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:; k-th order statistic of alxl, eess X to be stochastically smaller than the
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k-th order statistic of a;Y;, ..., anYn for all choices of a; > 0, i =1,

)

‘R 2, <ea, N, We identify a class of functions Mk,n such that _)S(E)j_ if and

- only if E¢(X) < Eo(Y) for all ‘”Mk n* Some preservation results related to

On - - s

the ordering (E) are obtained, Some examples and applications of the

o
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XS
;"J
;::? 1. Introduction.
i
[ Consider the set Exn of all n-dimensional random vectors which are
4‘ 8
“. nonnegative with probability one. For 2z = (Zl’ cees Z.) e R: = {2:2> 0%,
oy = - Ld
.i denote by 20 (zl, cees zn)(k) the k-th smallest z; in {z;, ..., Z}.
* Y .
- s is
-y Thus for Z = (Zl’ ""Zn) e;t,n, the k-th order statistic of 7Z1s eees Ip
o
WK Zigy = (Zps eees Iy
o It is possible to introduce various orderings on In. In this paper we
- consider the preordering -(E)- defined for X, Y eX by l.
A4
o y(&)y
Y ¢ -— -
1]
"n%' .
L if and only if for all a; >0, i = 1, coey N,
M
18 XN
133 st
}}:: (alxl, ceeey anxn)(k) < (alYl, ssey anYn)(k)
N
( where here '¥%* denotes the usual (univariate) stochastic ordering., (For
. univariate random variables X and Y the notation X §tY means
.-:". . .
e Eg(X) < Eg(Y) for all nondecreasing Rorel measurahle functions g for which
'{: the expectations exist.)
.7 The following two results show the relationship between the preordering
ii‘%“ (%) and other well known orderings (see also Scarsini (1985)),
' ~
L Proposition 1.1, Let X and Y be members of £ with distributions F
R - -
. and G respectively. Then the following two conditions are equivalent:
ok
22 (1 1Ry,
. -.:
3 (1) F(t) > 6(t) for all ¢ ¢ RT.
s - - -
Proof: Clearly (i) is equivalent to
¥y
st
% max(alxl, seey anxn) < max(alyl, ss ey anyn)
2
'\ whenever a; > 0, i =1, ..., n. The latter is the same as
&
E
33-3’ F(g—-, ooy ;—) > G(g—, cees g'-—) whenever t > 0, a; > 0, i =1, eua, n,
X .,'f 1 n 1 n
'
N
o -

'»‘.' - ’ P RPN 2 T '.. \.\'.‘F..‘-\‘ \ 5,7 LA '.».\. A ‘.v“,“ \ . \ \ ‘\ -‘ \ \ ‘.\‘,". AN ‘..‘ e




‘s"l’
r_i.p‘.
Y
2
:'v.'p‘l
o
o
b which is the same as
e
:'é::' (1.1) F(tl, cees tn) > G(tl, cees tn) whenever t; >0, i =1, ..., n,
)
:" Finally, using standard limiting arguments, (1.1) is equivalent to (1'1').||
‘ 1
' Similarly one can prove:
o Proposition 1.2, Let X and Y be members of :X'n with distributions F
o - -
Dt o
:{ and G respectively. Then the following two conditions are equivalent:
Wi :
™ aii) xQy,
o (iv)  F(t) < B(t) for all t e R],

where F(tl, cees tn) = P(Xl >tys eees X > tn) and

n

o

o2

-
-

W U(tl, cees t ) = P(Y1 >ty eees Y >t ) are the corresponding survival

i W]

;' functions.

".;'F Thus the ordering (é) is the same as the one discussed by R;]schendorf
R (1980) and Mosler (1984). Mosler (1984) also discusses the ordering described
a" in (ii) which is equivalent to (g) as is shown in Proposition 1.1,

:% The purpose of this paper is to study the preordering (E) for k = 1, 2,
'.5. esey N, We state the main results in Section 2. Some applications and

i' examples are given in Section 3.

t:; 2. The main results.

,: For me {1, ..., N} let ¥ be the set of all subsets of {1, ..., n}
L

of size m. For I ={i;, «oc, i} ey, and Xjpr woes X4 2 0, let x,

A7A

: §
2

denote (x,-l, cees xim) and let (-X-I’ =) denote x]il(xl, cees xn) and
(11, 0) denote 1lim (xl, cees xn). In this paper I denotes the complement
3 x 40

) —IC -

\
‘,'Jij; of T in {1, ¢eey N}. Also, o« denotes a single « or a vector |

55

| "; (2y eeey ©) of a proper size. Similarly, 0 denotes a vector of zeroes nf
> a proper size,

O Let "1 denote the class of all bounded distributinn functions on R:

'- C’ . - - - - . - . . . - -
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3
ES’:
:ﬁ;‘
‘,:::: with no singularities at =, that is, f ¢ M,, if and only if there exists a
‘ measure p onN R2 such that f(t) = u([0, t1) and for some bound L <= we
Wl
"‘: have f(t) » L as t » ». Note that in this paper, yu 1is allowed to have
Sl - -
’\- positive mass at the origin or along any of the axis or on sets of the form
'.
{(xys 0):x e RT} for some 1¢e y,. Clearly every f e M determines a
\ unique measure p as described above and vice versa. In the sequel, for
)_ X € Rz, I e ¥ and f ¢ Ml’ we denote limﬁf(xl, eoey xn) by f(_’ip ™)
_"_Ic"
.-:: and Yim f(xl, eves xn) by f(-)-(-l’g)‘
~ x _+0
b T1¢ ~ ]
L_ For k e {1, ¢cep, N} let "k,n be the class of functions ¢:R_+ R
4
"y such that
~
o d +k-1,m-1
= (2.1)  6(xys sees x ) = 1 (-1)""EHMT Y T f(x(, ®), for some e M,
' 1 n L n-k ~I 1
" m=n-k+1 Ie
m
vt where § denotes the sum over all (n) elements of y ., We sometimes
_‘:":‘_'. Iey n m
-: supress thé subscript n of Mk,n and just write M. HMote that for k =1,
)
J the above definition and the previous definition of M; coincide.
_,-. Theorem 2,1, Llet X, Ye &:n. Then the following twn conditions are
>,
e equivalent:
'.F".
' (v) _X_(E)_[.
—:::i' (vi) Eo(X) < E¢(Y) for all ¢ € Mk such that the expectations exist,
I Proof. Suppose X K Y. let a; >0, i =1, .ec, n. From David (1970), p. 75
\a -~
!—‘: it follows that for every x > 0,
-
3 PUa K s eoes apka)i) >
\'_‘
N3
b A +k-1,m-1
= 1 DR R I T T L T
_;':: m=n=-k+1 {il,...,1m}swm 11 mm
N
(-2
" -,
P
o .- et

P AT, PR e T P S L j Lt -.-\v’..-‘.."x."‘
v . g *% Ay M3 . e
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Thus
P{(alxl, cees aan)(k)> X}

n
-=E[ ] (" 1("")2 (e, 00,410)

m=n-k+1

where ti H] x/ai, i =1, eeey N and XA is the indicator function of the

set A. Now, if X(5)Y and F and G are the distribution functions of

— ey —

X and Y respectively, then

n
(2.2) (-1)N-m*k-1,m-1 (x)]dF (x)
i: [mzn-k+ (n-k) Z x[(t ,0),e] x) ] dF (x

g -mtk=1,m=
‘ gn[mzn-ézi)n " (m K) z X[(t ,0), 1(X)]dG(x)
+

Let ¢ ¢ Mk and let f be the corresponding member of M; as described

in (2.1). Then

3M=

(-1 )’"‘"*"‘%’,’,’j)lz £(xg v )dF (x)
v

Eo(X) =
$(2) én n-k+1

¥m

- 'i Gyl 08, UL x () ()] F (x)
m=n-k = Rn [29(519‘”)] - - -

I[I I (Ml )z gy, 0,7 F N

R Rn m=n-k+1
n
fLf Y e 1(’“‘); ROEECLL

<
(2.2) .,n ,n m=n-k+l
Ry Ry

= E¢(Y)

and (vi) follows,

L Sl LR TR K

o, "Q!I,._l,»
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g

o

iéi Clearly E (-l)m'"+k"1(m'1) Y ox (¢) is a function in M
;‘"ﬁ‘f m=n-k+1 n-k IEIPm [(_t_l ,_f_’) ] k

" whenever t > 0. It follows that (vi) implies (2.2) which is equivalent to
W\,

R (v).}|

Vs -

Uy Note that with k = 1, Theorem 2.1 yields Theorem 3(a) of Ruschendorf
e (1980) for measures on Rz.

%g The following preservation results will be used in Section 3.
St

o™ Theorem 2,2, Assume that 5}2)1_ for some ke {1, ..., n} and X and Y
{é in Bﬂn. Let b;:R, » R_ be a right continuous nondecreasing function, i = 1,
N d

l_-': seey no Then

\I

"p'u

>
< (2.3) (by(X}), ey b (X)) &) (010 veuy BLLY,)).

2
~il Theorem 2.2 can be proved by an explicit computation of

..;.'

! P{(albl(xl), cees anbn(xn))(k) > t} and

- cr s

l; P{albl(Yl), cees anbn(Yn))(k) > t}. However we note that it is also an

‘f immediate consequence of Theorem 2.1 and the following Lemma 2.3. Lemma 2.3
W

b is also used in the proof of Theorem 2.4. The proof of Lemma 2.3 is easy and
ﬁs is omitted,

oy

;? Lemma 2.3, If ¢(e, v0u, o) e Mk,n and if b.:R.sR_~ is right continuous
&‘ nondecreasing function, i =1, ..., n, then the function defined by

§' ¢(by(e), weuy b () s also a merher of M.

‘t The following result is important because it yields Theorems 2.6 and 2,7

il
»

below as special cases.

Theorem 2.4, Let X, Y, Z and W be random vectors in Ebn such that

.
><
—
AN
s
-

R

)

" z 8y,

53 and X and Z are independent and Y and W are independent. Then

o

a\'¢

o

Y

2
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_S_ = (cl(xl’zl). seey Cn(xn’zn))

B () _

‘ g (Cl(Yl,wl), essey Cn(Yn,Zn)) =

2:: Whenever it RE > R+ is right continuous nondecreasing function, i =1, ...,
[ w*

bt n.

= The following lemma will be used in the proof of Theorem 2.4.
'.‘5

i‘ Lemma 2.5, Let X, Y, Z and W be as in Theorem 2.4. Then

s —efMa_ <. 9. Ls 1y £ huld

-« (2.4) Ep(X,Z) < Ep(Y,W)

for all y such that

(2.5)  ¢,(+)

v(e2) e M for all z5 g,

s ,,
LS

(2.6)  ¢=(e) = ¥(x,e) e M , for all x>0,

-,

A provided the expectations in (2.4) exist.

- Proof. Denote by Fy, Fy, Fz, Fy the distributions of X, ¥, Z, W,

fz respectively. Let ¢ satisfy (2.5) and 2,A), Then

.

"

h Ey(X,Z) = [[Ju(x,2)dF,(2)]dF, (x)

v {[Iw(x W)dF, (w)]dF y (x)

. (2.6

<

X

! = [ [Ju(x,w)dFy (x)]dF, (w)
3 2 r

< < {[f‘b(l,ﬁ)dFY(l)]de(ﬂ)
L = Ep(Y,H),

@
ey and (2.4) follows.||
:c

j Proof of Theorem 2.4. Let ¢ ¢ M,. Consider the function n, defined, for a
> Z
1 fixed 2z 5 0, by n_Z_(" ceey o) = ¢(c1('921)9 ceny Cn("zn))- By Lemma 2.3,
3 n, e M for a1l z > 0, Similarly the function nX, which is defined for

5 -—

: PaCh f‘iXPd X > 0, by n'x‘('g esey ’) = \#(Cl(xl,'), esey C (X ,’)), iS cﬂSO a
(LS - - n'n

)

Al

.

N
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%
A% 7
194
o
'_‘J';n
b member of M, for all x > U. Hence, by Lemma 2.5,
AL
3-_‘-3: Eo(S) = Eolcy(xgsZy)y eeey € (X ,2))
e
.J‘:::: < E¢(C1(Y1’w1), KR cn(Yn,wn)) = E¢(I)'
‘\'.
" This is true for every ¢ ¢ Mk‘ Hence _S_(E)_T_H
::é: Theorems 2.6 and 2.7 below are special cases of Theorem 2.4. Theorem 2.6
1Y
.s,'. shows that the orderinrg (E) is preserved under convolutions,
[}
)
:'":t& Theorem 2.6. Let X, Y, Z and W be as in Theorem 2,4, Then
2 x+2 % yau
oy
.:":‘ One consequence of Theorem 2.6 is the following. If X, Y, and Z
" belongs to &, such that _)i(g) Y and Z is independent of X and Y then
x +2(8)y 4 7,
-“.A_j - -~ = -
b Theorem 2.7. Let X, Y, Z and W be as in Theorem 2.4, Then
R (k)
(min(XI,Zl), er ey min(xn,zn)) E (min(Yl,wl), evey min(Yn,wn)),
g (max(X1,2;) (Xp:Zq)) &) Vi) (YpHp))
e max(Xy,21)s eees max{X,,Z, 27 (max( 1oW1)s eees max(Yp,Mp)).
=~
- .
:'f- In the next theorem, 1(‘) denotes (Xl, cevs Xj1s Xj41s eees X,) and
I y(1) P
:‘~: 2 denoteS (Yl, L X Y Yi_l, Yi"‘l’ ceey Yn), 1= 1, ss ey ne.
:}_':E:j Theorem 2.8, Let X, ¥ e')in. Suppose L(E)j_. (a) If 1 <k < n then
o .
oy (2.7 x(1 (kely(),
:$ (b) If X and Y have all their mass on {x:xq > 0, veuy x, > M, li.e., if
s.J_a.:
:.';;'.; none of the Xj's or VY;'s 1is zero with positive probabhilityl and if
";'3 l<k<n-1, then
o
™y
o (2.8) x(1) (§)y(i)
L»,) *' - ~e-
s
" Proof of (a). By definition, X (E) Y if and only if (alxl, cens
e
l".l
:f'.'o‘
i

g (O e AT T Y, P T
R..{!..:l ."?.i.' A}
i3 .
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AT
a1y,

X

‘o e s i
KA} 4

-

anxn)(k) ét (alYl, ey anYn)(k) for all a;

i 0, i=1, .oe, Nn. Hence

. t ..
2.9 X [ '..’ L N ]
(2.9) l:Tn(al ] R 2 ;:To (8395 eees Y )4y

for all a; >0, j# i. Rut (2.9) is the same as
(a1X15 eees 35.1%501s @541%541 oee 5 3pXp) (k1)
t . .
2 (alYl’ cens ai-lYi-l’ ai+1Yi+1’ cees anYn)(k-l) for all a; >0, j+ i,
and (2.7) follows.

Proof of (b). Again X §)y if and only if (ayX;, ...,

t s
anYn)(k) 2 (alYl’ cees anvn)(k) for all a; > 0, i =1, ..., n. Hence

.
(2.10) Vim (aXq, eees X)) ¥ Vim ()Y vees AV )
d.»>o .+
i i

for all 3; >0, j# i. Since X and Y are positive with prohability one,
it follows that (2.10) is the same as

(81X s wees a5 1% 350185410 oo 20X0) iy

st . .

. 0
< (alYl, eoes ai-lvi-l’ ai+lYi+1’ coes anYn)(k) for all a. >0, j+ i, and

J
(2.8) follows. |

Theorem 2.8 says that if the n-dimensional vectors X and Y satisfy

X (E) Y then (under the proper conditions) the (n-1)-dirensional marginals

satisfy the orderings (ksl) and (52 By induction, for proper choices of

k, the (n-2)-dimensional marginals satisfy the orderings (kSZ), (ksl) and

(5), and so on. The reader may wish to list all the orderings that follow,

for example, for n = 6, from (g) for the m-dimensional marqginals, m = 5, 4,

3, 2. In general, if X and Y satisfy the conditions of Theorem 2,8 (a) and

(b) then, for 1< m< n, any m-dimensional marginal of X is (%) than the
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respective m-dimensional marginal of Y whenever max(1l,m+k-n) < ¢ < min(k,m).

3. Examples and applications.

In this section some examples of functions ¢ in Mk will be given and
then an application in reliahility theory will be discussed.

In general, every distribution function in M; determines a function 4
in Mk,n as described in (2.1). In the following examples we describe in
some detail some functions ¢ 1in M2,3.

Example 3.1. Let Fys =1, 2, 3 and G be univariate probability |
distributions on R, and let U;, Uy, U3 and W be independent random
variables with distributions Fl’ F2, F3 and G respectively. If

Vi = max(Ui,w), i=1, 2, 3, then the joint distribution of V,, V, and V3

is given by
f(vl,vz,v3) = Fl(vl)F2(v2)F3(v3)G(min(v1,v2,v3)), Vi 3 n, i =1, 2, 3.
Thus the function ¢ defined by

¢(V1,V2,V3) = f(Vl,Vz,m) + f(V19maV3) + f(“a V29V3) = 2f(v1,v2,v3)

Fl(Vl)Fz(VZ)G(min(Vlsvz))

+

Fl(Vl)F3(V3)G(min(V1,V3))
+ F2(V2)F3(V3)G(min(V2,V3))
-2 Fl(vl)F2(v2)F3(v3)G(min(v1,vz,v3)), vi o2 0, i =1,2,3,

is a member of M2,3.
For example, if Fl’ FZ’ F3 and G are the uniform distributions on the

interval (0,1} then for 0 < v < 1, i =1,2,3,
¢(v1,v2,v3) = v1v2m1n(v1,v2) + v1v3m1n(v1,v3)
+ v2v3min(v2,v3) - 2v1v2v3min(v1,v2,v3).

Example 3.2. Let Uy, Up, U3, W and Fy, Fp, F3, G be as in Example 3.1,
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o
'3:1 Denote F, =1 -F.,B=1-6 If V;=min(U;,u), i =1, 2, 3, then the
f‘!i
f joint survival function of V;, V, and V3 is given by
i
e (3.1)  Flvyavyavg) = PLVy > vy, Yy > vy, Vg > g}
i »
."
%
e =F T, F. G i =
gg‘ Fl(vl)FZ(VZ)F3(V3)G(max(v1,vz,v3)), v; > 0, i=1, 2, 3.
F&; The joint distribution f of V,, V, and V5 can be obtained from T using
1.»
'i? the formula
Wyt
“ (3.2) f(vy,vp,v3) =1 - T]vl,0,0) - ?XO,vz,O) - ?10,0,v3)
.wﬁ - - -
E% + f(Vl,VZ,O) + f(V190,V3) + f(O, V2;V3)
oM -'?(vl,vz,v3), vy >0, i =1,2, 3.
B
N The function ¢ defined by
o
L
iQyQ (3.3) ¢(v1,v2,v3) = f(vl,vz,m) + f(vl,m,v3) + f(w, vz,v3)
2 - 2f(vl,v2,v3), vy > 0, i=1, 2, 3,
?Qg- belongs to M, 3
ah
ﬁﬂh‘ Plugging (3.2) into (3.3) one obtains
v
-:.g (3.4) ulvy,vy,vg) =1 = Flvy,v,,0) - Flvy,0,v,) - F(0,v,,v5)
,A. ']
o T3 i
f;g + 2f(v1,v2,v3), vi > 0, i =1, 2, 3.
'a".‘
?.. Choosing various univariate distribution functions F;, i =1, 2, 3,
. -
o and G in (3.1) and plugging the resulting f in (3.4), one can ohtain

explicit expressions for various members of M2,3.
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For example, if U;, i =1, 2, 3, and W are uniformly distributed on

P i»

2R [0,17 then for 0 < v, <1, i=1,2, 3

15N

'vd“.

i:

,-. ¢(V1’V29V3) =1 - (l'Vl)(l'Vz)(l""ax(VI9V2))

2 (3.5) - (1-v) (1-vy) (1-max(vy ,v5))

":". + 2(1‘V1)(I‘VZ)(I'V3)(1'WaX(V1,V2,V3))o
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If Vi, 1= 1, 2, 3, and W are standard (mean one) exponential random

variables [then (Vl,VZ,V3) has a Marshall-0lkin (1967) multivariate
exponential distributionl] then G(t) = Fi(t) =1 - e't, t>0, i=1, 2, 3.

Plugging these in (3.1) and (3.4) one obtains the following member of My 3t

9

-vl-vz-max(vl,vz)_ -vl-v3-max(vl,v3)

(3.6) ¢(v1,v2.v3) =1-e e

-v2-v3-max(v2,v3) -vl-vz-v3-max(vl,v2,v3)

-e + 2e s V5 2 0, i =1, 2, 3.

Of course, that ¢ of (3.6) is a member of M2’3 can also follow at
once from Theorems 2.1, 2.2 and the fact that ¢ of (3.5) is in My 3.

Example 3,3. The function F defined by

?(vl,vz,v3) = (1+v1+v2+v3)-1 s, V. »0,i=1,2,3

i
is a survival function (see, e.g., Takahashi (1965)). Substituting it in
(3.2) one obtains a distribution function f, Substituting this f in (3.4)
one obtains ¢, a member of M, 4, defined by

*

(v Vpuvg) = 1 - (1+v1+v2)'1 - (1+v1+v3)'1 - (1+v2+v3r1

+ 2(1+v1+v?+v3)'1, v,

1>0,1'=1,2,3.

Application 3.4 (reliability theory). Every collection X1s eees X, of

nonnegative random variables can be thought of as a collection of lifelengths
of devices. For a; >0, 1 =1, ..., n, the scaled lifelengths A1X1s sees

a, X, have been of interest in many studies (see, e.g., El-Neweihi (1984),
Marshall and Shaked (198%a,b) and references therein). Note that (alxl, cees

anxn)(k) is the lifelength of an (n-k+1)-out-of-n system with component
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lifetimes alxl' cees A K 0

Let X = (Xl, cees Xn) and Y = (Yl’ eees ¥ be two vectors of random

n)
lifelengths with distributions F and G respectively. In some applications
the condition 1(2)1_ naturally holds or is not very hard to prove (see below
for more details). Then Theorem 2.1 yeidls a host of useful inequalities.

In order to verify 5}%)1. [respectively, 5}2?1], it follows from
Propositions 1.1 and 1.2 that all that one has to do is to show F(t) < G(t)
[respectively F(t) » G(t)], t > 0. In order to verify (E) for 1< k< n,
one just has to show (see the proof of Theorem 2,1)

(3.7) § (-1)""*k= 1("“ ) z F(t;,0), t > 0,
m=n-k+1

< I (-1)”'"*k Y 1 Ten0, a0,
m=n-k+1 Iey

m
or, equivalently,

n
(3.8) I 1™ y F(ty.=) > z (D" T AL =), £ 0
m=k Ie
¥ m
Clearly the ordering 13t implies '(E)' (here, for every two random

vectors X and Y, the notaton IFE Y means
(3.9) Eg(X) < Eg(Y)

for all measurable nondecreasing functions g for which the expectations
exist). MNote however that (3.9) is a much stronger requirement than (3.7) or
(3.8). Hence (3.9) may not hold when (3.7) or (3.8) hold. Even if (unknown
to the researcher) (3.9) holds it still may be possihle only to show (3,7) or
(3.8). Thus the advantage of '(E)' over '§t' ijs in the relative simplicity
of its verification and the fact that it still implies many useful
inequalities,

Since the ordering '§t‘ implies '(5)' it follows that the
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:}‘2;. inequalities of Theorem 2.1 apply in many applications in reliability theory
- and elsewhere. For example, Block, Savits and Shaked (1985) give conditions
)
z-'_,'.s under which a nonnegative random vector T = (Tl, cons Tn) satisfies
i
o
. - ]
"‘ , (3.]0) [(Tl, seey Ti-l’Ti+l’ eoo gy Tn),Ti- t ]
e
Vs st _
:'}( < [(Tl’ teee T1‘-1’T1'+1’ seee Tn)lTi't]
)
¥
:: whenever 0 < t < t', i =1, ..., n. Denoting the left hand side of (3.10)
- by X and the right hand side of (3.10) by Y (here X and Y are (n-1)-
1'.:-:
P dimensional) it follows that X (E)l and the inequalities described in Theorem
o
e 2.1 apply.
€ o . .
e Application 3.5 (systems with spare parts). Consider two systems of n
Lot
::-.:j: components. Denote the lifetimes of the components of the first system by
A
e X1» eess X, and of the second system by Y1s «ees Yp. Suppose each component
%_;.\: in each system has a cold spare which starts to live upon the failure of the
o
}f:: component. Denote the lifetimes of the spares by Zl, eees Ly and Wy, ...,
e
e
N W, where Z; [respectively, w,-] is the lifetimes of the spare which replaces
J
o the component with lifetime X, [respectively, Y;), i =1, «eo, n. The X;'s
N
:‘; [respectively, Y;'s, Z;'s, W;'s] among themselves may be dependent, hut we
o
‘e assume that X s independent of Z and Y is independent of M.
.
n 3 The lifetime T, of the first system then is determined by X + 7, say
$::: (3.11) Ty = t(X+2)
'_J;
{ where v is a coherent life function in the sense of Esary and Marshall
5::2 (1970). Suppose that the lifetime T, of the second system is
55
:. ".\ (3']2) T2 = T(_Y.+}i)
e . .
oy where the ¢ in (3.12) is the same as the t in (3.11).
!
Q!E::; If X %)y ana z &)y then, by Theorem 2.6, X + 1 () vy + W, Thus
"‘.i: ~ -— - ~ — -— -— ~ — -—
i
X
s'Q'g" .
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various inequalities regarding Ty and T, can he obtained from Theorem
2.1, For example, if <t 1is the coherent life function which corresponds to

an (n-k+l)-out-of-n system then we have

t
(3.13) LR A P
If the spares are warm standbys then, using the above notation, the
lifetime T, of the first system is determined by (max(X},Z1), e«

max(Xq,2Zqo))s Say

Tl = r(max(Xl,Zl), cees max(X ,Z.))
and the lifetime T2 of the second system is

TZ = tmax(¥y,M;), oeo, max(Y M )).
Using Theorem 2.7 we get

st
Tl < TZ
when <t is as described hefore (3.13).
As another exarnple, suppose n - 1 of the components with lifetimes

X; [respectively yi] are used, with the correspnding spare parts, for an (n-

k)-out-of-(n-1) system. Denote the lifetime of the resulting system by S

[respectively, Sp). Then, from Theorem 2.8 it follows that
t
Similar stochastic ordering applies to systems which use "second-hand"

components as described in Block, Bueno, Savits and Shaked (1983), We omit

the details.
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