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Abstract

Motivated by applications in reliability theory, we define a preordering

(X1, ... X n)y( (Y1, *... Yn) of nonnegative random vectors hy requiring the

k-th order statistic of a1 Xj, ... , anX n  to he stochastically smaller than the

k-th order statistic of aiY1 , ... , anY n  for all choices of ai > 0, i = 1,

2, ..., n. We identify a class of functions Mkn such that --~ _ if and

only if EO(X) < EO(Y) for all OeMk, n . Some preservation results related to

the ordering V are obtained. Some examples and applications of the

results are given.

AMS subject classification: Primary 60E15, secondary 60KIO.

Key words and phrases: Stochastic orderings, order statistics.
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1. I ntrodujcti on.

Consider the set wZC of all n-dimensional random vectors which are

nonnegative with probahility one. For z = (z1,.. z ) C {Z.:z> 01$

denote by Z~)=(z 1. *Ogg z n)(k) the k-tb smallest ziin {z 1, **~ZnJc

Thus for Z =(Z 19 OO~Z n ) c X n, the k-tb order statistic of 71- .. Zn is

It is possible to introduce various orderings on Xn. In this paper we

consider the preordering W'defined for X, Y c Xn by

if and only if for all ai > 0, i =1, ... , n,

(a X1,.. a nXnk 4 (a Y, a.. nYnk

where here '~denotes the usual (univariate) stochastic ordering. (For

univariate random variables X and Y the notation X me nans

Eg(X) 4 Eg(Y) for all nondecreasing Sorel rieastirahle functions g for which

the expectations exist.)

The following two results show the relationship hetween the preordering

(kand other well known orderings (see also Scarsini (19P5)).

Proposition 1.1. Let X and Y be members of~n with distributions F

and G respectively. Then the following two conditions are equivalent:

(ii) F(t) > G(t) for all t E R.

Proof: Clearly (i) is equivalent to

st

whenever a1 > U, i = 1, ... , n. The latter is the samp as

F( . -)t G(;-, 0..9, ts- whenever t >0, a > 0, 1 1, ng.
al An a1 ani
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which is the same as

(1.1) F(ti, 0... tn) > G(t, tn ) whenever t i > 0, i = 1, .... n.

Finally, using standard limiting arguments, (1.1) is equivalent to (ii).II

Similarly one can prove:

Proposition 1.2. Let X and Y be members of 3En with distributions F

and G respectively. Then the following two conditions are equivalent:

(ill) Xpl _ _ Rn

(iv) F(t) 4 K(t) for all t c R+,

where WF(t 1 , **9 t n ) P(X1 > t1 , .. , Xn > t ) and

*(t*l tn P(Y1 > 1 n > t n) are the corresponding survival

functions.

Thus the ordering (1) is the same as the one discussed by R;uschendorf

(1980) and Mosler (1984). Mosler (1984) also discusses the ordering described

in (ii) which is equivalent to W as is shown in Proposition 1.1.

The purpose of this paper is to study the preordering W for k = 1, 2,

... , n. We state the main results in Section 2. Some applications and

examples are given in Section 3.

2. The main results.

For m e {1, ..., n} let *m be the set of all subsets of {1, ..., n}

of size m. For I = ... , im } £ bm  and xil, ... , xi n 0, let xI
denote (xil, ..., Xim) and let (xl, -) denote lim (x1, . Xn ) and

(xI, 0) denote lim (xl, x ) In this paper Ic denotes the complement
x 40

of I in {1, ..., n). Also, - denotes a sinqle - or a vector

... , ) of a proper size. Similarly, 0 denotes a vector of 7proes of

a proper S17e.

Let Ill denote the class of all bounded distribution functions on R+



with no singularities at -, that is, f e M1, if and only if there exists a
n

measure p on R such that f(t) = p(EO, t1) and for some bound L < = we

have f(t) -,- L as t + -. Note that in this paper, p is allowed to have

positive mass at the origin or along any of the axis or on sets of the form

((xI, .2):x e Rm} for some I c *m. Clearly every f c MI determines a
+ 1

unique measure p as described above and vice versa. In the sequel, for

>: n
x £ R+, I c and f e MI , we denote lira f(xI, ..., xn) by f(x1 , =)x m"-

Ic 
0

and lir f(x1, ... , x ) by f(x1 , 0).
x +0

C-

For k e {1, ..., n} let Mk,n be the class of functions O:R+ R

such that

.' .. n _ l)m-n+k-1 m- 1K i

(2.1) *(xi, ... , xn ) = - ) 'for some f c im=n-k+l n-k f-- f

where Z denotes the sun over all (n) elements of " We sometimes
I£ Ii:

supress the suhscript n of Mk,n and just write Mk. Note that for k = 1,

the above definition and the previous definition of P-1  coincide.

Theorem 2.1. Let X, Y e . Then the following two conditions are
-- n

equivalent:

(v) W

(vi) E (X) 4 E (Y) for all c £ Mk such that the expectations exist.

Proof. Suppose X(Y. Let ai > 0, i = 1, ... , n. From navid (1970), p. 75

it follows that for every x > 0,
a..

1 (aX .., anXn)(k) > x}

n )m-n+k-1 ( m-I
1 (-1) (n-k) P (ai Xi x, ... , ai Xi > x.

re=n-k+1 in},...,im} 1 1 m m

a.J'

p
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Thus

- E[ ~(-)m-n+k-1r1) [ ,).j ]

rm=n-k+l I1j, -

where t1 =x/ai i = 1, ... , n and XA is the indicator function of the

set A. Now, if JX( )y~ and F and G are the distribution functions of

X and Y respectively, then

(2.2) f [ I (_..)n-m+k-1(r1-1)

n

R n m=n-k+1 1C* m -I

Let M ~ k and let f be the corresponding mer'ber of M, as described

in (2.1). Then

n i-n+k-I mi-1
EO(X) =f 1 (-1)" (n-k) f(x1,,o)dF(x)

Rn m=n-k+l 0

n
f I' ( 1)nhfl k ) I [ f VI. ~ ~ f~)dFx

Rn ri=n-k-1 IC*p, n I0(
+ +

n
f If [1 (-1 (.)r-k) I(r-(u )q X (1J )0,l(x~)d6df(.Lj )

(2.2) R n R0 n =n-k+l 10~ -I

and (vi) follows.
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n

Clearly I () m' n + k - (- X[(t is a function in Mk
m=n-k+l In-k)IE -.I(- ) st

whenever t > 0. It follows that (vi) implies (2.2) which is equivalent to

Note that with k = 1, Theorem 2.1 yields Theorem 3(a) of R;;schendorf

(1980) for measures on Rn.

The following preservation results will be used in Section 3.

Theorem 2.2. Assume that X(A)Y for some k c {1, ..., n} and X and Y

in Xn" Let bi:R+ b R+ he a right continuous nondecreasing function, i = 1,

n. Then

(2.3) (bl(Xl), ... , bn(Xn)) (') (bl(Yl), ... , bn(Yn) ).

Theorem 2.2 can be proved by an explicit computation of

P{(a Ibl (X, 0 .. nanbn (X n))(k) > t) and

P{a1b 1 (Y1),..., a nb n (Y n))(k) ;o t). However we note that it is also an

immediate consequence of Theorem 2.1 and the followinq Lemma 2.3. Lemma 2.3

is also used in the proof of Theorem 2.4. The proof of Lemma 2.3 is easy and

is omitted.

Lemma 2.3. If 0(.. .... ?4 k,n and if h i:R+ +R + is right continuouis

nondecreasing function, i 1 1, ... , n, then the function defined by

S(bl(.),..., h n . is also a menher of Mk.

The following result is important because it yields Theorems 2.6 and 2.7

below as special cases.

Theorem 2.4. Let X, Y, Z and W he random vectors in ZL n such that
x

z _ _

and X and Z are independent and Y and W are independent. Then
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S I(c(X1,Z), ... , c n(X n ,Zn))

(Cl(Y1,WI09 , ..., Cn (Y n,Zn) -T

2

Whenever ci: R+ + R+ is right continuous nondecreasing function, i = 1,

n.

The following lemma will be used in the proof of Theorem 2.4.

Lemma 2.5. Let X, Y, Z and W be as in Theorem 2.4. Then

(2.4) E*(X,_Z) 4 E*(YW)

for all ip such that

(2.5) C z(.) -(.,z) £ Mk  for all z > 0,k,n -

(2.6) *() -(x,.) C Mkn for all x > 0,

provided the expectations in (2.4) exist.

Proof. Denote by FX, F y, FZ, FW the distributions of X, Y Z, W,

respectively. Let i satisfy (2.5) and 2.9). Then

*E4(X,Z) = f[f (x,z)dFz(z)]dFx(x)

( [f¢(x,w)dFWw) ]dFx(x)

= f [f (x,w)dFX(x)]dFI(w)

[ f (y~w ( ) ] dFW(w)

(2.5) - -

=Eip(YW).0=

and (2.4) follows.1j

Proof of Theorem 2.4. Let 0 c Mk, Consider the finction n. defined, for a

fixed z > 0, by n7(., ... , .) = O(ci(.,7 1 ), ... , c n(.,zn)). Ry Lerma 2.3,

nz e Mk for all z > 0. Similarly the function n., which is defined for

each fixed x > 0, by n-(., . *,, (ci xi, ..., Cn(Xn,,)), is also a

'd5. it e l' d5 eP 9- . *

+
,.++~ d -'p'a' . . me G .. .. *-. - .. o > -:e.. -'--" " . . .-- • • - .•
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member of Mk for all x > 0. Hence, by Lemma 2.5,

EO(S) = EO(c 1 (x 1 ,Z 1 ), C n (Xn ,Z n))

- E(c(Yc,W),. ., cn(Yn,Wn)) = EO(T).

This is true for every * e Mk. Hence S( )T.II

Theorems 2.6 and 2.7 below are special cases of Theorem 2.4. Theorem 2.6

shows that the ordering (W) is preserved under convolutions.

Theorem 2.6. Let X, Y, Z and W be as in Theorem 2.4. Then

X + Z ( Y + W.

One consequence of Theorem 2.6 is the following. If X, Y, and Z

belongs to X n  such that A ) Y and Z is independent of X and Y then

X + )y + Z.

Theorem 2.7. Let X, Y, Z and W be as in Theorem 2.4. Then

(min(ll,Zl), .. ,min(Xn,Zn)) ( ~ (min(Yi,Wl), ... , min(Yn,-Wn)),

In the next theorem, X(i) denotes (XI, ..., Xi4l, Xi+l, ..., Xn) and

y(i) denotes (Y1 , 0"0, Yi-I, Yi+, 0-' Yn) , i = 1, ... , n.

Theorem 2.8. Let X, Y tn . Suppose X(W)Y. (a) If 1 < k < n then

, (2.7) x(i) (k~l)y(i).

(b) If X and Y have all their mass on {x:x I > 0, ..., xn > 0}, [i.e., if

none of the Xi 's or Yi's is zero with positive prnbahility? and if

1 k 4 n - 1, then

! (2.8) X( i ) (0) .

Proof of (a). By definition, X y Y if and only if (alXj, ""'



afXfl) (k) t (aiYj, ... , anyn)(k) for all ai > 0, i = 1, .... n. Hence

(2.9) lir (a1X1 9 ... , a nX n)(k) ui (a1Y1  , afnY n)(k)
aOi I"0 ai+O

for all aj > 0, j * i. Rut (2.9) is the same as

(alX1, ... , aiXiY. ai+Xi+ , ... , anXn)(k1 )

1(al1, .. a'i-lYi- , a'i+'Yi+l , ..., anYn)(k-i) for all aj > 0, j i

and (2.7) follows.ll

"J Proof of (b). Again X WY if and only if (a1Xj, ...,
a nyn)(k) t Y(a1 V1 ... n)  ) for all ai > 0, i = 1, .. n. HenceSanYn)(k) (a ~ ' " ' n (k) "' .. . e c

(2.10) lim (a1X19 ... , anXn)(k) t lim (a1Y1, .0.9 an n (k)
a ) a i +

for all aj > 0, j * i. Since X and Y are positive with probability one,

F' it follows that (2.10) is the same as
(alX I, ..., a i-lX i-19 ai+ X i+19 .. ,. a n Xn)(k )

-

i aY1 .. , ai Y 1 a+i+ ... , a nY n ) for all aj > 0, j * i, and11 '" 1-1Yi-1' i+~il n' n(k)

41 (2.8) follows.1I

Theorem 2.8 says that if the n-dimensional vectors X and Y satisfy

X V Y then (under the proper conditions) the (n-1)-dir'ensional marginals

satisfy the orderings (kZl) and By induction, for proper choices of

k, the (n-2)-dimensional marginals satisfy the orderings (kZ2), (kl) and

( ) and so on. The reader may wish to list all the orderings that follow,

for example, for n = 6, from () for the rn-dimensional marginals, m = 5, 4,

3, 2. In general, if X and Y satisfy the conditions of Theorem 2.8 (a) and

(b) then, for 1 4 m 4 n, any m-dimensional marginal of X is than the
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respective m-dimesiona marginal of y whenevejr max(l m+'..n) < i~~)

3. Examples and applications.

In hissecio soe eampesOf functions in Mk will he given and

then an application in reliability theory will he discussed.

In general, every distribution function in Mi determines a function

in M~k,n as described in (2.1). In the following examples we descrihe in

some detail some functions in M2,3.

Example 3.1. Let Fig i = 1, 2, 3 and G be univariate probability

* distributions on R+ and let U1, U2, U3  and W be independent random

variables with distributions F1, F2  F3  and G respectively. If

V. max(U.,W), 1 = 1, 2, 3, then the joint distribution of V1, V2 and V3

is given by

*f(v 1,v 2 v 3) F1I(v 1)F 2(v 2)F 3(v 3)G(min(v1,v 2 9 v3)), vi > 0, i 1, 2, 3.

* Thus the function p defined by

p(vP 1,v 3) =f(vl'v2,oc) + f(vl,co,v3 ) + f(., v 2 1'v3) -2f(vj,v 2 9 v3)

-Fl(v 1)F2(v2)G,(min(vlv 2))

+ F(v1)F3(v3)CG(min(vlv 3))

+ F2(v2)F3(v3)G(riin(v 2,v3))

-2 FI(v 1)F2(v2)F3(v3)G(mnin(vlv 2,v3)), vi 0, i 1,2,3,

is a member of M42, 3

For example, if F1, F2, F3 and G are the uniform distributions on the

interval [0,1) then for 0 < v. < 1, i =1,2,3,
1

W.: (ltv 29v 3 V v v2min(vv 2 ) + v 1 v3 mi n(v1,v 3)

+ v2v3mnin(v 2,v3) - 2vlv 2v3min(vl,v2,v3)-

Example 3.2. Le-t Ill, IU2, (J3, W and Fl, F2, F3, G be as in Example 3.1.

~~46 A FF Z' e.:' K~ z-K-&W.
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Denote T i = 1 - Fi, '= 1 - G. If Vi = min(Ui,W), i = 1, 2, 3, then the

joint survival function of V1, V2 and V3 is given by

(3.1) T(vl,v 2,v 3 ) = P{V 1 > V1, V2 > v2, V3 > v3}

= F1 (vl)F2(v2 )F3(v3)T(max(vl,v2,v3 )), vi > 0, i = 1, 2, 3.

The joint distribution f of V1, V2 and V3 can be obtained from T using

the formula

(3.2) f(vl,v 2 ,v3 ) = 1 - T(v1,0,0) - -f(0,v2,0) - T(0,0,v3 )

+ T(Vl,v 2 ,0) + T(V1,0,v3) + *(0, v2,v3)

- (V,V 2,v 3 ), vi > 0, i = 1, 2, 3.

The function 0 defined by

(3.3) O(v1 ,v 2 ,v 3 ) f(vl,v2 ,,-) + f(v 1 ,oo,v 3 ) + f(001 v2 'v 3 )

- 2f(v 1 ,v2 ,v3 ), vi > 0, i = 1, 2, 3,

belongs to

Plugging (3.2) into (3.3) one obtains

- (3.4) U(v 1,v 2 ,V3 ) = 1 - T(vlv 2,0) - T(v1 ,0,v 3 ) - T(0,v 2,v 3 )

+ 27(vl,v 2,v 3 ), v > 0, i = 1, 2, 3.

Choosing various univariate distribution functions Fi , i = 1, 2, 3,

,4 and G in (3.1) and plugging the resulting f in (3.4), one can obtain

explicit expressions for various members of M2,3.

For example, if Ui q, i = 1, 2, 3, and W are uniformly distrihuted on

[0,11 then for 0 4 v1  1, i = 1, 2, 3,

0(VlV2,V3 ) = 1 - (1-vl)(1-v 2 )(1-max(v 1,v2 ))

(3.5) - (1-v1 )(1-v 3 )(1-max(v1 ,v3 ))

+ 2(1-v 1 )(1-v 2 )(1-v 3 )(1-r-ax(v I,v2,v3 )).

Ig'w &P FI ',M 'p.



If Vi, i = 1, 2, 3, and W are standard (mean one) exponential random

variables [then (VI,V 2 ,V3) has a Marshall-Olkin (1967) multivariate

exponential distribution then G(t) = Fi(t) = 1 - e - t , t > 0, i = 1, 2, 3.

Plugging these in (3.1) and (3.4) one obtains the following member of M2,3'

-v1 -v2-max(v1,v2) -vl-v 3-max(v1,v3)(3.6) *(Vl,V 2 ,V3 ) =1-e-

- 2v 3-max(v2,v3 ) + -v1-V2-v3-max(v19 v2,v3 ) v > = 1, 2, 3.

Of course, that * of (3.6) is a member of M2 ,3 can also follow at

once from Theorems 2.1, 2.2 and the fact that * of (3.5) is in M2 ,3.

Example 3.3. The function T defined by

T(vlv 2 ,v 3 ) = (1+v 1+V2 +V3 )- , vi  0 , i = 1, 2, 3

-,--is a survival function (see, e.g., Takahashi (1965)). Substituting it in

(3.2) one obtains a distribution function f. Substituting this f in (3.4)

one obtains 0, a member of M2,3 , defined by

: 3= 1 - (1+v 1 +V 2) ' - (1+v1+v 3) - (1+v2 +v 3 )-

+ 2(1+v 1+v2+v 3), vi > 0, i = 1, 2, 3.

Application 3.4 (reliability theory). Every collection X1, ..., Xn of

nonnegative random variables can be thought of as a collection of lifelengths

of devices. For ai > 0, 1 = 1, .. ,, n, the scaled lifelengths aiX 1, .o.,

anXn have been of interest in many studies (see, e.g., EI-Neweihi (1984),

Marshall and Shaked (1985a,b) and references therein). Note that (a1 Xj, ... ,

anXn)(k) is the lifelength of an (n-k+l)-out-of-n system with component

*~~~~~~A *r~** ~~ ".-&



12

lifetimes a1X1, ... , anX n.

Let X = (XI, .. , Xn ) and Y = (Y19 ... , Yn) be two vectors of random

lifelengths with distrihutions F and G respectively. In some applications

'- the condition X )Y naturally holds or is not very hard to prove (see below

for more details). Then Theorem 2.1 yeidls a host of useful inequalities.

In order to verify X(pY [respectively, X(Q)Y], it follows from

Propositions 1.1 and 1.2 that all that one has to do is to show F(t) 4 7(t)

[respectively F(t) > G(t)], t > 0. In order to verify for 1 4 k < n,

one just has to show (see the proof of Theorem 2.1)

n
(3.7) 7 (n )m-n+k- (n-) I T(tiO), t 0 0,

..... n )r-n+k-1 M-1l 0.n-k+1 I - -

or, equivalently,

(3.8) n )m-k m-1 n .)m-k m-1.(-I (k-1) LF (-,w (k-1) 7 G(t I') tm=k IOM m=k

Clearly the ordering 'It' implies (here, for every two random

vectors X and Y, the notaton Xs t Y means

(3.9) Eg(X) 4 Eg(Y)

for all measurable nondecreasing functions g for which the expectations

exist). Note however that (3.9) is a much stronger requirement than (3.7) or

(3.8). Hence (3.9) may not hold when (3.7) or (3.R) hold. Even if (unknown

to the researcher) (3.9) holds it still may he possihle only to show (3.7) or

(3.8). Thus the advantage of 'V' over 'It' is in the relative simplicity

of its verification and the fact that it still implies many useful

i nequal ities.

Since the ordering 1' implies 1() it follows that the
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inequalities of Theorem 2.1 apply in many applications in reliability theory

and elsewhere. For example, Block, Savits and Shaked (1985) give conditions

under which a nonnegative random vector T = (TI, ... , Tn ) satisfies

* (3.10) (TI T, .. Ti-lTi+1, .. , T ITi n)ITi='

4~ s[(Tl "1 • Ti-l9Ti+l' ..." T n)ITi~t

whenever 0 4 t 4 t', i = 1, ... , n. Denoting the left hand side of (3.10)

by X and the right hand side of (3.10) by Y (here X and Y are (n-1)-

dimensional) it follows that X (Y and the inequalities described in Theorem

2.1 apply.

Application 3.5 (systems with spare parts). Consider two systems of n

components. Denote the lifetimes of the components of the first system by

X , ... , Xn and of the second system by Y1, 00., Yn- Suppose each component

in each system has a cold spare which starts to live upon the failure of the

component. Denote the lifetimes of the spares by Z1 , 0-, Zn  and W1,

S'n where Zi  [respectively, Wil is the lifetimes of the spare which replaces

the component with lifetime Xi [respectively, Yi), i = 1, ... , n. The Xi's

[respectively, Yi's, Z1 's, Wi s] among themselves may be dependent, hut we

assume that X. is independent of Z and Y is independent of W.

. The lifetime T1  nf the first system then is determined by X + Z, say

(3.11) T1 = T(X+Z)

where T is a coherent life function in the sense of Esary and Marshall

(1970). Suppose that the lifetime T2 of the second system is

(3.12) T2 = T(Y+w)

where the T in (3.12) is the same as the T in (3.11).

If X W Y and Z W W then, by Theorem 2.6, X + Z ) Y + W. Thus

0* .. '. 0. - . I-..' M - -

1 - .* I I Z,
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various inequalities regarding T1 and T2 can he obtained from Theorem

2.1. For example, if T is the coherent life function which corresponds to

an (n-k+l)-out-of-n system then we have
2

(3.13) T1 It T2 "

If the spares are warm standbys then, using the above notation, the

lifetime T, of the first system is determined by (max(X1,Zl), ...,

max(Xn•Zn)), say

TI = T(max(XI,ZI), *e., max(Xn, Zn))

and the lifetime T2 of the second system is

1 2 = T(max(YI'W I ), max(Yn'Wn)).

Using Theorem 2.7 we get

when T is as described hefore (3.13).

As another example, suppose n - I of the components with lifetimes

Xi [respectively Yi? are used, with the correspnding spare parts, for an (n-

k)-out-of-(n-1) system. Denote the lifetime of the resulting system by S1

[respectively, S2). Then, from Theorem 2.8 it follows that

Si t S2°

Similar stochastic ordering applies to systems which use "second-hand"

components as described in Block, Bueno, Savits and Shaked (1984). We omit

the details.

i,. %
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