
* v«.. >*: .-i .>'..n. .*. ■>.,■_»,.^^ ni

LD

to

<
I
D
<

UJ

unclassified
SECUf.lTY CLASSIFICATION OF THIS PAGE fHTien Dnia Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER

86-07-02 y 2. GOVT ACCESSION NO

4. TITLE (end Subtlllc)

MOS Circuit Models in Network C

'. AUTHORfsJ

William Beckett

PERFORMING ORGANIZATION NAME AND ADDRESS

UW/NW VLSI Consortium, Dept. of Computer Sei.
University of Washington, FR-35
Seattle, WA 98195

CONTROLLING OFFICE NAME AND ADDRESS
DARPA - IPTO
1400 Wilson Boulevart
Arlington, VA 22209

MONITORING AGENCY NAME & ADDRESSf//c////ar*nr from Conlroltlnt Ollle»)

ONR
University of Washington
315 University District Building
1107 NE 45th St., JD-16, Seattle, WA 98195

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT ft PERIOD COVERED

Technical
6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERS

MDA903-85-K-0072
ARPA-4563, #2
Code 5D30

tO. PROGRAM ELEMENT. PROJECT, TASK
AREA A WORK UNIT NUMIERS

U. REPORT DATE

July 1986
13. NUMBER OF PAGES

8
IS. SECURITY CLASS, (ol Ihlt report)

unclassified

IS«. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT fo/fh/» Repor»)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (ol the mbetract entered In Block 30, It dlllerent Irom Report) ©nc
18. SUPPLEMENTARY NOTES

ELECTE
JUL 2 4 1986

19. KEY WORDS (Continue on reverse aid* II neceeaary and IdfntUy by block number)

Network C, VLSI, MOS, CMOS, nMOS, SPICE, nmosfet, pmosfet, simulation

20. ABSTRACT (Continue on rmveree tide II neceeeary and Identity by block number)

Network C is a programming language designed for constructing simulation models
of VLSI circuits and systems. The language, which is a superset of C, supports
a range of modeling capabilities including approximate solution of Kirchoff
equations at the circuit level and discrete event functional simulation at the
system level. When used to model a MOS circuit, the system first decomposes the
circuit into a set of independent stages. The values of nodes, represented by
piece-wise linear functions, are communicated between stages using discrete event
scheduling. The determination of these piece-wise linear Ccontinued nvprl

DD,Ä1473 EDITION OF 1 NOV 6B IS OBSOLETE
£N 0102-l.F-Ol4.-6601 ■ 40 4f"

unclassified
RITY CLASSIFICATION OF THIS PAGE flWian Dala Bnlered)

$>fcö#^:£:J>>;£#^

; '. .Vv.VV'VU'v ■,/•■/ rmUm*\J^V'M\?W.M.l^V~\.MJLM.r^-.nM&*.nMi-, • l—'^vl.*.—■■-. .

fa

unclassified
äECUniTV CLASt-.tlCATlON OF THIS PAOC fH^mi !>*<.. luU*'-l)

2o Abstract (continued)

functions is based on continuous time calculations. The result of this
hybrid approach is a fast simulation capability which maintains enough
accuracy to capture both the digital and analog aspects of a circuit s

behavior.

This paper bears on the topic of simulation.

i ^

L

. j

t,. . '
■■'■■'

■

r
• — ... ,,.

■:'' ;\:

unclassified

A-

..

| SECURITY CLASSIFICATION OFTHIS PAGEfH7..n Data Enl».d)

MOS Circuit Models in Network C

William Beckett

University of Washington
Seattle, WA 98195

Technical Report 86-07-02
July 1986

mmmmmmmmmmmmMmmzMmmm

MOS Circuit Models in Network C

Abstract

Network C is a programming language designed for constructing simulation models
of VLSI circuits and systems. The language, which is a superset of C, supports a range of
modeling capabilities including appi ximate solution of KirchofF equations at the circuit
level and discrete event functional simulation at the system level. When used to model
a MOS circuit, the system first decomposes the circuit into a set of independent stages.
The values of nodes, represented by piece-wise linear functions, are communicated between
stages using discrete event scheduling. The determination of these piece-wise linear func-
tions is based on continuous time calculations. The result of this hybrid approach is a fast
simulation capability which maintains enough accuracy to capture both the digital and
analog aspects of a circuit's behavior..>:-

This paper bears on topic 1 (Simulation).

%mmmmm*mmmwmmmmm!

MOS Circuit Models in Network C

Introduction

Network C is a programming language designed for constructing simulation models
of VLSI circuits and systems. The language, which is a superset of C, supports a range of
modeling capabilities including approximate solution of Kirchoff equations at the circuit
level and discrete event functional simulation at the system level. The circuit description
capabilities of the language are hierarchical and allow subsystem models of varying levels
of precision to be mixed.

In the case of MOS models, the execution of a Network C program has two phases.
The first phase is circuit analysis. The effect of circuit analysis is the decomposition of
the system being modeled into a set of stages. Each stage is isolated in that the only
connections existing between it and all other stages are through nodes connected to gates.
After the stages have been isolated in this fashion, the approximate behavior of the system
can be obtained by evaluating each stage independently.

The calculation phase of Network C utilizes a combination of continuous time cal-
culation and discrete event scheduling. This technique is aimed at retaining some of the
accuracy of purely continuous time systems while realizing the speed advantage inherent
in discrete event systems. The value of increased accuracy over purely discrete systems is
that a larger class of circuits can be modeled. For example, circuits which utilize analog
circuit techniques or in which there is a considerable amount of charge sharing are usually
beyond the capabilities of purely switch level simulators. The value of the increased speed
of discrete event systems over purely continuous time systems is that circuits with a larger
number of components can be accommdated.

Discrete event simulation requires that each stage accept state valued functions as
input and produce state valued functions as output. To meet this criterion. Network C.
models node voltages with piece-wise linear functions. Since piece-wise linear functions can
represent an unbounded number of states, Network C reduces the state space by truncating
both the derivatives and values of the functions to fixed precission. This produces a set
of states which, although it is small relative to a continuous representation, it is still large
enough for substantially improved precission when compared to systems with only a few
to tens of states.

The continuous time part of the calculation used by Network C differs from the calcu-
lation done in SPICEjfl in three fundamental respects. First, since Network C partitions
the circuit into stages and computes each stage independently, the rank of the set of node
equations is dramatically reduced for larger systems. Second, Network C uses direct three
>top quadrature rather than a nonlinear equation solver to solve the equations for each
stage. Finally. Network C uses only simple DC MOS law models for transistors. All of

those aspects tend to trade accuracy for spe^d.

1

^^r^yrm>;y;W^^^

While Network C may be used to model systems at high levels of abstraction, the
purpose of this paper is to provide an overview of the Network C facilities used in developing
circuit level models with emphasis on describing the calculation used to evaluate MOS
circuits. The first section describes MOS circuit analysis and lists the assumptions about
the nature of MOS circuits on which the method is based. The next section discusses
behavior calculation in detail. Finally, two short examples are presented. Although a
complete definition of the the syntax and semantics of the various Network C constructs is
beyond the scope of this paper, many of these constructs are illustrated in the examples.

Circuit Analysis

The MOS abstraction implemented by Network C embodies the following three hy-

potheses.

1. MOS circuits are composed primarily of gates connected by passive steering networks.
The function of the gates is to connect various circ 't capacitors to the power and
ground rails for charging and discharging. The interpretation of the behavior of the
circuit is in terms of the voltages on these capacitors at any point in time. That is,
systems are designed so that information is not directly represented by current flows.

2. The power and ground rails have zero impedance and can supply arbitrary currents.

3. The average current into the gate terminals of MOS transistors is zero. Hence, there
is no possibility of DC coupling between stages of the circuit.

Assumption 2 is implemented by simply holding the voltages of all device terminals
connected to the supply rails constant at the corresponding level.

The Network C uses assumption 3 as the basis for its decomposition of circuits into
stages. Each stage consists of a subset of the nodes of the original circuit which may be
reached from each other without crossing any gates, that is, by following only source-drain
paths. These nodes are called the output nodes of a stage. All devices with either their
source or drain connected to an output node in a stage are also considered part of that

stage.

Circuit analysis partitions the circuit so that the value of each node in the circuit is
determined by exactly one of the stages. That is, all drivers of a node, if there are more

than one, belong to the same stage.

When circuit analysis has completed, each stage will contain zero or more devices
whose gates are not connected to nodes determined by that stage. The voltages on these
gates are considered to be the independent variables or input nodes from whose values the
behavior of the output nodes of stage is computed.

Beh ay iorjCalculation

Discrete event scheduling is used to control the operation of the behavior calculation.

NW«VWW^^W^K^-;^WW

The models for each stage, having been derived by circuit analysis, are invoked whenever
an input to the stage changes state. The effect, of evaluating the model is the calculation
of new descriptions for the voltages of each of the output nodes in the stage.

The inputs of a stage are the nodes that are connected to the stage's independent
j^ates. Xote that by 'change in state' is meant a change in the parameters of the linear
mode! for a node's voltage, not simply a change in the voltage. To clarify the nature of a
chanse in state, consider the following waveform and its derivative:

/
/

./

This wave is a typical rising edge. It's state changes twice. During the first change,
the derivative (which is the slope of the linear model) goes from zero to a positive value,
during the next change it goes back to zero. Note that the use of the edges of the derivative
as events in this simulator is analogous to use of the edges of the logic level as events in
logic level simulators except that, in the case of derivative edges, there are typically two
events per logic state change.

The evaluation of each stage involves the determination of a piece-wise linear model for
each of its output nodes given piece-wise linear models for each of its input nodes. Although
more direct methods are possible for simple stages, currently Network C generates piece-
wise linear models by performing continuous time calculations and then fitting the resulting
curve with a piece-wise linear form.

The continuous calculations are performed forward in time from the current time
point. Since the behaviour of the inputs for future time has not yet been calculated, the
calculation of the output forecast is based on the predicted behaviour of the inputs.

This prediction of input behaviour is computed as follows. The state of each node in
the circuit consists of the three parameters of its linear model, namely:

m slope
b intercept
to time of last change

The availability of these parameters means that the value of the node at any future
point in time can, in principle, be predicted using the linear formula

y - m(/ - to) T h

te&j«®M^^

Actually, the above formula works for large values of i — <o only if the signal is con-
stant, that is m - 0. Otherwise, the formula generates an unbounded value. Therefore,
immediately following applications of this formula. Network C bounds the result above
and below by the power supply rails. The effect of this heuristic, which works better for
CMOS circuits than NMOS circuits, is that the linear models for all nodes in the system
are given a piece-wise linear interpretation.

The calculation of outputs from inputs proceeds as follows. For each time point in
the forecast range, the system calculates branch currents for each DC branch in the stage.
Note that there are no DC branch currents between stages since there are no DC paths
between stages. These currents are DC branch currents because, during this part of the
computation, all node capacitances are considered to be zero.

The branch currents through each transistor are calculated using the following con-
tinuous form the the DC MOS law:

ilin = 2k{vga - vth)vds ■ -kvl Vga - Vth > Vda

isat = Kvg> - vih)2 Vgs - Vth < Vda

toff = 0 Vgs -Vlh<0

, noindent The above equations are for NMOS; for PMOS the equations are similar.

Inputs to the calculation are the voltages on the source and drain nodes at time t - 1,
the forecast time, and the linear model of the gate node. Using the forecast time and the
linear model, the gate voltage is determined by the prediction algorithm described above.
Outputs from this calculation are the source and drain terminal currents which are the
same except for the sign.

After all branch currents for the stage have been computed, the currents for each node
are summed. This is similar to the normal Kirchoff procedure except that, since the node
capacitances have been disconnected, the result of this summing is a non-zero residual
current at the each node.

Next, these residual currents are smoothed using the filter:

t = (to +2it-i +i(-2)/4

where io is the unfiltered residual current, it-i is the filtered residual current a.t t - 1 and
ii-2 is the filtered residual current at < - 2.

The final filtered residual currents are then forced into the node capacitances produc-
ing the set of node voltages for this time point. This particular numerical technique is
similar to that used in QRS[6j.

The above procedure continues until a complete set of output curves for the stage has
been computed. Typically this set of curves will span about 50 nano-seconds and contain
50 time points per output node.

MMa^»^waM8»»

Eacli of these curves is then fit, using a piece-wise linear curve fitter. The curve fitter
classifies curves by the number of inflections in their second differences and will try to
generate a fit having one, two or three line segments. Each segment is the best linear least
squares approximation for the points in the segment.

After the curve fitting, a continuity constraint is applied to tiic resulting piece-wise
linear form: in the case in which the new piece-wise linear model for a node intersects the
current piece-wise linear model at some future time, the first event in the new piece-wise
linear form is delayed until that time.

Finally, the events of the new piece-wise linear model of the node are queued. There
can be from one to three of these events and, since the queuing mechanism is preemptive,
some events in the new form may preempt events queued earlier.

Since the determination of piece-wise linear models involves a continuous time com-
putation, and since this computation is really a forecast which may have to be recalculated
if the assumptions on which it is based change, Network C simulations could potentially
require more computation than fixed time step continuous time approaches.

There are several factors that tend to overcome this tendency for increased compu-
tation. First, since the scheme is event driven, detailed calculations for any stage are
performed only in the neighborhoods of transitions on nodes which are inputs of the stage.
Second, when an event occurs on an input that was predicted during a previous invocation
of the model of a stage, the model exits immediately and the output is not recalculated.
Since the new event was anticipated, its effects have already been included in the output

forecast.

Finally, redundant calculations arc avoided by using a calculation history. Associated
with each stage, these calculation histories consist of a small set of situations and actions.
A situation is an encoding of the states of the inputs and outputs of the stage at a time
immediately following a change in an input. The actioi. is the set of outputs that were
computed in response to the situation. Since the most stages tend not to have very many
nodes, and since the parameters of the piece-wise linear models are granular, it is feasible
to keep a reasonable number of situations in the history. Also, since the shapes of the
transitions for most nodes in digital circuits are determined by time invariant physical
characteristics, it is likely that the situations recur. When this happens, the output for
the stage is available immediately as a result of table look up in the calculation history.

The net effect of all these mechanisms is that the resolution of the simulator is variable.
In the worst case of continuously changing input, say a sinusoid, the forecast and fit
procedures will generate a large number of short lived piece-wise linear models of localities
of the sine wave. Of course, using this mechanism to track a sine wave is expensive.
Generally speaking, the more the natural behaviour of the nodes of the circuit fit the
assumptions of the forecasts the less the amount of calculation required. In the best case
it is possible for the simulator to completely learn the circuit and, once that happens, all

behaviour is obtained by table lookup.

i^!^r>/;^0W,CK^

Examples

In discussing tho examples, a number of the features of Network C language and
Translator will be highlighted. The Network C translator is implemented using a three
p.is.- preprocessor. The first pass uses a yacc parser to build a complete parse tree. The
grammar used by the parser consists of the grammar for the portable version of the C
compiler with the extra Network C constructs added. The second pass applies a number
of parse tree rewriting rules to convert the subtrees containing Network C constructs
into subtrees containing only C constructs. The third pass walks the modified parse tree
outputing the text of the C translation of the original Network C input.

The C programs generated by the Network C translator can be compiled by the system
C compiler and the resulting object files represent executable models of VLSI subsystems.
Those models, like all C procedures, may be put on libraries for inclusion in other, more
complex models.

Network C programs have two module types - network descriptions (called circuits)
and procedural device or subsystem models (called models). Circuits, or network descrip-
tions, consist of a set of elements connected to a set of nodes. An element is either another
circuit or a model.

Models are procedures which compute the values of outputs from inputs.

The first example, shown in Figure 1, is a simple series of three CMOS inverters. The
example illustrates the general form of Network C programs.

maincircuit mos9()

/* Simplified cmos inverter chain */

{
elements

<

gl (gen, 0.0.5.0.1.0e9,-1.0e9) elk. a,

il (cinv.5.0.0.0.1.06-4.1.06-4) a. b

i2 (cinv.5.0.0.0.1.06-4.1.06-4) b. c

i3 (cinv,5.0.0.0.1.0e-4.1.0e-4) c. d

>:

conditions

{
elk = (clk+1) 7. 2; [50.e-9]

};

x;

Figure 1.

The declarator elements introduces the list of network elements. Each network element

G

hmmmmmmmmmm <i'SiS-^>r^.\-A :v.J<l w.^^mYi^il^^^^ ^J->?>^

lias an instance name, a class name, a sot of optional parameters, and a terminal connection
list.

The first element in this circuit, gl. is a clock generator which generates a clock signal
n. n is synchronized to the signal elk and has a minimum value of 0.0, a maximum value
of 5.0. and rise and fall rates of 1 volt per nanosecond. The second phase of the clock, i,
is not used in this experiment.

The next three elements form the series of inverters. The clock, a, drives the first
inverter. Its output, b, drives the next inverter whose output, c, drives the last inverter.
The parameters following the class name, cinv, initialize instance variables within the
definition of cinu (see below).

The logical clock, c//c, is generated by the statement following the conditions declara-
tor. The interpretation of this statement is that elk will oscillate between 0 and 1 with a
transition occurring every 50 nanoseconds.

The procedure cinv shown in Figure 2 computes the input/output relationships of the
inverter. The declaration

network float trigger a;

is a Network C construct that specifies that the first terminal of the inverter will be
connected to a node which has a floating point value. (Network C also allows integer
nodes.) The trigger specification indicates that the model is to be invoked every time this
quantity changes state. Recall that the state is defined to be the state of the piece-wise
linear model of the quantity so emu will get control every time the node connected to its
first terminal changes either its slope or its intercept.

The declaration

network float mos y;

indicates that the second terminal of the inverter is also connected to a floating point node.
This terminal is not a trigger which means that the inverter will not get control if the node
it is connected to changes. Also, the specification mos means that the node connected to
this terminal is to be considered part of a MOS circuit and MOS analysis will result. This
specification is required since Network C allows other types of network nodes (for example,
elk above) which are not considered by MOS analysis. In the case of this circuit, circuit
analysis will put each instance of cinv in a different stage.

The general rule is that the nodes appearing in the terminal list of an element in a
elements declaration are bound in order to the network variables declared in the model.
Similarly, the quantities in the parameter list of an element are taken in order to initialize
local variables in the model. For example, all the instances of cinv in Figure 1 have the
same set of parameters. They arc. vdd (set to 5.0), gnd (set to 0.0), kpu and kpd (both
set to 1.0e-4).

K^v>™^^^^^

#define clip(v.vl,vh) aminl(amaxl((vl),(v)),(vh))

cinv(tf.vout.iout)

float tf;

float vout,

float *iout;

/* CMOS inverter

network float trigger a;

network float mos y;

/* forecast time

/* output voltage

/♦ output current, returned

*/

*/

*/

*/

local float vdd.

gnd.

float

kpu,

kpd;

vtn.vtp,

vl.

ipd.ipu;

/* high power supply voltage
/♦ low power supply voltage

/* k for the pull up transistor

/♦ k for the pull down transistor
/♦ threshold voltages
/* input voltage
/* transistor currents

/* Threshold voltages are 0.2*Vdd.

vtn = 0.2*vdd; vtp = -0.2*vdd:

/* Generate the input forecast and clip.

vl = aWclock + tf - a->tO) + a;
vl = clipCvl.gnd.vdd);

/* Compute transistor currents.

pmosOCvl. vdd, vout. kpu, vtp, fcipu);
nraosOCvl, gnd, vout, kpd, vtn. tipd):

/* Compute output current.

*/
*/
*/
*/
*/
*/
*/

*/

*/

*/

*/

*iout = ipd ♦ ipu;

Figure 2.

MBMgm™

The arguments to cinv arc the forecast time and the output voltage. The output will
he the output current.

Tiie thresholds for the n and p device are computed from the power supply and the
gate voltage is ohtaincd using the linear prediction. Transistor currents are computed
UMUg the DC MOS law and summed to produce the output.

nmosü and prntmO implement the continuous MOS law stated earlier for n and p
transistors respectively.

/77

Figure 3.

The next example is the CMOS RAM cell and sense amplifier shown in Figure 3.

ö<iiiM«fö^i^^^

Since this circuit is closely coupled, circuit analysis will place all nodes and devices in the
saau' stage. The circuit is a good example of a circuit whoso behavior calculation requires
the modeling of both analog and digital characteristics.

maincircuit ram()

/* RAM cell and sense amp */

nodecap
<

bit = 1600.e-15;
bitn =1600.6-15;
nOl = 160.e-15;
n02 = 160.e-15;

>:
elements
<

gl (gen. 0.0.5.0.1.0e9.-1.0e9)
g2 (gen. 0.0.5.0.1.0e9.-1.0e9)
g3 (gen. 0.0.5.0.1.0e9.-1.0e9)

tOl (nmosfet. 2.33e-5. 1.0)
t02 (nmosfet, 2.33e-5. 1.0)
t03 (nmosfet. 2.33e-5. 1.0)
t04 (nmosfet. 2.33e-5. 1.0)

eq. equal, equaln
elk. read, readn
elk. word, wordn

word, bit, nOl
word, bitn, n02
n02, nOl, gnd
nOl. n02, gnd

t05 (nmosfet. 6.99e-5, 1.0) equal, bit. bitn

t06 (pmosfet. 6.99e-5. -1.0)
t07 (nmosfet. 4.66e-5. 1.0)

t08 (pmosfet. 6.99e-5. -1.0)
t09 (nmosfet. 4.66e-5. 1.0)

bitn. n03. bit
bitn. bit. n04

bit. n03. bitn

bit. bitn. n04

>:

tlO (pmosfet. 6.99e-5. -1.0)
til (nmosfet. 4.66e-5. 1.0)

Figure 4.

readn. vdd. n03
read. n04. gnd

The circuit description given in Figure 4 is similar in form to that of the three inverters
of the first example. In this case, the components consist of three waveform generators
and the n and p transistors modeled by nmosfet and pmosfet respectively.

10

^A^Ai^A'A-.-l-fA:': i^-Kw>raift:m^^

Tho nodccap declarator is used to associate specific capacitance values with nodes.
(There is a small default minimum node capacitance associated with all MOS nodes which
is required by the numerical method.) In this case, the bit and hitn lines are given large
capacitances, IGOO femtofarads, and the memory cell storage nodes are given smaller, but

larger than typical, values.

mnotjet uses the same basic DC MOS law model described above to calculate drain-
source current from terminal voltages. For the nmosfet and pmosfet models, however, the
gain supplied as the first parameter is one half the device transconductance, that is

gain = k/2.

The device conductance, fc, is defined as the process conductance times the width over

the length, that is,

it = k'{w/l)

where k' is the process conductance given by

(i is the carrier mobility and Coj. is the gate oxide capacitance per unit area.

If cox is the permittivity and tox is the thickness of the gate dielectric, then

Cox — f-ox/'c

For this example we have taken

ß =000
fox = 3.9fo = 3.5 x ID-

tox = 0.1 x IG"6

13
cm2 /volt-sec
farads/cm
meters (1000 angstroms).

Therefore,

cox = 35.0 x lO-9 farads/cm2

k' = ficox = 2.0 x lO-5 amps/volt2 (approx)

and the gain parameters for the transistor models are given by

gain = k/2 = k'w/2l - 1.0 x l0-5{w/l).

11

mmwmm^mm:^tjm^j^^

.:wE«oi

BITN

RERDN

RERO

WORD

EQUAL

-| ' 1 ' r
.oooot-oorooot-o? .4000E-oi .sooct-cn .90O0t-O7

-1 1 1 ' 1 ' 1 1 1 > 1 ' 1

.iaoa-06 .i7ooi-o6 .HOOC-C» .isax-o« .leoa-oe .ztna-OE .naoc-OE

Figure 5.

The vt parameters are 1.0 for n transistors and -1.0 for p transistors.

Referring to the circuit diagram for the RAM cell and sense amplifier shown in figure 3,
the memory cell itself consists of the four transistors, Tl, T2, T3, and T4. The information
stored on the gates of T3 and T4 is made available on bit and ban when the word line is
brought up.

Prior to bringing up the word line, bit and bitn are brought to the same potential, or
equalized, by raising the equal line which turns on T5.

The sense amplifier, T6, T7, T8, T9, T10, and Til, consists of a pair of cross coupled
inverters connected to bit and bitn. When the word line and read line are brought up

12

&>^£::^öJ;^:-V^

together, the amplifier accelerates the transition of the bit lines and restores the cell.

The behavior for this cell calculated by the Network C model is shown in Figure 5.
hi looking at this plot it is important to note that the waveforms are not all drawn using
the same vertical scale, elk and eq are control signals for the waveform generators.

In this experiment, bit is started at 5.0 volts and bitn is started at 0.0 volts but nOl
is started at 0.0 volts and n02 is started at 4.0 volts. Therefore, the state of the memory
cell is the opposite of the state of the bit lines.

When the equal line is brought up, bit and bitn both make transitions to 2.5 volts.
When the word and read lines are brought up, the state of the memory cell, represented by
the charge on nodes nOl and n02, is quickly transferred to the bit lines. Note that, in the
process, the state of the memory cell is restored. n02 has dropped slightly and nOl has
returned to 0.0. Note that nOl did rise to 0.6 volts during the read when it was suddenly
connected to the highly charged bit line.

Acknowledgements

Network C is based on work done originally as part of the author's dissertation.
Because the development has been spread over a number of years, many more people have
contributed than can be reasonalby mentioned here. Special thanks must be given to my
chairman. Bob Hcrriot, and to Neil Runstein of the Academic Computer Center, both of
whom have now left the University of Washington.

More recently, Rob Daasch, formerly of the VLSI Consortium, helped considerably
during the development of the MOS calculation presented in this paper. Wayne Winder
of the VLSI Consortium has helped in converting the system from the CYBER 855 to
Unix. Also, I would like to thank Barry Jinks, VLSI Consortium liaison from Microtel
Pacific Research, for his RAM cell and sense amp design which was used as the last exam-
ple. Finally, I would like to thank the VLSI Consortium management, particularly Larry
McMurchie, for supporting the development of this system in our current environment.

References

1. W. Beckett, A Hybrid Paradigm for Computer Programming and Its Investigation in
the Context of Electronic Circuit Simulation by Means of an Extensible Language,
Ph.D. Dissertation, Technical Report No. 78-05-02, Department of Computer Science,
University of Washington (1978).

2. E. Lelarasmee and A. Sangiovanni-Vincentelli, RELAX: A New Circuit Simulator for
Large Scale MOS Integrated Circuits, ACM IEEE 19th Design Automation Conference

Proceedings (June 1982).

13

mmRmvtmtmmmm^^^^

3. C. Mead and L. Comvay. Introduction to VLSI Systems, Addison-Wesley, Massa-
chusetts (1980).

4. L. Nagel. SPICES: A Computer Program to Simulate Semiconductor Circuits, ERL
Memo So. ERL-M520, University of California, Berkely (1975).

5. C. .1. Tennan, Simulation Tools for Digital LSI Design, Ph.D. Dissertation, Laboratory
for Computer Science, Massachusetts Institute of Technology (1983).

0. Vivid Reference Manual, Microelectronics Center of North Carolina (1983).

14

S^KKfS^^^*^^

