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GUST LOAD PREDICTION AND ALLEVIATION ON A FIGHTER AIRCRAFT
by
J. Becker
MESSERSCHMITT-BULKOW-BLOHM GmbH.
Airplane and Helicopter Division

P.O. Box 801160, 8 Munich 80
W.-Germany

Contribution to the AGARD-Activity
"Flight of Flexible Aircraft in Turbulence"

INTRODUCTION

Turbulence induced dynamic loads and vibrations on a fighter aircraft may play a
considerable role for certain configurations with respect to the design of the structure
and the performance of special missions or they may cause on the other hand limitations
of the flight envelope.

As far as aircombat aircraft are concerned typical restrictions may be found for
instance with respect to design gust loads if wing tip mounted store configurations are
investigated or with respect to ride comfort if low level high speed missions are evalua-
ted. Here both aspects namely design gust critical cases and ride comfort are therefore
reported in more detail in order to demonstrate the problem areas. In this context also
some difficulties of turbulence response prediction methods will be described, especially
with respect to the dynamics of the aircraft with FCS and the interaction of flight
and structural dynamics, though these methods are well established. In addition problem
areas of the aircraft with FCS and gust alleviation system are mentioned for the case
of ride improvement. The design of such systems would strongly necessitate the full dyna-
mic description of the flexible fighter aircraft in order to evaluate maximum loads, lati-
gue loads and structural coupling problems with the control system.

CONSISTENCY WITH MILITARY REQUIREMENTS

The following problem areas may be of importance for the aircraft with KS and for
dynamic load alleviation and ride improvement systems. During the development of a system
for the proper achievement of ride smooting, as for instance based on the requirements as
specified in MIL-F-9490 D (USAF) chapter 3.1.2.12, or for the purpose of gust load alle-
viation (MIL-A-8861 requirements) of course the controlled aircraft must be investigated
with respect to

- degradation of flying qualities and handling

- adverse effects on airplane strength and rigidity:

flight loads, fatigue loads, vibration, flutter and aeroservoelastic stability, be-
cause conflicts could exist between the different specifications. In detail the be-
low mentioned aspects should be considered.

- stability

destabilisation of aircraft modes or structural modes. Structural coupling problems
in flight followed by degrading effects on stiffness and on elastic mode damping or
aeroservoelastic flutter.

- Static and dynamic loads:

Change of maximum design loads and fatiqgue loads caused by control surface activi-
ties.

In addition all effects caused by system limitations (actuator power, control sur-
face rates and deflection) should be investigated and a syster failure strategy develop-

ped.

METHODS FOR CALCULATING THE DYNAMIC RESPONSE OF FLEXIBLE AIRCRAFT IN TURBULENCE

Several methods are well established for the calculation of the flexible aircraft
in turbulence. Of course these methods have there own advantages but are not necessarily
in a stage for the solution of specific problems esveciallv occurina if static unstable




aircraft confiqurations are considered or gust alleviation systems are investigated.
Two approaches will in general be used in parallel:

a)

b)

The solution of the nonlinear flight dynamic equations of motion of the aircraft
with flight control system dynamic equations together with structural dynamic
equations in time domain.

The solution of linearised flight dynamic equations of motion of the aircraft with
coupled structural dynamic equations in frequency and in time domain.

The calculation of the dynamic response in time domain using a) includes the simu-
lation of nonlinear effects at severe disturbance conditions, as for example aero-
dynamic nonlinearities (which are included in the static aerodynamic data set),
rate and deflection limitations of the control surfaces due to marginal actuator
power and inertia coupling at high rates.

Several disadvantages may arise in this approach if effects of the flexible air-
craft on the total aircraft response are only treated in a pure gquasisteady approach
as normally used in flight dynamic simulation by the introduction of a flexibilised
steady aerodynamic data set.

Consequently this approach could lead to a wrong prediction of local dynamic res-
ponse and maximum dynamic loads.

In addition this quasisteady approach will not account for time correlated struc-
tural dynamic and flight dynamic responses since no aerodynamic coupling exists
between structural dynamic and flight dynamic equations. A superposition of rigid
and elastic aircraft vibrations in the right phase will not be possible. The dis-
advantages therefore could be found in not accurate predictions of maximum or
stochastic vibrations and of dynamic loads. The analytical investigation of struc-
tural coupling effects, which are of interest especially for static unstable air-
craft cannot be performed adequatly by this approach.

The dynamic response approach using linearized equations of motion of the aircraft

around trimmed condition coupled with structural dynamic equations and flight control
equations will give the possibility to introduce the unsteady and coupling effects in

a proper sense. Therefore flight dynamic and structural dynamic responses are described
in the right phase and the superposition of vibration and dynamic loads from both con-
tributions can be performed. In addition of course the stability of the total aircraft
can be calculated for the flight control system closed. Open loop phase and gain mar-
gins for the total system can be investigated which would give more insight into the
coupling effects of the flexible aircraft modes on the stability of the flight dynamic
modes and the structural dynamic modes by evaluation of the Bode diagram in the frequency
range 0 - fpax.(fmax is the frequency of the highest flexible mode used in the analyti-
cal model). The linearised model in advance gives information about the transfer fun-
ctions of all state variables, of local accelerations and of dynamic loads due to a gust
input. These evaluations are also of interest especially if gust alleviation systems are
studied. Besides the calculation of power spectral densities of the above mentioned vari-
ables also the incremental responses at trimmed condition can be calculated with the
linearised model in time domain and nonlinear effects like rate and deflection limita-
tions can be evaluated as well in a first step. Disadvantages can arise through the deri-
vation of unsteady airloads at transsonic speeds or at higher incidences where some limi-
tations of the theoretical procedures could be existent. Correction methods using experi-
wental static or dynamic experimental results should be applied.

APPROACH 1:

Nonlinear flight dynamic equations in body fixed coordinates and structural dynamic

equations without coupling.

Flight dynamic equations:

X = m{U-VR+WQ)
Y =m{v-WP+UR)
Z = miW-UQ+VP}
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P, Q, R roll, =itch yaw rate
Tee Iy Iy moment of inertia
Ixy' Tez’ Iyz
Normal force Z = g 0! Fc Rollmoment L =~§ u? ZsPcl
Axial force X = ‘;U‘ Fc, Pitehmoment M= g u? cFep
Side force Y = g U? Fe Yawmoment N = s U? 2 sFc

2 Y 2 n
Cyr €yr Cpr €1y Cpp €y = C L0, 'I;, H, Ma)

The flexible aerodynamic coefficients are functions of incidence , control sur-
face deflection ?;, altitude H and Machnumber Ma.

Additional structural dynamic equations:

MM + 50,40 + Mala®) + T AdaMat) o) = Qla,Mat)

Mr generalised mass of natural mode r

Mr r’ generalised stiffness of natural mode r
rj generalised aerodynamic forces

Qr generalised gust force of mode r

qr generalised coordinate of mode r

The deflection z at a point of the aircraft is assumed to be

2
Z (%, y) = g; 8, Ox, y) a,

[] total aircraft natural mode r

APPROACH 2:

Linearised flight dynamic equations, control and structural dynamic equations are
here formulated in frequency domain.

The structure of the coupled equations of the aircraft dynamics shall be described
in matrix notation as shown in Fig. 1.

N
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FIG. 1 FLEXIBLE AIRCRAFT DYNAMICS COUPLED FLIGHT AND STRUCTURE DYNAMIC EQUATIONS

The following notation are used:

XR Degree of Freedom Rigid Aircraft

XE Degree of Freedom Flexible Aircraft

LRR Matrix of Rigid Aircraft Aerodynamic Coeff.

LEE Matrix of Generalised Aerodynamic Coeff.

LRE Coupling Terms (Lift and Moment due to Defl.)

LER Coupling Terms of Rigid Motion to the Generalised Aerodynamics
PR Rigid Excitation Forces

PE Generalised Excitation Forces

KE Matrix of Generalised Stiffness

The aerodynamic terms and the degrees of freedom are complex functions in freguency
consisting of real- and imaginary parts.

The rigid aircraft aerodynamic terms may be introduced using a experimental data
set (rigid) or calculated derivatives Lgr (except the drag terms) using computer pro-
grams for the calculation of unsteady aerodynamic forces (Ref. 1, 2, 3}, which can be
applied also for the derivation of the LEE, LrRg, Lgr, PR and Pg matrices.

A more detailed structure of the longitudinal symmetric dynamics of the total air-
craft is shown in matrix notation in Fig. 2, where the first four equations describe
the flight dynamics excited by gust induced forces and moments. They include the aero-
dynamic coupling terms Z4, HI the normal forces and pitch moments due to total aircraft
elastic modes and the control surface drag, normal force and pitch moment X , 2 ,

M . The structure dynamic equations, excited by generalised gust forces Ljocg, con-
tain also the aerodynamic coupling terms Lj,‘ ’ sz .




P

?
(B+iwA)ixi={RHSL; 1
ix{'=1aV/V, aa, 8w, 46,9, 87, 4,, a7, } 4
i
A
Xoy Xy :
7 =
Zy| Za ‘B
M, MM
[%] (]
r A
{
R l
q
A
My
&KV -T2
{
B § RHS }
Xp | %o Xy X, X,
z, | z, Z, z, z, L;' + lL;. Iw '
M, M M, M;' + IM;. Iw
E
1
. . o L)L . "
L Ky+ly | Ly '—"u_'l" f Ly, ¥ i, /0
xv -1 T

FIG. 2 LONGITUDINAL MOTION - FLEXIBLE AIRCRAFT DYNAMICS




The equations Fig. 1 are useful to calculate the flexibilised total aircraft deri-
vatives for the steady case. The procedure which is recommended in case of known total
alrcraft normal modes is shown in Fig. 3

MODAL APPROACH
SOLUTION FOR STEADY CASE
MATRIX OF ELASTIFIED AERODYNAMIC DERIVATIVES LRR

- 1
LRR= Lan * Lae (KE+ LEE) Len

ELASTIFIED RIGHT HAND SIDE ER

_1
P P
Pa = Patloe (Kg + LEE) :

FiG. 3 DERIVATION OF FLEXIBILISED AERODYNAMIC DATA SET

As an example Fig. 4 illustrates the effects of the flexibilisation on rigid flap
derivatives of a delta-canard fighter aircraft configuration.

ELASTIFIED NORMAL FORCE AND PITCH MOMENT

DUE TO FLAP DEFLECTION

MACH 0.8 at sealevel
contribution of the different modes
to the aeroetastic efficiency

cl&.] ’cluz Cadel /t-s R

MODE 1 0.85 0.92
MODE 2 0.75 0.84
MODE 3 0.69 0.80
MODE 4 085 0.77
MODE 5§ 0.62 0.74

F1G. % APPLICATION OF FLEXIBILISATION METHOD

EXAMPLES OF FLEXIBLE AIRCRAFT TURBULENCE RESPONSE PREDICTIONS

Some typical results of gust response calculations on a flexible aircraft are listed
here in order to demonstrate the importance of arising problems.

The investigated aircraft is a delta canard configuration with wing tip mounted
stores, The f -st example shall illustrate the prediction of vibration levels on external
stores and resulting dynamic wing loads due to discrete gusts (Fig. 5).
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aircraft configuration is idealised for unsteady aerodynamic force calcu-

The unsteady aerodynamic derivatives and generalised

forces together with load distributions on subcomponents are calculated with the program

(Ref.3 ) for the degrees of freedom aircraft angle of attack, rotation around center of
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gravity,
Fig. 7.

FIG, 7

VERTICAL ACCELERATION

FI1G6, 8

canard deflection, flap deflection and wing elastic normal modes shown

first wing bending missile pitch
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Fig. 8 documents very high accelerations on the tip mounted missile due to discrete
gust caused mainly at short gust length (18 m) by the second elastic mode of the wing and
also shows alleviation effect of the elastic wing on the response at long gust length
(144 m) compared to the rigid response (full line).

The discrete gust reponse of the flexible aircraft results in wing shear and bending
distributions as depicted in Fig. 9.

Dramatic changes of wing loading are observed especially at wing outboard stations
for different gust length compared to rigid response which indicate a problem area in the
structural design. Gust loads may have influence on the structural design.
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Summary :

Very high vibration levels and dynamic loads compared to rigid aircraft response
are predicted in the tip store attachment region. Gust load alleviation can be of profit.

RIDE COMFORT EVALUATION

According to MIL-F-9490 D the ride comfort at pilot seat is specified for a mili-
tary aircraft with PCS. The ride comfort criteria for vertical and lateral vibrations
are calculated from the PSD of the vibrations and a acceleration weighting function W
for a defined v. Karman turbulence spectrum of the gust velocities (Fig. 10). A rigde
discomfort index D; is defined with upper limits, Fig. 11.
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FIG. 10 TURBULENCE SPECTRUM
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FIG. 11  RIDE DISCOMFORT INDEX

FPig. 12 shows the power spectral density of the investigated aircraft at low level
and Ma = 0.9, based on a aircraft weight of 11.5 to. The ride discomfort index of the
rigid aircraft is DL = 1.2 which really does not met the requirements.
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F16. 12 POWER SPECTRAL DENSITY OF VERTICAL PILOT SEAT ACCELERATION

Another ride comfort evaluation could be based on the criterium of a certain accele-
ration level exceedance. In Fig. 13 the exceedances of 1/2 g bumps per minute for accep-
table to unacceptable ride at low level flight are defined.

Ride Comfort at Low Level

03 04 OF 08 07 08 08 10 1
Mach No.

FI6. 13  RIDE COMFORT - EXCEEDANCE OF 1/2 G PER MINUTE AT PILOT SEAT
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The exceedance is calculated using the normalised acceleration PSD and RMS value.
Rice formala is applied. For the same flight condition this criterium leads also to
unacceptable vibration levels for the Delta-Canard configuration at low level, Ma = 0.9.

Summary:

Ride comfort requirements are not met for a Delta-Canard-Configuration at low level
high speed at low wing loading conditions. Ride improvement systems could be of interest.

STRUCTURAL COUPLING PROBLEMS

A total flexible aircraft with FCS response calculation as described in the pre-
vious text would enable the prediction of open and closed loop stability for the coupled
flight and structural dynamic modes. Open loop gain and phase margins can be evaluated
for all modes including the interdependency. Structural coupling problems which will be
of interest especially for orginally static unstable configurations can be investigated
therefore more accurately.

Fig. 14 shows the Bode diagram of the pitch rate signal of the investigated aircraft

with PCS and the effect of notch filtering of the signal on the gain and phase margins in
the frequencies of the short period mode and the first two elastic fuselage modes.

GAIN AND PHASE MARGINS
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FIG. 14 BODE DIAGRAM OF CPEN LOOP PITCH RATE EFFECT OF NOTCH FILTERING

Summarizing these considerations onecansay, that total flexibleaircraft response calcula-
tions are necessary to predict structural coupling problems of the aircraft with FCS and
will help to develop adequate notch filters.

Notch filter design will possibly be even a more pronounced problem for closed loop
gust alleviation systems due to higher gains compared to FCS systems.

ACTIVE GUST CONTROL ON PLEXIBLE AIRCRAFT

A ride improvement system or a gust load alleviation system may be based on the prin-
ciple of incremental gust induced lift and moment compensatia. (open loop system). Compen-
sation signals to the control surfaces, for instance canard and trailing edge flap deflec-
tions & and on a fighter aircraft Fig. 15, can formally be evaluated inflight for each
condition actording to the expression given in Fig. 16.

In order to derive the compensation signals, the gust incidence and its time deri-
vative ov o must be measured during flight. The measurement can be perfdrmed with flow sen-
sors (#&-vanes) or in the future by laser~optical systems. Fig. 17 shows the procedure for
the evaluation of the gust incidence from a vane signal, which of course consists of the
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combination of gust and ajircraft incidence Qegs The gust incidence is extracted using
platform signals, the pitch rate and the vertical acceleration. :

FEASIBILITY STUDY OF

CANARD AND FLAP-ACTUAT 1O FOR THE AIDE INPROVEMENT SYSTEN
O A DELTA CONFIGUAATION

F16. 15 INVESTIGATED AIRCRAFT
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F1G. 16 EVALUATION OF COMPENSATION SIGNALS
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Fi6, 17 DERIVATION OF GUST INCIDENCE BY VANE MEASUREMENT
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Problems in the sucessful compensation will arise from the facts:

contamination of the measured vane signal by aeroelastic deformations at the sensor

position and elastic vibrations,

the applied unsteady aerodynamic derivatives are not accurate enough, especially in

transonic flight or due to aerocelastic effects,

the installed actuator power is not sufficient, the
are to high for compensation.

required control surface rates

The attractive advantage of an open loop system however consists in its simplicity
and in the possibility to develop it separately from the FCS system, since it does
not interact with the FCS and does not change the flying qualities.

Ride improvement and gust load alleviation could be
system. In addition to the feedback loop of the FCS
cal acceleration together with pitch rate and pitch
to drive the control surfaces to alleviate the gust

achieved also by a closed loop
system, the pilot seat or verti-
acceleration signals can be used
response or dynamic loads, as

demonstrated in the block dilagram in Fig. 18.

CCV Fight Conrol Subiity |
Sysem (BAR) K
Ky, Ky Ky Ky -
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Conerd Actustor n, =, 00

FIG. 18  BLOCK DIAGRAM OF FCS AND GUST ALLEVIATION SYSTEM

The problem areas here will be found in the complexitity of the system. The system
has to be designed together with the FCS system, because the aircraft stability is affec-
ted. The command system must be modified in order to eliminate interaction between the
system and pilot command inputs.

In the figures 19, 20 and 21 typical results of the effects of an open and closed
loop ride improvement system investigated on a delta-canard are shown. The optimization
of the systems was performed by stability analysis of the aircraft and PSD analysis of
the C.G. and pilot seat acceleration. The rms pilot seat acceleration and the 1/2 g
bumbs per minute were minimized with respect to a control surface maximum rate of 50 de-
grees/sec. Fig. 20 illustrates the changes in short period frequency and damping for dif-
ferent feedback gains and the corresponding peak values of control surfaces rate and de-
flection. The closed and lopen loop system provide the same alleviation factor in pilot
seat acceleration.
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F16. 19  EFFECT OF OPEN LOOP RIDE IMPROVEMENT SYSTEM
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FI1G. 20 EFFECT OF CLOSED LOOP RIDE IMPROVEMENT SYSTEM

FEASIBILITY STUDY OF

ACTIVE GUST CONTROL ON A MILITARY AIRCRAFT
RIDE IMPROVEMENT INVESTIGATION ON A DELTA-CANARD
CONAGURATION (TKF CCV)

WEIGHT 11600 KG
TURBULENCE INPUT V.KARMAN SPECTRUM

AMS VELOCITY = 2.01 M/SEC

FUGHT CONDITION MACH=0.83 SEALEVEL

RESULT : RMS PILOT ACCELERATION IN {G)

A/C WITH FCS WITHOUT GUST SYSTEM 07

AJ/C WITH FCS AND OPEN LOOP SYSTEM 026

AJC WITH FCS AND CLOSED LOOP SYSTEM 024
PROBLEMS: CONTROL SURFACE EFFICEENCY AND RLAP RATE

THE NEEDED RLAP RATE WILL BE ABOUT 100 DEG/SEC
FOR ELASTIRED CONTROL SURFACE LIFT AND MOMENT

FIG. 21 RESULTS OF THE RIDE IMPROVEMENT INVESTIGATION

A further example of the effect of a ride improvement system is demonstrated in
Fig. 22. The PSD of C.G. acceleration is shown for an transport aircraft flying at cruise
condition. High alleviation could be found with a closed loop system {(C.G. acceleration
feedback), however, the frequency of the short period mode was strongly reduced.

JRANSPORT AIRPLANE WITH RIDE IMPROVEMENT SYSTEM
P8D OF C.G. ACCELERATION
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FIG, 22  EFFECT OF A RIDE IMPROVEMENT SYSTEM ON A TRANSPORT AIRCRAFT
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An alleviation of vibration levels on this aircraft on all passenger seats could be

achieved (Fig. 23). However, without notch filtering of the feedback signal the vibra-
tion level are increased with the system in action, which demonstrates the importance of
notch filter design.
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CONCLUSIONS

A description of fully dynamically coupled flight and structural dynamics of total
flexible aircraft is of interest for the prediction of gust lnads and for the investi-
gation of gust load alleviation and ride improvement systems. Consequently unsteady
motion and gust induced aerodynamic force prediction for the total aircraft will im-
prove accuracy.

Discrete gust analysis 1s of importance for military aircraft in the case of confi-
gurations with external stores carried on outboard wing stations. High wing dynamic
wing loads may be observed.

Continuous turbulence analysis of aircombat aircraft flying at low level high speed
shows unacceptable ride comfort.

Gust load alleviation systems and ride improvement systems could reduce the problems.

The systems shall be designed with respect to the aircraft strength and rigidity and
ailrcraft flying quality requirements.

Realisation of compatibility between load alleviation systems and fCS system is
problematic.
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