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ST T R |
Q. Introduction:

\ - Second order subelliptic operators have been the subject of a
considerable amount gf research in recent years. Starting with
the paper [R S] by L Rothschild and‘E yétein. in which the sharp
form of Hormander's famous subellipticity theorem is proved and

N Iy ™,

continuing through the work of C. Fefferman and D. Phong (F] and
-~

:?A}\Sanchez-Calle [Si} it has become increasingly clear that

precise regularity estimates for these operators depend intimately

o\

on the geometry associated with the operator under consideration. —) f
For example, if the operator L is written as the sum of squares of ‘
vector fields Vl.....Vd € C:(RN:RN) and one defines d(x,y) to be

the (Vl,...,Vd}-control distance between x and y (cf. section 1)),
then, under a suitably uniform version of Hormander's condition

(cf. (3.14) in section 3)). one can show that the fundamental

solution p(t.x,y) to the Cauchy initial value problem for atu = Lu

satisfies an estimate of the form:
1

exp[-Md(x.y)2/t]
HIBd(x.t

172
)|

S p(t.x.y) ¢

(0.1)
M

|Bd(x.t

1/2)|exp[-d(x.y)2/Mt]

for all (t.x.y) € (0.1]xR"xB", where B (x.r) = (y € R":

d(x.y) < r}. (This estimate was first derived by Sanchez [S] for

172

t € (0,1] and x and y satisfying d(x,y) { ¢t More recently, it

was extended to (t,x.y) € (O, IJxRN N

with d(x.,y) £ 1 by D.
Jerison and Sanchez [J-S]: and., at about the same time, it was

proved for general x and y by the present authors [K-S,III].)

%
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What (0.1) makes clear is that the local regularity (which is
determined by the way in which p(t.x,y) tends to 6x-y as tl0) of
solutions to equations involving L is inextricably tied to the
"differential geometry” for which d(x.,y) is the "geodesic
distance.” In particular, as is shown in [K-S,III], (0.1) leads
very quickly to a quantitative Harnack's principle, in terms of
the balls Bd(x.r). for nbn-negative solutions to atu + Lu = 0.

(At least for non-negative solutions to Lu = O, the same Harnack's
principle was derived at the same time by D. Jerison [J]. His
proof is based on a Poincare inequality, which can also be derived
as a consequence of (0.1).) In a related direction, Fefferman and
Phong [F] have further strengthened the connection between local
regulartity and intrinsic geometry by showing that, even when L
cannot be written as the sum of squares of vector fields. precise
subellipticity results are tied to the size relationship between
the balls Bd(x.r) and Euclidean balls.

As much as the results cited above say about the local
regularity theory of equations involving the operator L, they say
very little about global behavior. Based on probabilistic
intuition, coming from the central limit theorem. one suspects
that, at least when the operator L is symmetric, the detailed
geometry should get blurred as time evolves, with the result that
p(t.x.y) should look increasing like a standard heat (i.e.
Weirstrass) kernel for large time. This suspicion is further

confirmed i{f one believes that (0.1) persists even when t € [1,»),

since d(x.,y) is commensurate with the Euclidean distance for x and




y which are far away from one another. However, the techniques

used in the papers cited above give no hint how one might go about

checking the validity of this suspicion,

0o
" The main purpose of the pr article is to obtain bounds,
- ’ il a'ty

6,15 e
from above and below, 07 p(t.x.y t ¢ (1.#). in terms of standard

heat kernels, (cf. Theorem (3,9) and Corollary (3.13) below). (In

other words, (0.1) doe ntinue to hold for t € [1,2).) These
estimates are based on comparison principles and are therefore
much less delicate than the short time results like (0.1). For
instance, they are proved under much less stringent smoothness
requirements on the coefficients. In this sense they are
reminiscent of the classical results proved by D. Aronson [A] in
the uniformly elliptic setting:; and, in fact, our methodology here
is derived from the approach used in [F-S,2] fo get Aronson’'s
estimates.

Once we have the estimates mentioned above, we apply them in
the concluding section, to prove a "large scale” Harnack's
principle for non-negative solutions to Lu = 0. Again the

mehtodology is similar to that developed in earlier articles, in

particular [F-S,1] and [F-S,2].

-
-
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1. . nary Results:

NomoN

Let a € C:(RN;R ®R"') a symmetric, non-negative definite

matrix-valued function. Denote by ¥ the divergence form operator

veav (i.e. u is defined for u € Cz(RN) by $u(x)

N
= 2 [ax (a“éx u)](x)). Then it is an easy consequence of
1.3=1 J
standard diffusion theory that there is a unique transition

probability function P(t.x,) on RN such that the associated

Markov semigroup Lgt: t > 0) satisfies Ptv(x) - ¢(x) =

t
f [Psgw](x)ds for all ¢ € C:(R"). In addition, one can check that
0

{P,: t > 0} is symmetric in Lz(RN) in the sense that (¢.P . y) =
(¢.Pt¢) (when thgre is no danger of confusion, we will use (-,%)
to denote the L2(RN)-1nner product) for all ¢,y € COCRN). In
particular, Lebesgue measure on RN is {Pt: t > O})-invariant and so
NP o €1 (foe. UP ol S gl . o € Co(RY) where I+ll, denmotes
the Lq(RN)-norm) for each q € [1,#). Moreover, it is clear that
each Pt admits a unique extention Et as a self-adjoint,
non-negativity preserving contraction on LZ(RN) and that {Ft: t >
0} 1s a strongly continuous semigroup on L2(RN). Finally, let
(EA: A € [0,»)) denote the resolution of the identity determined

by (?t: t > 0} (i.e. ?t = I e-ktdEk. t > 0) and set A = I AdE, .

(0.=) (0.=)

Clearly -A is the generator of {?tt t > 0}, and it is not hard to

check that -A {s the Friedrich's extention of <.

When discussing the semigroup (Ft: t > 0}, an important role




is played by the Dirichlet form & given by &(f.f) = j Ad(EAf.f) €

. {0.=)
oy [0.»] for f € L2(RN). Clearly, &(9.¢) = I;w-avwdx for ¢ € Ci(RN).
W
ﬁj and it is not hard to see that & is just the closure of its

restriction to C:(RN). In order to exploit the special properties

of & resulting from its connection with a Markov transition

53 probability function, we note first that t—(f - th.f) is a
! non-dereasing function of t > O and that £(f.f) = tig(f - ?tf.f)
ﬁg and conclude from this that
gg (1.1) gr.5) = 1o L i XIRN(f(y) - £(x))2n, (dxxdy),
ff ' where m, is the measure on RNxRN given by mt(dxxdy) =
é‘ P(t.x,dy)m(dy). 1In particular, (1.1) brings out the basic
ﬁﬁ property of Dirichlet forms, namely: &([f]|.|f]) ¢ &(f.f).
§§ Set [L£l2 = Il vycavy Il for ¢y € CI(RN); and, for x.y € RN.
§$ define D(x.v) = sup{|v(y) - ¥(x)|: I'(y) € 1}. The following

result contains special cases of Theorem (3.25) and Corollary

fyt (3.28) in [C-K-S] (cf. also section 5) of that article).
'ﬁ‘ (1.2) Theorem: Assume that there exist A € (0,»), v € (0,2), and

§ € (0,») such that:

2+4/v

2 $ ACeE(f.£) + susudyuent/?

1
or, equivalently (cf. Theorem (2.1) in [C-K-S])., that there is a B

(1.3)  nf . f e L2(rYy;

i € (0,») such that

N (1.4) WP I, ¢ BeSt/e¥/2

. t > 0.

Then, P(t,.x,dy) = p(t.x.y)dy and there is a C € (0,»)., depending

only on v, such that for each p € (0,1] and all (t,x) € (0.°)xRN:

0 ; ‘ RPN A Pr M T POV T NN AT I N AT
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vlzepatexp[-D(x.')2/(1+p)c] a.e.

(1.5) p(t.x.*) € C(A/pt)
Moreover, if, in addition to (1.3) or (1.4), one has for some u €

(0.v], either that

(1.6)  wend*E cagce eynenl’* for £ € L2®Y) wien g(.£) < ugn?
or equivalently (cf. Theorem (2.9) in [C-K-S]) that
(1.7) e < B/t*2 for t € [1.9)
for some B € (0,»), then, for each p € (0,1]:
C(pt) > Pexp[-D(x.+)2/(1+p)t]. t € (0.1]
(1.8) p(t.x.‘) < _u/2 2
C(pt) exp[-D(x,*)“/(1+p)t]. t € [1,2),
a.e., where C € (0,») depends only on A or B, p and v.
(1.9) Remark: It should be obvious that (1.4) is equivalent to
both
. . v/2
(1.4") P It < B'/(tA1)%/%, ¢ > o,
and
‘ a ., 072
(1.4'") WP I, < B'/tP%, t € (0,1]
where B' = Bea. Also, if any one of (1.3) or the various forms of

(1.4) holds and if (t.x.,y) € (0.~)xRNxRN——ﬂp(t.x.y) is continuous,

then it follows from (1.5) that:

N

lim tlog(p(t.x.y)) ¢ -D(x.y)2/4. X,y € R .

(1.10) t10

In addition to the preceding., we will also need the following
variant of Corollary (4.9) ifn [C-K-S].
(1.11) Theorem: Assume that P(t.x.dy) = p(t.x.y)dy. where

(t.x.y) € (0.=)xR"xR"

—p(t.x.y) € [0,@) is continuous. Further,

assume that there exist ¢ > 0 , r > 0, B € (0,»), and T € (0.,1]

such that ¢ ¢ p(T,*,%) ¢ B on {(x.y) € RNXRN= Ix - y|] ¢ r}. Then

there is a C € (0,»), depending only on N, B, &, and r, such that




(1.12) p(t.x.y) S c/tM2, (c.x.y) € [1.=)xRVxRY.

In particular, if, in addition, either & satisfies (1.3) or
{Pt: t > 0} satisfies (1.4) for some v € [N,»), then there is a C,

depending only on A or B, N, v, €, and r, such that

, -v/2 2

: (1.13) p(t.x.y) ¢ C(Pt)-;lzexP[’D(x-Y)z/(1+P)t]- t € (0,1]
Z C(pt) exp[-D(x.y)"/(1+p)t]., t € [1,=)},
k for each p € (0,1].

Proof: Clearly the second assertion follows immediately from
o the first when combined with the second part of Theorem (1.2).

" To prove the first part, choose p € C:(B(O.r))+ so that p = ¢
on B(0.r/72). Then, p(T.x.¥y) 2 pP(x - y) for all x,y € RN; and

P there is an ¢' > O (depending only on N, r, and &) such that

’ [(1 = coste-92)p(v1ay 2 e'1€1% for £ € B wicth €] < 1. Now

: taking 7(x,y) = p{(T.x.y) in Corollary (4.9) of [C-K-S]. we

conclude that p(nT.x.y) ¢ C'/nN/z. for some C' € (0,»), depending

g ln v »oem
o T e

only on N, B, r, and ¢, and all n 2> 1. Hence, {f nT { t { (n+1)T,

then

. p(t.x.y) = Iﬁ(nr.x.g)P(c-nT.y.df) ¢ c'/aN2 ¢ c/eN/2

“ for some C € (0,») having the required dependence. Q.E.D

We next turn to a primative version of the large deviation
theory for the short time behavior of diffusions. Throughout this

discussion, the function a:m"——am"em" will be as above, b:RN——aRN

is a bounded uniformly Lipschitz continuous function, and L is the

-

.
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operator a v(x)a_ ad + b"(x)3d, . Then there is a unique
. Xy %3 X4
AS? i, j=1 i=1
(3
ﬁﬁ transition probability function Q(t.x,*) on RN such that the
K
aat associated semigroup {Qt: t > 0} satisfies
i ¢ N
e Q.e(x) = ¢(x) + | [QLel(x)ds. (t.x) € (0.*)xR",
ad 0
éﬁ £ (&N
Ty or all ¢ € CO(R ). In order to study Q(t.x.°*), we introduce the
Ito stochastic integral equations

)
\';'l.l; t
g X4 Be.x) = x + o] o(x*P(s.x))aB(s) +
Zﬁg 0
]

Jt[e2b(xe'h(s.x))+a(Xe'h(s.x))ﬁ(s)]ds. t >0,
0
N N, .d

where ¢ € (0,1], o:R —R @R {is a uniformly Lipschitz continuous
d
function satisfying 2a1J = z a;ai for some d €Z¥ (i.e. 2a = aar).
3 S . k=1
2,% h € H= (h € C([0.2):RY): h(0) = 0 and § € L2([0.=);:RY)}. and B(-)
Byl
&% is a Rd-valued Brownian motion on some filtered probability space
- (2.%,.P). If X%(-.x) = Xx*'%(-.x). then Q(t.x.*) = Po(x!(t.x)) L.
e _
i§§ Po(X%(-.x)) ! = Po(x!(e2-.x))” !, and
w dPo(x*:P(1.x))"1 _ Leun
3 dPo(X%(1.x))"!
s 1! L Mooy 2
;Q; = °xP[ZJ h(s)+dB(s) - —_EI |h(s)| ds].
g 0 - 2¢“J0
D g
f&f In particular, for all ' € 8 (the Borel field over RN) and any q €
vt (1.2):
R 2 P(x¢ ' P(1.x) er) = EP[Re'h. xl(e2.x) ¢ r]
“‘n 1y .
i < exp[(q—l)Hh"§/2e2]Q(ez.x.r)l/q
o
P,
g
o
w , | I
i B O T IR N A e R vt e O N B




e where Hh“ﬁ = Ihil 5 d and q' is the Holder conjugate of q.
L*([0.=):R")

gé Hence, for all q € (1,®) and h € H:
% 1.14 Q(e.x.T nhn2s2¢23p(x* P(1.x) € r)d
i (1.14) (e”.x.I') 2 exp[-qlihll;/72e™]P( (1.x) ) I
’ Next, given h € H, define Yh(-.x) by
KR h t h .
$&. Y'(t.x) = x + I o(Y (s.x))h(s)ds, t 2 O,
g 0

L
?QQ and set Ae'h(-.x) = Xe’h(-.x) - Yh(-.x). Then

t t

R A B(e.x) = ef o (X B(s.x))dB(s) + ezf b(Xx¢ P(s.x))ds
’i
R ° . 0
“1uk7 °
" + f [o(x% B(s.x)) - o(YR(s.x))R(s)ds.
wl 0
:u n particular, there is a € +,®), depending only on the upper
e I 1 h K (0,=), d d 1 h P
%
[~ bounds on a and b and the Lipschitz constant for o, such that

CL

Jf EP[IAe'h(l.x)lz] < Ke2exp[K"hH§]; and this, together with (1.14),
gv‘ yields

4
b Q(t.x,B(Y(1.h).r)
R (1.15) 2.,.2,,.1% 2

" > [1 - (Ktexp[Kilhll]/r )Al] exp[-qllhilg/2¢]
)
r. for all q € (1,»), r € (0,1], and t € (0,1].
IR e,
X Q Finally, we define d(x.,v) for x.y € RN as inf(21/2uhua: h € H
e
!."
e and Yh(l.x) =y} (2 » if no such h exists).
.‘“1 (1.16) Remark: It is easy to check that the value of d(x.y) does
|
'_‘ not depend on the particular choice of Lipschitz continuous o
N
|
e satisfying 2a = aaT. In particular, we can take o = (2a,1/2. in
b ™_x(
\ﬁ% which case the Lipschitz constant of o can be bounded in terms of
3} 4 :
%‘ the Cg-norm of a. In addition, it is obvious that D(x.,y) ¢ !
«‘.. !
. d(x.y). What is less trivial, but is nonetheless not very

<
;;E difficult, is the fact that

4
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(1.17) d(x.y) = D(x.y)
if d(x.*) is continuous at y (cf. Lemma (5.43) in [C-K-S]).

The following result is an essentially immediate consequence
of the preceding discussion.

(1.18) Lemma: For each R € (0,®) there is a v+ € (0,1), depending

only on R, the upper bounds on a and b, and the Lipschitz constant

for o, such that

(1.19) Q(t.x.B(y.r)) 2 2-q'exp[-qd(x.y)2/4t]
for all q € (1,2), r € (0,1], and (t,.x,y) € (O.vrz]xRNxRN with
|x - y| < R.

(1.20) Remark: Although it is not in the direction in which we
are headed, we note the following complement to the remark (1.9).
Namely, suppose that Q(t,x,dy) = q(t.x,y)dy where (t.x,y) €
(O.G)XRNXRN-—#q(t.x.y) € [0.2) is continuous. Further. assume

that

(1.21) iig tlos[inf{q(t.X-y)= ly - x| ¢ Kt1/2)] =0

for each K € (0,»). Then the preceding line of reasoning leads

quickly to
2
(1.22) U tlogla(t.x.y)) 2 -d(x.v)%/4, x.y € &".

N with d(x.y) < ®, choose » and T from (0.1)

172

Indeed, given x.y € R
so that Q(t.x,B(y.(t/7) ) 2 2”1 exp[-qd(x.y)2/4t] for all q €
(1,.») and t € (0,T]. Then, for any p € (0,1),

q(pt.£.¥)Q((1-p)t.x,df):
B(y.(t/7)17?)

q(t.x.y) 2

and so. by (1.22),.
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HB tlog(alt.x.y)) 2 -ad(x.y)%/4(1-p)

for all q € (1,») and p € (0,1). In particular, in the case when
L = ¢ (and therefore q(t.x,y) = p(t.x.,y)) and remark (1.9)

applies, we have

~d(x.y)%/4 ¢ %%% tlog(p(t.x.y))

(1.23) S
< cio tlog(p(t.x.¥)) < -D(x.y)%/4.

Thus, when, in addition, d(x,+) is ccntinuous at y:

(1.24) P tlog(p(t.x.y)) = -d(x.y)?/4.

Since the uniform Hormander condition in (3.14) below implies both
(0.1) as well as (3.23), it follows immediately that (1.24) holds
whenever (3.14) is satisfied. This observation is the subject of
articles by R. Leandre announced in [L]

(1.25) Theorem: Assume that there is an R € (0,») such that
d(x,y) ¢ R whenever |y - x] ¢ 1. Then, for each r € (0,1] there
exists an a = a(r) € (0,1), depending only on R, the upper bounds
on a and b, and the Lipschitz constant for o, such that

(1.26) Q(t.x.B(y.r)) 2 aexp[-d(x.y)%/at]. (t.x.y) € (0.2]xRVxm".
In particular, if, in addition, Q(t.x.dy) = q(t.x.y)dy where
(t.x,y)—q(t.x.y) is continous, and if there is an e > O with the
property that q(l1/2,x.,y) 2 € whenever Iy - xl ¢ e, then there is a
v+ € (0,1), depending only on ¢ and a(e)., such that

(1.27) q(t.x.y) 2 7exp[-|y - x|2/1t]. (t.x.y) € [1.2]xRNxRN.

Proof: Let r € (0,1/4) be given. Then, by (1.19) with




qQ = 2, we know that T € (0,1] can be chosen so that
Q(t.x.B(y.r/2)) 2 exp[-d(x.y)2/2t]/4 for all t € (0.T] and |y - x|
< 1. Hence, if |y - x| ¢ r/2, then Q(t.x.B(y.r)) 2
Q(t.x.B(x.r/2)) 2 1/4 for all t € (0,T]. On the other hand, if t
€ (0,T] and r72 ¢ |y - x| ¢ 1, then Q(t.x,B(y.r)) 2
exp[-d(x.y)2/2t1/4 > exp[-2R%|y - x|2/r2t]/4. Finally. if |y - x|

> 1, let n be the smallest integer exceeding 4|y - x| and set X, =

E%Ex + Ey and Bm = B(xm.r) for 0 { m { n; and, given t € (0,T],
set T = t/n. Then
Q(t.x.B(y.r)) 2 I Q(r.x.£,)Q(r.§;.dE5)+-Q(7.§ _,.B(y.T))
le---xBn_1

Since I§m+1 - fml €1 for all 0 { m { n, 1t follows from this that

Q(t.x,B(y.r)) 2 [exp[-nRzlt]/4]n= exp[-n2R2/t]/16n. Thus, we have
now proved that (1.26) holds for all t € (0,T]. To extend the
estimate to all t € (0,2], suppose that t € (T,2] and let n be the
smallest integer for which t/n € (0,T]. Then, by (1.26) for T°'s
in (0,T].

Q(e.x.B(y.7)) 2 [ Qr.x,dE)Q(.E, . dEy) - +Q(r.E,_ B(y. 7))
B(x,r)""!

2 n-1 2
2 [aexp[—nr /at]] aexp{-(r + |y - x|)“/at].
Hence, since n { 2/T + 1, we can now adjust a so that (1.26) holds
for all t € (0,2].
.Finally, to prove (1.27), set a = a(e). Then, by (1.26),

q(t.x.y) 2 I q(t/2.£.y)Q(t/2.x.df) 2 eaexp[-2|y - x|/at]
B(y.e)
for all (t.x,y) F [1.2]XRN*RN- Q.E.D.

-
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2. A Spectral Gap Estimate:

Ce Let 2 and ¢ be as in section 1), and define P(t,x.,°),
;;'i'f.,
f%é {Pt= t > 0}, etc. accordingly. Set w(x) = exp[-2(1 + |x|2)1/2]
s
“k and use w to also denote the measure w(dx) = w(x)dx. In this
" section we will be studying the Dirichlet forms &, AE [1.=),
éﬂ; obtained by closing ¢ € C:(RN) e vw-akvwdw in L2(w) (the
b
gt L2-space of functions on RY with respect to the weight w) where
ol a,(+) = a(A+). In fact, what we want to do is find conditions
o
sﬁg which guarantee that there exists a K € (0,®) with the property
il;.l
:%h that
o (2.1) ue - Tu2, ¢ Ke (£.£). £ € L2(0) and A € [1,%),
Ay L (w)
4"‘
:ﬁﬁ where f = Ifdu/w(RN). We begin by showing that such a K exists
.f"f:v"z
* when a = I.
S .
ﬁ?l Note: 1In order to distinguish the case a = I, we will use a
'V:i:':‘ (1} [
.ﬁz superscript "o" on quantities associated with {¢t.
!h‘i" A
- (2.2) Lemma: There is a K® € (0.,o) such that (2.1) holds for 8;.
e Proof: Obviously., what we have to do is show that 1f 2% =
‘O.V‘." -
ﬁm [ve(wvy)]/w for ¢ € C:(RN) and if A® denotes the Friedrich's
e n
o extention of -¢° in L2(u). then 0 is a simple and isolated
ﬁ? eigenvalue of ;o. To this end, it is convenient to use the
LR
Ny
5$¥ unitary map U=L2(RN)——4L2(m) given by Uf = f/wl/z. Indeed, since
':vf'.
e j |v(U¢)|2du = I (lvwl2 + V¢2)dx. where V = A(logwl/z). we see
35& RN RN
09 -
:ﬁ. that A® is unitarily equivalent to the Schrodinger operator -4 + V
.el‘
th
v on Lz(mN). Hence, the problem becomes that of showing that O is a
.& simple and isolated eigenvalue of -4 + V.
4

7y Py P Oy JOXD : GO IOAY, )
G S SR O DM O U ;,\‘,u\lfv.",v.ifi,",o,‘ff“,9.‘J.‘.‘.k-o KON § N T (T _',o,"w A .'!\'?‘ A ':‘l'.
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First note that spec(-4 + V) = spec(xo) C [0.») and that w1/2

is an eigenfunction for -A + V with eigenvalue 0. Hence, by

familiar reasoning, the fact that O

inf(spec(-A + V)) guarantees

that it must be a simple eigenvalue. In order to prove that O is

an isolated eigenvalue, note that V € Cb(RN) and that V - 1 tends

to O at ®, Hence, -A + V is obtained from -A + 1 by a relatively

compact perturbation; and so spec(-4 + V) can differ from
spec(-A + 1) = [1,») only by the addition of isolated eigenvalues.

In particular, this shows that O must be isolated. Q.E.D

In considering more general a's, it is useful to observe that

(2.1) is equivalent to

(2.3) e - T2, ¢ KA%E, (£.6). A € [1.2) and £ € L2(o
. L (wk)

where QA(.) = w{A*), fk

N
= IEdUA/”A(RN)' and g% is the Dirichlet
form obtained by closing ¢ € C:(RN)——aIV¢-av¢duk in L2(wk).

(2.4) Lemma: The transition probability function Pk(t.x.-)

associated with ‘A satisfies
exp[-M(t + |y - x[)IP(t.x.*)
(2-5) ‘ ;A(t.x'o) S exp[—“(t + ly - xl)]?(t-x,‘)c

where M depends only on the C;- norm of a but not on either A

€ [1,0) or (t.x.y) € (0.»)xRVxmr".

Proof: Define ¢,¢ = [v-(ukavw)]/wk = L9 + Yu,*avy for ¢ €

., f € Q(AA)' where A

o N ~ -~
C_(R"). and note that & (f.f) = (f.A\f) , \

L (UA)

. U AR e A A LA \ - A YA
Lt B b e e e A X K I I R AT R

0',“4’ 4y
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Ry is the Friedrich’'s extention of -§A in L2(wk). Next, set VA =
‘3§ !wkluk. and note that L9 = [(2 - Vx)(wkw)]/mk. Hence, if
)
bﬁ {Rt: t > 0} is the semigroup determined by
A t A N

Rie = Py - f;Pt_s(VAst)ds. t > 0 and ¢ € cb(m ).
:.Q“; ~ ~
';“:, and Phe = [R}(uy0)1/0,. t > O and ¢ € C,(RM). then {PX: ¢ > 0} is
L 0
$$ the unique: Markov semigroup satisfying
A

¢
A SN, 5 o N

ﬁm Ptv = ¢ + o Ps(2k¢)ds. t > 0 and ¢ € CO(R ):
l'.' ~
%& and as such, (Pt: t > 0} is the Markov semigroup associated with
l'.'i' ~
i &, - Finally, note that Rtp = I;(y)RA(t.-.dy) where
;ﬁ@ exp[t(inf(vk))]P(t.x.°) 4 Rx(t.x.-) < exp[t(sup(Vk))]P(t.x.°).
e - “x
4 = -
ﬁg Hence, {f ?A(t.x.dy) = [uk(y)Rk(t.x,dy)]lwk(x). then Ptv =
s ~ ~
W I}(y)Pk(t.°.dy) and so PA(t.x.°) is the transition probability
;?: : function associated with ‘A' In addition, it is clear from the
LI Iy
N ~
gﬁ: preceding representation of Pk(t.x.°) that (2.5) holds with an M
oo having the required dependence. Q.E.D.
I
o
)
I (2.9) Theorem: Assume that there exists an R > O such that d(x.y)
.‘::'_0
! ¢ R whenever |x - y| ¢ 1. Also, assume that P(t.x.dy) =
3:5 p(t.x.y)dy where (t.x.y) € (0.®)xR xR'—p(t.x.y) s continuous
3 4 .
%& and p(1/2.x.y) 2 ¢ for some ¢ > O and all x,y € RY with Ix - y]
o8
*{‘ { ¢e. Then there exists a K € (0,»), depending only on R, &, and
Y
N the C2- norm of a, such that (2.1) holds.
) b
iU
iyu Proof: We need only show that (2.3) holds for an appropriate
LN}
LN
. K. To this end. note that, by Lemma (2.2), (2.3) holds with K =
_f? K° for E:. Hence, using the spectral representation for the

o
_!ri

0
“!:‘f\‘.i.‘,. R

GO S VLR RE A e Ot A0

i “!b ..,.Q.s I:;tl?z .‘,,,l’r. pad "l(_ IQ,‘?%“:Q.’!‘ i Y Pk .!h AR 0 VTG N ™ l‘; B K fin DA AT A RN AARS



Lz(uk)-semigroup determined by Po(t.x.-). one sees that

a220] (£n) - £x0)? Feox.dy)uy (dx)
RN xRN

$ € -
- e’

> A2(1 - exp[-t/(K°A2)Yyng - Fha2

-~ o A
Pl
- -

12(u

a)
" for all A\ € {1,») and t > 0. At the same time,
e f) 2 1/2I (£(y) - £(x))2 P\ (1.x.dy)o, (dx).
) RNxRN
Hence we will be done once we show that PA(I.x.-) 2 1P:(t.x.°) for

o some choice of t,r € (0,1) depending only on R, e, and the C%-norm

-N/2exp[—|y - x|2/4t]dy. the

i of a. But, since P%°(t.x.dy) = (4rt)
existence of such t and v is easily deduced from Lemma (2.4)

o combined with Theorem (1.25). Q.E.D

T

) Y KXY
AR RN OO R

A n . ' a N Y W -
(AN e "‘v)'ﬁ - ‘*%i‘|%1 O‘«“.’_A..I‘.‘.“ ) . ‘-’.",...'.l h“"l.;’\ ’b"»'..!‘t‘n'-l. "‘Ll;,’}..q‘.!~|'_gl‘f' |_J,.." ‘.!'?-’ A X ‘a"‘" KA
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wegd

e

e 3. Long Time Estimates on the Fundamental Solution:

,*4 Our first goal in this section is to prove the following

e
%& result. Our proof is patterned on the method used in [F-S,2]

' Y

G

NG which, in turn, uses ideas introduced by J. Nash in his famous
:?& paper [N].

;'t’;!

'%& (3.1) Theorem: Assume that there exist r, B, and K from (0,®)

R H

s such that

. 172 N

R (3.2) P(t.x.B(x,rt )) 2 172, (t.x) € [1/4,2)xR",

u’t‘,
P

Eﬁg (3.3) "P1/4"1 { B,
B0
e and (2.1) holds. Then there is an a € (0,1], depending only on r,
ﬁﬂ' “ B, K, and the upper bound on a, such that '

! a 1/72,,+
é;:%:' (3.4) Pt~p(0) 2 szqp()l)dy. t € [1,2) and ¢ € Co(B(O.rt )) .
'!;g..!‘

p't’

gﬁ! As a first step, we observe that (3.4) is equivalent to

"“‘ +

;ﬂt (3.4') P?w(O) 2 ajw(y)dy. A € [1,») and ¢ € Co(B(O.r)) .

“»‘1‘:'

wvhere (g:: t > O} is the semigroup associated with the transition

e

$§ probability function gkit,x,-) given by Pk(t.x.r) = P(Azt.kx.KF)
L

ﬁﬁ for (t.x,I') € (0.°)xRNx$. We next set ¢, = v-(akv) (recall that
i‘lg'i‘

. ax(-) = a(A*)) and remark that {Pt: t' > 0} is the only Markov

o A Eoa

‘ﬁ# , semigroup which satisfies th = ¢ + I Ps!kvds. t € (0.»), for all
::::,: L) N ° N A

Lt ¢ € C (R7). In particular, (ct.x)€ [0,T]xR —P . #(x) is an element
o of C1'2([0.TIxR") for each T > 0 and |
O:yf.‘ N ‘
s (3.5) 8. Phe(x) = [£,Phel(x). (t.x) € (0.=)xR",

4.:0‘

il for all p € Co(R") (cf. Theorem 3.2.4 tn [S-V]).

g

o5

‘: .

§ L]

h

[5-x

o » A [
RN i h ; ity dpd DSOS IO
RN I N S RN TS Nt A A A A W Gl MR Gotointeh
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(3.6) Lemma: There is a C € (0.®), depending only on r. N, B, K.
and the upper bound on a, such that
(3.7) Ilog[p?lzw]du > -Cjw(y)dy. A € [1,%) and ¢ € C_(B(0.r)).

Proof: Given A € [1.®), ¢ € c:(B(o.r))+ with J}(y)dy =1,
and § > 0. set u(t.x) = Phe(x) + 6. v = log(u). and G(t) =
Iv(:.y)u(dy)/u(m“). Then. by (3.5). integration by parts. and
(2.1):

o8 (1) = [2lhore u(e. ) 1(r)ay

-I v(log(w))°akv(log(u(t.-)))du + Iv(v(t.-))-akv(v(t.°))dw

-1/2|v(10g(v)) a,v(log(w))dw +1/28, (v.v)

~

> -A + (1/2K)I(v(:.l) - G(t)) 324w,
where A € (0,») depends only on the upper bound on a. Next, note
that the function § € [e2+c(t).¢)——»(log(§) - G(t))zlf is
non-increasing and that u(t,*) { B for t € [1/4,1/2]. Thus, if Ft
2+G(t)).

{(y € R\ : u(t,y) 2 e th;n

2
o(B¥)G () 2 -A + LieséggséTg§£ll—j}u(c.y)w(dy)

4
for all ¢ € [1/74,1/2]. At the same time,
L[ stenetan) 2 [ utenoay) - 20000,
w(R) rt w(R )
and, by (3.2).
2,1/2
[ ute.yrotany 2 [ Penotayy 2 205 [ R (y)ay

S B(0,2r) B(0.2r)
’y "a‘:

RLEN, srw e oL DA T A N A LT N ol LIS T T AP AR AT AT NP A A O 0K
! . !"?"" s l""-‘“‘i&"h Pa W% 8 .'h SR A *:\&" OO DN % % A \‘ ¥ .‘!. ‘l AN ALY ) ‘q, ".C (Y a(".,, N
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} 2.1/2
= e 2(1+4r”) .th) o N
B(0.2r) L2V

2.1/2, 2.1/2

= e (1+4r7) j e(x)P(AZe.Ax,B(x.Ar))dx 2 ge 2(1*4r )70

From this and the preceding, it is easy to see that there exist =«
€ (0.1] and M € (0,»), depending only on r, B , K, and A, such
that

G'(t) 3 1G(t)2, ¢ € [1/4.1/2].
so long as G(t) ¢ -M for t € [1/4,1/2]. Since, in any case, G'(t)
> -A720(RY). we therefore conclude that G(1/2) ) -4/v if G(1/2) ¢

-M - AZ0(RY). In other words. G(1/2) > -[(M + A/26(RY))V(4/7)].
Q.E.D.

Proof of (3.1): As we have said, it suffices to check (3.4")

with an a having the required dependence. To this end, let ¢ €
C:(B(O.r))+ with I ¢{(y)dy =1 be given, and suppose that ¢y is a
second such function. Then, by (3.7) and Jensen's inequality:

N,-1 A N,-1,.A A
1 (R7) “(v.P =1 (R7) (P, o¥. )
°g[“ 1’)L2(RN)] °g[“ 172¥F1/2% Lz(mu)]

)

2 10g[u(@™) (P}, ) (P}, o) 0]

2 u(RN)-I[I log(P?/2¢)dw + I log(P?/zw)dw] 2 -2C/w(RN)

for all A € [1,»)., Hence, if a = u(RN)exp[—2C/w(RN)]. then
(¢.P?¢) o2 N > a. Finally, replace ¢y by ¢, = e-lew(°/e) and let
LE(RY) “

e l0. Q.E.D.

Before drawing conclusions from Theorem (3.1) it is useful to




have the following simple observation.

w} (3.8) Lemma: Suppose that P(t,x,dy) = p(t.x.y)dy where (t.x,y) €
%; . (O.w)xRNxRN——ﬂp(t.x.y) is continuous. If there exist a,r € (0,w)
X such that p(t.x,y) 2 a/t:N/2 for all (t.x,y) € [l.w)xRNxRN with
ﬁ? |y - x| < rt1/2. then there is a f € (0,2), depending only on N,
g a, r, such that
' (3.9) p(t.x.y) 2 (87" 2)expl-ly - x1%/pe]
sé for all (t.x.y) € [1.®)xR xR" with |y - x| § rts4. If, in
§: addition, there is a T €(0,1] such that P(t,x,B(y.r)) 2
K aexp[-ly - x|2/at] for all (t,x,y) € (O.T]xRNxRN. then B € (0,%),
‘§. . depending only on N, a, r, and T, can be chosen so that (3.9)
ig holds for all (t,x,y) € [2.°)xRNxRN.
'm Proof: First suppose that t € [1,2) and rtllz < ly - x| ¢
%; rt/4, and let n be the smallest integer which exceeds
%é 9y - x|2/r2t. Clearly 9]y - x|2/r2t {n¢ 10|y - x|2r2t and

3ly - x|/n ¢ r(t/n)llz. Thus, if 6§ = |y - x|/n and 7 = t/n, then
g 36 ¢ rrl’2 and v 3 (re)2/10)y - x|2> 1. N ¢ x = DM LM
N Yy x . ow set X_ =X ~/
;g and note that lEm+1 - Eml 4 r71/2 for §u € B(xp.&). 1 {pu < n.

Hence, if B = B(x ,8). then
K B

pe.x.y) 2 | BOrx B )p(r B Ep) e e p(r Ey 1 v)dE == ~dE

, B.x*e++xB

‘lo 1 n-l

= 2 (a7 2y(a8M ™ 2 (ar M) (anyrr101/2)n L

-'i.'

ﬁz and clearly the first part follows from this.

5

-& To prove the second part, suppose that t € [2,®) and |y - x]

2 rt/4 are given. Then with n the smallest integer exceeding

MU MSEAMI I P A RSP PR YA 00,0 (P AN AN { h
Ry ikvhn i\s‘m PGONOGO M A O IO U B XS K OURO SRCOLN bR ey DA AN K
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n-m m
(t-1)/T. Xp = X+t LY. and B“ = B(x .r)

n |
¥ _ t-1 t-1 I b
ok P(t-1.x.B(y.r)) 2 _[ P(Et % dF JP(E55 0B, dE,) - P(S=F (.48 )
\;ﬁ le...xBn—l
i > a"exp[-8(|y - x|2 + r2n2)Vn2/at].
“f Since n ¢ t/T < (ly - x|/rT)A(ly - x|2/r2t) and p(t.x,y) 2
4"”
f% I p(1,E.y)P(t-1.x,df). the second part follows. Q.E.D
. B(y.r)
s
2& (3.9) Theorem: Assume that P(t.x,dy) = p(t.x.y)dy where (t,x.y) €
ﬁ'y‘)t
§$§ (O.“)xRNxRN——*p(t.x.y) is continuous and satisfies p(1/2.x.y) 2 e

when |y - x| { r and p(1/4,+.%) { B for some ¢, r, and B from

(0,»). Further, assume that there is an R € (0,®) such that

184

;ﬁ d(x.y) ¢ R whenever Iy - x| ¢ 1. Then there is a B € (0,1].

“!.‘

B depending only on N, ¢, r, B, R, and lal 2 N N , such that
R - CL(R:ReR")

v‘i‘q

R (3.10) p(t.x.y) 2 Bexp[-ly - x|%/p¢]

"

ot for all (t,x.y) € [l.w)xRNme.

@ﬁ Proof: 1In view of Lemma (3.8) and Theorem (1.25), all that
l".l'

N we have to do is check that there are r and a from (0,1] such that
\:':‘ N

LWL

e p(t.x.y) 2 a/t /2 for all (t,x.,y) € [l.w)xRNxRN with |y - x| ¢

LX)

ﬂ% rt1/2. Moreover, since our assumptions are translation invariant,
38

§$ it suffices for us to check that p(t,0.,y) 2 a/tN/2 for all (t,y) €
0

:“‘ [l.“)XRN with |y]| ¢ rtl/2: and., by Theorem (3.1), this reduces to
T

@f showing that P(t.x.B(x.rtllz)) 2 1/2 for some appropriately chosen
‘§$ r € (0,»). But, by standard estimates (cf. Theorem (4.2.1) in

"‘

L
R [S-V]). P(t.x.B(x.rt'/2)C) ¢ oNexp[-(r - M)2/4aN!’2] for r > M,
xﬁ‘*;a

23
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N N 2
where M2 = sup{ 2 [ za aij(x)] P x € RN} and A =

*3
N and nn € SN_I}.

i=1%j=1

sup{(n.a(x)n) N' X €R Hence, it is clear how to
R

choose r. Q.E.D

(3.11) Corollary: Assume that either (1.3) or (1.4) holds for

some v € [N,»), § € (0,1], and A or B from (0,») and also that
there is an R € (0,2) for which d(x.y) ¢ R whenever |y - x| ¢ 1.
In addition, assume that P(t,x.dy) = p(t.x,y)dy where (t.x.y) €

N p(t.x.y) is continuous and satisfies p(1/2,x.y) 2 e

(0.=)xRVxR
for all |y - xl § r and some positive r and €. Then there exists

an M € [1,»), depending only on N, v, R, r, e, A or B, and

natt . such that
c2(r":r"er")

(3.12) L expl-Mly-x]2/t] ¢ B(t.x.¥) ¢ —homexp[-|y-x|2/M¢]
. w72 X N72 y

for all (t.x.y) € [l.ﬂ)xRNxRN.

Proof: The right hand side of (3.12) comes from Theorem
(1.11) and the assumption that d(x.y) ¢ R for |y - x| ¢ 1. The
left hand side of (3.12) is an simple application of Theorem (3.9)
once one notices that, again by (1.11), the required upper bound

on p(1/2.x,y) is a consequence of either (1.3) or (1.4).
Q.E.D.

(3.13) Corollary: Let P(t,x,*) corresponding to a be as in

Corollary (3.11) above. Suppose that a: RN——ﬂmNQRN is a second

symmetric matrix valued function in C%(RN:RN@RN) and let P(t.x,*)

be the transition probability function determined by the operator
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~

¢ = v-(;v). If ;(') 2 a(+). then s(t.x.dy) = ;(t.x.y)dy where

(t.x.y.) € (O.w)xRNxRN——ﬂs(t.x.y) is measurable and
1 - 2 ~ M 2 -
(3.14) ;:ﬁ7§exp[-ﬂly-xl /t] € p(t.x.y) ¢ :ﬁ7§exp[-|y-XI /Mt]

for all (t.x) € [I.G)xRN and almost every y € RN, where ﬁ € [1,=)

depends only on N and H;H 25 N _N._N. 2s well as the quantities v,
cb(m iR"8R ")

R. ¢, A or B, and llall from Corollary (3.11).
c%(m";m"em")

Proof: Let & denote the Dirichlet form determined by ; and

note that E 2 8. Thus, with the same A, v, and § as for ¢.

(3.15) g2t ¢ aqace.e) « susndynen?’?, ¢ e L2(aY).
In addition, since “Ptul < M/tN/z. t € [1,2), Theorem (2.9) in
2+4/v 4/v

[C-K-S] says that Hfll ¢ Be(f.£)NLN for all £ € L2(RrY)

2

1
satisfying &(f.f) ¢ Hf"2

1 where B € (0,») depends only on M and N.
Hence, we also have

2+4/v 4/v

3.16) Hfll < BE(EF.E)NEN 1f £ € L2RN) with 2(£.£) ¢ ngn2,
2 1 1

Combining (3.15). (3.16), and Theorem (1.2), we conclude that

there 1is a 6 € (0,2), depending only on N, M, B, v, and R, such

that

2 2 .4
N/2yexpl-ly - x|%/Ct]

for all (t.x) € [1/4.0)XRN and a.e. y € RN. (Ve have used here

(3.17) plt.x.y) € (C/t

the fact that D(x,y) ¢ d(x.y) ¢ 2R|ly - x| for |y - x| 2 1.) 1In
particular, this completes the proof of the right hand side of
(3.14).

To prove the left hand side of (3.14), assume, for the

LN IR L AP N A S UL
-‘\"-'-,'n‘-‘-"'".’:-‘_
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:A:.iﬁ

.:q:';

e

gl ~

i moment., that a continous version of p exists. Next, note that, by
;x; (3.17). both (3.2) and (3.3) hold with P replaced by P and
'h,": a

::* constants depending only on N and C. Also, since our assumptions
15y

res are translation invariant and because we already know that (2.1)
Lﬁ” holds for all translates of a with a K having the required

-L;

5$J dependence, we can proceed in precisely the same way as we did in
",

B

o the proof of Theorem (3.9) to get the left hand side of (3.14).
fgﬁ Finally., in order to remove the assumption that p is contiuous,
At - A
f j proceed as follows. Given e > 0, set a_ =a+ elI. Then, for each

} A
i; e > 0, the corresponding P, will be continuous. In addition,

UE (3.14) will be satisfied for P, with an M which can be taken

g: independent of ¢ € (0,1]. Hence, since Pe(t.x.°) tends weakly to
b h‘\

P(t.x,*) as €l0, it is easy to see that (3.14) will hold for each

8 N N
(t.x) € [1,»)xR and almost every y € R . Q.E.D.

(3.18) Remark: It should be clear that the right hand side of

~

(3.14) holds with an M whose only dependence on a is in terms of

-
> - -
&*; the upper bound A of a. Also (cf. Lemma (3.8)). so long as one
o
' restricts ones attention to a region {(t.x,y) € [l.w)xRNxRNt
. -
f:j ly = x| ¢ pt)} for some p € (0.,®), the M on the left hand side can
<
. Py a
:3 be chosen to depend on a only through A. Thus, it is only to get
L
i the left hand side of (3.14) for all x.y € R' that we need to
!' \' ~ ~
Qiﬂ allow M to depend on Hall o N N._N.° It is not clear to us
Wi C,(R:R8R")
Sﬂ
W

QA whether this dependence is real or simply an flaw in our method.

Mo

() ) At i - . N e L ~ . L e W e L
& en "o ; Y -~ 3 > T AR TR R R * e N R e e W > > S
T*a"'&‘.:‘.:‘ A 0 ( W ASCY et o obﬁ‘, 200, ??uh"“ NIRP R N "‘\ Y e R ) y W N ", 7 ¥ mm“i“mm



R N
s‘*(’l?
|[".L
. —25_ >
K
i ::rt
S
KR This problem does not arrise in the uniformly elliptic case
%; (treated in [F-S,2]) because, in that case, one has that p(t,x.y)
3_: > a/t"”2 for some a € (0.1] and all (t.x.y) € (0.®)xR"xR" with
\" )
e ly - x| ¢ at1/2 (not just for t 2 1); and therefore one can extend
mﬁ the argument used to prove the first part of Lemma (3.8) to cover
A’QiG
;&: the whole of RNXRN.
R '
m? We are now ready to prove the main results of this article.
N
Q& Namely., we are going to describe a class of non-elliptic a’'s to
'y
)
%9 which the above apply. To this end, assume that 2a = oaT. where o
Eé¢ € C:(RN;RNORd): define d(x,y) accordingly., as in section 1); and,
w:’ N J U ¢
Vol for 1 { k { d, set Vk =3 akax . Fora€ U ({1,....,d})°, set |al
" j=1 J 2=1
- =eifac ({1....a0)% ¢ € z'. and define V_ = V_if a = (k) and
i}
[ - -
ol Va = [vk'v(°1----“e-1)] if 2 22, 1<k {d, and a =
Ve
i (al.. ..ae_l.k). (Ve use [V.W] to denote the commutator, or Lie
$§ product, of vector fields V and W.) Identifying Tx(RN) with RN.
Og’l
)
;@ we define
a0 —
Rt (3.19) K,(x) = 2 V_(x)8V_(x)
A% 1<lalge
l;ﬁ for ¢ € Z*. The following theorem summarizes a few results which,
;&5 in one form or another, have been derived by various authors (cf.,
&ci' for example, Corollary (3.25) in [K-S,II] and Lemma (3.17) in
*0
*1
o, [K-S.III]).
Qﬂ (3.20) Theorem: Referring to the preceding, assume that
) - N
1K (3.21) Ae(x) > el, x € R,
S
i
Y

Wy

. " .- AU AT A AN e e e Ve aa . AP AN
Bty ] 5 O COUDUCAZOUT 408 Wodted 1R F N A X Y, RV XA A YRR 1 o £ SEIKY
[ ",'.."‘f“v 'ﬁ',A l,.‘ ‘.“Q;.‘*:‘.h.f‘t.. "!“.‘&‘; \.“'l kY .‘l‘-cn’.&!’v_.i‘q,h.‘ 1) 1'!‘»’ .#". 'e" ,5"‘.‘ MK g.‘ ,'5', (LA L" g 4% 1 (“ 4 A4 ""\ 78‘ e K 'j."l AR R \ﬂ’ ‘..‘
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< W8

00

X"

ﬁg for some ¢ € Z* and ¢ > 0. Then P(t.x,dy) = p(t.x,y)dy where
o (t.x.y) € (O.w)xRNxRN——ap(t.x.y) is smooth. Moreover, for each
‘ T

;h n 2 0, there exist Cn' B and v from (O0,®) such that

¥

o v /2

o (3.22) |a':6£a;p(t.x.y)| ¢ (C /e ™ Yexpl-u ly - x|2/¢]

gw for all (m.B.v) € AT T satisfying m + |[B] + |+] ¢ n and

10‘

;%‘ (t.x,y) € (O.l]xRNxRN. Finally, there is a R € [1,®) such that
!,‘. *

. 178

R (3.23) (1/R) |y - x| € d(x.y) < Rly - x|

Fh for all x.y € RY with ly - x] ¢ 1.

&

Y

-
-
-4

Plugging these results about the "short time" properties of

p(t.x.y) into the machinery which we have been developing in the

S #
Y

é present article, we obtain the following "long time” estimates.
Y

ﬁ?. (3.24) Theorem: Let a be as in the preceding and assume that

? (3.21) holds for some & € z* and ¢ > 0. Suppose that ; €

E Cg(RN;RN@RN) is a second non-negative, symmetric matrix-valued
?ﬁ function, and define S(t.x.-) accordingly. If ;(-) 2 a(+*), then
Eé s(t.x.dy) = ;(t.x.y)dy where (t.x,y) € (O.G)XRNXRN——ﬁg(t.x.y) is
R measurable and satisfies (3.14) for some i € (0,2). Moreover, ﬁ
g% can be chosen so that its only direct dependence on ; is {n terms
'EE: of Mall o o« o -

rh Cb(R ;R ' xR)

;3 Proof: In view of Corollary (3.13). we need only check the
i: case when a = a; and, because of Corollary (3.11), this reduces to
&: showing that p(1/2.x.y) 2 e for some ¢ > O and all x.y € RN with
XK

¥

o

:&

W

[N ¥

UMD DAID) L T WA y - NAT AT OO0 W " NP> Y
T T A T N AN L VN b Y e ARSI by 7 AN ¢ T
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PRt
:l'g
o
W
T
o ly - x] ¢ e. But, as we noted in the proof of Theorem (3.9),
) P(1/4.x.B(x.r)) 2 1/2, x € RY, for some r € (0.»). Hence, since
WY
ﬁg : p(1/4,-,%) is symmetric,
[y
Ratin 2
2 1
- p(1/2.x,x) 2 I p(1/74.x.§)°dE 2 m[j p(1/4.x.§)d§]
‘3;;:: B(x.r) B(x.r) :
N
”o:::: N 2 N
= = (IIQNr )JP(1/4,.x,.B(x,r))" 2 (1/0Nr )/74.
ﬁﬁ At the same time, by (3.22), we see that there is a 6§ > 0 such
Wy
;ﬁg that |p(1/2.x.y) - p(1/2.x.x)]| ¢ (1/80NrN) for all x,y € RN with
i‘é..
S ly - x| ¢ 5. Hence, we can take e = GA(I/BQNrN). Q.E.D
i
M'. (3.25) Corollary: Let a € CQ(RN:RNxRN) be a2 non-negative
ﬁ. b
¢
t definite, symmetric matrix-valued function. Given 1 ¢ k ¢ N, set
l.’A‘T' ~ N ~ ~
V, =3 a'®s_ , and define V_ (a € ({1....N})% and & € Z*) in terms
e T a
e‘i" A- -
{%i of {Vl.....VN} accordingly. If there is an e > 0 and an 2 € z*
[l
iy such that
\:":!? - -
o (3.26) Y (V(x).m3y 2 es2. x € R'anda n € s¥71,
Wyt
iy 1¢lalge R
o then P(t.x,dy) = p(t.x.y)dy where p is measurable and satisfies
W Y
%b (3.14) for some M € (0,w).
I'l ~
,ﬁ Proof: Without loss in generality, we assume that a(+<) < I
1)
(R -~ -~
;': and therefore that a(+) = (a(°))2 ¢ a(*). If we now take o =
gi‘ 21/2;. then (3.26) implies (3.21) for the xe(x) defined relative
oy
¢% to this 0. Hence our result follows from Theorem (3.25) applied
gV
l,“ﬁ -~
- to the pair a and a. Q.E.D.
'y
ER |

a2 % M T AT AR TN N > ™ AN ‘ SO AT R Al D
AR EIOUT Dt O LT I O C RN AN O RO X R T O C B O T i SR TR U SR A L U



(3.27) Remark: By combining the results in [F-P] with ideas from
[0-R]. C. Fefferman and A. Sanchez-Calle remark in [F-S] that the
condition on ; in Corollary (3.26) is necessary and sufficient for
the corresponding operator § to be sub-elliptic. In particular,

one can use this observation to conclude that the p in (3.26) is

smooth.

(3.28) Remark: The reader who remembers (0.1) in the introduction
may well be wondering why we have bothered to state Theorem (3.20)
or to derive the lower bound in the proof of Theorem (3.24). Our
reason is that the results in (3.20) are considerably easier to

prove than is (0.1) and that they suffice for our present

purposes.

et ‘q"_"t?»?"at*?‘ h&;“a’h’“‘?‘. ; .' R
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4. Applications to a Large Scale Harnack's Inequality:

'5 In [F-S,1], [K-S.III], and [F-S.2]. various estimates on

B fundamental solutions are shown to lead to Harnack's inequality.
In this section we will use similar techniques to derive a "large

3 scale” Harnack's inequality from the "long time"” estimate obtained

'

£ in the previous section.

Throughout this section we will assume that the P(t,x,*)

f= associated with'¢ = v-(av) admits a smooth density p(t.x,y) for

'

f‘ which there exist an M € [1,») and a v € [N,®) such that

¥

i (4.1) p(e.x.y) < (M/t% %)expl-ly - x|2/Me]. ¢ € (0.1].

\ | and

- 1 2
: —x7zexpl-Mly - x]|“/t] < p(t.x.y)

W Mt

' (4.2) M °

v $ —7zexpl-ly - x|“/Me], ¢ € [1,m),
L tN/2

2 £ N_.N

F or all (t,x,y) € (0,»)xR xR .

A8

¥
,$ (4.3) Remark: Note that if a is a in either Theorem (3.24) or

¢

f Corollary (3.25), then such M and v exist. Indeed, the existence
b

! of M is the content of those results, whereas the existence of v
]

% comes from the comparison of Dirichlet forms and an application of
A}

3 the first part of Theorem (1.2).
|

A

4 Let (B(t).?t.P) be a Brownian motion on RN: and define

)

. N

X(*.x)., x € R, by the Ito stochastic integral equation

t

§
1
[
3

L}
K
i

L]
.

t t
(4.4) X(t.x) = x + I al’2(x(s.x))dB(s) + Job(X(s.x))ds. t 20,
0
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i N i o N
where b™ = 2 ax a J. 1 1 {N. Given x € R and r € (0,»),
i=1 7J§
define
P, (t.x.T) = P(X(t.x) €T and X(s.x) € B(x°.r) for s € [0.t]).
X ,r

In the terminology of analysis, the density p o (t.x.y) of
x ,r

P o (t.x,*) is the fundamental solution for ¢ in B(xo.r) with
X ,T

boundary condition O (i.e. Dirichlet boundary conditions). The

key to much of our analysis is contained in the following.

(4.5) Lemma: There exist an ¢ € (0,1] and R € [1/e,®), depending

only on N, M and v, such that, for each x° € RN and r € [R,»),

(4.6) P ((er)z.x.y) 2 e/rN

o
X ,T

for all x.y € B(x°.r/2).
Proof: VWithout loss in generality, we assume that x° = 0,
and we will use pr(t.x.y) to denote po.r(t.x.y).
Denote by §r(x) the first time when X(°,x) exits from B(O.,r).
Then, for ¢ € (0,1]., r 2 1/e, and x,y € B(0,r/2):
P ((er)?x.y) = p((er)?.x.y)

- £ [pcen? - € 00X (0.0 )L €L ¢ (en)?]

> __l__ﬁexp[-ulez] -y SUP 2[exp[-r2/4Ms]/p(s)]
M(er) s{(er)

2
- explMre 10y 2 )2 =P [expruse? - r2/4us1/6(5)] |
M(er) s{(er)

. ST P AT g 5 Y 2 P ® s LY ) W i
A A ‘C" »“4';"\’ Jt’»’\”l’»‘%’;""“t o Weats C‘!’l%‘f*" \ ‘4"‘60" (L \ts'.i"-.l B o0 "I‘w (L \‘n‘tm.\‘! 'fv‘. &) OQ:-'O‘»‘O":I';":\‘ ;‘\".“\




N

KNY. where p(s) = (sDVs 1/2.

)

o, the required inequality holds as soon as e is sufficiently small

It is not hard to deduce from this that

and r is sufficiently large, depending only on N, M, and v.

s Q.E.D.
R (4.7) Theorem: Let € and R be as in Lemma (4.6). Then, for every
3& x° € RN. r € [R,»), and u € C2(B(x°.r))+ satisfying u ¢ O in
(]
iﬁ. B(x%.r).
:"‘A N o
' (4.8) u(x) 2 (e/r’) u(y) dy . x € B(x ,r/2).
N B(xo.r/2)
.t
§ﬁ In particular, there exists a p € (0,1), depending only on N and
t
[ MR |
ﬁh €. such that for any x° € RN. r € [R,®), and u €
;,“ C2(B(x°.r))ﬂcb(8(x°.r)) satisfying $u = O {n B(xo.r)z
=
o
f)\_',
b (4.9) " ) - w0l <o M fu) - w).
x,y€B(x .r/2) .Y€B(x ,r)
ﬁ
K 2,.N N N
o Thus, 1f u € CT(R )ﬂCb(R ) and 4u = 0 in R, then u is constant.
O
Ca‘ Proof: Again we assume that x° = 0. Let u € C2(B(O.r))+
p& satisfying Yu ¢ O be given. By a standard application of It;’s
ND
)
:$$ formula
Al','.‘ P 2
ol u(x) 2 E [u(X(C_(x)A(er)®.x))]
i P 2 2 2
3 2 EPLu(x((er)2.x)). €0 > (e0)?] - [ winip ((en)Zxy)ey.
zé B(0.r/2)
R where the notation is the same as that in the proof of Lemma
'wf | (4.6). Hence, by that lemma, (4.8) follows.
»
%E To prove (4.9), let o and 2 denote, respectively, the infemum
3{'
'%h and supremum of u in B(O.r), and set I' = {x € B(0.r/2): u(x) 2
T Z—%—g). Assuming that |T] 2 %IB(O.r/2)| and applying (4.8) to
vy"'

. . ; L O \ 4 ¢ SR W (LX) USIGRIOSHENY
bl l“)v" .‘,"\ .,:lg; i D5 I‘.9 9, P ‘1[‘., .i' ‘|' O] ... "' f1 0% ‘:.,-,"7:«“"-' ‘I. A Q_,.'h’(,'._@'.d",!".., 4 "i,'\\" ‘\’, WKEC | o ‘|’l‘§ 48 _C.“_‘“ ',.le\.v'.!‘l!i LX) .“ L3
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Fed
R
R
. u - o, we have, from (4.8). that u(x) - o 2 (eQN/2N+1)Z_%_E_ for
é&ﬁ all x € B(0.r/2). Hence, if o' and X' are the infemum and
n,"'gt -
553 supremum of u in B(0,r/2), then o' -0 2 (eQN/2N+1)§—§_2_; and so
e
' 3' - o' < p(3 - o), where p = (1 - (eny/2"*!))/2. 1f. on the
.v"»‘i‘
;fm other hand, |I'| ¢ %lB(O.r/2)|. then we repeat the preceding with
mity
&ﬁ{ 2 - u replacing u - o. Thus, in either case, (4.9) holds.
Fihally. the assertion that a global, bounded solution to ¥%u
§$ = 0 is constant follows easily since, by repeated application of
%
o max n
W -
%ﬁ (4.9), we have that x.yGB(O.r)[u(Y) u(x)] < 2p Hu“c (RN for
N b )
o all r 2 R and n € Z+. Q.E.D
Oy .E.D.
I
o
k)
*
ﬁ%. According to the scheme introduced by N. Trudinger [T]., the
o inequality (4.8) is one half of Harnack's inequality. To prove
Y
Aik the other half, we follow an argument similar to that given in
2y
%3 [(F-S,1] to show that there exists a C € (0,»2), depending only on
.&f N, M, v, and the upper bound A on a, such that for every x° € RN.
I... ¢
;ﬁ: r € [1.,»), and u € C2(B(x°.r))+ which satisfies $u 2 O in B(xo.r):
ity
L)
:5-5 (4.10) u(x) ¢ C—NI u(y)dy . x € B(x°.r/4).
e T B(x%.r/2)
Ay
‘0"‘l T
‘”# Given r € [1,2), define gr(x.y) = J p(t.x,y)dt for x # y.
e 0
A’.,‘ ‘
f } It is then an easy matter to check that
¥y 3%
&N 2
W (4.11) [2(g (x.+))1(y) = p(r".x.y) 2 0. x #y.
o
3

* L = “ Al | ," N B _i‘ b a 1) N I3 A - .
R O O G T T D O N e A O e Y
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Also, from the estimates (4.1) and (4.2), it is easy to check that

there exist C1 € (0,»), depending only on N, M, and v, such that

1/2
(1.12) o [ s,y ]
Fr((2p+a)/3.a)

2-N/2
r

$C /(o - p)’ r

1

for all r € [1,») and O < p ( o0 { 1, where Lr(a.gl = {x € RN: ra ¢
Ix] ¢ rB} for a < B.
We next recall the standard Caccioppli inequality. Namely,

given an open G in RN. v € C2(G)+ satisfying v 2 0 and a ¢ €

(]
co(c)
172 1/72
- (4.13) [Iwz(vv-avv)dy] szA“zuv\oqu v2 dy]
. ¢ supp(¥)
‘fﬁ (This is an application of integration by parts followed by
3
}hﬂ Schwartz’'s inequality.) We are now prepared to prove the
e following result, from which (4.10) will be an easy step.
'
%5 (4.14) Lemma: There s a C2 € (0,»), depending only on N, M, A,
\
.
‘@3 and v, such that for all x° € RN. r € [1,), and u € C2(B(x°.r))+
iy satisfying $u 2 0 {n B(xo.r):
5 A [ 1 o 172 .
@ (4.15) w0 € (S0 - M [LE[  wZy] 7L x € Bxrn),
sy T B(x%.ro)
" for all O ¢ p ¢ ¢ {1, where A = 2Vv.
"Fl‘
g Proof: As usual, we assume that x® = 0. Choose smooth
h'
»
N functions np.a and wp.a for 0 . p C o €1 so that 0 ¢ np.a'wp.a <
E{' 1, M0 = 1 on B(0,(p+c0)/2) and O off of B(O,(p+20)/3). ¢p,a =0
%5 on B(O.(p+20)/3)UB(0,0)€ and 1 on Tl((p+a)/2.(p+2a)/3). and
K
199
Qh "vnp‘o"wv"va,auw < C3/(a - p) for some C3 € (0,»). For r €
“ [1.@), set oor = np.a(°/r) and wp.a.r = wp.a(-/r).

)

w

] 3 \'-\ ) - '\."l ‘* e
’l‘a."nl. 0. 30 W0 "- A B W, \5". 3

W . . N ] LT T N N
L) he g hy A" ¥ 0 {)
R A e O T R b o e e TGRSR TR CY,
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%

’l

":. Now suppose that r, u, p, and o are given, and let x €

:;E B(O.rp). Then, using m to denote np.a.r' we have

i a(x) = () = [ G2xnay - [tem)1ns, )y,

N

0 By (4.2).

y 172
'E'.: _[(nu)(y)p(rz-X-Y)dy $ -M—PTJ. u(yldy ¢ Orl‘/zﬂ[LN‘[ u(y)zdy]

';E‘ T “B(0.ro) T “B(0.r0)

':f: At the same time, since Yu 2 0:

;q -[teu1ne, (x.v2ay € ~2[(vn-avu) (v)e, (x.v)dy
By,

i - Jomrrzaame, ey

e

e - ~[(vn-ava) (g, (x.v)ay + [u(y)(vn-ave, (x.)) (1)ay

,".‘-

»!

Y

i . o 1172 o 1172

! < [ sptxvr2ay] " [[oncave) (1) 2ay]

o supp(vn)

¥ o 1172 o 1172

3 e ([ eePay] " [[eomr-ave, x 0 (n%ay]
L supp(vn)

i‘:g'. Al 2c, o, 172 172

g e[ s ®e] ] e i)

i r r

o 1172 172

o e ([ wn2ay] T [fovmixe ey cave (N (ray] T
3 r r

15 where ' = supp(vn) C I'r((p+a)/2.(p+2a)/3). Note that by (4.13)
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1/2
172 2A C 172
[I(Vzr(x.-)-avg,(x-'))(Y)dY] S ;T;—:—;Tz[j Sr(x.Y)2 dY]
r Fr((p+2a)/3.a)

Combined with the preceding and (4.12), this now yields (4.15).
Q.E.D.

A particular case of (4.15) is the inequality

]1/2

(4.16) ©ou(x) ¢ 04[-lﬁj u(y)? dy . x € B(x°.rs4),
T "B(x°.r/3)
A

where C4 =6 03. Hence, we will have proved (4.10) once we show

that the left hand side of (4.16) can be estimated in terms of

-lﬁf u(y) dy. To this end, assume that x° = O and set v(x) =

T "B(x%,r/2)
u(rx) for x € B(0.1). Then, (4.15) becomes the statement that

9 ]1/2

v(x) ¢ (€70 - M ([ vinrZay
B(0,0)

B(0.p). Hence, by an easy argument due to Dahlberg and Kenig (cf.

the last part of the proof of Lemma (3.2) in [ F-S,1]), there is a
172

2

K € (0,»), depending only on C2 and A, such that [J v(y) dy]

B(0,1/3)

< KI v(y) dy: and clearly this transforms back into the required

B(0,1/2)

statement about u. In other words, we have now proved (4.10):
which, in combination with Theorem (4.7) gives the following

version of Harnack's inequality.

(4.17) Theorem: There exist R and K from (0,@), depending only on

o N

N. M, A, and v, such that for any x € R, r € [R,»), and u €

C2(B(x°.r))+ satisfying Yu = 0 in B(xo.r). u(y) ¢ Ku(x) for all

" I AT AT

AR .
‘ﬁ.ﬂﬁfmjﬁb (X, »kaMﬁJJémh.ﬂ

.........

for all 0 < p ¢ o {1 and x €

AL e e sl 'A,\'r' y
¥ L) » A )
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:1:'::
&E X.y € B(xo.r/4). In particular, the only global, non-negative
) solutions to Yu = O are constant.
o~ |
; % (4.18) Remark: It should be clear that our assumption that }
1
4
i (t.x,.y)—p(t.x,y) is not essential and can be circumvented by a
;éﬁ procedure like the one which we used to conclude the proof of
ga Corollary (3.13). Also, we point out that had we worked a little |
o
N )
G harder we could have derived the preceding Harnack's inequality |
i for non-negative solutions to the parabolic equation atu - %u =0
oy ‘
<, (cf. [F-S.2]).
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