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University of Washington

Abstract

DECLARATIVE DESCRIPrONS FOR VLSI GENERATORS

by Meei-chiuch Y. Liem

Chairperson of the Supervisory Committee: Professor Jean-Loup Baer
Computer Science Department

This thesis presents a declarative generator model which can be used to guide

the generation of a circuit in VLSI design. The descriptions in the model provide

four equivalent representations of a circuit. They are the layout description, the

mixed mode description, the schematic description, and the functional description.

Each serves a unique purpose in the VLSI design process. They are correlated

through corresponding components. These descriptions are declarative, abstract,

robust, and structured in a hierarchical manner. The syntax and semantics of the

declarative descriptions are introduced. Their applications are illustrated by

examples. The declarative descriptions are shown to greatly facilitate the VLSI

design process and serve as a comprehensive tool that documents the designer's

ideas as well as the complexities of a circuit.
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CHAPTER 1. INTRODUCTION

VLSI design is an inherently complex process. This thesis presents the

development of a declarative generator model which can be used to guide the

generation process of a circuit. The description in the model is robust, natural,

simple, expressive, abstract, and is structured in a hierarchical manner. It can

precisely describe a circuit across its multiple representations at the optimal level of

abstraction. It also serves as a comprehensive tool that documents the designer's

ideas as well as the complexities of the circuit. This thesis is developed in the

context of the VLSI generator project in progress at the University of Washington.

1.1 Description of the VLSI Generator Project

'Quality VLSI Design Generator? is a research project conducted by the

University of Washington/Northwest VLSI Consortium. A design generator is

defined as a program that produces a family of circuit designs, each one solving a

different instance of a particular problem. The input is a problem-specific set of

parameters; the output is, among other things, a CIF (CalTech Intermediate Form)

definition of the layout of the mask layers [UW/NW 841. The objectives of the

design generator research are as follows [UW/NW 84]:

1. Build a set of generators that produce quality circuits and which form
a complete set with respect to some application. A quality design is a
robust design that will operate well over a wide range of conditions
and that can be consistantly produced.

2. Develop a generator construction methodology with appropriate
abstraction-i, procedures and tools to assure production of correct,
quality parts.

3. Demonstrate the efficacy of the approach on substantial designs.

This thesis shows the efforts made towards a generator construction methodology.

The primary components of a design generator are as follows [UW/NW 841.

....
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(1) parameter validation: establish that parameters are in the acceptable range

of values and possibly 'optimize them if the inputs include, for example, logic

equations.

(2) model construction: 'grow" an abstract version of the circuit. The term

amodel" refers to a complex data structure that guides the generation process. It

includes a logical circuit description, schematic structure of the layout, a catalog of

design characteristics (e.g. size, power requirements, etc.) and all the other

information needed to synthesize the design. The model fills tie gap between the

'high level' input and various outputs such as the layout.

(3) load balancing: customize the various constituents of the design to the

particular situation, e.g. set channel widths.

(4) generate, using the model: layout, Design Rule Checking (DRC) interface,

ERC interface, simulator interface, etc.

It is hoped that standard generator procedures can be developed and used in

a variety of generators. The role that the model plays in the generation process is

illustrated in Figure 1-1. In the user frontend interface, the software routines

allow the user to specify what he/she wants, such as test to see if the parameter is

in the acceptable range, build the model, perform the transformations on the

parameters if the input can be optimized, etc. The model is an overall static

description of one instance of a circuit. It consists of leaf cells, a set of

descriptions, and a catalog which includes the appropriate characteristics of this

circuit. These components are produced by execution of the software routines.

Under the guidance of the model, the generator routines can generate the layout or

the schematic diagrams at the gate or the transistor level of the circuit. The DRC

interface, simulator interface etc. are also obtained.

.
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Figure 1-1: The generation process

The model should be sufficiently complete, so that a program which is guided

by the model can generate the layout or other circuit descriptipns. On the other

hand, it should be sufficiently abstract to be able to capture the complex data

structure of a design. This thesis concentrates on the declarative description of the

model.

1.2 Multiple Representation Problem

The strategy used for building a generator is an implementation of the divide

and conquer paradigm. After a complex design is partitioned into small modules,

each module is defined with a high level description (text, block diagram or

schematics) according to the specifications. Then a network of transistors is

created and simulated. This step may require a number of iterations to assure the

design is stable. When the transistor network behaves as expected, the design is

implemented as a collection of integrated circuit layers. It should be noted that in

order to build a circuit, the designer goes through a complex, iterative but

complete, problem solving process. During this process, the designer needs to

constantly interact with the 'information base,* which may consist of a high level

". . . . .. .. . . . -. ~ ~ ~~ ~~. , . . : - . , : > . i. . .. . - -
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description, a transistor diagram, or a collection of integratod circuit layouts.

These multiple representations of the same circuit must be systematically organized

and immediately available to the designer to reduce the complexity of the work.

Moreover, in order to design successful circuits, it is important to have a

description which not only represents the complexity of the circuits but also allows

the designer to express his ideas and design decisions. Without an adequate

description of the generator, it is difficult for the designer to build the circuit,

check the accuracy of his design and communicate his ideas to others.

However, this facility is not found in the current tool set. The functional

descriptions and schematic diagrams are not well documented on line. A generator

which creates the layout of a circuit is basically a C program with a lot of

Coordinate Free Lap (CFL) calls. CFL is a library of C procedures mainly

intended to be used for assembling CAESAR formatted cells' into modules. A

detailed description of CFL can be found in [UW/NW 85]. Some of the important

features of CFL are cited below:

" The system is organized algebraically in that there is a data type called
SYMBOL, a set of primitive operands of this type, and a set of operators
which generate new SYMBOLs by forming combinations of existing
SYMBOLs.

0 Box and label are two primitive symbols.

0 The operators can be grouped into six classes:

alignment operators
linear transformations
array constructors
tiling operators
library access operators
miscellaneous operators

'Lower level cells or tiles are generated by the graphical editor CAESAR

. . .



" There are two types of routing facilities available in CFL: planar
routers and non-planar routers. Each router is specialized to a
particular routing situation.

* CFL has two groups of macros -- technology independent macros and
technology dependent macros, which can be used to generate frequently
used structures such as contacts.

0 Wire facility is provided to allow the use of symbol relative coordinates,
which is helpful in routing.

Although CFL greatly facilitates the construction of generators, the C

program is not precise and expressive enough to capture the hierarchical structure

of the circuit layout. When a design is changed, the efforts in modifying the

program are not trivial. Therefore, a special need exists for high level descriptions

which can precisely describe a circuit across its multiple equiv-alent representations

at the optimal level of abstraction. With this abstraction, the designer can better

understand the data structure that guides the generation process. The abstraction

will capture the 'knowledgea of how an instance of the circuit is built and how the

circuits vary with the parameters. Furthermore, it permits us to identify

components of the circuit which are independent of the parameters. The isolation

of this type of components can reduce the complexity of the design space, which is

important in the verification of the correctness of a circuit over the entire space of

parameters. Such a high level description will be used to describe the multiple

representations of a circuit in the model. The multiple representations will include

layout, schematic diagram (gate level and transistor level), and functional

description. They must have some acceptable degree of correspondence to better

maintain their correctness. Thus the descriptions in the model will serve two

functions: (I) design guide, and (2) documentation.
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1.3 Survey of Languages for Design and Documentation

This section will survey some research in design languages and information

management for VLSI design. Recent major efforts are reviewed here.

Design descriptions are an integral part of the design process. A number of

design languages have been published in the literature. According to German &

Lieberherr [German 85], hardware description languages (HDLs) can be divided

into three categories:

1. Languages that are purely functional specifications and do not
necessarily imply a specific structure of the described circuits.

2. Languages that allow both functional and structural specifications.
They can be further divided into procedural and non-procedural
classes. The latter offers safer descriptions than the former in the
sense that more compile-time checks can be done.

3. Languages that are only concerned with structure.

CFL is in category 3. The rest of this section will review languages in each

category.

Sheeran [Sheeran 83] proposes a structured hierarchical design language, IL, FP

(a variation of the Functional Programming language FP), to describe both the

semantics (behavior) of a circuit and its layout (a floor-plan). Strictly speaking, it

belongs to category I. The descriptions of I. FP are expressions, made from a small

number of primitive functions (functions for manipuiating sequences, arithmetic

functions and predicates) and combining forms (functions that map functions into

functions). These functions and combining forms were chosen because of their

algebraic properties. Since each combining form has a simple geometric

interpretation, every L FP expression has an associated floor-plan. It is claimed

that circuit descriptions can be easily manipulated using the algebraic laws of the

language.
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ALI, Zeus and concurrent Prolog are examples in category 2. Lipton, North,

Sedewick, Valdes and Vijayan [Lipton 82] use ALI, a procedural language, to

specify VLSI layouts. The main feature of ALI is that it allows its user to design

layouts at a conceptual level in which neither sizes nor positions of layout

components may be specified. A layout is regarded as a collection of rectangular

objects and a set of relations (primitive operations, such as above, glueright, inside,

etc.). One result generated by an ALl program is a set of linear inequalities that

embody the relations between the layout elements. These inequalities are then

solved to generate the positions and sizes of the layout component. Since the

design rules are incorporated as a table which is used by the primitive operations

and completeness of the layout descriptions is checked hierarchically, the layout

generated is free of design rule violations and is relatively easy to update to new

design rules. However, ALI can not handle rectangles whose sides are not parallel

to the cartesian axes. The use of the cell mechanism creates a certain waste

because the minimum separation between cells is the maximum of all the minimum

separations for two layers in the design rules. In addition, ALI can not make

inferences as to the relations between boxes beyond those implied by the

transitivity of some primitive operations; this leaves the user with a fair amount of

drudgery to make sure that the program is complete so that the layout will be free

of design rule violations.

Zeus (German 85] is an HDL whose principles of structuring and much of the

syntax are modeled after MODULA-2; however the semantics are radically

different. The notations in Zeus can simultaneously express both the structure and

function of a circuit, and emphasize the design of regular structures in hardware

algorithms. Zeus provides facilities for describing circuits by recursive and

iterative methods. It allows the designer to specify and prove the functional

correctness of entire parameterized families of designs.

L&!
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Suzuki [Suzuki 85] describes VLSI chips as concurrent building blocks

connected by wires. Thus, concurrent Prolog was chosen to write input and output

assertions as well as hardware specifications. System components are described

hierarchically - circuits as predicates and connectors as predicate parameters.

Since the processes and scheduling are inside the language processor and therefore
inaccessible to the programmer, it is hard for the user to write a more sophisticated

simulation system.

Examples of languages that are only concerned with structure are Regular

Structure Generator (RSG), Escher, and SLL. Abstraction mechanisms including

macro abstraction, delayed 5inding, interface inheritance, and the complete decoupling

of graphical and procedural design information are implemented in the RSG [Bamji

85] to provide the designer with the most profitable level of abstraction and make

the regular circuit structure generally accessible.

A circuit layout is generated from three input files: design file, layout file.

and parameter file. Local and global efficiency are achieved by completely

decoupling the graphical and procedural domains. The RSG uses previously

defined cells to hierarchically build larger cells. By macro abstraction, i.e. the

specification of macrocells as interconnections of smaller cells whose binding on

location and orientation can be delayed to any desired time, the designer can

concentrate only on the connectivity or the subgraph. The interface between two

cells is defined as the ordered pair of interface vector and interface orientation.

Interface inheritance provides a powerful means to define interfaces: A new

interface between two macrocells can be computed from any legal interface

between a subcell in the first macrocell and a subcell in the second. The relative

placement of cells in the final layout is performed using an interface between cells

and not by using the sizes and shapes of the bounding boxes of those cells. This

. - • • . . .' o . . .. . . . .. .. . . . .. .. . . .
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makes cell design and design rule check easier. However, decisions based on the

size and shape of the final layout such as placement and routing are difficult to

make.

Escher, a geometrical layout system for recursively defined circuits, is

described by Clarke and Feng [Clarke 85]. An Escher circuit description is a

hierarchical structure composed of cells, wires, connectors between wires, and pins

that connect wires to cells. Cells may correspond to primitive circuit elements, or

they may be defined in terms of lower level subcells. Unlike other geometrical

layout systems, a subcell may be an instance of the cell being defined. When such

a recursive cell definition is instantiated, the recursion is unwound in a manner

reminiscent of the procedure call copy rule in Algol-like programming languages.

Cell specifications may have parameters that are used to control the unwinding of

recursive cells and to provide for cell families with varying number of pins and

other internal components.

SLL, a Symbolic Layout Language [Ellis 81], is the human-readable form of

the schematic, logic, layout, and simulation information about a circuit in the Ruby

database system used at the University of California, Berkeley. It also serves as a

general interchange format for integrated circuit geometric data. Connectivity

information and the hierarchy and regularity present in circuits are stated explicitly

in SLL. It is claimed that any geometry that can be expressed in CIF can also be

expressed in SLL. Cell parameters and special constructs for arrays and busses

replace lengthier equivalents in CIF. SLL also allows symbolic naming and

arbitrary nesting of cell definitions.

Research in information management for VLSI design has received more and

more interest recently. Chu and Lien [Chu 84] describe the VLSI design database

(Vdd) system as a set of programs targeted to assist a circuit designer in layout
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design, verification, and simulation. There are three goals that the Vdd software

should achieve:

0 support a layout description language.

* be technology independent as much as feasible.

0 be complete in its own right for a layout designer.

The database techniques used include:

* use of a relational schema to describe a silicon processing technology.

* model the chip information by a set of relations, each of them
representing a component type.

9 swap data in and out of the main memory storage according to data
semantics.

* implement the design session as a database transaction.

Katz argues that design data management is one of the most important areas

of VLSI design, yet it is also one of the least understood. He discusses a lot of

critical issues in information management for VLSI design [Katz 82, Katz 83a, Katz

83b, Katz 85a, Katz 85b). Some of the important ones are summarized below:.

" No existing commercially available system supports the complete range
of facilities needed to support design activities. In particular, the
features missing include: an explicit representation of the design
hierarchy, support for a flexible choice of design representations, and a
multi-level architecture.

• A design database should organize the design information across
representations, alternative implementations, and evolutionary versions.
By making the dependencies among parts of the design explicit, the
ramifications of design changes can be more easily discovered and
propagated in a controlled manner.

• Designs are organized into a richly interconnected data structure using
an object data model. Objects can be representation objects, index
objects, equivalence objects, alternative objects. version objects or generic
objects. Representation objects have interface descriptions specifying
their abstract behavior, usage information, and associated performance
(speed, power, area).

0 A prototype design management system should consist of storage
component, object system, recovery subsystem, design librarian, design
validation subsystem, design transaction, tools, browser and chip
assembler.

S.. . a

.- , - a.. . . . .
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1.4 Structure of the Thesis

The remainder of this thesis is structured as follows. In the next chapter, we

will provide the notations used for describing a circuit. The description of multiple

design representations is illustrated through a simple example, decoder, and a more

complex design, multplier. Chapter 3 presents parameterization issues involved in

the use of notations to describe a circuit. Finally, chapter 4 summarizes the

material presented in chapters 2 and 3. The contributions made by this thesis in

design and documentation of VLSI circuits and suggestions on further work will

also be presented.

,4 .

,o.



CHAPTER 2. DECLARATIVE DESCRIPTIONS

A set of unambiguous notations is needed for the high level descriptions to

aid the designer in the design and documentation process. The purpose of this

chapter is to introduce a set of notations and show how these notations are used to

describe the multiple equivalent representations of a design. Section 2.1 gives the

main features of the high level descriptions in the model. Data elements - leaf

cells and abstract objects -- will be described. The syntax as well as the semantics

of operators will also be discussed. Section 2.2 illustrates how the notations are

used to describe a simple circuit -- decoder. Four types of representations - layout,

mixed mode (mixture of transistors and gates), schematic diagram, and functional

description -- are examined in detail, to see how design and documentation work

can be enhanced by using these notations. Section 2.3 gives a more complex

example -- multipHer -- to show the versatility of the notations.

2.1 Main Features

2.1.1 Overview

The high level descriptions which will be used for design and documentation

in the generator project should have the following fundamental properties.

(1) Simplicity and Naturalness. Simplicity is an important language design

principle. A simple set of notations makes the description easier to read and write.

The notations should also be as natural as possible to increase the understandability

of the description. A simple correspondence between the geometric notations and

the actual placement relationships will allow changes in relative positions to be

easily reflected in the changes in the notations.

I~I

. . . . . . .



13

(2) Expressiveness. While the notations should be simple, clear and natural,

they should also be sufficiently descriptive to allow designers to fully describe the

hardware aspects and other design decisions that a particular instance of a design

intended to include. Otherwise, effective and efficient communication between

designers is impossible. A very detailed description of a circuit, however, can

blind one to its general properties. As a result, the desired expressiveness of the

notations is a compromise between these two extremes.

(3) Abstraction and Hierarchical Structure. In order to reduce the complexity

of the VLSI generator design process, hierarchical decomposition and abstraction

have to be employed. The circuit eventually has to be specified in terms of the

primitive modules before it can be implemented. However, with abstraction the

complexity of the circuit is better handled. Designers can specify circuits in

increasing order of complexity. Information about lower levels in the hierarchical

tree are completely hidden from higher levels. Abstraction makes the data

structure explicit.

(4) Technology Independence. In response to the rapid development in VLSI

circuit research, the notations should be robust across different kinds of

technology. In other words, the circuit description of a design using technology X

should be the same as that of the same design using technology Y. The only

changes that a designer has to make due tn the change of technology are the

'-aards of leaf cells, since they are the primitive components of a circuit. This will

simplify the conversion of a description to support a new technology.

With these desired properties, the high level description can precisely

describe a circuit across its multiple equivalent representations at the optimal level

of abstraction. In our research, each description describes an instance of a family

of circuit designs in one of four possible representations. A description consists of

• .m S- . . .. o ,.

* "" *. . "' . * " " " """* ." - - ,' I ."""'' ., '' ' ." " ' ,"-"." ," I ""
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two parts: (1) the declarative part, which includes the name of a circuit, the type

of the representation, a list of parameters, a collection of leaf cells, and a set of

imported functions; and (2) the imperative part, which begins with the keyword

MAIN. In this part, a collection of statements is used to describe an instance of a

circuit, e.g. a decoder with three select wires in NAND gate style. The description

for the layout or the schematic representation can be regarded as a collection of

objects (leaf cells or abstract objects) and a set of relations among these objects.

For the functional description, the intermediate hidden mechanisms between inputs

and outputs are described.

Free-format input is used in a description. In other words, statements can be

positioned anywhere in the input line. This will help avoid syntax errors due to

improper positioning of tokens and permit the whole description to be laid out so

that it is easy to read. Hierarchical structure can also be shown by indentation.

The syntax of this new high level description is designed to be as close to that of

the 'C' programming language as possible since the generators are written in

C. The Extended Backus Naur Formalism (EBNF) definition for the declarative

description is given in Appendix A while the rest of this section describes the main

features of this description in its four subsections: declaration, objects, operators

and flow of control.

2.1.2 Declaration

The syntax of the declarative part of a description is of the form:

NAME <circuit-name>

TYPE <representationtype>;

PARAMETER <parameterlist>

LEAF CELLS <celllist>;
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FUNC <function-list>

Boldface characters are used to indicate keywords and required syntactic elements.

FUNC <function-list> is optional and LEAF CELLS <cell-list> are not used in

the functional description. <representation_type> is either LAYOUT, MIXED,

SCHEMATIC or FUNCTIONAL for layout, mixed mode, schematic diagram or

functional description, respectively.

<parameter-lit> is a list of inputs to the circuit. For example, in the case of

a 4 bits by 3 bits multiplier, it is the number of bits in the multiplicand (say, m = 4)

and the number of bits in the multiplier (say, n = 3). Thus, the <parameter list>

is m = 4, a = 3. The names m and n are arbitrarily chosen; however, the values

that they are bound to in the declarative part are constant through the entire

description. Parameter declarations allow implicit dependencies to be made

explicit, which makes the modification of the circuit description very easy when the

inputs are changed. Suppose that it is decided that the number of bits for the

multiplicand should be changed to 8 (say, to accomodate bigger numbers). This

will imply that the limits on some of the iterative contructs such as the number of

partial product generated should also be changed. The designer can simply change

the parameter list without having to find all numbers that implicitly depend on the

changed bit size and make appropriate changes. Therefore, parameter declaration

enhances thd readability and maintainability of a description.

Leaf cell is the lowest level module in the hierarchy of a description. It is a

primitive component. More details about leaf cells will be given in the next

subsection. <cell list> contains all the leaf cells that are used in a description to

generate a geometric representation (the layout or schematic diagram in gate level

or transistor level) of a circuit. The leaf cells should be copied from the system

library to the user's working directory. They are unaltered across the family of

instances.
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Following the <celllist>, the functions that aid in the circuit description are

specified. This part must begin with the keyword FUNC followed by a list of

functions delimited by commas. Functions are user-defined. For example, binary

can be a function which will return a binary representation of a number. To

specify a circuit in a clean and understandable manner, the implementation parts of

functions do not appear in the same file as the circuit description. A function

provides a convenient way to encapsulate computations in a black box, which can

then be used. In this manner, another language design principle - information

hiding - is achieved. Functions provide a way to cope with the potential complexity

of a large VLSI design description.

The declarative part ends on encountering another keyword MAIN which is

followed by the imperative part of a description.

2.1.3 Objects

Leaf cells are the primitive objects to which geometric operators (discussed in

the next subsection) can be applied, and out of which more complex objects

(abstract objects) can be built in the layout or schematic representations. They are

declared explicitly in the declarative part as described in the previous subsection.

Leaf cells are global in scope. In general, they have some predefined, sufficiently

general, functionality. A leaf cell is a rectangle (also called box) with its sides

parallel to the axes of a cartesian coordinate system. It can be a NAND gate used

for the schematic description of a decoder or a physical layout of a half-adder used

for the layout description of a multiplier. The designer has the flexibility of

creating whatever leaf cells he needs. The choice of these leaf cells and their

suitability will depend on the graphical editor CAESAR, CFL and other

software/hardware tradeoffs. A leaf cell encapsulates implementation details such

as the layers used to fabricate the layout within a box. The implementation details

,..........i ;..:. ...... .(... -i --,: :-................,,.-.......'."............ "..... ;....-.......... - ....



17

are transparent to the outside, and leaf cells are unchanged across the family of

instances.

The high level description that is developed here also has the capability of

specifying iterative (arraylike) structure. A leaf cell can be instantiated as many

times as desired by specifying the number of repetitions. For example, if

decnha llinv is a leaf cell, then I (decnalInv (n)) means to create an object

which is a collection of n copies of dena-linv and the relations among these

copies will be defined by the geometric operator I. Array constructs allow easy

specification of regular structures without adding the additional complexity of

control flow structures to a description. A leaf cell without an argument is by

default an instance of that cell in the user's working directory.

Abstract objects are created to provide designers with the mechanism to

describe a circuit representation hierarchically so that most of the details at one

level of the hierarchy are truly hidden from all higher levels. An abstract object

can be defined recursively. An alias of a leaf cell, an array of leaf cells, a group of

heterogeneous leaf cells, or a combination of the last two is an abstract object.

Moreover, an array of abstract objects, a group of heterogeneous abstract objects or

a combination of these two is also an abstract object. It should be noted that an

abstract object represents an integrated consecutive part in the geometric

placement. Generally, it is a module which has some functionality. Since leaf cells

are represented as rectangles, a simple example of an abstract object can be a "row'

of leaf cells. It is obvious that an abstract object can also be instantiated as many

times as desired by providing the appropriate arguments. Thus, --(row[l](l=O..4))

means to generate five rows: row [0], row [1], row [2], row [3], and row [4]. The

relations among these rows are defined by the operator -. An element of an array

of abstract objects can be accessed by specifying the subscript as in most

°.7



programming languages. Since row [i] is an abstract object, information about its

lower level description is hidden. At this level of abstraction, row [i] can be

thought of as a primitive component. Abstract objects are considered global.

Thus, object names within a description must be unique.

Given the features of leaf cells and abstract objects mentioned before, each

description can use many levels of abstraction. The circuit is viewed as a network

of objects at each level of abstraction. At the highest level of the hierarchy, it is a

single abstract object -- the name of the circuit that the designer intends to

describe, say, decoder. At the lowest level of abstraction, the circuit is a network

of leaf cells. To be more specific, the description of a representation of a circuit is

recursive in nature - each abstract object is specified as a network of lower level

objects. The internal details of these lower level objects need not be known when

defining an abstract object. That is, the lower level objects can be thought of as

primitives at that level of abstraction. Since an abstract object is defined after it is

used, the description of an object can be deferred until the design is better

understood. The abstract object may itself be a named instance of a higher level

object to aid the description of the recursively defined circuit.

2.1.4 Operators

This section shows the operators which are used in our declarative

descriptions. They can be arranged in the following groups: (1) geometric

operators, (2) arithmetic operators, (3) relational operators, (4) logical operators, and

(5) the! assignment operator ( -). We will concentrate on the geometric operators in

this section.

. . . . . . .
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2.1.4.1 Geometric Operators

As mentioned befc:'e, the layout description, the mixed mode description,

and the schematic description can be regarded as a collection of rectangular objects

and a set of relations among these rectangles. The relations between objects are

defined by geometric operators. These operators take objects as arguments and

produce objects as results. A small set of geometric operators are created. The

first four operators are used to combine objects into more complicated objects,

while the last three operators are used for linear transformations. They are

described as follows.

(1) -- beside. A - B denotes that object A is on the left hand side of object

B as shown in Figure 2-1.

i A

Figure 2-1: A - B

trot, r. and my are patterned after the same operators in CFL.

............................... 1
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(2) 1I above. A I B means that object B is above object A. The geometric

relation is shown in Figure 2-2.

A

Figure 2-2: A I B

(3) -- n(: horizontally joined with overlap. A -- nl B denotes that object A and

object B are horizontally joined and overlapping with A situated on the left hand

side of B. Figure 2-3 shows the relations.

Figure 2-3: A -- flB

silk,"
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(4) I n : vertically joined with overlap. A I n1 B represcnts that object A and

object B are vertically joined and overlapping with B situated on the top of A. The

geometric relation is shown in Figure 2-4.

A

Flgure 2-4: AIfnB

(5) rot : rotate. rot(A, -90) denotes that object A is rotated 90 degrees

clockwise as shown in Figure 2-5.

original position after rotation

Figure 2-5: A is rotated -90 degree

..............°. . .
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(6) m : mirror in x.A = mx(A) means that A is the mirror image of A

across the X axis, which is shown in Figure 2.6.

Figure 2-6: Mirror in x

(7) my : mirror in y. A = my(A) denotes that A is the mirror image of A

across the Y axis. Figure 2-7 shows the geometric meaning of this opeiation.

F

Flgure 2-7: Mirror in y

5-

£j

5, 5 * .. .. . . . . . . . . . . . . . . . . .
. . . . . . . - 5-- -
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These operators can be either infix or prefix. All geometric operators have

the same precedence level and they are collectively left-associative in the absence

of parentheses. The interface (which will be implemented by using registratiou

marks) between two objects is not explicitly specified. This is also an application

of information hiding and delayed binding on the absolute locations to make the

description simple, flexible and easy to understand. Nevertheless, geometric

operators do describe the relations among objects and capture the hierarchical

structure of a circuit representation.

It is obvious that geometric operators are only used in describing the layout or

schematic representations of a circuit when graphic interpretation is the main

interest of these representations. For functional description, arithmetic operators,

relational operators and logical operators are used. Of course, these operators can

also be used in the description of the layout or schematic representations to

represent expressions, e.g. if conditions, arguments of an arraylike structure, etc..

2.1.4.2 Other Operators

The arithmetic operators include +, -, , I, " (for exponentiation), and %

(modulus operator). The relational operators are <=, <, =- (equal to), != (not

equal to), >, and >=. Each of them takes a pair of expressions as operands and

returns a logical value, true or false. There are two types of logical operators.

One is called logical connectives. They are && (AND), and II (OR). Another type

is called bitwise logical operators. They include & (bitwisc AND), I (bitwise

inclusive OR), " (bitwise exclusive OR), and - (one's complement). The rules for

precedence and associativity of all arithematic operators, relational operators, and

logical operators follow the convention of "C"2. Figure 2-8 lists all the operators

used in the declarative descriptions.

2F.pontiation is the exception. It has the highest precedence.
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Geometric ti n 0rot.mx my
Operators

Arithmetic

Operators . . /'. '

Relational
Operators

Logical
Operators ______ __&__

Assignment
Operator "_

Figure 24: Operators

2.1.5 Flow of Control

Two fundamental flow-of-control constructs are provided to enhance the

expressiveness of a description: IF (decision making) and looping. IF is used to

specify the condition. Loop is expressed in the form of (1) providing the number

of times for repetition, say, -(X(m)) means to create m horizontally joined

instances of X; or (2) providing the upper bound, lower bound and step of the loop

index, for example, I(X[i](i - 4 .. 0, -2) means to create 3 instances of X. The

indices of these instances start from 4, decrement by 2 at each step, and end with

0. Thus, it creates a vertical stack with X[4] situated at the bottom, X[2] situated

in the middle, and X[0] situated on the top of the stack. The EBNF definition in

Appendix A depicts the syntax.

. . .... . .. . . . . .
• . ... . .- . .- . . .. . . .- .. ... .-... - _-.. . ...S: -- . . .' -.- -.-.- . . ." . .. , ,-,- , \ -, , . .,, .
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2.2 Multiple Representations

This section introduces four declarative descriptions which are used for

describing a circuit. Notations introduced in the previous section will be used to

illustrate the four descriptions, namely: the layout description, the mixed mode

description, the schematic description, and the functional description. Each of the

descriptions has its specific function in the design generation process. The layout

description in conjunction with an appropriate set of leaf cells can be used to

generate the layout of a circuit. The mixed mode description helps create the logic

network description for the NETLIST program and simulation. The schematic

description simplifies the construction of the mixed mode description. The

functional description serves as an excellent reference for checking intermediate

results of the circuit simulation.

A decoder provides a simple and good illustration of the efficacy of the

declarative description in design and documentation. The data structure of each

representation of the decoder will be shown by a tree. The correspondence

between these descriptions will also be discussed. A decoder takes an n-bit number

as input and uses it to select exactly one of 2n output lines. In the VLSI generator

project, decoder is a module generation program for a MOSIS 3 micron cmos

decoder layout3. It currently produces decoders both in NAND (single clock) and

NOR (two non-overlapping clocks) configurations. The user has to provide the

design specifications in order to get the desired layout. A required specification is

the number of select lines in the decoder. Other options include:

(I) the number of lambda between each decoder stage,

3The author of the decoder generator is Marty Sirkin. Readers are recommended to refer to on
line VLSI Tools Manual for more details.

_ . - ,-. .. . .- . r' . .. ,. " . . ,. , . .. . ., . . . . . - , . -. . . . . . , ..
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(2) inverting or not inverting the output,
(3) labeling the output and select lines,
(4) output file name,
(5) prefix string for the output line,
(6) prefix string for the select lines,
(7) design style (NAND or NOR),
(8) verbose mode, and
(9) printing the version number.

These options have default values. Thus, it is straightforward to generate a

decoder. For example, by specifying 'decoder -3, the layout of a 3-input-8-output

NAND style decoder will be generated.

2.2.1 Layout Decriptio.

The layout description for an instance of a circuit describes how the leaf cells

have to be placed to yield a specific structure and to satisfy design rules. Note that
4

leaf cells are invariant across different instances of the same family of a circuit for

a particular type of representation. In the case of the layout description, the leaf

cells are created by CAESAR and CFL. They are painted pictures which carry the

photo-mask information required on the fabrication process. However, what a leaf

cell does internally and how it is implemented are concerns local to the leaf cell

itself. The layout description only describes the relative relations among these leaf

cells. The description is expressed in the form of a hierarchy, abstract at its higher

levels, and progressively more detailed as it descends the hierarchy. The

mechanism used is substitution. That is, a bigger abstract object is substituted by

leaf cells or conceptually smaller abstract objects.

The following statements illustrate the layout description for a 3-to-8 NAND

style decoder.

NAME decoder;

TYPE LAYOUT;

2.4

m ..-.--.. ... . . ... . -....... ... ? .- .... .: ..-.:-...:....., .. .-....-... , .:......,...'.-.-..........-.....-....,-...,.... . --
m' • • ".'" . " " , . " " "• " • "-"" " I" "" " r " I" ' ' " I I" -" ' -.. . .' ".".". .".. . ." ". .".. . . .". .".. . . -. -

-'
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PARAMETER n -3;

LEAF CELLS dec naiU, dec na i inv, dec na Ic, dec na low,
decha-high, dec na.out, decna.one, decna-zero;

FUNC binary;

MAIN

decoder = row [2"*n] I( I (row [i] (i = 2"*n - I .. 0)));

row [20*n] = dec na l -- (- (dec na i inv (n))) -- dc_na-c;

row [i] = decha low - select wire [i]
dec na high -- dec na out;

select-wire [i] ( - (X [i,j] (j = .. 1)));

X [ij] = decna one, if binary (ij) == 1
- dec na zero, if binary (ij) == 0.

The TL°PE declaration specifies that the output of this description is a layout.

A parameter n is used to indicate the number of input of the circuit. Since we

want to describe a 3-to-8 decoder, n is assigned to be 3. To generate a NAND style

decoder, the following leaf cells are used: decnail, decnalinv, decma_lc,

dec ma low, dec_nma_hlgh, dec na out, decnaone, and dec nawm. It is assumed

that they are copied from the library into the user's working directory4 . The

internal details of dec aa one and dce na zero are shown in Figures 2-9 and 2-10.

Appendix B shows the rest of the leaf cells.

4The leaf cells for layout description are exactly the same as those used for the decoder generator.
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dec_ na-one ..

I t r ? .I - -t
. L. L~ L

I..., . K I 1.A

Scale: 1 mi~cron is 0 1 crr' E

Figure 2-9: dc oa-one
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dec na_ zero c

.~~~ . . . . .

Scale. 1 micron is 0 1 in~ches. 2540x

Figure 2-10: dec na-zero
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Function binary is imported from some other file to help in the description of

the decoder. binary (i,j) returns I if the jth bit of the binary representation of i is I

and returns 0 if it is 0.

The imperative part of the description contains information about how

instances of leaf cells are to be displayed. The fragment

decoder = row [2"n] I ( I (row [i] (i = 2"n - I .. 0)));

creates an object named decoder which is made up of an abstract object, row [2'],

and 2n vertically stacked abstract objects named row [2' - 1], row (2' - 21 ....... , row

[0], with row [2' - 1] situated on the top of row [2], and row [2n - 2] situated on

the top of row [2' - 1], etc. At this level of abstraction, row [2'] and row [i] can be

thought of as primitive components. The network of their lower level components

will be defined later. Figure 2-11 shows the geometric interpretation of this

fragment. In our example, n = 3, so there are nine rows, eight for the output and

one for the input.

row[Ol

* 0

* ]

row[2n -21

row 12 -11

row[ 2 J 

Figure 2-11: decoder = row[2"*n]I((row[i(i=2"'n-1..0)))
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The fragment

row [2"n] = dec naI -- (- (dec na i inv (n))) -- dec na lc;

specifies the components of row [2'] one level lower in the hierarchy. Thus- row

(21] consists of n horizontally joined instances of decnajlLnv with dec na-1u on

the left hand side and dec-najic on the right hand side. The geometric

interpretation of this statement is shown in Figure 2-12.

dec-.nali I dec...naiinv~ . dec-.na-Linv~ dec-.na-i..c

n
Figure 2.12: row[2°*n]=dec-nafi- (-(dec na.iinv(n)))-decnaalc

As mentioned before, the absolute locations for joins will be specified by

registration marks which are information embedded in the leaf cells and are not

shown explicitly in the description. Details about registration marks will be

discussed in Chapter 4.

The elements in the arraylike structure row are further defined by the

following fragment:

row (i] dec na low - select wire [i]
-- decna-hig - decaout;

For i with the values from 0 to 21 - 1, row [i] is created by horizontally joining an

instance of the leaf cell dec malow and an abstract object select-wire (l with

dec ma low on the left hand side and select wLre [1] on the right hand side. Then,

they are placed on the left hand side of an instance of the leaf cell decnablgh.

Finally, this construct is horizontally joined with decna-out with the latter

situated on the right hand side of the former. Figure 2-13 depicts the geometric

placement.

.7 .. .
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dec...na..Jow Iselect-wirebil dec-naialgh Idec..na..u

Figure 2-13: row[i]=dec-na-low--select-wire[iJ-decnahigh--dec-naout

Moving one level down in the description hierarchy, the abstract object

select wLre [I] is described in terms of a collection of another abstract object X.

The fragment

select-wire [i] = (- (X [i,j] (j = n .. I)));

denotes that each selectwLre consists of n horizontally joined instances of X with

indices from n to 1, from left to right respectively. The graphic representation is

shown in Figure 2-14.

X I ]h)[nJ XfiJIn- 1] @0° X0JL I0

Figure 2-14: selectwire[il=(-(X[i,j](j=n..1)))

It is important to note that index i is required in the expression. It serves to

distinguish different instances of selectwlre. The definition of X clarifies this

point.

..7



33

Abstract object X is defined by the following statements:

X [i,j] - decna-one, if binary (i,j) == I
- dec na.zero, if binary (i,j) == 0;

That is, if the jth bit of binary representation of i is 1, then substitute deeuzaoue

for X. Otherwise, substitute dec na-zero for X. As a result, in the case of a 3-to-8

NAND style decoder, select-wire [21 will consist of elements as shown in Figure

2.15 since the binary representation of 2 is 010.

dec..nazero I dec-na-one I dec-n zero I

Figure 2-15: select wire [2]

By substituting 3 for n in all the statements described, we obtain the layout

representation of a 3-to-8 NAND style decoder as shown in Figure 2-16.

It should be obvious by now that many levels of abstraction are used in the

layout description. Figure 2-17 shows the hierarchical structure of the objects in

the layout description. The root of the tree is an instance of a decoder, while the

leaves of the tree are instances of leaf cells. An arc denotes 'consists of . Each

internal node represents an abstract object and is created by joining its children

according to the relations specified in the description.

With this kind of abstraction, the complexity of the design process is reduced

since the lower level objects can be thought of as primitives at each level of

abstraction. The data structure that guides the generation process of decoder

),I

. ..
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dec..aw doc..ai 6ec-mj doc-m ec',aa
-low _.zero _zero -Zero

dec..aw de-im.n dec-m.n dec.m de--l
-low _z.ero _.zero 0WI

dtc.xi dec..me d4c.a dec.aw dvc...s.jih
-low -Z.ero .0.SW -z.ero

-low -zero -nai -.o.n#

_______ *ec-m-za.out

doc.m deojia dc..ra dec..ua dec-tm-righ
-low -..oz -Zero _ueroI

dec..am de..a dc..n de-am dec...z....igh
-low _a.on -.zero ...ogy

dc...a dec..i dec.xa 4ec-m...zwhig
-low _.zero _an -. eI

__________ _______ ______ ______________ ec-m -o..ut

dec...no dec..am dec..n dec...n de--g
Jlow -..zero ...o" -0 n.

________ ______ ____________dec...nanut

4ec.jM dfc..nS dec..aW dec..a de..ri J

Figure 2-16: Layout representation
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decoder

rowl2n, rowl2n-1I ... row[ 1 • row 0 1

dscnall dr-na.LLn (p) des.m.lnc do-na.l.lov slectv li) dc.n..high d onaoll

llRlai Ll-l I Wil

Co.ome or dc.n.N=

Figure 2-17: Hierarchy of objects in layout description

becomes explicit, which allows the designer to communicate his ideas and design

decisions to others. Moreover, it is relatively easy to identify components of the

circuit which are dependent on or independent of the parameter hom the

description. For example, the number of instances of decna ! lnv in row [2']

depends on the size of the input. So, for a 4-to-16 decoder, there will be 4

instances of dec-na- !Inv. However, the structure of row [2'] is invariant. In

other words, dec_an U is always the leftmost component and decon,ic is always

the rightmost component regardless of the number of instances of decnaIliav in

the middle. This observation is important in the understanding of a decodcr over

the entire space of parameters.

.° 
. . . . . . . .. . . -
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2.2.2 Mixed Mode Descriptlon

While the relations among leaf cells, which contain information about mask

layers, are described in detail by its layout description, further exploitation of the

power of a hierarchical description makes it necessary to provide for one higher

level of abstraction -- the mixed mode description. A mixed mode description

illustrates how components (gates, transistors, and intersections of wires, etc.) are

connected to perform a certain function. This representation can help create the

logic network description for NETLIST and simulation. A mixed mode description

is also expressed in the form of a hierarchy. The interconnections of leaf cells are

specified by the geometric operators. The substitution mechanism remains the

same as employed in the layout description.

The mixed mode description for a 3-to-8 NAND style decoder is as follows.

NAME decoder;

TYPE MIXED;

PARAMETER n= 3;

LEAF CELLS gnd_mix, zeromix, onemix, inmix, outmix;

FUNC binary;

MAIN

decoder = row [2**n] I ( I (row [i] (i = 2"*n - 1 .. 0)));

row [2**n] (-- (inmix (n)));

row [i] =i- grd_mix - (.- (X [ij] (j = n .. 1))) - outmix;

X [i,j] = one mix, if binary (ij) == 1
= zero-mix, if binary (i,j) == 0.

The TYPE declaration and PARAMETER declaration indicate that the

* .*c
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output of this description is a mixed mode representation for a 3-to-8 decoder. The

leaf cells used are gnd_mix, zero-mix, onemix, In-mix, and out-mix. They are

shown in Figure 2-18.

There is a correspondence between the leaf cells used in the mixed mode

description and those used in the layout description. For example, zero-mix and

dec urnzero perform the same function. one-mix and dec-nanone are made to

achieve the same designated behavior. Finally, In-mix is equivalent to

dec nalIlInv. They represent input and its complement. Similarly, the same

imported function binary is required in the description. The return value of binary

was discussed in section 2.2.1.

The imperative part of the mixed mode description also describes how

instances of leaf cells are to be placed. In this case, a leaf cell can be a transistor,

a gate, an intersection of wires or a combination of these symbols. The expansion

of the output of this description is a schematic diagram of a decoder at the

transistor level rather than a layout. The fragment

decoder = row [2"n] I ( I(row [i] (i = 2"n - I .. 0)));

will result in the same display shown in Figure 2-11 as in the corresponding

statement in the layout description except for the internal details of each row. The

bottom row, row [2], is defined as

row [2**n] = (- (inmix (n)));

which indicates that row [2'] consists of n horizontally joined instances of in-mix.

In our example, there are 3 instances of in mix. The structure of the lower level

components of row [2'] is slightly simpler than the corresponding structure in the

layout description. This is also true of the description of row [i]:

row [i] = -- grd_mix -- (- (X [i,j] (j = n .. 1))) -- outmix;

This fragment combines the definitions of row [i] and selectwire [1] in the layout

. . . . .

• ,. . .
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zero-mirx

one-m.rix

in-..mix

out-mix

Figure 2-18: Leaf cells for mixed mode description
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description. The hierarchy of objects is thus compressed. Here, row [1] is created

by placing gnd_mLx and out-mix on the left and right hand side of n horizontally

joined abstract object X's, respectively. X [i,n] is the leftmost component and

X[i,1] is the rightmost component. Depending on the jth bit of the binary

representation of i, X [i,j] can be replaced by either one-mlx or zero-mix. This is

specified in the last two statements of the mixed mode description. Figure 2-19

shows the 'flattened" representation of row [2] in a 3-to-8 decoder.

gnd-rmx zero-mix one-mix zero.mix out-mix

Figure 2-19: Flattened representation of row [2] in mixed mode description

The expansion of the output of the mixed mode description for a 3-to-8

NAND style decoder is shown in Figure 2-20.

While the abstraction mechanism for describing the decoder is the same in

both the layout description and the mixed mode description, the leaf cells are

different. Figure 2-21 shows the hierarchy of objects in mixed mode description.

The number of levels is one less than the one in Figure 2-17. This is because the

abstract object select.wire has been removed in the mixed mode description.

The close correspondence between these two descriptions is very important

for design and documentation. The mixed mode representation provides one

higher level of abstraction in circuit representation and is more immediately

"Ii
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Figure 2-20: Mixed mode representation
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row[21 rowI2- 11 • • row Ii

in..mix(n) gnd..mix Xli][n] Xliln- I .• Xlill I I out.mix

or

zero-mix

Figure 2-21: Hierarchy of objects in mixed mode description

descriptive than the layout representation. Therefore, the corresponding part in

the layout representation can become more understandable to the designer and

others. Moreover, suppose that after verifying the electrical correctness of the

circuit through the mixed mode representation, the designer decides to change part

of the design. It is relatively easy to locate the corresponding part in the layout

representation and make appropriate modifications. The advantages of using

multiple levels of abstraction in mixed mode description are the same as those

discussed in the case of layout description.
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2.2.3 Schematic Description

The schematic description provides one higher level of abstraction than the

mixed mode description in the sense that the graphical version of the former is at

the gate level, while the one in the latter is at the transistor level. As a result, the

schematic representation is more descriptive and understandable than the mixed

mode representation. The schematic description specifies the schematic diagram of

a circuit with many levels of abstraction. The hierarchy of objects is intended to

correspond to the hierarchies in other descriptions. Because of the

correspondences between different representations, design aid and documentation

are enhanced.

The following is the schematic description for a 3-to-8 NAND style decoder.

NAME decoder;

TYPE SCHEMATIC;

PARAMETER n= 3;

LEAF CELLS nandsche, zerosche, onesche, noconnec_sche, in_sche;

FUNC binary;

MAIN

decoder row [2*°n] I ( I (row [i] (i = 2n - 1 .. 0)));

row [2"n] = (-- (in sche (n)));

row [i] = (-- (X [i,j] (j = 1 .. 1))) -- nandsche;

X (i,j] (I (C [i,j,k] (k = a .)));

C [i,j,k] = onesche, if binary (i,j) == I && k == j
= zero sche, if binary (i,j) == 0 && k == j
= no connec sche, if k != j.

In order to generate the schematic diagram, five leaf cells are used. They include

|d
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mdche, ze m che, one -he, no connecoche, and Ininche. Figure 2-22 shows

the internal details of each leaf cell.

nand-sche

zero-sche

one-sche

no-connec-sche

in-sche

Figure 2-22: Leaf cells for schematic description
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zero sche, one-ache, and Lnasche are equivalent to zeronmix, one_mix, and

In mix of the mixed mode description, respectively. Again, the imported function,

binary, is used to assist in the description.

At the highest level of abstraction, decoder is defined as a network of

abstract objects - rows. This is also the way it is defined in the layout description

and the mixed mode description. The components of row [2'] are identical to the

corresponding parts in the mixed mode description. The geometric structure of

row [i] is similar to the one in the mixed mode description. Instead of replacing

abstract object X with a leaf cell direcily, the hierarchy of objects is extended one

level lower. The fragment

X [i,j] = (I (C [i,j,k] (k = I .. n)));

means that X (i,j] consists of n vertically stacked objects with C [i,j,l] situated at

the bottom of the stack and C [i,j,n] on the top of the stack. The leaf cells which

are used in the substitution depend on the values of k, j, and the jth bit of the

binary representation of i. The "flattened* representation of row [2] in a 3-to-8

decoder is shown in Figure 2-23.

zeroon..sche no connec.scle noconncsche

no.connec.sche one.sche no.connec-.sche nand.sche

no-connecsche no.connecsche zero.-sche

Figure 2-23: Flattened representation of row [21 in the schematic description

.2... . . .. I .. .. . ,
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Figure 2-24 shows the schematic diagram of a 3-to-8 NAND style decoder.

Figure 2-24: Schematic representation

The hierarchical structure of the objects used in the schematic description is

shown in Figure 2-25. It is important to note that the hierarchy is extended one

level lower, but the correspondence with other descriptions still holds.
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decoder

rowl2 n j rowl2n - 1J . . . rowli) . . . rowlO]

insche(n) XlillnI XMi~tn- 1) .. Xii)i 1) nand...sche

clil11111 c[ill I121 • • • c[il Iln]

one.=sche or
zero-sche or

no-connec-sche

Figure 2-25: Hierarchy of objects in schematic description

2.2.4 Functional Description

The mechanisms used in the layout description, the mixed mode description,

and the schematic description are the same. Each of these descriptions is expressed

in the form of a hierarchy, and substitutloa is used to achieve many levels of

abstraction. These descriptions specify the geometric relations of objects; therefore,

they fulfill their intended purposes well when they are applied to fabricating a

circuit or displaying a schematic diagram at the transistor level or the gate level.

In contrast, the functional description does not specify the relative positions of

objects. It describes how a particular design should respond to a given set of

inputs. In other words, the algorithm to be performed by a circuit is described.

The functional description serves as an excellent reference for checking the

intermediate results for the circuit simulation. It provides the input and output

I' . . . . . . . ...
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relationship against which the simulation results can be compared. Moreover, since

a divide and conquer paradigm is used in most VLSI designs, the functional

descriptions of all modules can be integrated and simulated to check the

correctness of the whole design before the circuit is built. This can reduce the

design cost significantly.

The following statements illustrate the functional description for a 3-to-8

NAND style decoder.

NAME decoder;

TYPE FUNCTIONAL;

PARAMETER n = 3;

FUNC nand, binary;

MAIN

decoder = OUTPUT [i] (i =0 .. 2 n - 1);

INPUT = A [] (j = n .. 1);

OUTPUT [i] = nand (X (i,j], j = n 1): <timing specification>;

X [ij] = binary (ij) * A[j] + binary (ij) A[j].

The TYPE declaration and PARAMETER declaration indicate that this is the

functional description for a 3-to-8 decoder. It should be noted that leaf cells are

not used in this description since the purpose of the functional description is to

describe the algorithm performed by a circuit rather than the geometric placement.

Two imported functions are used in the description: binary and nand. binary is the

same function as the one described in other descriptions. nand simulates the

function of a NAND gate. It returns 0 if and only if all its arguments are 1.

The imperative part of the functional description specifies the internal

mechanism between inputs and outputs. The statement

- . - - . - - - - - .... . ......... -. ..- + - -,,..-'.....-.'.
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decoder =OUTPUT [i] (i0.. 2 " n -1);

denotes that there are 2n outputs. The 21 outputs are named OUTPUT [0],

OUTPUT [1], ..., and OUTPUT [2 ' - 1]. For a decoder with 3 select wires, there

are 8 output lines. Similarly, the fragment

INPUT = A [j] (j = n.. 1);

means that the n inputs are named A [n], A [n - 1], ... , and A [1]. Each input and

output is one bit wide. Note that there is a correspondence between these two

statements and the first two statements in the schematic description. OUTPUT [i]

is functionally equivalent to row [i]. They describe one of the output lines. Both

row [2n] and A D] (j = n .. 1) deal with the inputs. However, the former contains

the inputs and their complements; the latter only consists of the original inputs.

The complement of A [j] will be specified by the complement operator "

OUTPUT [i] is further defined by the function nand:

OUTPUT [i] = nand (X [i,j], j = n .. 1): <timing specification>;

Since we are describing a NAND style decoder as shown in Figure 2-24, depending

on the inputs, exactly one of 2* output lines is 0; the rest are 1. In the case of a

3-to-8 decoder, suppose i = 2, then OUTPUT [2] is the result of the nand function

of X [2,31, X [2,2], and X [2,1]. In other words, X [2,3], X [2,2], and X [2,1] are

the inputs to the NAND gate and OUTPUT [2] is asserted ( = 0) if and only if

X[2,3] = X[2,2] = X[2,1] = 1. The <timing specification> specifies when the

output bit becomes stable and available for external circuit. It can be expressed in

terms of i, clock period (T), and time delay (td). The values of T and td are

technology and implementation dependent.

Depending on the jth bit of the binary representation of i, i.e. binary (ij), the

value of X [i,j] is either the input A [j] or its complement Xr]. Note that given an

OUTPUT [i], the binary representation of i corresponds to the inputs A[n] A[n-1]

.............-. . . ..-- . . . . . . .... S*
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... A[j]... A[1],whereA [n] 2n
' +A [n-1] 2n2 +... +A[1]'2 0 =i. Note

also that for an asserted OUTPUT [i], the inputs to the NAND gate must be all l's.

The algorithm is thus the following:

X [i,j] = A [j], if binary (i,j) == 1;
X [i,j] = TMJJ, if binary (i,j) == 0; 1

For example, OUTPUT [5] is asserted only when the inputs are 101. That is, A [3]

= 1, A [2] = 0, and A [1] = 1. Therefore, if the input is 101, according to the

algorithm, X [5,3] = A [3] = 1, X [5,21 = - = 1, and X [5,1] = A [1] = 1.

OUTPUT [5] becomes 0 which is asserted. In contrast, if the input is 110, then

X[5,3] = A[3] = 1, X[5,2] = X'!] = 0, and X[5,1] = A[1] = 0. The result of the

nand function with these three arguments is 1. Since binary (i,j) is either 1 or 0, the

algorithm can be simplified by stating that

X [i,j] =binary (i,j) * A [j] + binary (i,j) A [].

While the functional description uses arithmetic operators rather than

geometric operators to describe a circuit, it still corresponds with the other

descriptions. The mechanism which it uses is substitution and the structure of the

description is hierarchical in nature. Figure 2-26 shows the hierarchy in the

functional description.

The hierarchy is similar to those in the layout description, the mixed mode

description, and the schematic description. The major difference between them is

that the leaves of the tree in the functional description are inputs or their

complements while the leaves of the trees in other descriptions are leaf cells.

Because of the correspondence, the functional description serves as an excellent

reference in simulation and a good documentation of the algorithm performed by a

circuit.

- -- -
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decoder

OUTPUT[2 n - 11 OUTPUT[2n-21 ... OUTPUT[ i ... OUTPUT (01

II
Xiin] X~i,n- ... xi I *XI,

Atl orALi 

Figure 2.26: Hierarchy in functional description

2.3 A More Complex Example -- Multiplier

Section 2.2 showed the reader how to use the set of notations introduced in

Section 2.1 to describe the multiple equivalent representations of a decoder. This

section will present a more complex example, a multiplier, to illustrate the

versatility of the notations. mult is a generator for constructing an M x N cmos

multiplier layout 5. The latest version (Jan. 1986) of the mult generator provides

the user with the following options: (1) set the number of bits in the multiplicand

operand, (2) set the number of bits in the multiplier operand, (3) define the left

side horizontal bus as ground or vdd, (4) label the product output bits, (5) make the

number representation signed (two's complement) or unsigned, (6) label the

multiplicand input bits, (7) label the multiplier input bits, (8) use one more adder

sTbe autbor of the multiplier generator is Wayne Winder.

N.I
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to facilitate accumulation, (9) turn the internal cell labels on or off, (10) specify the

width of horizontallvertical GND/VDD bus and multiplicand/ multiplier gate sizes,

and (11) debug. Each of these options has a default. For example, to create a 3 x

4 cmos multiplier layout with 2"s complement number representation, left side bus

being GND, and other options being defaults, the user can simply specify *malt -m

3 -u 4". The procedure is as simple as the one used in generating a decoder.

A 3 x 3 signed two's complement multiplier is chosen as an example in our

discussion. In order to give the reader a better understanding of the different

descriptions for the 3 x 3 multiplier, the algorithm used by the multiplier generator

in creating the product output is described in section 2.3.1. Section 2.3.2 gives the

schematic description and the functional description.

2.3.1 Algorithm

The multiplication process may be viewed as having two parts: (1) the

generation of partial products, and (2) the reduction of these partial products into a

final product output. This section reviews the important details of the algorithm

used by Winder in his design of the molt generator [Winder 84].

2.3.1.1 Unsigned Multiplication

The most basic form of multiplication consists of forming the product of two

unsigned binary numbers. Let the two inputs to the multiplier be defined as the

multiplicand (X) with m bits, and the multiplier (Y) with a bits. The product of

X*Y is defined as P (P has n+m bits). The process of multipliation is illustrated

in Figure 2-27.

Each partial product (e.g. X 1 Y0 ... X2Y0 XtY0 XoYo) is conditional on the

multiplicand and one of the multiplier bits. In other words, the evaluation of

partial products consists of the logical ANDing of the multiplicand and the relevant

- .7- a:.
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Figure 2.27: Multiplication of two unsigned binary ntimbers

multiplier bit. The successive additions and shifts for 0 ! i < m-I and 0 : j s n-I

are accomplished as follows. First the sum in,1 , carry in2 , and X Y, are added

together. Then, sumout21 and carryout 2, are sent down to the next row. The

sumoutl j becomes sum-ini. ,j+l and carry outij becomes carryini,,+ t. Note that

the carry overs are not rippled through the next higher order bits. The sum-out's

and carryout's generated by the addition with the current partial products are

added in with the next partial product. Note also that elements in the top row and

the leftmost column in Figure 2-27 are considered as having O's as sum-in and

carryin. The sum-out's of elements in the rightmost column become the lower

order n bits of the final product. The n+I st row is implemented by a ripple adder

. . . . . . .
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where all the sum-out's become the higher order bits of the final product after the

ripple addition. For example, P. is the sum-out of adding carry outo.n.1 and

sum-out1 n-; Pn+ 1 is the sum-out of adding carryoutt.n.1, sum out 2,n.1, and the

carryout from the addition performed for P0.

2.3.1.2 Signed Two's Complement Multiplication

The algorithm used in the case of signed multiplication is more complex since

the most significant bit of each number is the sign bit. Let X, the multiplicand,

and Y, the multiplier, be represented by (XmIXm.2 ... ,X 2 X 1 X0 ) and

(Yn0 Yn.2 ... ,Y2Y1Y0). For positive values of X and Y, the most significant bits,

Xm.1 and Yn-l' are zero. In this case, the multiplication process can be

accomplished with the algorithm for unsigned multiplication as described in section

2.3.1.1. However, when the sign bits are not zero, we must revisit the significance

of the two's complement representation. For example, -5 is represented as 1011 in

the 2's complement representation (assuming a 4-bit word). The two's complement

process is used to eliminate the necessity of using the sign notation by embedding

the negative value of the number in the most significant bit. Thus 1011 is made up

of two parts: the negative part (-1)23 = -8 and the positive part, 011, which is 3.

Adding these two, we see the significance of -8 + 3 -5 = 1011.

Hence, arithmetic using two's complement is predicated on the assumption

that the two operands have the same number of bits. If we add two two's

complement numbers without aligning the sign bits, the result would be incorrect

as illustrated below.

O1 0 1I-
1011 = -

100010 : -30

Alignment of the sign bit of a negative number to a higher order number can be
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simply accomplished by filling with leading l's to the negative number with less bits

until the two numbers have the same number of bits. This is because -2m-1 = .2m +

2 -1t . For instance, -5 = 1011 = 11011 = 111011 = ...... This idea is used for

aligning the sign bit of the negative partial product to the sign bit of the next

higher order partial product if they are not on the same bit position. For a non-

negative number, only leading zeros need be added.

Given two numbers X and Y in the 2's complement representation where the

multiplicand X is of the form (Xmi1 Xm. 2 .... X2 X1 X.) and the multiplier Y is of

the form (Yn-t Yn-2 .... Y2 Y1 Y0), we can write

X = -XM 12ml + Xm 22M'2 + ... + X 12' + X02O,

y == ya2 1 +Y 2 2 2 +... + Y12 + Y020 ,

and

p=Xoy
- .m+n.2 m+ n' ! + Pm+n. 22m+n-2 + ... + P 12' + P020

where P. is expressed in terms of X. and Y. To obtain the value of Pk' we first

multiply X by Yo to get the first partial product:

-Yo(,.2m'l + YoXm. 22 m'2 + ... + YoX 12
1 + YUX 020

As mentioned before, -2 m - .2m + 2 m-1. The first partial product is equal to

-YoX .2m + YoX . 1ml + Yo 2m.2 +... + YOX 121 + YoX020 .

In this manner, the sign bit is shifted one bit to the left, thus accomplishing ie

alignment of the sign bit with the one in the second partial product. The second

partial product is

- k L ..Z..
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-YtXm.12m + YXm.22m'l + ... + YIX 1 22 + Y1X02

When it is added to the first partial product, the sum becomes

-(Y 0Xm.i + YXm_1)2 m + (YoXm. 1 + YIXm. 2 )2m-1 + ... + YoX 0 20 .

By the same token, the sign bit should be aligned with the sign bit of the next

partial product. Let us now formally define the values of the sign extension bits by

rewriting the above cumulative sum in the following way:

-f 2 m+t + g2m + (YoXmit + YXm.)2m't + ... + YoX0 2

Consider the table in Figure 2-28.

Y0 XM-I YI Xm-

o 0 0 0o 1 1 1

1 0 1 11 1 1 0

Figure 2-28: Sign extension bit

If both YoXm.I and YiXmit are non-negative, we fill the extended bit (fl) with 0

which corresponds to the fact that the sum of two non-negative numbers is non-

negative. If one is positive and the other is negative, the result should be negative

(since the product will be negative). By applying the observation that -2m = -2 m+1

+ 2 m, we derive ft=gt=I and the alignment is thus accomplished. When both

numbers are negative, adding these two sign bits results in overflow. In this case,

the sign bit (i.e. overflow bit) still represents a negative number and no alignment

is needed since -2 m + -2 m = 2 m+,

From table 2-28, it is obvious that ft = OR (YOXm,,YiXm _) and g, - XOR

(Y0Xmil,YlXmil). Since f0 = YDXm-l and g= YoXm-,I we derive f, = OR

- .. -n
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(foY1Xm.) and g, = XOR (fo,YXm-). Similarly, subsequent sign extension bits fi

and g, (for i < n - 1) will have the values

f.j OR (fj. ,YjXm-t)

and

" gi = XOR (fj,YXmd).

This process of forming the partial product, adding it with the previous

cumulative sum and performing the sign extension is carried out starting from Yo

until Y At each step, one corresponding bit of the final result is produced, i.e.

P0, P1, ""' Pn-2" The final partial product involving Y,-, has to be treated

differently: (1) If Yn-t = 0, the sign extension process in the preceding Pk has

taken care of the correction needed if X = ; (2) if = , it can be shown

that we need to add 2 m+ 1 - X to the final sum in order to get the correct result.

This can be achieved by two's complementing X before adding it to the cumulative

sum. Since this 2's complement will not change anything if Y = 0, the procedure

is the same independent of the value of Y,-," That is, the last partial product is

the same as

(XmiYn t - y m )2
m+n '2 + Y 1(l - Xm.2)2m+n' 3 + ... +

Ynt(l - XO)2n't Y+.I2

Observe that (1 - X1) - . The sign extension process for the last cumulative sum

has the modified formula

fo-t = gn- = OR (f,- 2 , AND (37,, Yn.1)).

The block diagram of the two's complement implementation is shown in Figure

2-29. It should be noted that after the (n-1)th addition, the result, carryouts,

sum outs and the Y-- bit, have overlapping binary weight values. For instance,
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the carry out from the ith column has the same weight as the sum out from the

(i+l)th column. The final stage of the multiplier is thus implemen:.ed by a ripple

adder to obtain the higher order m+1 bits of the final product. These bits, in

conjunction with the Pa-2 P-3' ..., P0 obtained in the first n-I partial product

additions, constitute the two's complement representation of the final product.

2.3.2 Descriptlons

The layout description, the mixed mode description, the schematic description

and the functional description of the multiplier apply the same mechanisms as

those which are used for describing the decoder. Each description is a hierarchical

structure in which the building blocks are objects except for the functional

description. Objects may correspond to leaf cells, or they may be abstract objects

which are defined in terms of lower level objects, which may again be defined in

terms of even lower level objects, etc. By using the substitution mechanism, the

complex geometrical patterns of the layout and schematic diagram for a multiplier

can be described in a clean and understandable manner. This section shows the

schematic description and the functional description of a 3 x 3 signed two's

complement multiplier. The layout description and the mixed mode description are

given in Appendices C and D, respectively.

2.3.2.1 The schematic Description

As pointed out in Section 2.2.3, the graphical version of the schematic

description is at the gate level. Thus the schematic description provides a higher

level of abstraction than the layout description or the mixed mode description.

The following statements define the schematic description for a 3 x 3 signed two's

complement multiplier.

NANE multiplier;
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TYPE SCHEMATIC;

PARAMETER m = 3, n 3;

LEAF CELLS SignExt, FullMult, LSignExt, Comp, RComp, Add;

MAIN

multiplier = adder I rowrn] I (I (row(i] (i = n - 1 .. 1)));

row[i] = SignExt -- (-- (FullMult (m - 1)));

row(n] = LSignExt -- (-- (Comp (m - 2))) - RComp;

adder - (.- (Add (m + 1))).

To generate a signed two's complement multiplier, six leaf cells are needed.

Figures 2-30, 2-31, 2-32, 2-33, 2-34, and 2-35 show the block diagram and internal

gate representation for each leaf cell.

SlgnExt generates the sign extension bits f. and gj for 0 :5 j t n-2, while

LSlgnExt evaluates the last sign extension bits, f,-, and gn-1" The function of

FauMult is to calculate the sum of carry_outi j , sum-outi+d and the ANDed

function of Xi and Yj for 0 s i s m-2 and 0 Sj ! n-2. Comp and RComp evaluate

the sum of c&.ry outi. 2 , sumouti+,n. 2 and the ANDed function of X and Y-I' 0

s i s m-2. They are basically the same with the exception that Y -I in RComp

exits from the right hand side and curves down to the first bit of the ripple adder.

Yn-1 is one of the inputs to the lowest bit of the ripple adder because of the last

term in the expanded version of the nth partial product, Y a-2 1. The leaf cell

Add computes the sum of three inputs and produces one bit of the final product.

In addition, the carry out is sent to the next higher order bit position of the ripple

adder.
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Figure 2-30: SignExt
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Figure 2.32: FuilMult
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Figure 2.34: Comp
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At the highest level of abstraction, multiplier is defined as

multiplier = adder I row(n] I(1 (rowri] (i = a - I .. 1)));

Thus it consists of an adder and n rows named row[n], row[n-1], ... , row[l]. These

objects are vertically stacked. The adder is situated at the bottom of the stack

while row[l] is situated on the top of the stack. For a 3 x 3 multiplier, there are

three rows. The statement

row[i] = SignExt -- (-- (FullMult (m - 1)));

denotes that row[i] is made up of SignExt horizontally joined with m-I FullMult's.

SignExt is situated on the left hand side and the FullMult's are situated on the

right hand side. The m-1 FullMult's are also horizontally joined. From the

previous descriptions of SignExt and FullMult, it is obvious that row[i]

accomplishes the process of forming the partial product, adding it with the previous

cumulative sum and performing the sign extension. The statement

row[n] = LSignExt (- (Comp (m- 2))) - RComp;

specifies that row[n] consists of m-2 horizontally joined instances of Comp with

LSignExt on the left-end and RComp on the right-end. Note that the function of

row[n] is to perform the ANDing of the complement of multiplicand and Y as

well as generate the cumulative sum and the last pair of sign extension bits, f,--

and g -t. The elements in the adder are further defined by the following fragment

adder = (-- (Add (m+l)));

Therefore in a 3 x 3 multiplier there are 4 Add cells horizontally joined. The

object adder generates the higher order m+1 bits of the final product. Figure 2-36

shows the expansion of the schematic description for a 3 x 3 signed two's

complement multiplier which is an instance of Figure 2-29.
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Figure 2-36: Schematic diagram of a 3 x 3 multiplier
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2.3.2.2 The Functional Descriptlon

Consider now the functional description for an m x n signed two's

complement multiplier. As mentioned before, the functional description describes

the algorithm performed by a circuit. In the case of a multiplier, it describes how

the final product is generated given a multiplicand X with m bits and a multiplier Y

with n bits. Presented here are three versions of the functional description for a

signed two's complement multiplier. Each version represents a different level of

abstraction. At the highest level of abstraction, a 3 x 3 signed two's complement

multiplier is described as follows.

NAME multiplier;

TYPE FUNCTIONAL;

PARAMETER m =3, n =3;

MAIN

multiplier =OUTPUT[] (= 0 .. m+n-1);

INPUT = X[i] (i = 0.. m-1),

Y[U) ( = 0.. n-I);

OUTPUT = X * Y.

For an m x n multiplier, there are m+n bits in the final product. They are named

OUTPUT[0], OUTPUT[l], ... , and OUTPUT[m+n-I]. The inputs are X and Y

where X is of the form (X[m-1] X[m-2], ... , X[I] X[01) and Y is of the form (Y[n-1]

Y[n-2], ... , Y[1] Y[0]). The OUTPUT is the product of X and Y.

To further describe how the product output is generated, one lower level of

description is provided.

NAME multiplier;

TYPE FUNCTIONAL;
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PARAMETER m =3, n =3;

MAIN

multiplier = OUTPUT[l] (I = 0.. m+n-l);

INPUT = X(ij (i =0.. m-1),
Y[j] (j = 0.. n-1);

OUTPUT =X*Y
CS[n];

CS[k] = CS(k-1] + PP[k], if I s k n;

CS[01 = 0;

PP[k] = Y[k-1I * X 2**(k-I), if I k n;

PP[O] = 0.

PP[k] represents the kth partial product and CS[k] represents the kth cumulative

sum of the partial products. Note that the details of the extension of sign bit and

the separation of carry and sum in each cumulative sum are not explicitly described

in this level of abstraction. Examination of these statements shows that the

functional description not only describes the algorithm but also corresponds to the

schematic description, the mixed mode description and the layout description. The

first n-1 rows of row[i] in the schematic description correspond to the first n-1

CS~kj's while row[n] and the ripple adder are implicitly accounted for in the

functional description by evaluating CStn].

At the lowest level of abstraction, the generation of each bit of the product

output and sign extension bit is described. It is shown as follows.

NAME multiplier;

TYPE FUNCTIONAL;

PARAMETER m 3, n 3;

-.-- j.. . . . . . .
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FJNC sum, carry, summation;

MAIN

/ TERMINOLOGY:
CS[k] = cumulative sum of partial products; made up of partial

sum and partial carry. I ! k 2 n.
PS[k] = partial sum; the sum portion of the result of an addition

when the carry overs are not rippled through the higher
order bits.

PC(kI = partial carry; the carry portion of the result of an
addition when the carry overs are not rippled through
the higher bits.
Note: PS[k] + PC[k] = CS[k] the total result of the
addition.

F[k] = the higher order bit resulting from extending the sign
bit during an addition. This is also the MSB of PC[k].

G[k] = the lower order bit resulting from extending the sign
bit during an addition. This is the MSB of PS[k].

RS[I] = sum bit generated by the ripple adder. This is also
one of the product bits. n-i r I - m+n-1.

RC[I] = carry bit generated by the ripple adder.
PP[k] = partial product; it is one bit of Y times the veitor X,

then shifted appropriately.
Fn[k,l] = bit with the 2"l power of the kth evaluation

of the function Fn. S/

multiplier OUTPUT[I] (1 = 0 .. m+n-1);

LNPUT = X[i] (i = 0 .. m-1),

YD] (j = 0.. n-I);

OUTPUT =X Y

= RippleSum;

RippleSum = summation (RS[t]*2**t, t = m+n-I .. n-1) +
summation (OUTPUT[t]20*t, t = n-2 .. 0);

RS[I] = sum (PS[nI], PC[n,I], RC[I]), if n-i s I ! n+m-2;

RS[m+n-l] = sum (0, PC[n,m+n-1], RC[m+n-1]);

RC[1+I] = carry (PS[n,1], PC[n,/], RC(1/), if n-I !s I n+m-2;

..'- ., -. -,. -: .., _, - -. : -.,. , -' , ' = : -- ,i [
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RC~n-1] 0;

PC[n,n-1] = Ytn-1];

1* cumulative sum is made up of partial sum and partial carry 0/
/* PSfk] and PC[kI are not added until next addition1
CS[kI PS[k] + PC[k], if 1 .!- k !S n;

PS[k] =sum (PS~k-1], PC~k-1], PPtkI)
=summation (PS[k,tl*2**t, t = m+k-2 .k) +
summation (OUTPUT[t]'2't, t = k-1 . 0);

PS(0] = 0;

/* The MSB of a partial sum is G(k]/
PS[k,m+k-2] =Gk]

PC[k) = carry (PSfk-11, PC[k-1], PP[k])

= summation (PC[k,tI'20*t, t = m+k-1 k);

PC[O] = 0;

I. The MISB of partial carry is F~k]
PCtk,m+k-11 = k]

F[k] =F[k-ljj I PP[k-I,m+k-21, if I k n-1;

F[0] 0;

G[k] = F[k-11] PP[k-1,m+k.2], if 1 !5 k t- n-I;

G[0] =0;

G[nI F[n-11 I (-X~m-l]*Y[n.1I);

PP[k] =Y[k-l]'X-2-(k-1)

=summation (PP[k,tI020t, t =rn-+k-2 k 1), if 1 !5 k f. n-i;

PPfn] =(X~m-l]*Y[n-1I - Y[n-1])*2*(m+n-2) +
summation (Yfn-I] -X~t]'2*(t-in-1), t = m-2 .. 0) + Y~n-1]'2"(n-I);

OUTPUT[I] RS[1j: <timeing spec>, if n-I -- I n+m-I
=PS[1+1,11: <iiming_spec>, if 0 1 n-2.
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Three functions, sum, carry and summation, are used in this description. Sum

(a,b,c) is equal to a XOR b XOR c and Carry (a,b,c) is equal to ab OR bc OR ac.

These two functions generate the sum out and carry out of three inputs. Suimmation

is the addition of terms in the series. The range of the terms is specified by the

limit of the index t. This function simulates the expansion of o Thus,

summation (RSft]02"*t, t = m+n-1 .. n-l) represents

RS[m+n.1]2"+*l+RS[m+n.2]2a+"2+...+RS[n.1]20 '1 . Figure 2-37 is the graphic

representation of this functional description.

The lowest level of abstraction in the functional description is very close to

the algorithm. RippleSum is the final product which is the concatenation of the

sum bits (RS[m+n-1]RS[m+n-2]...RS[n]RS[n-1]) generated by the ripple adder and

the n-I bits generated by the partial sum's, PS[n-1],PS[n-2], .. ,PS[I]. In the ripple

adder, each of the sum bits (which is also one bit of the final product) is defined as

the sum part of three components: (1) one bit of the partial sum from the nth

cumulative sum, (2) one bit of the partial carry from the nth cumulative sum, and

(3) the carry from its next lower order bit. Similarly, every bit of a partial sum is

the sum part of the sum in, the carry in and one bit of the current partial product.

The carry part of these components forms one bit of the partial carry. These can

be seen very easily from Figure 2-37. It should be noticed that the the MSB of

each partial sum (PS(k]) is G[k] and the MSB of each partial carry (PC[kj) is F[k].

The definitions of F[k] and G[k] are the same as those described in Section 2.3.1.2.

By separating the cumulative sum (CS[k]) into partial sum and partial carry, the

carry is not rippled to the next higher order bit. Thus, the multiplication is a

sequence of carry-save additions and only suffers from one ripple addition at the

end. The third level of abstraction in the functional description reflects this

important idea as it is implemented in the generator.

...... . ..... ,:. . ...
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As in the decoder example, we see that each description employs many levels

of abstraction and that there is a correspondence among different descriptions. If

the design is changed, relevant parts for a description can be discovered and

modified very easily. The changes can also propagate to other descriptions in a

controlled manner. The process of design and documentation is thus enhanced.
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CHAPTER 3. PARAMETERIZATION

Chapter 2 shows how a set of notations can be used to describe the multiple

equivalent representations of a design. Each description is declarative. A circuit is

described in the form of a hierarchy. As a result, the abstract structure of a design

is captured. Each description describes an instance of a particular circuit. The

flexibility of specifying instances with different design specifications is needed.

This chapter discusses the parameterization issues. Section 3.1 presents how the

description is modified to describe instances with different parameters. Section 3.2

suggests a structure which contains information about parameters (attributes) of an

instance of a circuit. This structure, catalog, serves as a database such that

important properties of a circuit can be retrieved by the user or the interface

system without expanding the relevant description. Finally, section 3.3 shows the

robustness of the descriptions when one of the parameters, technology, is changed.

3.1 Instances with Different Attributes

Using the constructs described in the last chapter, a decoder with a different

number of select wires and a multiplier with a different number of bits in the

multiplier and the multiplicand can be specified by providing the desired value(s)

of n (and m, in the case of multiplier) in the PARAMETER declaration part. For

instance, the four different views of descriptions for a NAND style decoder with 5

select wires are the same as those given in section 2.2 except that the value of n is

assigned to be 5 (n = 5) rather than 3. Thus, without specifying the values of n,

the descriptions given in section 2.2 can serve as generic descriptions for any

NAND style decoder. When a description is instantiated, the value of n is bound

to a specific number. In other words, each occurrence of n in the description is

replaced by the desired number of select wires. The description for a particular
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instance of decoder is thus accomplished. This flexibility through the use of input

parameters simplifies the descriptions for a class of ciicuits which have different

dimensions in their inputs but have similar structures. Parameterization of input

helps control the variability in their dimensions. Moreover, one can see how the

description varies with the parameters.

The concept of parameterization can be extended to the LEAF CELLS

declaration in the layout description, the mixed mode description, and the

functional description. Given a set of design specifications, a circuit description is

instantiated. The appropriate leaf cells for that description must be given in the

LEAF CELLS declaration. Notice that the leaf cells may not be the same for

different specifications; however, the hierarchical structures of objects in the

description are similar. Suppose that instead of a 3 x 3 signed two's complement

multiplier we want to generate the schematic description for a 3 x 3 unsigned

multiplier. This can be accomplished by the following statements:

NAME multiplier;

TYPE SCHEMATIC;

PARAMETER m = 3, n =3;

LEAF CELLS FullMult, Add;

MAIN

multiplier = adder I(I row[i] (i = n .. 1));

row[i] = -- FullMult (m);

adder = -- (Add (m)).

The schematic diagram is shown in Figure 3-1.

N
.4"
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Figure 3-1: Schematic diagram of a 3 x 3 unsigned multiplier

The description of the unsigned multiplier is simpler than the one for the

two's complement multiplier. There is a similarity between the hierarchical

structures of objects in these two descriptions. Figures 3-2 and 3-3 show the

hierarchical structure of objects in the signed two's complement multiplier and the

unsigned multiplier, respectively.

multiplier

adder rowlni row~n-li "'" row!1l ... row~lf4 / 3
Add(m i) LStignExth omp(m-2) RComp S lgnExt FulMuft(m- )

Soltware Routines Model Generator Routines

Figure 3-2: Hierarchical structure of signed 2's complement multiplier
,. , ''- " . _z . - •adde ° r -fn - - "i - "I 'I I row I I . . . I - - I
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multiplier

adder row[nI " 0 row(iI '' row[1I

Add(m) FuilMuit(m)

Figure 3-3: Hierarchical structure of unsigned multiplier

At the highest level of both descriptions, adder and rows serve as primitive objects

which encapsulate internal details of the circuit so that the multiplier can be

described in a more comprehensible way. Then the rows and adder are further

defined at one level lower in the hierarchy. Because the most significant bits of

the multiplicand and the multiplier in the unsigned multiplier also carry positive

magnitude, the definition of row[n] is the same as the one for other rows and each

row only consists of m instances of FullMult.

The functional description for a 3 x 3 unsigned multiplier corresponc ie

schematic description and bears a resemblance to the functional description for a 3

x 3 signed two's complement multiplier. The first two levels of abstraction are the

same as those in the signed two's complement multiplier. Since both the

multiplicand and the multiplier are non-negative, there is no need for

complementing X in the last partial product and performing sign bit extension for

each cumulative sum. As a result, the third level of abstraction is simpler. The

following statements illustrate the functional description for a 3 x 3 unsigned

multiplier at the third level of abstraction.

NAME multiplier;

TYPE FUNCTIONAL;

- . : ...._- i. -- : . . : : i . - . ... .' -' -.- : ) ,) i:: ,- i .. ---- -- , , . :
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PARAMETER m =3, n =3;

FUNC sum, carry, summation;

MAIN

multiplier = OUTPUT[1j (I = 0-. m+n-i);

INPUT = X~iI (i =0 m- 1n-),

Y[j] (j= 0.a-');

OUTPUT =X *Y
= RippieSum;

RippleSum = summation (RS[t]20*t, t = m+n-I .. a) +
summation (OUTPUT[tI*2*t, t = n-i .. 0);

RS[I] = sum (PS(nII, PC[n,I], RC[Ij), if n1 sI r n+m-2;

RS[m+n-i] = sum (0, PC[n,m+n-i], RC[m+n-i]), if n !s I !s n+m-2;

RC[I +1] = carry (PS[n,II, PC[n,l], RC[1), if n :r I -!- n+m-2;

RC~n] = 0;

CS~kI PS~k] + PC[k], if I k 2. n;

PS[k] =sum (PS~k-I], PC[k-i], PP[kI)
=summation (PS[k,tI020t, t =m +k-2 .. k) +

summation (OUTPUTftI*20t, t =k-1 .. 0);

PS[0] =0;

PC[k] =carry (Ps[k-i], PC[k-i], PP[k])

=summation (PC[k,tI'2**t, t = m+k-1 k);

PC[0] =0;

PPtk] =Y~k-lJX'2"(k-1)

=summation (PP(k,t102*t, t m+k-2 .. k-i), if 1 :5 k :s n;

OUTPUT[11 = RS[II: <timing spec>, if n !5 1 !5 n+m-i
= PS[I+1,1l: <timing_spec>, if 0 :r I ts n-i.
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In this section, we have examined some instances of decoder and multiplier

with attributes different from those specified in chapter 2. The intent was to show

how parameters are used to modify the descriptions, and yet the object hierarchies

remain consistent across the same family of circuits. Use of hierarchy and

abstraction in the circuit description makes it possible to suppress unnecessary

details. However, important information about a circuit after it is 'expanded'

should also be provided to the user and the applications software to facilitate the

design process. Catalog, a database for an instantiated circuit, is designed to serve

this function and will be discussed in the next section.

3.2 Catalog

A catalog is a list of properties of an instantiated circuit. It provides

information about the expanded version of a circuit to the user and applications

software, such as the layout system and to the interconnect system. Especially,

features which are not shown in the declarative descriptions but are requisites for

the generation of layout or simulation are provided. In the declarative

descriptions, the multiple instantiation of an object is specified by repetition. Since

the details of an object are only considered once, this produces considerable

savings in design. Nevertheless, the characteristics of the expanded circuit such as

size and bus width are often requested by the synthesis tools (e.g. placement),

simulators, DRC interface, or timing analyzer. The objective of a catalog is to

permit the users and the interface systems to retrieve attributes of the circuit from

the database rather than analyze the descriptions or the expanded geometric

representations. Thus fast access of information is achieved. I

The entries of a catalog are determined by the circuit and the interface

systems. They can be extended. A catalog has either general or special entries.

General entries exist in all catalogs while special entries are included only in some

r. . . ... - .-- -- . .
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circuits. The entries of a catalog may include the following. Item (1) to item (7)

are general entries while item (8) represents special entries.

(1) Name: the name of the circuit, e.g. decoder. So, the value of the type is

string.

(2) Description: a description of the circuit behavior. This description is

primarily for documentation purposes. It can be an English-language description or

a pointer which points to a file that contains this information.

(3) Technology: e.g. cmos 3 micron, nmos, etc. Again, the value of the type is

a string.

(4) Parameters: number of inputs and outputs. These are integers. In

addition, other design specifications should also be included. Examples are the

style (NAND or NOR) of a decoder and the number representation (SIGNED or

UNSIGNED) of a multiplier. These parameters are circuit dependent and their

values depend on the nature of the parameters.

(5) Size: the X and Y dimensions of the bounding box which contains the

circuit. They can be expressed in terms of lambdas or microns.

(6) Connectivity: The border descriptions include lists of coordinates of the

points (say, in clockwise order) where each kind of material in the circuit makes

contact with the bounding box. They are provided for routing purposes.

Information about the location and width of the power/ground buses and the wires

in the design should also be included. For each wire, it contains the wire id, its

layer, its size and location. The values of the border descriptions and wire

information in the catalog can be specified by pointers which point to the

appropriate files. Moreover, the catalog should also provide a pointer which points

to the DRC ring specifications.

A . - - . .- "* -
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(7) Performance: gate size, power consumption, rise time, fall time and

propagation of critical path.

(8) Special Features: characteristics that are only applicable to some circuits.

For instance, a bit map specification is useful in a ROM while it is irrelevant to a

decoder.

The structure of a catalog can be viewed as a collection of tables which are

similar to the relations in the relational database. Because some of the entries in a

catalog are circuit dependent, no attempt is made here to present all possible

relations. Part of the structure is shown as follows.

(1) circuit (name, description, technology, parameters. size, connectivity,

performance, special features). Each circuit is associated with a description of its

name, behavior description, technology, parameters, size, connectivity,

performance, and special features. The entries for the last five attributes are

pointers. Since we are describing an instantiated circuit, there is only one record

in the circuit table. However, if 'catalog' is generalized to represent a generic

construct for all the circuits in a common family, then there will be sets of records

in the circuit table and each record represents a circuit.

(2) parameters (#inputs, #outputs, ... ).

(3) size (Xdimension. Ydimension).

(4) connectivity (crossings, wires, drcRing). The values of attributes in the

connectivity table are all pointers.

(5) crossings (side, layer, location). The crossings table describes the crossings

in the border description. It contains one line per crossing, representing the

containing side (top, down, left, right), its layer and location.

&&Nw
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(6) wires (id, Layer, size, location).

Information about the components of a circuit and how they are oriented and

placed is not described in the catalog since they are already specified in the

declarative descriptions. The catalog documents the expanded version of the

circuit and makes connectivity information explicit. So, the users and the

applications software can query it. In conjunction with the declarative descriptions

and leaf cells, they are used to guide the generation process of a circuit.

3.3 Change of Technology

One of the desired properties of the declarative descriptions is technological

independence. The descriptions of a circuit should be invariant to the change of

the technology. The only changes that a designer has to make are the innards of

leaf cells, since they are primitive components in the description hierarchy and they
embed the technology dependent characteristics (i.e. implementation details such

as the layers used to fabricate the layout) of a circuit.

A small experiment was conducted to check whether the layout description

for a NAND style decoder holds when the technology is changed from 3 micron

fabricator to 1.2 micron fabricator. Th! dimensions of each box and distance

between any two materials within each of the leaf cells are carefully checked and

modified manually according to the design rules for 1.2 micron fabricator. It is

found that there is no significant difference between the new leaf cells and those

for the 3 micron fabricator. Since the implementation of the leaf cell is local to

the cell and variation in the implementation does not functionally affect the other

components in the hierarchical descriptions, it is obvious that the declarative

description holds regardless of the technology used.

-4
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CHAPTER 4. CONCLUSIONS

This chapter summarizes the contributions of this thesis towards the model

construction in the VLSI Design Generators project. Section 4.1 summarizes the

main features of the declarative descriptions and the parameterization issues. The

contributions of this thesis must be viewed in the context of design and

documentation. Section 4.2 gives some directions for future research.

4.1 Summary

In this thesis, the need of a model in the circuit generation process has been

described. VLSI design is an inherently complex activity, made even more complex

by the need to maintain several representations of an object being designed. This

is because different design tcrols have different requirements. The multiple

representation problems were discussed. It is observed that the model should

provide descriptions of the multiple equivalent representations of a circuit at the

,3ptimal level of abstraction for design and documentation purposes.

An integrated circuit design can be described in several forms, among which

are its layout, its transistor schematic, its logic gate schematic. and its functional

behavior. A set of notations to be used in the various descriptions were

introduced. Their syntax as well as semantics were discussed. These notations

were created to make the descriptions simple, natural, expressive, and to show

abstract, hierarchical structure and technology independence. Two examples, a

decoder and a multiplier, were used to illustrate the application of the descriptions.

For each design, there are some common characteristics among the four

different views of description. They are

* The descriptions are declarative.

-~~~.. -.................. .",- .. .--- : ,o
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" The hierarchical decomposition of the design proceeds recursively.
Multiple levels of abstraction make it possible to suppress unnecessary
details and make the design more comprehensible.

" Substitution is the mechanism to navigate in the hierarchical
description.

" There is a correspondence between different descriptions. As a result,
the design changes can be propagated in a controlled manner across
different descriptions.

Because of these characteristics, the declarative descriptions contributes to the

design process. A circuit can be developed faster and debugged easier since it is

specified in terms of a simple high-level description. The hierarchical structure of

the description reduces the complexity of a design, which is a big asset in the VLSI

design environment. The descriptions also serve as a choice vehicle for the

documentation of a design. They are simple and expressive. Most of all, they are

abstract enough to suppress the unnecessary details of a circuit while still make the

complex data structure explicit. This helps the designer review his design decisions

and communicate his ideas to others easily.

Each of the descriptions has its specific function in the generaticn process of

a design. The layout description in conjunction with an appropriate set of leaf cells

and the catalog can be used to generate the layout of a circuit. The mixed mode

description helps create the logic network description for the NETLIST program

and simulation. The schematic description simplifies the construction of the mixed

mode description. The functional description serves as an excellent reference for

checking the intermediate results for the circuit simulation.

Finally, the parameterization issues were discussed to show the flexibility of

the description. For different instances of a circuit, parameters are used to modify

the descriptions, and yet the object hierarchies remain consistent. In addition, the

leaf cells may vary with the technology used while the descriptions for a design are

invariant. The purpose of a catalog was reviewed, and the candidate entry types
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were presented. It is believed that the incorporation of the declarative

descriptions, the catalog, and a collection of leaf cells can capture the complex data

structure of a design and greatly facilitate the VLSI generation process.

4.2 Future Work

The work presented in this thesis forms a solid foundation for the

development of the generator construction methodology. Various extensions to the

(1-clarative descriptions and the catalog can be done to form a more powerful and

flexible model that guides the generation process. The following are brief

descriptions of three areas of research which need further exploration.

1. building a translation sys:em which can generate the appropriate outputs for

different descriptions of a circuit.

From the layout description, the mixed mode description, and the schematic

description, we should be able to derive the layout (together with the caesar or CIF

file), the transistor diagram and the logic gate diagram of a design, respectively.

The geometric operators in the declarative descriptions only describe the relative

placement of leaf cells, and the actual locations of alignment are embedded in the

registration marks. The most promising and challenging work to be done is to

build a system which can align cells according to the registration marks on the

relevant edges. The geometric operators indicate the edges on which relevant

registration marks can be found. The two objects will be aligned so that their

corresponding registration marks are adjacent to each other, horizontally or

vertically, according to the relations specified by the geometric operatcts. Also

research needs to be done on connecting two cel ts which are not adjacent to each

other.

Presently, the generation of the leaf cells in the layout description is done by
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CAESAR and CFL. In the case of the mixed mode description and the schematic

description, postscript code is a good candidate for generating the leaf cells.

2. investigating ways of describing the catalog database.

Parenthesized expressions of the form (Attribute value I value 2 ...) can be used for

writing down the catalog database description. The LISP-like format is easy to

extend with new attributes. Another approach is to prompt the user tables which

list all the general entries on one column. The user is expected to type in the

appropriate values of these entries on another column according to the particular

characteristics of the circuit. The special entries may also be given by tables or

provided by a different mechanism. This approach is more user friendly, but

requires a more sophisticated system.

3. creating a design database which can organize the design data across the multiple

representations of a design.

A circuit design can be described simultaneously by its layout, interconnected

transistors, interconnected logic gates, and functional behavior. Each description is

a hierarchical collection of objects. To keep the design description consistent

within and across representations, it is useful to have a database which can

organize the object hierarchy within each description, correlate equivalent objects

across the multiple descriptions, and maintain these correspondences as the design

changes. As a result, if a portion of the design is changed in one representation,

the system can flag the corresponding portions in other representations of the

circuit, and appropriate modifications can be made easily.

. . . . . . . . . ... . .
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APPENDIX A. EBNF DEFINITION

In the definition given below, the equal sign '-' is to be read as 'is defined

as'. All literals are enclosed in double quotes (i.e., )while <char>, <letter>,

and <digit> represent the sets of characters, letters, and digits, respectively.

Concatenation is expressed by writing terms (factors) followed by another. The

vertical bar 'r is used to separate alternatives in the definitions. Braces, i.e., If'

and '1*, specify 0 or more repetitions, and brackets, '(' and '1", express options.

Each definition ends with a ''

<program> - <declaration> 'MAIN' <statement> [';' <in-spec>]
f'; <statement>).

<declaration> - <name-del> cctype-del> <param-decl> [<cell-deci>]
[<func-decl>].

<name-decl> - 'NAME" <name> Y;.

<name> = <letter> {<letter> I <digit> I 4 .

<type-decl> = TYPE' <type-group> ';'.

<type-group> 'LAYOUT' I 'MIXED' I 'SCHEMATIC' I 'FUNCTIONAL'.

<param-decl> ='PARAMETER' <param> {', <param>) ;'

<param> - <name> '-' <integer>.

<integer> = <digit> {<digit>).

<cell-deci> = 'LEAF CELLS* <namne> {*' <name>l ;

<func-decl> - 'FUC <name> (',' <name>) ;'

<statement> = <regular-statement> I <out-spec>.

<regular-statement> = <object> '=* <body> {'=' <body>J.

<object> =<name> [' <ndex-list> 'i
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<index-list> =<expr> {',' <expr>l.

<expr> = I'-I <term> {<opl> <term>).

<term> = <factor> {<op2> <factor>).

<factor> = integer I [*I] <object> I "(w <expr> "Y"

(]<simple-func> I<complex-func>.

<opi> = N1+w 1 I0 wrw*

<op2> = NO I I I

<simple-func> =<name> <object> {W," <object>)l*

<complex-func> = <name> ff(W <expr> *,' <subrange>wr

<subrange> =<name> "=" <expr> W. <expr>.

<body> = <assignment> (W,M <IfCond>].

<assignment> =<expr> I <out-assign> I <geo-assign>.

<out-assign> 'OUTPUT' <n-out>.

<n-out> ff 'r <name> "r '(' <subrange> ''

<in-spec> = IPUT w= <input> {",' <nput>).

<input> = <name> <in-out>.

<out-spec> ' OUTPUT' [' <index-list> fl="<out-body> f"=0 <out-body>).

<out-body> <assignment> '? <expr> [',' <If Cond>].

<geo-assign> -<comp> {<geo-opl> <comp>.

<geo-opl> = --I I I'-- rr 1 0fl r

<comp> = <object> I <geo-op2> "(* <object> [) +*I-'] <cinteger>] "Y I

(<loop>W)

<geo-op2> ="rot' I 'ie 1my.

<loop> =<geo-opl> ( <object> (M<loop-index> 7Wa
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<loop-index> - <expr> I <sub-range> (~w <cxpr>].

<lfCond> *IF' <relation> ( &'I 11r] <rclation>j.

<relation> =<expr> <re-op> <expr> [<re-op> <expr>].

<re-op> -~j~~~I~IW..
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APPE~NDIX C. LAYOUT DESCRIPTION OF A MULTIPLIER

This is the layout description of a 3 x 3 signed multiplier. In this description,

G and V are defined as follows.

G = ((horiz busjgnd - 1) DIV MINBUS) + I
V = ((vert bus vdd - 1) DIV MIN BUS) + I

where MIN-BUS is designer-dfnd hoibusjnd and vert-bus-vddae

determined by m (number of bits in the multiplicand) and n (number of bits in the

multiplier). The left side bus is GND.

NAME multiplier;

TYPE LAYOUT;

PARAMETER m=3, a 3;

LEAF CELLS
MULTMU, MULTMG, MULTMD, MULTEU, MULTEG,
MULTED, MULTLU, MULTLG, MULTLD, MULTCU,
MULTCG, MULTCD, MULTXA, MULTXG, MULTXO,
MULTXV, MULTCPM, MULTYA, MULTYG,
MULTYO, MULTASILFN, MULTAMIDN, MULTASIRTN,
GNDarea, Edge, GNDend, VDDend, Right-Corner,
Out-Path, Polystrip;

MA~I

multiplier =(((GNDarea -- Mult X)
inl (MultY -- Array) ) -- VDDarea)
inl Adder;

Array = (inl (row[iJ (n-I))) inl row[n];

rowfil sign --n1 (-nl (fulimult (rn-I)) );

row[nI lastsign --n1 (--nf (complement (r-i)));
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fulimult NMTMU ii (in (MULTMG (G)) )i IfwMLTMD;

sign - MULTEUI(ifl o(MULTEG (G)) inl MULTED;

laStsign = MULTLU in (in (MULTLG (G))) in MULTLD;

complement = MULTCU il (in (MULTCG (G)) ) iflMULTCD;

mut-x = (-n (x.Comp (mn)));

XComp - rot(MULTCPM, -90) iflMULTXA in MULTXG in
muLTxo in (in (MULTXV (V)));

Mut-Y = (in (Y-Comp (a)));

YCoinp = MULTCPM -- Edge -- MULTYA -- nMULTYG
--n MULTYO;

Adder - GNDend - add -- VDDend;

add = MULTASHLFN -(-(MULTAMIDN (mn-1)) ) -- MVULTASIRTN;

VDDarea =Right-Comner in (in (out-yath (n-I))) in (Poiystrip).



APPENDIX D. MIXED MODE DESCRIPTION

The mixed mode description for a 3 x 3 signed multiplier is as follows. The

expansion of each of the leaf cells is shown after that.

MANE multiplier;

TYPE MIXED;

PARAMETER m =3, n =3;

LEAF CELLS SignExt, FuliMult, LSignExt, Comp, RComp, Add;

MAIN

multiplier - adder I row[n] I (I (row~i] (i - n - 1 .. 1)));

row~i] =SignExt -- (.(FuilMult (m - 1)));

row[n] =LSignExt -( (Comp (m, - 2))) - RComp;

adder =(-(Add (m + 1))).
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