, zero_sche, one_sche, no_connec_sche, and In_sche. Figure 2-22 shows

the internal details of each leaf cell.

nand_sche

zero_sche

one_sche

no_connec.sche

in_sche

Figure 2-22: Leaf cells for schematic description

44

LA, P v,
-

zero_sche, one_sche, and in_sche are equivalent to zero_mix, one_mix, and

LELE - R

in_mix of the mixed mode description, respectively. Again, the imported function,

binary, is used to assist in the description.

At the highest level of abstraction, decoder is defined as a network of
abstract objects -- rows. This is also the way it is defined in the layout description

and the mixed mode description. The components of row [2°%] are identical to the

AN

corresponding parts in the mixed mode description. The geometric structure of
row [i] is similar to the one in the mixed mode description. Instead of replacing
abstract object X with a leaf cell directly, the hierarchy of objects is extended one
level lower. The fragmeat
X[i,j] = (C[i,jk] (k = 1..)

meaans that X {i,j] consists of n vertically stacked objects with C [i,j,1] situated at
the bottom of the stack and C {i,j,n] on the top of the stack. The leaf cells which
are used in the substitution depend on the values of k, j, and the jth bit of the
binary representation of i. The "flattened” representation of row [2] in a 3-to-8

decoder is shown in Figure 2-23.

zero_sche no_connec_sche | no_connec_sche

no_connec_sche | one_sche no-connec_sche nand_sche

no.connec_sche | no_connec_sche 2ero_sche

Figure 2-23: Flattened representation of row [2] in the schematic description

R Y Y DY LIS AL TN - U5

c}
-

A2hat

rYTRETFT

45

Figure 2-24 shows the schematic diagram of a 3-to-8 NAND style decoder.

YYYYYYYY

: ol g

Flgure 2-24: Schematic representation

The hierarchical structure of the objects used in the schematic description is

shown in Figure 2-25. It is important to note that the hierarchy is extended one

j;. level lower, but the correspondence with other descriptions still holds.

A e S

N
Lok o'

(I gy

o

decoder

,pff”’f::;;;y \:\\\“\\\\

row[2B] rowl2R-1]} « o « rowli] ¢« « « row|0]

N

in_sche(n) Xlilin) XliJin-1)« » « X[i)I1] nand_sche

clill1]{1] clil{1][2] « « « clil[1][n]

one_sche or
zero_sche or

no_connec_sche

Figure 2-25: Hierarchy of abjects in schematic description

2.2.4 Functional Description

The mechanisms used in the layout description, the mixed mode description,
and the schematic description are the same. Each of these descriptions is expressed
in the form of a hierarchy, and substitution is used to achieve many levels of
abstraction. These descriptions specify the geomersric relations of objects; therefore,
they fulfill their intended purposes well when they are applied to fabricating a
circuit or displaying a schematic diagram at the transistor level or the gate level.
In contrast, the functional description does not specify the relative positions of
objects. It describes how a particular design should respond to a given set of
inputs. In other words, the algorithm to be performed by a circuit is described.
The functional description serves as an excellent reference for checking the

intermediate results for the circuit simulation. It provides the input and output

47

relationship against which the simulation results can be compared. Moreover, since
a divide and conquer paradigm is used in most VLSI designs, the functional

descriptions of all modules can be integrated and simulated to check the

correctness of the whole design before the circuit is built. This can reduce the

design cost significantly.
The following statements illustrate the functional description for a 3-to-8
NAND style decoder.
NAME decoder;
TYPE FUNCTIONAL;
PARAMETER 1 =3;
FUNC nand, binary;
MAIN
decoder = OUTPUT (i](i=0..2 **n - 1);
INPUT=A[]G=n.. 1)
OUTPUT [i] = nand (X [i,j], j = n .. 1): <timing_specification>;

X [i,j] = binary (i,j) * Alj] + ~ binary (i,j) * ~ A[j]

The TYPE declaration and PARAMETER declaration indicate that this is the
functional description for a 3-to-8 decoder. It should be noted that leaf cells are
not used in this description since the purpose of the functional description is to
describe the algorithm performed by a circuit rather than the geometric placement.
Two imported functions are used in the description: binary and nand. binary is the
same function as the one described in other descriptions. nand simulates the

function of a NAND gate. It returns 0 if and only if all its arguments are 1.

The imperative part of the functional description specifies the internal

mechanism between inputs and outputs. The statement

48

decoder = OUTPUT [i] (i =0..2°°n - 1);
denotes that there are 27 outputs. The 2% outputs are named OUTPUT (0],
OUTPUT [1], ..., and OUTPUT [2° - 1]. For a decoder with 3 select wires, there
are 8 output lines. Similarly, the fragment

INPUT=A[j]G=n..1)
means that the n inputs are named A [n], A [n - 1], ..., and A [1]. Each input and
output is one bit wide. Note that there is a correspondence between these two
statements and the first two statements in the schematic description. OUTPUT ([i]
is functionally equivalent to row [i]. They describe one of the output lines. Both
row [2%] and A [j] (j = a .. 1) deal with the inputs. However, the former contains
the inputs and their complements; the latter only consists of the original inputs.

The complement of A [j] will be specified by the complement operator ~.

OUTPUT [i] is further defined by the function nand:
OUTPUT [i] = nand (X [i,j], j = 0 .. 1): <timing_specification>;
Since we are describing a NAND style decoder as shown in Figure 2-24, depending
on the inputs, exactly one of 2% output lines is 0; the rest are 1. In the case of a
3-to-8 decoder, suppose i = Z, then OUTPUT (2] is the result of the nand function
of X [2,3], X [2,2], and X [2,1]. In other words, X [2,3], X (2,2], and X [2,1] are
the inputs to the NAND gate and OUTPUT [2] is asserted (= 0) if and only if
X[2,3] = X[2,2] = X[2,1] = 1. The <timing_specification> specifies when the
output bit becomes stable and available for external circuit. It can be expressed in
terms of i, clock period (T), and time delay (td). The values of T and td are

technology and implementation dependent.

Depending on the jth bit of the binary represeatation of i, i.e. binary (i,j), the
value of X [i,j] is either the input A [j] or its complement XTj]. Note that given an

OUTPUT (i), the binary representation of i corresponds to the inputs A(n] A[n-1]

Bl

e 874 8 D

49

.. Alj] - Al1), where A [n] * 2" + A[n-1]*2%% + .. + A[1)*2° = i. Note
also that for an asserted OUTPUT (i], the inputs to the NAND gate must be all 1's.
The algorithm is thus the following:

X [l’j] =A U]’ if binary (i,j) == 1;
X [i,j] = X1, if binary (i,j) == 0; {

For example, OUTPUT (5] is asserted only when the inputs are 101. That is, A (3]
=1, A[2] =0, and A [1] = 1. Therefore, if the input is 101, according to the
algorithm, X [5,3] =A[3] =1, X [52] =X =1L, and X [5,]] = A [1] = 1.
OUTPUT ([5] becomes 0 which is asserted. In contrast, if the input is 110, then
X[5,3] = A[3) =1, X[5,2] = AT7] = 0, and X[5,1) = A[1] = 0. The result of the
nand function with these three arguments is 1. Since binary (i,j) is either 1 or 0, the
algorithm can be simplified by stating that

X [i,j] = binary (i,j) * A [j] + ~ binary (i,j) * ~ A [j].

While the functional description uses arithmetic operators rather than
geometric operators to describe a circuit, it still corresponds with the other
descriptions. The mechanism which it uses is substitution and the structure of the
description is hierarchical in nature. Figure 2-26 shows the hierarchy iﬁ the

functional description.

The hierarchy is similar to those in the layout description, the mixed mode
description, and the schematic description. The major difference between them is
that the leaves of the tree in the functional description are inputs or their
complements while the leaves of the trees in other descriptions are leaf cells.
Because of the correspondence, the functional description serves as an excellent

reference in simulation and a good documentation of the algorithm performed by a

circuit.

N
\
N 50
‘
-
3
¥y«

decoder

« e

) OUTPUT[2D-1] OUTPUT(2P-2] »« + OUTPUT[i]« - - OUTPUT (0]

N

Xlinl Xlin-1]e s« Xli, 1]

| _

Aljlor Al

Flgore 2-26: Hierarchy in functional description

2.3 A More Complex Example -- Multiplier

Section 2.2 showed the reader how to use the set of notations introduced in
Section 2.1 to describe the multiple equivalent representations of a decoder. This
section will present a more complex example, a multiplier, to illustrate the
versatility of the notations. mult is a generator for constructing an M x N cmos
multiplier layout’. The latest version (Jan. 1986) of the mult generator provides
the user with the following options: (1) set the number of bits in the multiplicand
operand, (2) set the number of bits in the multiplier operand, (3) define the left
side horizontal bus as ground or vdd, (4) label the product output bits, (5) make the
number representation signed (two's complement) or unsigned, (6) label the

multiplicand input bits, (7) label the multiplier input bits, (8) use one more adder

$The suthor of the multiplier geaerator is Wayne Winder.

3
)
A
A
\
l

o
4
o
«
LY
L)
§

T R LU Vi PO AL T R PRSP TY. AL PE W PR PR VL DU DWW VI V0 DU U G g D §

s1

to facilitate accumulation, (9) turn the internal cell labels on or off, (10) specify the
width of horizontal/vertical GND/VDD bus and multiplicand/ multiplier gate sizes,
and (11) debug. Each of these options has a default. For example, to create a 3 x
4 cmos multiplier layout with 2’s complement number representation, left side bus
being GND, and other options being defaults, the user can simply specify "mult -m

3 -n 4". The procedure is as simple as the one used in generating a decoder.

A 3 x 3 signed two’s complement multiplier is chosen as an example in our
discussion. In order to give the reader a better understanding of the different
descriptions for the 3 x 3 multiplier, the algorithm used by the multiplier generator
in creating the product output is described in section 2.3.1. Section 2.3.2 gives the

schematic description and the functional description.

2.3.1 Algorithm

The multiplication process may be viewed as having two parts: (1) the
generation of partial products, and (2) the reduction of these partial products into a
final product output. This section reviews the important details of the algorithm

used by Winder in his design of the mult generator [Winder 84).

2.3.1.1 Unsigned Multiplication

The most basic form of multiplication consists of forming the product of two
unsigned binary numbers. Let the twn inputs to the multiplier be defined as the
multiplicand (X) with m bits, and the multiplier (Y) with a bits. The product of
X°Y is defined as P (P has n+m bits). The process of multiplication is illustrated

in Figure 2-27.

Each partial product (e.g. X Y, ... X,Y, X Y, X;Y) is conditional on the
multiplicand and one of the multiplier bits. In other words, the evaluation of

partial products coansists of the logical ANDing of the multiplicand and the relevant

B AL SR ABASL AAR el JEL aueds shods gt S\
vl A A Ot R .t
AR Y

52

m-] m-2 i ° 1 0
YO meo XmYzo Xi YO . Xz YO XIYO xo YO
ENLN LN LN LN e

: : : }
R R A TR A

0 l \ "l \ L \ lc\'}""lc\'l.n-ll%.n-l

vesn _
O PRC Tl el o
P P p P
a*m-1 nem-2 nel n

Cun xi

S_in” l!.j
Yy — Y
C_nu!” xi S.ou!u

Figure 2-27: Multiplication of two unsigned binary numbers

multiplier bit. The successive additions and shifts for 0 =i s m-1and 0 < j < p-1

are accomplished as follows. First the sum_in, i

together. Then, sum_out; . and carry_out, ; are sent down to the next row. The

carry_ini‘j and Xin. are added

sum_out, . becomes sum_ini_l'j+l and carry_out, , becomes carry_ini'jﬂ. Note that
the carry overs are not rippled through the next higher order bits. The sum_out’s
and carry_out’s generated by the addition with the current partial products are
added in with the next partial product. Note also that elements in the top row and
the leftmost column in Figure 2-27 are considered as having O’s as sum_in and
carry_in. The sum_out’s of elements in the rightmost column become the lower

order n bits of the final product. The n+1 st row is implemented by a ripple adder

DR S L L TS P U P S Py

e ey (2d AR A A i S S ta A e A

33

where all the sum_out’s become the higher order bits of the final product after the
ripple addition. For example, P is the sum_out of adding carry_out, , and
sum_out, . .; P ., is the sum_out of adding carry_out, ,, sum_out, . ,, and the

carry_out from the addition performed for P .

2.3.1.2 Signed Two's Complement Multiplication

The algorithm used in the case of signed multiplication is more complex since
the most significant bit of each number is the sign bit. Let X, the multiplicand,
and Y, the multiplier, be represented by (xm_lxm_z,...,xlexo) and

(Y Yn-z""'YZYlYo)' For positive values of X and Y, the most significant bits,

n-1
Xpq and Y, are zero. In this case, the multiplication process can be
accomplished with the algorithm for unsigned multiplication as described in section
2.3.1.1. However, when the sign bits are not zero, we must revisit the significance
of the two’s complement representation. For example, -5 is represented as 1011 in
the 2's complement representation (assuming a 4-bit word). The two’s complement
process is used to eliminate the necessity of using the sign notation by embedding
the negative value of the number in the most significant bit. Thus 1011 is made up
of two parts: the negative part (-1)23 = -8 and the positive part, 011, which is 3.

Adding these two, we see the significance of -8 + 3 = -5 = 1011,

Hence, arithmetic using two's complement is predicated on the assumption
that the two operands have the same number of bits. If we add two two's
complement numbers without aligning the sign bits, the result would be incorrect

as illustrated below.

1011 = -5
1o1 11 = -9 {
100010 = -30

Alignment of the sign bit of a negative number to a higher order aumber can be

{

1

-4

...........................
................

54

simply accomplished by filling with leading 1's to the negative number with less bits
until the two numbers have the same number of bits. This is because -20-1 = .om 4
201 For instance, -5 = 1011 = 11011 = 111011 = This idea is used for
aligning the sign bit of the negative partial product to the sign bit of the next
higher order partial product if they are not on the same bit position. For a non-

negative number, only leading zeros need be added.

Given two numbers X and Y in the 2’s complement representation where the

multiplicand X is of the form (X, X ,. ..., X, X, X)) and the multiplier Y is of
the form (Y, Y ., Y, Y, Y,), we can write

= -1 m-2 1 0
X=-Xp 2™ + X, 2™+ ..+ X220 + X2°,
- -1 -2 1 0
Y =-Y, 2" +Y 2"+ .+ Y2 + Y2

and

P=X"*Y

_ +0-1 +n-2 1 0
= 'Pm+n-12m -l 4 Pm+n_22“‘ -2y L+ P2" + P2

where P, is expressed in terms of X, and Yj. To obtain the value of P

p We first

multiply X by Y, to get the first partial product:

Yo X 2™+ YoX 2P0+ L+ YeX 2t + Y X2

As mentioned before, -2@! = .2 + 2@ The first partial product is equal to

-1 -2 1 0
XX 2™+ Y X 2™ 4 Y X 2™ 4+ Y X2+ Y X2,

In this manner, the sign bit is shifted one bit to the left, thus accomplishing e

alignment of the sign bit with the one in the second partial product. The second

partial product is

......................

- W

55

-1 2 1
Y X 27 Y X 2™ 4L+ Y X2+ Y X2

When it is added to the first partial product, the sum becomes

. -1 0
S A(YX oy + Y X)2% + (VX + Y X 2% + 4 Y X2%.

By the same token, the sign bit should be aligned with the sign bit of the next
partial product. Let us now formally define the values of the sign extension bits by

’ rewriting the above cumulative sum in the following way:

- 4200 4 g2 4 (Y X+ Y X 2™+ Y X2

Consider the table in Figure 2-28.

Yo X o | Yy Xmer | f g,
0 0 0 0
- 0 | | |
. 1 0 1 \
1 1 | 0

Figure 2-28: Sign exteasion bit

If both Y,X ,and Y, X , are non-negative, we fill the extended bit (f;) with 0
which corresponds to the fact that the sum of two non-negative numbers is non-
negative. If one is positive and the other is negative, the result should be negative
(since the product will be negative). By applying the observation that -2™ = -2m+l
+ 2™, we derive f;=g =1 and the alignmeat is thus accomplished. When both
numbers are negative, adding these two sign bits results in overflow. In this case,

the sign bit (i.e. overflow bit) still represents a negative number and no alignment

is needed since -20 + .20 = .2m+1

l'{.."“

From table 2-28, it is obvious that f, = OR (Y X ,,Y,X_) and g, = XOR
(YoXp.1 Y Xp.) Since fy = Y X, and g, = Y X ,, we derive f; = OR

e

'

'y

2

P Y

56

(fO'lem-l) and g, = XOR (fy,Y X ,). Similarly, subsequent sign extension bits fi
and 8 (for j < n - 1) will have the values
fj = OR (fH.Yij_l)
and

g, = XOR (f,,Y X).

This process of forming the partial product, adding it with the previous
cumulative sum and performing the sign extension is carried out starting from Y,
until Y_,. At cach step, one corresponding bit of the final result is produced, i.e.
Po, Pl, . Pn-Z' The final partial product involving Yu_l has to be treated
differently: (1) If Y , = O, the sign extension process in the preceding P, has
taken care of the correction needed if X, = 1; (2) If Y | = 1, it can be shown
that we need to add 2@*%1 . X to the final sum in order to get the correct result.
This can be achieved by two’s complementing X before adding it to the cumulative
sum. Since this 2's complement will not change anything if Y, = 0, the procedure
is the same independent of the value of Y ,. That is, the last partial product is

the same as
Xy Your - Yo 2B 2 + Y, (- X 0203+ L+

-1 -1
Y, (1- X2t + Y, 2

Observe that (1 - X;) = X{. The sign extension process for the last cumulative sum

has the modified formula

fn-l =8y = OR (fn-Z' AND (x:' Yn-l))'

The block diagram of the two’s complement implementation is shown in Figure
2-29. It should be noted that after the (n-1)th addition, the result, carry_outs,

sum_outs and the Y, bit, have overlapping binary weight values. For instance,

e il POV T P T VY PR VRV TSPy e ¥ w. T

A wa sl B S e e e S T 20 A A A S

»""'_I Radil et ¥ o SR oS M

57
xm-l X2 xl X,
-
" Yo — ——d
" f° x‘.| o Xa1 xl e Xo
. carry carry
p Yl P — Po
>.
b .
b .
b l 1
L
i y
Z P
P
Yu.z }_. — a-3
' 82 sum
8-l
P
a-2
Yau1 L. ... -
' 8s.1 we sum tum Yeu
- carry carry
1 o0
— -— b—
] j
. P P
Prsa Pm#n-l Poyy 8 ol

Flgure 2-29: Block diagram of the two's complement implementation

R -~ . 5 e .
.- . S o Je .
PN D P SRP IR S WU WP WS 0 RPN WAL S . P Y

Sy . TR T Ty T W TR e e e

S8

the carry out from the ith column has the same weight as the sum out from the
(i+1)th column. The final stage of the multiplier is thus impleme=ntsd by a ripple
adder to obtain the higher order m+1 bits of the final product. These bits, in
conjunction with the P, , P, P, obtained in the first n-1 partial pfoduct

additions, coanstitute the two's complement representation of the final product.

2.3.2 Descriptions

The layout description, the mixed mode description, the schematic description
and the functional description of the multiplier apply the same mechanisms as
those which are used for describing the decoder. Each description is a hierarchical
structure in which the building blocks are objects except for the functional
description. Objects may correspoad to leaf cells, or they may be abstract objects
which are defined in terms of lower level objects, which may again be defined in
terms of even lower level objects, etc. By using the substirution mechanism, the
complex geometrical patterns of the layout and schematic diagram for a multiplier
can be described in a clean and understandable manner. This section shows the
schematic description and the functional description of a 3 x 3 signed two’s
complement multiplier. The layout description and the mixed mode description are

given in Appeadices C and D, respectively.

2.3.2.1 The schematic Description

As pointed out in Section 2.2.3, the graphical version of the schematic
description is at the gate level. Thus the schematic description provides a higher
level of abstraction than the layout description or the mixed mode description.
The following statements define the schematic description for a 3 x 3 signed two's

complement multiplier.

NANE multiplier;

TYPE SCHEMATIC;
PARAMETER m =3,n =3;
LEAF CELLS SignExt, FullMult, LSignExt, Comp, RComp, Add;
MAIN
multiplier = adder | row(n] | (| (row([i] (i =n-1.. 1)));
row[i] = SignExt -- (-- (FullMult (m - 1)));
row[n] = LSignExt -- (-- (Comp (m - 2))) -~ RComp;

adder = (-- (Add (m + 1))).
{

To generate a signed two’s complement multiplier, six leaf cells are needed.
Figures 2-30, 2-31, 2-32, 2-33, 2-34, and 2-35 show the block diagram and internal

gate representation for each leaf cell.

SignExt generates the sign extension bits fj and g for 0 < j < n-2, while
LSignExt evaluates the last sign extension bits, f , and g ;. The function of

FullMult is to calculate the sum of carry_out; ., sum_out, and the ANDed

+1,j
function of X, and Yj for0 =i =m-2and 0 <j <= n-2. Comp and RComp evaluate

0

the sum of carry_out; , ,, sum_out,, =, and the ANDed function of X; and Y __,,

< i s m-2. They are basically the same with the exception that Y, in RComp

exits from the right hand side and curves down to the first bit of the ripple adder.

Y,., is one of the inputs to the lowest bit of the ripple adder because of the last '
term in the expanded version of the nth partial product, Yu_lzﬂ'l. The leaf cell

Add computes the sum of three inputs and produces one bit of the final product.

In addition, the carry out is sent to the next higher order bit position of the ripple

adder.

e hid b

-
1
.

e L U T S P L e ..

Mafha Ao 2a ha 4'a A0 Nad el

Y ——> SignExt
) & [_-__) Y)

Flgore 2-30: SignExt

gn~l

. Figure 2-31: LSignExt

...................................

.
v
.
d
!
L]

-
'

62

sumin carryin X

U

-
!
-
)
>‘
b
b

V4 1
carryout x' sumout
carryin X
summ\ l : ’ 1
Y, —1 FullMult —— v,
carryout xi sumout

Figure 2-32: FullMult

L 6 aas Aam g o Vg e W e e AR Al S abe 8 0o e~ ahe iAn *ALe A4n A TR T RaC i SaC IR e B

C1ER s s s A

e s e v tant et a2

sumin carryin

p(=

Rcerryout
\J__L Rcarryin
sumout
sumin carryin
| |
Rcarrvout «——— Add e———— Rcarryin

sumout

Flgure 2-33: Add

. Te e . .
- ORI K
[PPSR S 51

rv--w,v'_.Avq_-l'T""-Y

64

sumin carryin X

U

carrgout SUﬂ\i/O t
u
_ carryin X
sumin L 1‘
Y —
n-1 comp T Yo
carryout sumou!

Figure 2-34: Comp

1 m\ M AAR sane b e van 20 Al iund e 2 S A Jie e A At htutie 8 - Tl Aie S de bl nde Pl

T ol s e e et St Biie Jhet i

sumin carryin X

5 |
Ej —U

carryout sumout Y

carryin)(1

N

Yn_l———~>‘ RComp

carryout sumout Yn-l

Figore 2-35: RComp

- - - - . d"y‘-b' N L . -t EEPEE . -
T T T T Y T T N W S R L TN RIS .]
. ta v tai aSaltaladalalatadscs s ol TN IR IR I TN PP NIV VS TR VS VS L. Ve Ve v Sl N N S Y B . WS S

66

At the highest level of abstraction, multiplier is defined as

multiplier = adder | row[n] | (| (row[i] (i = n -1 .. 1)));

Thrus it consists of an adder and n rows named row[n], row{n-1], ..., row[1]. These
objects are vertically stacked. The adder is situated at the bottom of the stack
while row[1] is situated on the top of the stack. For a 3 x 3 multiplier, there are

three rows. The statement

row[i] = SignExt -- (-- (FullMult (m - 1)));

denotes that row(i] is made up of SignExt horizontally joined w‘ith m-1 FullMult’s.
SignExt is situated on the left hand side and the FullMult’s are situated on the
right hand side. The m-1 FullMult’s are also horizontally joined. From the
previous descriptions of SignExt and FullMult, it is obvious that row(i]
accomplishes the process of forming the partial product, adding it with the previous

cumulative sum and performing the sign extension. The statement

row[n] = LSignExt -- (~ (Comp (m - 2))) -- RComp;

specifies that row([n] consists of m-2 horizontally joined instances of Comp with
LSignExt on the left-end and RComp on the right-end. Note that the function of
row([n] is to perform the ANDing of the complement of multiplicand and Y, , as
well as generate the cumulative sum and the last pair of sign extension bits, f ,

and g ,. The elements in the adder are further defined by the following fragment

adder = (-- (Add (m+1)));

Therefore in a 3 x 3 multiplier there are 4 Add cells horizontally joined. The
object adder generates the higher order m+1 bits of the final product. Figure 2-36

shows the expansion of the schematic description for a 3 x 3 signed two's

complement multiplier which is an instance of Figure 2-29.

67

X20 0 0 X1 0 0 X,
Yy —— SignExt FullMutt FuliMult
9
g fo 0 sumolo
) Pg
Yy SignExt FullMult ¥ FullMult
0 - 9, sum
f‘ I I G,1
%
———LSignExt Comp RComp '
92 Y
f2
Add [+ Add Add Add
I [[]
P P, P P,

Figure 2-36: Schematic diagram of a 3 x 3 multiplier

- " v " e e Bt ams e B e st v st dun aen Su i oo st e s S A e by bhCoRt R B

68

2.3.2.2 The Functional Description

Consider now the functional description for an m x n signed two's
complement mulitiplier. As mentioned before, the functional description describes
the algorithm performed by a circuit. In the case of a multiplier, it describes how
the final product is generated given a multiplicand X with m bits and a multiplier Y
with n bits. Presented here are three versions of the functional description for a
signed two’s complement multiplier. Each version represents a different level of
abstraction. At the highest level of abstraction, a 3 x 3 signed two’s complement

multiplier is described as follows.
NAME multiplier;
TYPE FUNCTIONAL;
PARAMETER m =3,n =3;
MAIN
multiplier = OUTPUT[{} (I =0 .. m+n-1);

INPUT = X[i] (i = 0 .. m-1),
Y[l (j=0.. a1)

OUTPUT =X *Y.

For an m x o multiplier, there are m+n bits in the final product. They are named
OUTPUT(0], OUTPUTI1], ..., and OUTPUT{m+n-1]. The inputs are X and Y
where X is of the form (X[m-1] X[m-2], ..., X[1] X[0]) and Y is of the form (Y[n-1]
Y([n-2], ..., Y[1] Y[0]). The OUTPUT is the product of X and Y.

To further describe how the product output is generated, one lower level of

description is provided.

NAME multiplier;

TYPE FUNCTIONAL;

Dokl At e Sl

AR I

69

PARAMETER m =3,n =3;
MAIN
multiplier = OUTPUT([/] (/{ = 0 .. m+n-1);

INPUT = X[i] (i = 0 .. m-1),
Y(j1(j=0. n-1)

MY lirafivarivtd LN

OUTPUT =X"*Y
= CS[n};

CS[k] = CS{k-1] + PP[k], if 1 <k = n;
cs[o] = 0;
PP(k] = Y[k-1] * X *2**(k-1),if 1 sk = n;

PP[0] = 0.

PP(k] represents the kth partial product and CS[k] represents the kth cumulative
sum of the partial products. Note that the details of the extension of sign bit and
the separation of carry and sum in each cumulative sum are not explicitly described
in this level of abstraction. Examination of these statements shows that the
functicnal description not only describes the algorithm but also corresponds to the
schematic description, the mixed mode description and the layout description. The
first n-1 rows of row[i] in the schematic description correspond to the first n-1
CS{k]'s while row[n] and the ripple adder are implicitly accounted for in the

functional description by evaluating CS{n].

At the lowest level of abstraction, the generation of each bit of the product
output and sign extensica bit is described. It is shown as follows.

NAME multiplier;

TYPE FUNCTIONAL;

e il

PARAMETER m =3, n =3;

70

FUNC sum, carry, summation;
MAIN

/* TERMINOLOGY:

CS[k] = cumulative sum of partial products; made up of partial
sum and partial carry. 1 sk = .

PS[k] = partial sum; the sum portion of the result of an addition
when the carry overs are not rippled through the higher
order bits.

PC{k] = partial carry; the carry portion of the result of an
addition when the carry overs are not rippled through
the higher bits.

Note: PS[k] + PC[k] = CS[k] the total result of the
addition.

F{k] = the higher order bit resulting from extending the sign
bit during an addition. This is also the MSB of PC[k].

G([k] = the lower order bit resulting from extending the sign
bit during an additicn. This is the MSB of PS[k].

RS[/] = sum bit generated by the ripple adder. This is also
one of the product bits. n-1 </ < m+n-1.

RC[{] = carry bit generated by the ripple adder.

PP(k] = partial product; it is one bit of Y times the vector X,
then shifted appropriately.

Fn[k,/] = bit with the 2**/ power of the kth evaluation
of the function Fn. ¥

multiplier = OUTPUT[/] (! =0 .. m+n-1);

INPUT = X[i] (i =0 .. m-1),
Y[jJ(j=0. o-1)

OUTPUT =X"*Y
= RippleSum;

RippleSum = summarion (RS[t]*2°%, t = m+a-1 .. n-1) +
summation (OUTPUT([t]*2°%, t = n-2 .. 0);

RS[{] = sum (PS{n,!], PC[n,], RC[(]), if 0-1 </ < n+m-2;
RS[m +n-1] = sum (0, PC[n,m+0-1], RC[m +n-1]);

RC[I+1] = carry (PS[n,!], PC[n,!], RC[{]), if -1 = { < n+m-2;

s A At e s e s

AR RS AR ST AP)

RC[n-1] = 0;
PC[n,n-1] = Y[n-1];
/* cumulative sum is made up of partial sum and partial carry */
/* PS[k] and PC[k] are not added until next addition */
o CS[k] = PS[k] + PC[k], if 1 sk = n;
PS(k] = sum (PS{k-1], PC[k-1], PP{k])
- = summation (PS[k,t]*2°*t, t = m+k-2 ..k) +
i summation (OUTPUT]t]*2**, t = k-1.. 0);

PS(0] = 0;

/* The MSB of a partial sum is G{k] */
PS{k,m+k-2] = G[k];

PC[k} = carry (PS[k-1], PC[k-1]}, PP[k])
= summarion (PC[k,t]*2°*t, t = m+k-1 .. k);

/* The MSB of partial carry is F(k] */
PC(k,m+k-1] = F[k];

F(k] = F[k-1] | PP[k-1,m+k-2), if 1 <k = n-1;
F[0] = 0;

Glk] = F[k-1] * PP(k-1,m+k-2], if 1 S k < a-I;
G[0] = 0;

F[a] = Fla-1] 1 (X[m-1]*Y[n-1]);

G[n] = F[n-1] | (X[m-1]*Y[n-1]);

PPk] = Y[k-1]*X*2°*(k-1)
= summation (PP[k,t]*2°*t, t = m+k-2 .. k 1),if 1 <k =n-];

PP(n] = (X[m-1]*Y[a-1] - Y[n-1])*2**(m+n-2) +
summation (Y[ﬂ-l]"X[t]oz“(t+n-])' t =m-2 .. 0) + Y[n-l]’?.“(n-l);

OUTPUT(!] = RS[/]: <timeing_spec>, if n-1 <! < n+m-1
= PS[{+1,l]: <timing_spec>, if 0 < | < n-2.

72

Three functions, sum, carry and summation, are used in this description. Sum
(a,b,c) is equal to 2 XOR b XOR c and Carry (a,b,c) is equal to ab OR bc OR ac.
These two functions generate the sum out and carry out of three inputs. Swrmation
is the addition of terms in the series. The range of the terms is specified by the

limit of the index t. This function simulates the expansion of % Thus,

t=lod
summation (RS[t]*2""t, t = m+n-1 .. n-1) represents
RS[m +a-12®**!1+RS[m+n-2]2"**2+. +RS[n-1]2*!. Figure 2-37 is the graphic

representation of this functional description.

The lowest level of abstraction in the functional description is very close to
the algorithm. RippleSum is the final product which is the concatenation of the
sum bits (RS[m+n-1]RS[m +n-2]...RS[n]RS[n-1]) generated by the ripple adder and
the n-1 bits generated by the partial sum’s, PS[n-1],PS[n-2},...,PS[1]. In the ripple
adder, each of the sum bits (which is also one bit of the final product) is defined as
the sum part of three components: (1) one bit of the partial sum from the nth
cumulative sum, (2) one bit of the partial carry from the nth cumulative sum, and
(3) the carry from its next lower order bit. Similarly, every bit of a partial sum is
the sum part of the sum in, the carry in and one bit of the current partial product.
The carry part of these components forms one bit of the partial carry. These can
be seen very easily from Figure 2-37. It should be noticed that the the MSB of
each partial sum (PS[k]) is G(k] and the MSB of each partial carry (PC(k]) is F[k].
The definitions of F[k] and G[k] are the same as those described in Section 2.3.1.2.
By separating the cumulative sum (CS[k]) into partial sum and partial carry, the
carry is not rippled to the next higher order bit. Thus, the multiplication is a
sequence of carry-save additions and only suffers from one ripple addition at the
end. The third level of abstraction in the functional description reflects this

important idea as it is implemented in the generator.

LRI R A A AL 2% N o ol Jin ettt i as i v

e N Y VY gy~

L TR T N TN TP TN T WY

m-1 X2) X, Xo
f" 2--) 2' 20
Yﬂx--l- Y,
PO k-2 1> e — YoX (= -
T P rhi'd K
PS4k)=
s{lm2)
CS{1] = PS[1] + PC[1} | sy ap) et rs{L)
%
» 2 | rtiay 2 | |
:h’:"'-t 2= Y, X Y\X - e
k- -:” — .o 1 Y, X, =
M) rialy)] iy rl‘x’:?u L
PSik.m -]
) ol2) 2.1} rs(2.2)
MKlkmeb-2)e .
ria) rC123) K22
) s{2.1)
. \ .
w
R
Y ,x-_‘- Y *a1™ . Y X,- PSja3a M
rhs-Caen-y) Ll e ke
{ PS{a 1.m+n4)
Ha 1) Oln-1) rS{a-1a-1)
MNls late} \ £Clo-1.0) Cla-1.0-1)
PS{s-12)
X y‘ Y ‘- " X‘_"- __l Y X~ Y.\ C-
?fla.z'va 1) rhami [rha.) Phis.a 1)
CS[n] = PS[n] + PC Ga}= rijo.mea 3] e
l] l l P l“] Fiaje rs{s.m +a-2) PS{s,a) rs{en-l)
‘ smrsl | Mlnweel] paend | PClamee) qaet | MClane1) 2 | rCsa P
hr—— -y —.
RC|m +a 3 RCla 1}
e — -8
RC[m +a.1) RCla +1) RC3)
KS(m+e I RS[m 492} RS{a+1) RS(s) ”il'll
Flgure 2 .7: Graphic representation of the functional description
AP i e P O

74

As in the decoder example, we see that each description employs many levels \
of abstraction and that there is a correspondence among different descriptions. If
the design is changed, relevant parts for a description can be discovered and
modified very easily. The changes can also propagate to other descriptions in a

controlled manner. The process of design and documentation is thus enhanced.

~ -

L [LU L . e
Y R A Ty S - Tt _ (T AP S W Py A
EEITR N NI U Y Y VAP G TV T ¥ Wl Wl T Tl Sl §.0% PPN O T - o e e fond

TV AT TR

CHAPTER 3. PARAMETERIZATION

"
N
[y
al
=)

Chapter 2 shows how a set of notations can be used to describe the multiple
equivalent representations of a design. Each description is declararive. A circuit is
described in the form of a hierarchy. As a result, the abstract structure of a design
is captured. Each description describes an instance of a particular circuit. The
flexibility of specifying instances with different design specifications is needed.
This chapter discusses the parameterization issues. Section 3.1 presents how the
description is modified to describe instances with different parameters. Section 3.2
suggests a structure which contains information about parameters (attributes) of an
instance of a circuit. This structure, catalog, serves as a database such that
important properties of a circuit can be retrieved by the user or the interface
system without expanding the relevant description. Finally, section 3.3 shows the

robustness of the descriptions when one of the parameters, technology, is changed.

3.1 Instances with Different Attributes

Using the constructs described in the last chapter, a decoder with a different
number of select wires and a multiplier with a different number of bits in the
multiplier and the multiplicand can be specified by providing the desired value(s)
of n (and m, in the case of multiplier) in the PARAMETER declaration part. For
instance, the four different views of descriptions for a NAND style decoder with 5
select wires are the same as those given in section 2.2 except that the value of n is
assigned to be 5 (n = 5) rather than 3. Thus, without specifying the values of n,
the descriptions given in section 2.2 can serve as generic descriptions for any
NAND style decoder. When a description is instantiated, the value of n is bound
to a specific number. In other words, each occurrence of n in the description is

replaced by the desired number of select wires. The description for a particular

LCChl
,

76

instance of decoder is thus accomplished. This flexibility through the use of input
parameters simplifies the descriptions for a class of ciicuits which have different
dimensions in their inputs but have similar structures. Parameterization of input
helps coatrol the variability in their dimensions. Moreover, one can see how the

description varies with the parameters.

The concept of parameterization can be extended to the LEAF CELLS
declaration in the layout description, the mixed mode description, and the
functicnal description. Given a set of design specifications, a circuit description is
instantiated. The appropriate leaf cells for that description must be given in the
LEAF CELLS declaration. Notice that the leaf cells may not be the same for
different specifications; however, the hierarchical structures of objects in the
description are similar. Suppose that instead of a 3 x 3 signed two's complement
multiplier we want to generate the schematic description for a 3 x 3 unsigned

multiplier. This can be accomplished by the following statements:

NAME multiplier;

TYPE SCHEMATIC; -
PARAMETER m =3,n =3 '
LEAF CELLS FullMult, Add;
MAIN

multiplier = adder | (I row[i] (i = n .. 1));

row[i] = -- FullMult (m);

adder = -- (Add (m)).

The schematic diagram is shown in Figure 3-1.

B
.

-
-4
[}
L]

. - ‘a &, _
: A L T o e e e bt ahadiedn et
I Y o o - L - L e el e L T L__A‘L.L“m—

Ty el ek and sad Ash TE T WYY e T T W N W T ST T e ow .
Ry L Ydh e e e seen e 2O whadl e 0 bl 2R S A M A 20 U S il S - dnhralsAai A A S Pl S

o i S A R S A W Pl - -

p . A RS . N < B

. 77
4 X2 Xy Xo
Yy — A FullMuit FullMuilt " FullMuilt
. 0
. PO
Y ; — ¥ FullMuit FullMult M FullMuit :
0
P 1
Y, —FullMult FullMult FullMult
0 \ o
Add Add ¢ Add o ¢
. A
3 P P, ;

Flgure 3-1: Schematic diagram of a 3 x 3 unsigned multiplier

The description of the unsigned multiplier is simpler than the one for the
two’s complement multiplier. There is a similarity bctween the hicrarchical
structures of objects in these two descriptions. Figures 3-2 and 3-3 show the

hierarchical structure of objects in the signed two’s complement multiplicr and the

unsigned multiplier, respectively.

multiplier
adder row(n] rowln-1} s+« rowlil «<« row(l]

AN

Add(me1) LsignExt Comp(m-2) RComp SignExt FullMult(m-1)
1

Software Routines Model GCenerator Routines

Figure 3-2: Hierarchical structure of signed 2's complement multiplier

..........

..

e P P Y T T YT T Y YV Y W W

78

multiplier

T

adder rowln] ¢+ rowli] e« row[l']

|

Add(m) FuliMuit(m)

Figure 3-3: Hierarchical structure of unsigned multiplier

At the highest level of both descriptions, adder and rows serve as primitive objects
which encapsulate internal details of the circuit so that the multiplier can be

described in a more comprehensible way. Then the rows and adder are further

defined at one level lower in the hierarchy. Because the most significant bits of
the multiplicand and the raultiplier in the unsigned multiplier also carry positive
magnitude, the definition of row[n] is the same as the oae for other rows and each

row only consists of m instances of FullMult.

The functional description for a 3 x 3 unsigned multiplier corresponc 1e
schematic description and bears a resemblance to the functional description for a 3
x 3 signed two’s complement multiplier. The first two levels of abstraction are the
same as those in the signed two's complement multiplier. Since both the
multiplicand and the multiplier are non-negative, there is no need for
complementing X in the last partial product and performing sign bit extension for
each cumulative sum. As a result, the third level of abstraction is simpler. The
following statements illustrate the functional description for a 3 x 3 unsigned

multiplier at the third level of abstraction.
NAME multiplier;

TYPE FUNCTIONAL;

.......

BRSO S0P IR SR T S o S

PARAMETER m=3,n =3;

FUNC sum, carry, summation;

MAIN

multiplier = OUTPUT([!/] ({ =0 .. m+n-1);

INPUT = X[i] (i =0 .. m-1),
Y[j]1(G=0.. n-1);

OUTPUT =X "*Y
= RippieSum;

RippleSum = summation (RS[t]*2**, t = m+n-1.. o) +
summation (OUTPUT[t]*2**t, t = n-1.. 0);

RS[(] = sum (PS[n,!], PC[n,/], RC[{]), if 0 < ! < n+m-2;
RS[m+0-1] = swn (0, PC[n,m+0-1], RC[m+0-1]), if 0 </ < n+m-2;
RC[(+1] = carry (PS[n,!], PC[n,{], RC[!]), if n =< < n+m-2;
RC[n) = 0;
CS[k] = PS[k] + PC[k], if 1 S k = n;
PS[k] = sum (PS[k-1], PC[k-1], PP[k])

= summation (PS[k,t]*2**t,t = m+k-2 .. k) +

summation (OUTPUT[t]*2**, t = k-1 .. 0);

PS[0] = 0;

PC[k] = carry (PS[k-1], PC[k-1]}, PP[k])
= summation (PC[k,t]*2**t, t = m+k-1 .. k);

PC[0] = 0;

PP{k] = Y[k-1]°X"2**(k-1)
= summation (PP(k,t]*2**, t = m+k-2 .. k-1),if 1 sk s n;

OUTPUT({] = RS[{]: <timing_spec>, if n =! < n+m-1
= PS[I+1,{]: <timing_spec>, if 0 = { < n-1.

80

In this section, we have examined some instances of decoder and multiplier
with attributes different from those specified in chapter 2. The intent was to show
" how parameters are used to modify the descriptions, and yet the object hierarchies
remain consistent across the same family of circuits. Use of hierarchy and
abstraction in the circuit description makes it possible to suppress unnecessary
details. However, important information about a circuit after it is "expanded”
should also be provided to the user and the applications software to facilitate the
design process. Catalog, a database for an instantiated circuit, is designed to serve

this function and will be discussed in the next section.

3.2 Catalog

A catalog is a list of properties of an instantiated circuit. It provides
information about the expanded version of a circuit to the user and applications
software, such as the layout system and to the interconnect system. Especially,
features which are not shown in the declarative descriptions but are requisites for
the generation of layout or simulation are provided. In the declarative
descriptions, the multiple instantiation of an object is specified by repetition. Since
the details of an object are only comsidered once, this produces considerable
savings in design. Nevertheless, the characteristics of the expanded circuit such as
size and bus width are often requested by the synthesis tools (e.g. placement),
simulators, DRC interface, or timing analyzer. The objective of a catalog is to
permit the users and the interface systems to rerrieve attributes of the circuit from
the database rather than analyze the descriptions or the expanded geometric

representations. Thus fast access of information is achieved. y

The entries of a catalog are determined by the circuit and the interface
systems. They can be extended. A catalog has either general or special entries.

General entries exist in all catalogs while special entries are included only in some

81

circuits. The entries of a catalog may include the following. Item (1) to item (7)

are general entries while item (8) represents special entries.

(1) Name: the name of the circuit, e.g. decoder. So, the value of the type is

string.

(2) Description: a description of the circuit behavior. This description is
primarily for documentation purposes. It can be an English-language description or

a pointer which points to a file that contains this information.

(3) Technology: e.g. cmos 3 micron, nmos, etc. Again, the value of the type is

a string.

(4) Parameters: number of inputs and outputs. These are integers. In
addition, other design specifications should also be included. Examples are the
style (NAND or NOR) of a decoder and the number representation (SIGNED or
UNSIGNED) of a multiplier. These parameters are circuit dependent and thair

values depend on the nature of the parameters.

(5) Size: the X and Y dimensions of the bounding box which contains the

circuit. They can be expressed in terms of lambdas or microns.

(6) Connectivity: The border descriptions include lists of coordinates of the
points (say, in clockwise order) where each kind of material in the circuit makes
contact with the bounding box. They are provided for routing purposes.
Information about the location and width of the power/ground buses and the wires
in the design should also be included. For each wire, it contains the wire id, its
layer, its size and location. The values of the border descriptions and wire
information in the catalog can be specified by pointers which point to the

appropriate files. Moreover, the catalog should also provide a pointer which points

to the DRC ring specifications.

B S A e A R AL A A S N T

82

(7) Performance: gate size, power consumption, rise time, fall time and

propagation of critical path.

(8) Special Features: characteristics that are only applicable to some circuits.
For instance, a bit map specification is useful in a ROM while it is irrelevant to a

decoder.

The structure of a catalog can be viewed as a collection of tables which are
similar to the relations in the relational database. Because some of the entries in a
catalog are circuit dependent, no attempt is made here to present all possible

relations. Part of the structure is shown as follows.

(1) circuit (name, description, technology, parameters, size, connectivity,
performance, special features). Each circuit is associated with a description of its
name, behavior description, technology, parameters, size, connectivity,
performance, and special features. The entries for the last five attributes are
pointers. Since we are describing an instantiated circuit, there is only one record
in the circuit table. However, if "catalog” is generalized to represent a generic
construct for all the circuits in a common family, then there will be sets of records

in the circuit table and each record represents a circuit.
(2) parameters (#inputs, #outputs, ...).
(3) size (Xdimension, Ydimension).

(4) connectivity (crossings, wires, drcRing). The values of attributes in the

connectivity table are all pointers.

(5) crossings (side, layer, location). The crossings table describes the crossings
in the border description. It contains one line per crossing, representing the

containing side (top, down, left, right), its layer and location.

(R,

(6) wires (id, layer, size, location).

avaa 8 A B2,

Information about the components of a circuit and how they are oriented and
placed is not described in the catalog since they are already specified in the
declarative descriptions. The catalog documents the expanded version of the
circuit and makes coannectivity information explicit. So, the users and the
applications software can query it. In conjunction with the declarative descriptions

and leaf cells, they are used to guide the generation process of a circuit.

3.3 Change of Technology

One of the desired properties of the declarative descriptions is technological
independence. The descriptions of a circuit should be invariant to the change of
the technology. The only changes that a designer has to make are the innards of
leaf cells, since they are primitive components in the description hierarchy and they

embed the technology dependent characteristics (i.e. implementation details such

SO

as the layers used to fabricate the layout) of a circuit.

A small experiment was conducted to check whether the layout description
for a NAND style decoder holds when the technology is changed from 3 micron
fabricator to 1.2 micron fabricator. Th< dimensions of each box and distance
between any two materials within each of the leaf celis are carefully checked and
modified manually according to the design rules for 1.2 micron fabricator. It is
found that there is no significant difference between the new leaf cells and those
for the 3 micron fabricator. Since the implementation of the leaf cell is local to
the cell and variation in the implementation does not functionally affect the other
components in the hierarchical descriptions, it is obvious that the declarative

description holds regardiess of the technology used.

-
‘-.,-.«_‘ .o . S et P L. . L . - L D e e - R NI

L P SN s . « - T . FEERTIAEY o - . e e R
AN R T T T T NS YRR L PRI IV S S SV VT OR OU. 1. P PTG R PSP AT Y 5§ W ey o

"

'l.-'

s s 2B

»
P

CHAPTER 4. CONCLUSIONS

This chapter summarizes the contributions of this thesis towards the model
construction in the VLSI Design Generators project. Section 4.1 summarizes the
main features of the declarative descriptions and the parameterization issues. The
contributions of this thesis must be viewed in the context of design and

documentation. Section 4.2 gives some directions for future research.

4.1 Summary

In this thesis, the need of a model in the circuit generation process has been
described. VLSI design is an inherently complex activity, made even more complex
by the need to maintain several representations of an object being designed. This
is because different design tools have different requirements. The multiple
representation problems were discussed. It is observed that the model should
provide descriptions of the multiple equivalent representations of a circuit at the

optimal level of abstraction for design and documeantation purposes.

An integrated circuit design can be described in several forms, among which
are its layout, its transistor schematic, its logic gate schematic, and its functional
behavior. A set of notations to be used in the various descriptions were
introduccd. Their syntax as well as semantics were discussed. These notatioas
were ércated to make the descriptions simple, natural, expressive, and to show
abstract, hierarchical structure and technology independence. Two examples, a

decoder and a multiplier, were used to illustrate the application of the descriptions.

For each design, there are some common characteristics among the four

different views of description. They are

® The descriptions are declarative.

R N DU W R S

s R PP UG- DN P . e PPN OO WP L W0 WaE W PR THL P P ey S vy

85

® The hierarchical decomposition of the design proceeds recursively.
Multiple levels of abstraction make it possible to suppress unnecessary
details and make the design more comprehensible.

@ Substitution is the mechanism to navigate in the hierarchical
description.

® There is a correspondence between different descriptions. As a result,
the design changes can be propagated in a controlled manner across
different descriptions.

Because of these characteristics, the declarative descriptions contributes to the
design process. A circuit can be developed faster and debugged easier since it is
specified in terms of a simple high-level description. The hierarchical structure of
the description reduces the complexity of a design, which is a big asset in the VLSI
design environment. The descriptions also serve as a choice vehicle for the
documentation of a design. They are simple and expressive. Most of all, they are
abstract enough to suppress the unnecessary details of a circuit while still make the
complex data structure explicit. This helps the designer review his design decisions
'

and communicate his ideas to others easily.

Each of the descriptions has its specific function in the generaticn process of
a design. The layout description in conjunction with an appropriate set of leaf cells
and the catalog can be used to generate the layout of a circuit. The mixed mode
description helps create the logic network description for the NETLIST program
and simulation. The schematic description simplifies the construction of the mixed
mode description. The functional description serves as an excellent reference for

checking the intermediate results for the circuit simulation.

Finally, the parameterization issues were discussed to show the f{lexibility of
the description. For different instances of a circuit, parameters are used to modify
the descriptions, and yet the object hierarchies remain consistent. In addition, the
leaf cells may vary with the technology used while the descriptions for a design are

invariant. The purpose of a catalog was reviewed, and the candidate entry types

- o,
B

86

were presented. It is believed that the incorporation of the declarative
descriptions, the catalog, and a collection of leaf cells can capture the complex data

structure of a design and greatly facilitate the VLSI generation process.

4.2 Future Work

The work presented in this thesis forms a solid foundation for the
development of the generator construction methodology. Various extensions to the
aclarative descriptions and the catalog can be done to form a more powerful and
flexible model that guides the generation process. The following are brief

descriptions of three areas of research which need further exploration.

1. building a transiation sys;iem which can generate the appropriate outputs for

different descriptions of a circuit.

From the layout description, the mixed mode description, and the schematic
description, we should be able to derive the layout (together with the caesar or CIF
file), the transistor diagram and the logic gate diagram of a design, respectively.
The geometric operators in the declarative descriptions only déscribe the relative
placement of leaf cells, and the actual locations of alignment are embedded in the
registration marks. The most promising and challenging work to be done is to
build a system which can align cells according to the registration marks on the
relevant edges. The geometric operators indicate the edges on which relevant
registration marks can be found. The two objects wili be aligned so that their
corresponding registration marks are adjacent to each other, horizoatally or
vertically, according to the relations specified by the geometric operaters. Also
research needs to be done on connecting two cells which are nct adjacent to each

other.

Presently, the generation of the leaf cells in the layout description is dune by

b AR o e Mns gt Barahader Ao dar ool SN aENE U SN S SN SN

S aCEREER A A e S M

- et

LI A

87

CAESAR and CFL. In the case of the mixed mode description and the schematic

description, postscript code is a good candidate for generating the leaf cells.
2. investigating ways of describing the catalog database.

Parenthesized expressions of the form (Astribute value [value 2 ...) can be used for
writing down the catalog database description. The LISP-like format is easy to
extend with new attributes. Another approach is to prompt the user tables which
list all the general entries on one column. The user is expected to type in the
appropriate values of these entries on another column according to the particular
characteristics of the circuit. The special entries may also be given by tables or
provided by a different mechanism. This approach is more user friendly, but

requires a more sophisticated system.

(
3. creating a design database which can organize the design data across the multiple

representations of a design.

A circuit design can be described simultaneously by its layout, interconnected
transistors, interconnected logic gates, and functional behavior. Each description is
a hierarchical collection of objects. To keep the design description consistent
within and across representations, it is useful to have a database which can
organize the object hierarchy within each description, correlate equivalent objects
across the multiple descriptions, and maintain these correspondences as the design
changes. As a result, if a portion of the design is changed in one representation,
the system can flag the corresponding portions in other representations of the

circuit, and appropriate modifications can be made easily.

(Bamii 85]

(Chu 84]

[Clarke 85]

(Ellis 81]

[Germaan 85]

(Katz 82]

[Katz 83a]

[Katz 83b]

[Katz 85a)

[Katz 85b]

BIBLIOGRAPHY

Bamji, C., Hauck, C. and Allen, J.
A Design by Example Regular Structure Generator.
In 22nd Design Automation Conference, pages 16-22. IEEE, 1985.

Chu, K. and Lien, Y.

Database Concepts in the VDD System.

A Quarterly Bulletin of the IEEE Computer Society Technical
Committee on Database Engineering 7(2), June, 1984.

Clarke, E. and Feng, Y.

Escher--A Geometrical Layout System for Recursively Defined
Circuits.

Research Report CMU-CS-85-150, Department of Computer
Science, Carnegic-Mellon University, July, 1985.

S. Ellis.
A Symbolic Layout Language & Database for an Integrated VLSI
ign System.

Master’s thesis, Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley,
December, 1981.

German, S. and Lieberherr, K.
Zeus: A Language for Exgrcssing Algorithms in Hardware.
IEEE Computer :55-65, February, 1985.

Katz, R.

DAVID: Design Aids for VLSI Using Intergrated Databases.

A Quarterly Bulletin of the IEEE Computer Society Technical
Commistee on Database Engineering 5(2), June, 1982.

Katz, R.
Chip Assemblers: Concepts and Capabilities.
In 20th Design Automation Conference, pages 25-30. IEEE, 1983.

Kaez, R.
Managing the Chip Design Database.
IEEE Computer :26-36, December, 1983.

Katz, R.
Conzputer—Aided Design Databases.
IEEE Design & Test :70-74, February, 1985.

Katz, R.
Informatic 1 Managemen: for Engineering design.
Springer-Verlag Berlin Heidelberg, 198S.

[Lipton 82]

[Sheeran 83]

(Suzuki 85]

[UW/NW 84)

[UW/NW 85]

[Winder 84)

R T

...................

EAF AR W e wt et . L S IR 'A""".A')
RIS D I RS VR AR WP "k W L LA aro DU I O

89

Lipton, R., North, S., Sedgewick, R., Valdes, J., and Vijayan, G.
ALI: A Procedural Language to Describe VLSI Layouts.
In I9th Design Automation Conference, pages 467-474. 1EEE, 1982.

Mary Sheeran.

i FP - An Algebraic VLSI Design Language.

PhD thsesis, Oxford University Computing Laboratory, November,
1983. A

Suzuki, N.
Concurrent Prclog-:s an Efficient VLSI Design Language.
IEEE Computer 33-40, February, 198S.

UW/NW VLSI Consortium.

%u&lity VLSI Design Generators.

A Research Proposal Submitted to The Defense Advanced
Research Projects Agency Information Processing Techaology
Office by Department of Computer Science’s University of
Washington/Northwest VLSI Consortium.

UW/NW VLSI Consortium.

VLSI Design Tools -- Reference Manual
198S.

Release 3.0 , TR # 85-07-03.

Wayne Winder.

Design Note of the MULT generator.
1984

T R S M N

APPENDIX A. EBNF DEFINITION

In the definition given below, the equal fign "=" is to be read as "is defined
as”. All literals are enclosed in double quotes (i.e., * *) while <char>, <letter>,
and <digit> represent the sets of characters, letters, and digits, respectively.
Coucatenation is expressed by writing terms (factors) followed by another. The
vertical bar "I" is used to separate alternatives in the definitions. Braces, ie., "
and "}", specify 0 or more repetitions, and brackets, "[* and ")", express options.

Each definition ends with a *.".

oy

! <program> = <declaration> "MAIN" <statement> [";" <in-spec>]
{*;" <statement>}.

<declaration> = <name-decl> <type-decl> <param-decl> [<cell-dec!|>]
[<func-decl>).

<name-decl> = "NAME" <name> ";".

<name> = <letter> {<letter> | <digit> | <*-">}. K
<type-deci> = "“TYPE" <type-group> ";".

<type-group> = “LAYOUT" | "MIXED” | "SCHEMATIC" | "FUNCTIONAL".

<param-decl> = “PARAMETER" <param> {*," <param>} *;".

<param> = <pame> "=" <integer>.

<integer> = <digit> {<digit>}.

<cell-decl> = "LEAF CELLS" <name> {",” <name>} ";".

<func-decl> = "FUNC" <name> {*," <name>} ";".

<statement> = <regular-statement> | <out-spec>. :

<regular-statement> = <object> "=" <body> {"=" <body>}.

o]

<object> = <name> [*[" <index-list> "]"].

el el e T e
A 3 AT RO RO I AP I I IR

.........

91

<index-list> = <expr> {"," <expr>}.
<expr> = ["+" | *-"] <term> {<opl> <term>}.
<term> = <factor> {<op2> <factor>}.

<factor> = integer | [*™] <object> | "("* <expr>")" |
["*"] <simpte-func> | <complex-func>.

<opl> ="+" %" ["F.

<OP2> = "M MYT TV | "RT | "&’ | ™.

<simple-func> = <name> "(* <object> {",” <object>} ")".
<complex-func> = <name> "(" <expr> ",” <subrange> ").
<subrange> = <pame> "=" <expr> ".." <expr>.

<body> = <assignmeat> ["," <IfCond>].

<assignment> = <expr> | <out-assign> | <geo-assign>.
<out-assign> = "OUTPUT" <in-out>.

<in-out> = “[* <name> "}" “(" <subrange> ")".

<in-spec> = "INPUT" "=" <input> {"," <input>}.

<input> = <name> <in-out>.

<out-spec> = "OUTPUT" ["[" <iadex-list> "]"] "=" <out-body> {"=" <out-body>}.
<out-body> = <assignment> "" <expr> [",” <IfCond>].
<geo-assign> = <comp> {<geo-op1> <comp>}.
<geo-opl> = """ 1" OV 171 (Y,

<comp> = <object> | <geo-op2> "(* <object> [*,* ["+"I"-"] <integer>]")" |
(" <loop>).

<geo-op2> = "rot” | "mx" | "my”.

<loop> = <geo-opl> "(* <object> "(" <loop-index> ")" ")".

P

92

-
rp

<loop-index> = <expr> | <sub-range> [, <expr>].

<lfCond> = "IF" <relation> { ["&&" | "II"] <relation>}.

AN,

<relation> = <expr> <re-op> <expr> [<re-op> <expr>].

<re.op> - l<=l I '<. ' " m” I '!=l I l>' l '>="

A PR Rl

.

.'l."‘
atatal

> . - - T L
P . . . > : e
e e at . .

PR . CAIEE e et e et .
PRI Yok S LT IR E P O SRS IO IPOP I A N ¢

ETRER T RN SR Rt N

e S B, 5 S B) 0l S O O S P Y 08

APPENDIX B. LEAF CELLS IN THE DECODER LAYOUT

A Cawr~ —wm—— e -

e g

T R

"
o
v

e
do e e e
i.........u'.....,“.

L-—--a"'_‘. i

YL :
F'ipa-’<
——r < e

gﬂ‘ub-Adei—ﬂ_i

R S, ﬁ.

- AT -
booe g 22Ee3 o
L*i‘;’?@?ﬁr -

= -

e S S

L I T T R R

7

o b et e 2t - o e vy

.
.

.

.

*

.

+

.
a—}-}—é—g~7.4.1 »*
. - -
-
-
.

.

5 *
b an o asan i o4 SE B
.

R O R R

TR ST TR e

f— Pigunidigegad

L I

v
|

.....

- —

,_,
s 0%

A —— e PSS ¢ et g ety

d

Figure B-1

i

-

3le 1 mician

S =]

AT T N A e AT ENARY

R NE RS LW LR

NN Ny

L &

-
LN

AT Ay

4

&

- "

AWT1 RO 9P :T-g M0l |

%

|

-4-

-

T S T G0 0 ST USUHITW [T Cereae %

€ g

4

-

g

e i : _) .w_
| el ! sl w e s b e 'S

: i S i RN METEN Sostia i S S A I SISl S Sk S z i 2

i S 2 i ’ SR S () 3 ' - H e

£ e : gl : | P i 4

g - o SRR st Aot R I e e e : il O []

“ ¥ s CAR B | 2 St s il 4 mm

T L G . v aae ofbeiiii gt b 5

R lmm_..“ . Mo b e fl G . ,..\.

s i W AN g : ¥ S e b o o e WEmTTL. o 4

anniqw, . S S, . ATIRSTArT R ey W

e u% “ b i e die . o\;“ P o A

RPN B i r P P L - LS 8 o -

w.*.' _ + LR R T O ‘lulm- “

; e - e - - G ' .

i eI CAUL T TEY T DB &

. - = — v ‘rm

5

] 4

",

4

AR

XN

AR

SN

- csecnid

B e L T T Tup—

_na_lc

Figore B-3

4
el
1 7
-l -0

Q
] ©
ar
; -
-
4 5y
3

3
L=
-
&
B ey
. 22
T
b
9]
Iwm

O RN YT e 2 T T AL L LR A L SR AL A A L I O NN

O RS VG S GG CSCICL L LSO R

-AOhooaooo‘.o.'.o“-“

e e P S

.—, - e g

Al. L .
5 D Rk B BT ST S B S S Uy o.—
'
o R R N T R B T |
- '
- P i 9t
)

. .
T T A
£): - AT .
.n._.. 1 20 a8 & s
b e ‘.. s TR

TS SN Y RS PR W S, Y T S . s BT A e e 1

L Dn'rbr'“ - . - 8 3 .lll‘. . i - -
R I e e Sl i S) : .« . . H n . .
C .r..l.llt.:lu..art‘..l.ﬂ.! o!.. MR B R m _u o o
Al . i s 4 . - e ' . 4
R . - § ! . «
<8 Iv\tn..hl.a B R E P oA & “ 7 4
+ - M_Lw..\ l.tl...r-..- aat LR [T, R N S S A S Thr B el m s g L g
. 0.4!Mﬂ-.v.t.f. PR | P R e S | H 4
R St P e o
ey tllttt.\tr!-l:s . . e e g ey
RS lt&n&lf.;t.f.tiso 4 s (s . ..A.ﬂ . I
4o J h
. P
R -
ER T 2
: $
.. .ﬂ.:
X N If
+ &
.0
LR]
e
.

B

A e bt b e o o REP T

EE et e a2 @ s e B e

1s

.

1 micree

Scale:

a_low

dec_n

Figure B-4

TV TANTA AN 54 KA RN AC A

o

s‘
o
]
A
.

A% R

i

AL e

e

I RE P4 SR SE A6 AR |

SN

Bl

B

SIS YON

£

A

.

RS

LN B

- -

97

.-.s._s.x
i i .

R

v e~

ot At e

2 v

P

-y et it ety

2 w3 rarTREeT e YT

. ar e ———
]

. .\
.

L e e SR S S A)

« & 4 80 8 40

PR it i et o

L
r L | s.tJ-l.....i.!...TL

s

3

PQJL;$

]

T R I

P

R T

L

3
!

1

S ey W Y A LB 9. P E Wi L R ARL e s sl e e e ewed

-

i
.

i

sdu'l..0<00t0.(

4 0 P 4 s b 6 b e

» RN e w1
. 3 W W TV ML TR TR S R, T

3 .
R

bt B

micren

1

Scale:

dec_na_h

Figore B-S

-

PG

ALY

L EEA

LGS B

A A A T A s A T T N D T A

A

L

EACRENEH

b

QSN S E R L

CRERI R A

&

SERCETL T

RS AR

KRR

S

e

] Ky
; -
1
3 !
‘ B]
2 1
1- gt
Al
i i
» '
]
3
i :
i i <y
i p
. :--._] - "
LI I
y
¢

-y
1
»
.+
-

B e

“~

» L) <

i‘ H =

i '

f '

4 H

% ' u

i o

1 ' s
i W

A A T A N A N T WA Y R X T e R 2 S T A D L e T T Tl Tt P W Il ol 0 20 e e i T Tl S . T MY ™ W P 7

h v sy rryers: - N g At i Sl e AR - wy TN TR e

APPENDIX C. LAYOUT DESCRIPTION OF A MULTIPLIER

Pf W RS R A

This is the layout description of a 3 x 3 signed multiplier. In this description,
G and V are defined as follows.

G = ((horiz_bus_gnd - 1) DIV MIN_BUS) + 1
V = ((vert_bus_vdd - 1) DIV MIN_BUS) + 1

where MIN_BUS is designer-defined; horiz_bus_gnd and vert_bus_vdd are
determined by m (number of bits in the multiplicand) and n (number of bits in the

multiplier). The left side bus is GND.

NAME multiplier;
TYPE LAYOUT;
PARAMETER m =3,n = 3;

LEAF CELLS

MULTMU, MULTMG, MULTMD, MULTEU, MULTEG,
MULTED, MULTLU, MULTLG, MULTLD, MULTCU,
MULTCG, MULTCD, MULTXA, MULTXG, MULTXO,

: MULTXV, MULTCPM, MULTYA, MULTYG,

. MULTYO, MULTASILFN, MULTAMIDN, MULTASIRTN,

}NDarea, Edge, GNDend, VDDend, Right_Corner,

Out_Path, Polystrip;

MAIN
multiplier = (((GNDarea -- Mult_X)
- N (Mult_Y -- Array)) -- YDDarea)
. IN Adder;
Array = (IN (row(i] (n-1))) IN row([n];

row(i] = sign --N (-N (fullmult (m-1)));

o
» l.llJ K I I 3

row([n] = lastsign --N (--N (complement (m-1)));

PRI i Al

Ty R el Aul L St Sl S A i S

100

A =

fullmult = MULTMU IN (IN MULTMG (G))) N MULTMD;

. f
a8

sign = MULTEU IN (N (MULTEG (G))) N MULTED;

lastsign = MULTLU 1N (IN (MULTLG (G))) N MULTLD;
complement = MULTCU 1N (IN (MULTCG (G))) N MULTCD;
Mult_X = (-N (X_Comp (m)));

X_Comp = rot(MULTCPM, -90) N MULTXA IN MULTXG IN
MULTXO N (IN (MULTXYV (V)));

Mult_Y = (IN (Y_Comp (n)));

Y_Comp = MULTCPM -- Edge -- MULTYA --N MULTYG
--N MULTYO;

I'."."."."'

Adder = GNDend - add -- VDDend;
add = MULTASILFN -- (- (MULTAMIDN (m-1))) -- MULTASIRTN;

VDDarea = Right_Corner IN (IN (Out_Path (n-1))) iN (Polystrip).

v
~
-

.....

- |

- ar

APPENDIX D. MIXED MODE DESCRIPTION

The mixed mode description for a 3 x 3 signed multiplier is as follows. The

expansion of each of the leaf cells is shown after that.
MANE multiplier;
TYPE MIXED;
PARAMETER m =3,n =3;
LEAF CELLS SignExt, FullMult, LSignExt, Comp, RComp, Add;
MAIN
multiplier = adder | row[n] | (I (row[i] (i = n - 1 .. 1)));
row[i] = SignExt -- (-- (FullMult (m‘ - D)

row[n] = LSignExt -- (- (Comp (m - 2))) - RComp;

adder = (-- (Add (m + 1))).

..........

Lsignext
Yoo fn-z Voo Yn-1
Yoo '
0|
Xg-1 l"{
NS 1.
"_J H'—gn '
— g
v v :
Yoo Yoo Voo Yoo
y.

Voo
|
-
c] :
~ 49 f.
- J-!
T
- “"ﬁ
signext gj
Figure D-1: SignExt, LSignExt :

cerryin
VT J
- J_ P,
sumin Xy k
: | |
A Yoo Yoo Voo
|

) o —0 T |
2 P~ Vg
. — —

—6 T
?‘ sumout
Y VDD

- carryin

: b F "

5 —— carryout
] sumin — L |

» Figore D-2: FullMult

A he A,

..

M. ‘ 104

\'%
. cerryin oo
: Voo | Voo
: | :
™
—d -l- Y-
? sumin Xy -
; | |
N
¥ —d| —q —d —~d)
H voo _‘{ s H
3 sumaut
: C
Voo Voo

cerryin

pr— -

sumin — L —

— carryout

Flgare D-3: Comp,RComp

105

carryin

Rcarryin

sumout

carryin

et
—— Rcarryout

sumin L S

Figore D-4: Add

