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ZERO-CROSSINGS ANALYSIS
by
Benjamin Kedem

Department of Mathematics, University of Maryland, College Park

ABSTRACT

We advance a coherent development of zero-crossing based
methods and theory appropriate for fast signal analysis. Quite a
few ideas pertaining to zero-crossing counts found in the litera-
ture can be expressed and interpreted with the help of this more
general setup. A central issue addressed in some detail is the
fruitful connection which exists between zero-crossing counts and
linear filtering. This connection is explored and interpreted with
the help of a certain zero-crossing spectral representation, and
is then applied in spectral analysis, detection and discrimination.
Zero-crossing counts in filtered time series are called higher
order crossings. The theme of this work is that higher order
crossings analysis provides a useful descriptive as well as ana-
lytical tool that can in many respects match spectral analysis.
To a great extent these two types of analysis are in fact equiva-

lent, but each emphasizes a different point of view. Advantages

of fered by higher order crossings are great simplicity and a

drastic data reduction.
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ZERO-CROSSINGS ANALYSIS
by

Benjamin Kedem
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1. INTRODUCTION
. We shall be concerned in this paper with developing a certain
systematic approach to the analysis of random signals based on zero-
crossing counts. The need for such a development stems from the
X interest in zero-crossing based methods and techniques in fields
. such as signal processing [1], [2], [ 3], fluid mechanics [41], [5],
speech processing [ 6], [ 7], biomedical engineering [ 8], optics [9],
{10], neurophysiology [11], structural dynamics [12], [13], communi-
. cations [14], [15], and image processing [16], [17]. It is felt that
a more general setup can provide a better understanding of these tech-
X niques and of their outcomes, and furthermore, suggests interesting
) and useful new methods of analysis.
The first serious attempt to study properties of zero-crossings
A is the pioneering work of Kac [18) and Rice [19] who were mainly in-
terested in moment and distribution problems pertaining to zero-
crossing counts. This work and related level crossing problems
; are discussed and reviewed in [ 2], [20]), [21], [22], [23], [24],
. where numerous additional references can be found. None of this
voluminous work, though, will be reproduced here.
& There is a great deal more to zero-crossings other than the
classical distribution and moment problems, and we shall be con-

cerned with somewhat more general properties of zero-crossing

) !
v counts and zero-crossing based methods of analysis. In particular,  —
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the present work explores the fruitful connection which exists be-
tween zero-crossing counts and time invariant linear filtering.

As we shall wee, this connection sheds light on interesting and
surprisingly useful properties of zero-crossings appropriate for
the fast analysis of random signals. Furthermore, it will become
evident that zero-crossing counts in random signals and their

: filtered versions essentially constitute a domain by itself which
in many respects is equivalent to the spectral domain. This will
be demonstrated and jillustrated by a fair number of examples, using

real and artificial data.

[og LN

To motivate some key ideas presented in this paper, it is in-

-

structive and helpful at this early stage to consider an example

[25], [26], [27] which is most illuminating. Figure 1 presents

PR WP )

the graphs of two signals in discrete time, t=1,2,...,100, each
made of a superposition of two finite sinusoids with angular fre-

quencies 0.1 and 3. As a general rule we adhere to discrete time

PR ]

which is more convenient for machine calculations. Consider the

- first graph (a) and suppose it is desired to estimate the highest
N frequency which in this case is 3. Let D1 and 02 denote the num-
L]

ber of zero-crossings and the number of local minima and maxima,
. respectively, when the discrete time points are connected by line
Ny segments. Since the low frequency component in (a) is obviously

dominant, D1 =7 1is too small for serving as a reasonable estimate.

On the other hand, D,

) =92 gives a good deal more information

DR AL A

about the periodicity of the high frequency component as it better

captures the component's oscillation characteristics. Indeed, by

using proper normalization, our estimate for the highest frequency
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is m-92/99 = 2.9 which is quite reasonable. Now D,, ignoring end

2°
effects, is the number of zero-crossings in the differenced signal
and a difference is a high-pass filter which amplifies high fre-
quency components. Thus, the crucial point is that in this case we
must render the high frequency component dominant by a filter in
order to be able to estimate its frequency from zero-crossings. On
the other hand, in the second case (b) the high frequency component
is already dominant and D1==95 yields w-95/99 = 3 as expected.
Note that in this second case D2==94 is very close to D1 which is
an indication [28], [29] of the presence of a strong periodic com-
ponent. It is seen that for the cases considered the pair (Dl’DZ)
provides useful spectral information.

Another observation pertains to the discrimination potential
of (Dl’DZ)' The two graphs appear to be obviously different and
this difference in appearance results in different pairs (Dl’DZ)'
This shows that differences in signals can be expressed very
economically by zero-crossings observed in the signal and in
functions thereof.

In what follows, these ideas will be developed within a con-
venient framework which is very effective in describing the domain
of zero-crossings.

The paper is divided into four parts. The first, consisting
of Section 2, introduces some basic notions and terminology of
stationary random processes. The second (3.1 -3.4) discusses
general properties of zero-croussings. As a matter of convenience
important points and facts are summarized at times in the form of

theorems. We do not prove these theorems but give intuitive







arguments instead of formal proofs. The third part (4.1 -4.5) dis-
cusses spectral analysis by zero-crossings, and the fourth (5.1 -5.5)
is devoted to discrimination between time series. The paper con-
tains quite a few examples and illustrations which enhance its

tutorial nature.




| MO

NN AN

e o N T x,

'v“- aNN 'n ‘l

LA R RSN

»

RS

a

ghriabe “ei

2. SOME PRELIMINARIES AND NOTATION

A random signal in discrete time is commonly referred to as a
stochastic or random process. Without loss of generality we let
"discrete time'" be the set of integers and denote the random
process by {Zt}’ t=...,-1,0,1,..., where for each fixed t, z, is
a random quantity. Examples of such random processes are any elec-
tronic noise sampled at integral time points and random digit
streams. E will denote mathematical expectation or mean. In the
context of random processes E stands for ensemble average. Many
of the ideas which we would like to bring up are best explained if
we make the simplifying assumption that {Zt} is a real stationary
Gaussian random process with mean zero. By this we mean that
"statistics" do not change in time and that the joint probability

distribution of any finite vector (Z ""’Zt ) has a multivariate

& K

normal distribution. In this case for each fixed t,Zt has the
usual Gaussian distribution. There are a number of very good
references [21], [30], [31], [321, [33], [34] which cover the theory and
applications of stationary processes and to which the reader is
referred for complete treatment. Here, however, we summarize very
briefly some basic notions needed in the sequel.
A stationary random process is characterized by the require-
ment that the mean EZ = py be a constant and that the covariance

t

function

Yy o E(Zt - U)(Zt+k - )

is a function of the lag k only. Then the celebrated Wiener-Khint-

chine Theorem {33], p. 75, states that there exists a monotone
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increasing function F(w) such that
T
Yk = f cos (kw)dF(w)
-1
where T is the highest possible angular frequency due to the dis-
creteness of t. F is called the spectral distribution function of
the random process. F(m) is equal to the variance (total power)

of Zt since

i
Y. = f dF (w).
0 -

Except for a constant, F behaves like a cumulative probability dis-
tribution function and therefore can be decomposed, for all practi-

cal purposes, into two components
F(w) = Fl(w) + Fz(w).

F1 is a nondecreasing continuous function determined by a nonnega-

tive symmetric spectral density, f, by the relation
Fl(w) = fw fF(A)dx.
=
FZ is a nondecreasing step function determined by a symmetric spec-

tral function, q, by the relation

Fo(w = § q()
2 Xj§w J

where Ki (= A j) is a discrete set of frequencies. The spectral
mass or power associated with a set of frequencies A is determined
from the continuous and discrete components by the expression (33

( dF(w) = J q(\.)+f f(A)dh.
I A el y A
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That is, both continuous and discrete components contribute to the
power. The spectrum is said to be continuous, discrete or of
mixed type according to the three cases (Fl £ 0, F2 = 0),

(F1 = 0, Fz Z 0) or (Fl £ o0, F2 £ 0), the last one being the most
general case. An important example of a process with a mixed
spectrum is furnished by a trigonometric polynomial with random
amplitudes plus noise. This type of process is useful for our
purpose.

By a time invariant linear filter [33], [35] we mean a linear

operation L on {Zt}, of the form

Y = L(Z)=nh Zt + h

. . 0 2oyt hyZ ot e

1 1 27t-2

which produces a new stationary process {Yt}' The transfer func-

tion H(w) is defined by the sum

-iwr

H(w) = ) h e
rr

lH(w)‘ is called the gain associated with the filter

When a time invariant linear filter with transfer function H
is applied to a stationary process {Zt} the resulting process is
also stationary provided the matching condition

i 2
f [HOO) ' TdF(A) < e

-7

is satisfied. In this case the output spectral densitv and spec-
. . i 12, ] 2 :

tral function are given by [H(}); f(}) and 1H(X)[ q(}), -n <A<,

respectively.

In many cases it is convenient to normalize y, by Y( and de-

k )

fine a new quantity Y by




k=0,%1,... .

Ok is called the correlation or autocorrelation function and satis-

fies |p, | < 1.

o

One last point, any finite realization of a random process,

21,22,...,2 is called a time series. Throughout most of the

\J,
paper, we deal with time series of length N from stationary

Gaussian random processes with zero mean. The only exceptions are

bounded processes discussed very briefly at the end.




SOME GENERAL PROPERTIES OF ZERO-CROSSINGS

In this section zero crossing counts in discrete time are

defined and are shown to possess a certain spectral representation

which shows their intriguing connection with the spectrum and

The representation also illustrates the funda-

linear filtering.

mental principle that the zero-crossing rate tends to admit values

in a neighborhood of a dominant frequency. This principle is the

key factor in manv of our results.

Spectral Representation

3.1. A Zero~crossing

VA be a zero mean stationary Gaussian time series.

Let Zl,... N

To define what is meant by zero-crossings in discrete time we con-

sider the associated clipped binary series Xt defined by

1,

and let dt be the indicator function at time t,

d, = X+ X | - 2XX _

t t t-1 1°

Then dt is 0 or 1. When dt = 1 we say that a zero-crossing

occurs at time t. The number of zero-crossings in Zl""’ZN is

and is defined by the sum

denoted by Dl

As an illustration consider the time series Zt' t=1,...,12, and

, t=1,...,12 1in Figure 2.

its associated two binary series Xt’ dt

We have I)I = d2 + ... + dl” = 6, and it is seen that the number
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Figure 2. A time series of size 12 with 6 zero-crossings.

of zero-crossings is precisely the number of symbol changes in the
X series. As a digression we remark that the number of symbol
changes is a so-called sufficient statistic for stationary binary
Markov chains and as such this number carries information about the
chains' parameters [36].

In the classical theory of zero-crossings in continuous time
the expected number of zero-crossings per unit time is a useful
quantity [19], [ 2], and it is interesting to see where EDl, the
expected number of zero-crossings, leads us in the present case
of discrete time.

Since {Zt} is Gaussian with zero mean, EXt = 1/2 and |37]

. 1.1 -1
hXtXt_l =7 + o sin p1
. . 1 1 . -
which gives th =5 - 5 sin o and therefore
ED, = (N-1) (2 - I sin " Tp,)
LT 2 T Sy
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By rearranging terms we obtain the basic formula [36]

TrED1
pl = cos (“Q:I_) . (1)

But from the definition of pl and by the Wiener-Khintchine Theorem

follows the relation

m
J cos(w)dF (w)

TED
cos< l) = =T - (2)
( dF(w)

to which we refer as the zero-crossing snectral representation [27],
and one which plays an important role in our development. In par-
ticular, suppose {Zt} is operated on by a linear filter L with
transfer function H. Then the output is again Gaussian with mean
zero and its spectrum is given by IH(m)’zdF(w). Let DHl denote the

number of zero-crossings in the filtered series L(Zl)""’L(ZN)'

Then (2) implies the representation

" 2
TED f cos (w) |H(w) | “dF (w)
(‘_‘ Hl) _ cem . (3)
CcOs — =

1
f |H (w) | 2dF (w)

=T

(3) connects zero-crossings and linear filtering. Clearly, when L
is the identity (or do nothing) filter then H = 1 and (3) re~-
duces to (2) as it should. We can now extend (3) to any sequential
filtering. Thus the sequential filter L1L2...Lk with transfer

function HI'HZ'"Hk vields the generalization

— W T Sy e e, P R I TN . S
o “‘.... TR R TR R e e ik Tt s A R S I L A "o .-\,— - -

I NI P R



cos () |1, )] 2. |4, (@) [ *dF )

2 2
B |H1(w)| ...|Hk(w)| dF(w)

where DH T is the zero-crossing count in the sequentially

1 k

filtered time series. In subsequent sections some interesting
properties and corollaries of (3), (4) are studied and discussed

in some detail. Of central importance to us is the degree to which
zero~crossings before and after filtering determine F.

The idea that zeros of filtered signals are of relevance in
applications is not entirely new. For example, in the continuous
time case in order to determine the expected number of extrema per
unit time we simply find the expected number of zeros per unit
time in the derivative of the random signal [19]. Upcrossings of
differenced time series are discussed in [38] while in [39] a
filter is applied prior to some counting procedures. The fact
that an application of a filter affects the zero-crossing count
is also recognized in [19]. (3) was introduced in [27], [40] for
the purpose of defection of periodicities in time series. The con-
tinuous time analog of (2), (3) is known as Rice's formula [19].

Another analog for a non-Gaussian case is gpiven in [41].

The Dominant Frequency Principle
When F(w) is continuoas at the origin, an assumption we shall
adopt throughout the paper, symmetry implies that (2) can be ex-

pressed in terms of positive frequencies as in the expression

T
f cos (w)dF (w)

mw
O At I R
cos | 1 :

0]
J( (IF((U)
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This shows clearly that the normalized expected zero-crossing rate
nEDl/(N—l) is a weighted average of the spectral mass. Therefore,
when a certain frequency band becomes dominant, i.e., carries more
power than other bands, it attracts the normalized expected zero-

crossings and ﬁEDl/(N—l) admits values in this band. Likewise

when a certain frequency w,, say, becomes significantly dominant

0’

then (5) implies that ﬂEDl/(N-l) T W In the extreme case when

0

only wg is present, that is, for w e [0,7]
F(wt) - F(w-) > 0, w = w,
= 0, w # Wy »

we have the equality

s B
N-1 0°
Thus, replacing ED1 simply by Dl’ we can see that when a certain

frequency becomes dominant the quantity ﬂDl/(N—l) will land at or
near this frequency. 1In other words, a dominant frequency, when
it exists in the spectrum, can be quickly detected by zero-
crossings only. Now, when a time invariant linear filter is
applied to a stationary time series it modifies the spectral
weight given to the frequencies in the range [0,m], emphasizing
some bands while attenuating others. Consequently, when a dis-
crete frequency exists in the spectrum it can be enhanced by a
filter and then estimated by nDHl/(N—I). This tendency of zero-
crossings (after proper scaling) to admit values in a neighborhood

of a significantly dominant frequency will be called the dominant
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frequency principle. This principle can be recognized as the basis
of many of our theoretical results. See also [41], [42].
To illustrate this principle and its application in fast fre-

quency detection consider the superposition

Zt = Acos(0.8t) + Bcos(l.25t), t=1,...,200. (6)

Realizations of this series before and after filtering are plotted
in Figure 3. The graphs were scaled but this has no effect on
zero-crossings! From (2) or equivalently (5) we know that Dl is a

function of the weights A, B. When A = B = 1, no frequency is

"

dominant. We obtain from Figure 3 (a) D 67 and

1
nD1/199 = 1.057 which is between 0.8 and 1.25 as expected. When
A= 0.8 and B = 1, the frequency 1.25 is dominant. From Figure 3
(b) we obtain Dl = 79 and ﬂD1/199 = 1.247 1is very close to the
dominant frequency in agreement with the dominant frequency prin-
ciple. By operating on this second series with a low-pass filter
we can render the frequency 0.8 dominant. Figure 3 (c¢) gives the
scaled graph of the series in (b) after it was operated on with a
-id |6

low-pass linear filter with transfer function (1 + e ) Now

the frequency 0.8 is dominant, DHl = 51 and ﬂDHl/l99 = 0.805
as expected.
At this point the reader may be puzzled by the fact that (6)

does not at all look random while our theory pertains to random

time series. This ambiguity, should it arise, will be resolved in

Section 4.1.
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! D,=67, N=200

(a)
ﬂDl

Zt =cos(0.8t) +cos(1.25t). UVeither frequency is dominant. m=]'057'

! D,=79, N=200
(b)

nh

Zt=0.8cos(0.8t)+Cos(1.23t). 1.25 is dominant. 'VTI=1.247.

B

! D,=51, N=200
(¢)

TTI)Hl

Low-pass filtering of (b). 0.8 is dominant. EOR = 0. 805.

Figure 3. Demonstration of the dominant trequency principle. Zero-

crossing  counts detect dominant yrequencies.  All graphs are scaled.
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3.3. Zero-crossings of Repeatedly Differenced Series
A useful filter associated with zero-crossings is the differ-
ence operator. To introduce this operator it is convenient to de-

fine the shift operator B as

-iw . . .
with transfer function e ' ". The difference operator V is defined

by V=1 - B with transfer function 1 - e '™, Then the first

difference of {Zt} is

vz, = (1-B)Z, =2, - 2,

and the second difference is
2 _ 2
v Zt = V(VZt) Z (1-B) Zt =7 - 22 + 2 .

In general the k'th difference of {Zt} is given by

ko k,
v Zt T (1 -B) Zt

k
v
'/,
J:

Ky gyl
L (eDz

Define

-1
D, = # of zero-crossings by Vk Z

K t=1,...,N.

t)

Then D, is as before the number uf zero-crossings in 2

) Y/

1’ N

while D2 is the number of zero-crossings in VZl,...,VZN and D3

)

7

s . . “~. “,

is the number of zero-crossings in V AJ,...,V LV and so on. The
1

Dk are called higher order crossings [43], [44]. When (Zt} is first

operated on by a filter L with transfer tfunction H and is then re-~

peatedly differenced, we use the netation D to denote higher order

Hk

crossings in the filtered series L(Zt).
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Unlike the process {Zt} which is defined over all the integers,
in practice we only have finite time series and lose an observation
with each difference. To avoid end-effects we must discard the be-
ginning of the series, and start indexing the observations or
samples by moving to the right. Thus if it is desired to evaluate k
higher order crossings the time index t=1 1is given to the k'th
or to a later observation. The Dj must be evaluated from differ-
enced records of the same length. For example, suppose the given

record is

Subtracting the average we have the centered series

-3.4 1.6 -3.4 2.6 3.6 4.6 -2.4 ~1.4 -4.4 2.6 .

In order to evaluate, say, Dl’ D2, 03 we record the series starting
with Z1 = -3.4 and Z2 = 2.6 while reserving the first -3.4 and
1.6 for Z_1 and ZO respectively. We can now evaluate Zt’ VZt, \722t
for t=1,...,8 as

Z: -3.4 2.6 3.6 4.6 -2.4 -1.4 =4.4 2.6

VZ: -5.0 6.0 1.0 1.0 -7.0 1.0 -=-3.0 7.0

VZZ: -10.0 11.0 -5.0 0.0 -8.0 8.0 -4.0 10.00

Then D, =3, D, =5, D, =17 and are all evaluated from records

1 2

of length 8. Observe that by our definition a shift from a negative
value to 0 is counted as a crossing. Similar remarks apply to other

filters as well.

"_"L’L".L' ‘__'._'-‘.A;.'.‘_'.-"-L" P L'.- *y ".“'..".'-'..'ﬁ s e T e e e
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Since V is a high-pass filter it pushes the spectral mass to
the right so that {Vzt} becomes more oscillatory than {Zt}. We
therefore expect that D2 > Dl' V2 amplifies high frequencies even
more than V so that {VZZC} is more oscillatory than {VZC} and we
expect that D3 > D2, and so on. Also, if w*, say, 1is the highest
frequency present in the spectrum, we see that by applying to {Zt}
the filter Vk and letting k - », the power is pushed all the way
to w* and renders it dominant! Therefore by the dominant frequency
principle nDj/(N-l) should converge in some sense to w*. This

heuristic argument is made precise in terms of the sequence of ex-

pected higher order crossings {EDj} [27], [28].

Theorem 1. Suppose {Zt}’ t=...,-1,0,1,..., is stationary and
Gaussian with mean 0 and suppose w* is the highest frequency in the

*
spectrum, w < W. Then

(1) 0 < ED, < ED, < ... <€ (N-1)
(i1) —=L > w¥*,  § >,

The theorem says that the sequence {ﬂEDj/(N-l)} is monotone and
bounded and therefore it converges to its least upper bound which

is w*. Under fairly general conditions we can also show [27] that

lim lim Var(D./N) = O.

oo ] 00 J
It follows that ﬂUj/(N—l) (without "E'") approximates w* for suffi-
ciently large j and . As we shall see in the next section this

. . * .
estimator converges as j increases remarkably fast provided w” 1is

ot W

3
BOOURY PRI
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! sufficiently removed away from m. This discussion explains why I)2
pﬁ
is in general a better choice than Dl in the estimation of the
N highest frequency {25], [26], [27].
()
D
“ The monotone property of the sequence {EDj} in (i) follows
A
from (1) and the relation
i
1o > 1
8 P, 2 py(1) (7
. ]
W™
N where Ov(l) is the first correlation in {VZt} [28]. 1In general the
inequality
- b -
- Dj+L > Dj 1 (8)
K. holds for j > 1. Experience shows however that we really have
;5 Dj+l > Dj for sufficiently long series; e.g. N = 500 [43], [44].
? Figure 4 gives the graphs of two time series of length N = 200
» from a stochastic difference equation
- v = +
{>
e where fut} are uncorrelated normal random variables with mean zero
5 and ¢ = *0.5. It is seen that even for these relatively short
.: series the first few Dj tend not to decrease. (9) satisfies the
. requirement for being a stationary Gaussian process when [¢] <1
- [45].
- When some of the Dj "touch'", it is an indication of a strong
periodic component in the data. Consider the extreme case of a
$ sinusoid with a certain frequency. 'Then the differences are again
v
>
: sinudoids with the same {requency but different amplitudes, and by
. the dominant frequency principle all the ED] are the same provided
-
»
Cd
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Figure 4. Higher order crossings from (9), N = 200.
they are obtained from differenced series of the same length., Yor

a Gaussian series, we can show that the converse holds as well [28],

[29]. This is phrased in the following theorem which is called the

Sinusoidal Limit Theorem (SLT).

O R I .
PR T LR
LTS AR YL Y

LA S

RJ



O Y N

[Aal'A (AR AN i A N N E i

22

Theorem 2 (SLT). Let Zt be a zero-mean Gaussian stationary

process. Assume ED. > 0, and suppose

1
ED

—

(10)

N-1"

z
—

Then {Zr} is a pure sinusoid with period 2(N—l)/EDl.

The surprising fact is that when (10) holds all the EDj are equal.
A more general Sinusoidal Limit Theorem of which Theorem 2 is a
special case is due to Slutsky [46].

Perhaps the most general statement that can be made about
higher order crossings is that they determine uniquely the spectral
distribution function F up to a constant. To see that, first note

that the higher order crossing spectral representation is given by

cos(w) (sin w/2)2de(m)

TED, I
cos ( kij'—) = - (11)

T
J (sin w/2)2de(w)

from which we obtain after some algebra the "long formula" [46],

(HEDk+1> - (;?1) + 0, [(if) N ( 2k X] . ('l)kpk+1
cos [ —=2 ) =

k=2

— - -, (12)
N-1 (Zk) ~2pl(2k) +...+(—l)k20k
k k-1
2k
- Y Ukl

2k

) Pl
where V now operates on Dk and SRR (12) provides a recursion for
obtaining u[,nz,... f rom EDL,EDU,... . For example, for k =0
(12) reduces to (1) so that 01 is determined from ED.. PFor k = 1

(12) gives
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TED mED,,
Py = 1= 201 = cos(gzy)) (1 + cos( 7)),

while for k = 2 p, is determined similarly from EDJ, ED,, ED3'
<

3

In general ok is determined from (EDI""’EDk)' Now recall that Ok

is the k'th Fourier coefficient of ?(w) = F(m)/yo, and so the pk

. uniquely determine F. But from (12) the sequence {wk} is uniquely

i
LA

determined by the sequence of higher order crossings (EDJ}. It

»

follows that F is completely determined by {EDJ}. We have

. Theorem 3. For a zero mean stationary Gaussian process, the sequence

of expected higher order crossings {EDj} uniquely determines the

normalized spectral distribution function F.

The above discussion can be summarized by the symbolism

HIDj} = {ok} = (13)

which is another indication that zero-crossings of filtered series
contain useful information about the spectral properties of the

process. (13) may be viewed as a ramification of the Wiener-

TelaTal e

Khintchine relation, and is an evidence of the existence of a
domain to which we refer rather loosely as the D-domain. The Di
. however are by no means the only features in this domain as is evi-

dent trom the next sectien.

[ S )

1.4, Zero-crossings of Repeatedly Summed and Differenced Scries

The counterparts of the D). are zero-crossings of repeated sum-
j

Ot

s

N mat ion.  Consider the summation filter (1+8) which gives

+BYZ =7+ L.
(14+B) ¢ /L

-
n
4
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Define

.D = # of zero-crossings by (l+B)J-th, t=1,...,N.

]

Then lD = Dl’ and again we refer to the jD as higher order
crossings. Whereas the Dj tend to increase, the jD tend to de-
crease, but in many respects these two types of higher order

crossings are quite analogous. Thus, the counterpart of Theorem 1

is the following fact.

Theorem 4. Suppose {Zt}’ t=...,-1,0,1,..., 1is stationary and

Gaussian with mean 0, and suppose ,w > 0 1is the lowest frequency

in the spectrum. Then,

i > > >

(i) ED2E,D 2.. 0
TE .D

R U

Evidently Theorem 4 is another manifestation of the dominant fre-
quency principle, and provides a way for estimating the lowest fre-
quency. Again we can obtain a '"long formula" as in (12) in terms
of {E jD}, by replacing in (12) all the minus signs by plus signs,
which establishes the equivalence of this sequence of zero-crossings
and F.

There is no reason why we cannot put the Dj and jD together
to produce more versatile features. A more general definition of
higher order crossings is the following. Consider the filter de-

fined by m differences which follow n sums,

(1-8)"(1+5)" (14)
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d whose squared gain 1s given by

2

' [6)|* = 2™™(1 - cos w)™(1 + cos w)™. (15)
L)

«

y Define the sequence {jDk} by
. jDk = # of zero-crossings in (l-B)k—l(1+B)J_th, t=1,...,N.

as higher order crossings. Evidently, by

Again we refer to the jDk

definition

because in these cases no filtering is applied to {Zt}' When m,n
are large and m/n = ¢ then 1rlDI/(N—l) will tend to admit a value

in the neighborhood of Ac where

- A '. ‘- l. .'

provided Ac is a point in the spectrum. This is so since IG(u))I2
in (15) is unimodal with a peak occurring at Ac which makes this
frequency dominant.

When prior to the application of (l14) the series is operated
on by a linear filter with transfer function H we shall use the

notation
.D
. j Hk

to denote the higher order crossings in the filtered series. If

the filter is just the summation filter 1+B, then clearly

D D

Hk 27k’
-,
.
LY
-
.
X
PRI PP, S, PR R, T PO
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4. SPECTRAL ANALYSIS BY ZERO-CROSSINGS

Our discourse leads us naturally to the important problem of
spectrum analysis. The relevance of higher order crossings to this
problem will become self-evident. A highlight of this section is
the design of a filter used in the delicate problem of detecting a

very weak signal from higher order crossings.

4.1. Analysis of Discrete Spectra by Zero-crossings
We are now finally ready to apply the above results in dis-
crete spectrum estimation. For this purpose consider the process

z = E (A,cos w,t + B_sin w_t), (16)
jp 3 3 j j

t=...,-1,0,1,..., where the w, and p are constants and {Aj}’ {Bj}

are taken as uncorrelated normal random variables such that

EA. = EB, = 0 for all j
J J
EAiAj = EBiBj = 0, i#j
=0,, i=J
and
EA.B, = 0 for all i,j. :
1]

Further, without loss of generality we assume that

0 < WS w, < el < mp <7m. It follows [32] that {Zt} is a sta-

tionary Caussian process with mean zero. Its spectral distribution
. . . . . , Loy 2

function is a step function with jumps of magnitude of size 1Jj at

QHW’ j=1l,...,p. In order to realize Zt, t=1,...,N, it is useful

to think of the {Aj}, {Bj} as first being determined by some random
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mechanism so that they become just constants throughout each reali-
zation. This resolves the ambiguity mentioned earlier, for the
constant values there may be thought of as being the constant
values of random variables. The point being made is that what we
actually observe is a trigonometric polynomial of the form (16)
with some unknown coefficients. Processes of the form (16) are
ideal for an illustration of all the foregoing discussion.

The spectral representation of the EDj (11) reduces to

nED.+l p
cos (v—ﬁf%——) = ) wr(J,@)COS(mr), (17)
r=1
where
1
Wo(j,w) = .
r p 9y 2 sin mi/2 2]
b+ .z ( o_ ) sin w /2
i=1 r Y
i#r

An interesting representation analogous to (17) has been obtained

in [41]. It is seen that wr(j,@) > 0 and E wr(j,g) = 1. Also,
r=1

since the w, are ordered in (0,m] and since sin(x/2) is monotone

there we have
3 > j » oo,
Wr(J,tg) ; ]

Therefore as j + =
TED,
cos ("—ALtl) > cos(mp),

or, since cos(x) is monotone in [0,T7],

. O DRI I
- - - - .. > “I‘. L]
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TED,

N_l -+ wp, j -> 0)’ (18)

and we have demonstrated (ii) of Theorem 1 in the purely discrete
spectrum case. That is, the normalized EDj converge to the highest

angular frequency wp. Similarly, directly or from (ii) of Theorem 4

3 > W j + oo, (19)

Now (2) reduces by (17) to

2
cos nEDl - Olcos wl + ... +0
N-1

cos w
(20)

T NN

2
9 + ... +0

Suppose 0r + «, That is, suppose w, becomes dominant as expressed
by associating more power with the amplitudes Ar’ Br' Then (20)
obviously converges to Cos(wr) and we have by monotonicity

TED

1
N-1 ~ Yp O 7% (21)

in accordance with the dominant frequency principle. Another useful
fact due to (17) is that

TED TED

1 < 2

w, < < (22)

N-1 oo b

A
€

1

Ubserve that w, = wp if and only if ﬂEDl/(N—l) = HEDZ/(N-l) by
the SLT.

(18), or equivalently (19), provides a readily available method
for obtaining all the w's and p as shown in the tollowing algorithm,

We assume that N is sufficiently large so that HDi/(N-]) in (18) can

be replaced by Dj/(N—l) for all practical purposes.

.
»
e m ox am
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,wp and p given Zl,...,Z

. Algorithm 1. Computation of Wiseoe

N
from the harmonic process (16). Assume O'<uﬁh<ub <...‘<wp <

Step 0: Let p* = 0.

) Step 1: Determine w from 1lim wD,/(N-1).
' P oo ]

If wp = 0, go to Step 4.
If wp # 0, let p* = p* + 1. Print wp.
. Step 2: Filter out w with an ideal low-pass filter with

cutoff frequency m;.

Step 3: Replace p by p-1. Go to Step 1 with the filtered

oA & & &

series obtained in Step 2.

Step 4: Let p = p”. Print p. End computation.

-, When p is known apriori the algorithm can be easily amended to
v stop after the detection of p frequencies. Also, in practice we do
not have ideal filters and must be content with approximations [33],

[35].

[l Tl T Tad ¥ )

To demonstrate the essence of the algorithm consider the sim-

pler case when p is known. Suppose (16) is of the form
Zt = cos(0.8t) - 1.3cos(1.25t) + sin(2t), t=1,...,200, (23)

where p = 3. This is a fairly short series and it is interesting

to see what the algorithm produces in this case. Instead of a

close to ideal low-pass filter we use the much cruder low-pass fil-
ter (1+B)k which attenuates high frequency and which suffices for

this demonstration. The results with only eight higher order

e s w8 & & 5 M

crossings are given in Table 1 and are quite satisfactory given the

/ length of the data. The column corresponding to Slnj starts too

PP IR R
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N
. D

. j 7°5 317;

1 77 50 47
A 2 81 61 48
) 3 89 79 48
, 4 108 79 48
" 5 126 80 49
- 6 126 80 49

7 127 80 49
. 8 127 79 50
; Estimated R R .
\ highest w, = 2.005 w, = 1.247 w, = 0.789

3 2 1
frequency
: Table 1. Demonstration of Algorithm 1 with p = 3, N = 200, and
o
: w, = 0.8, w, =1.25, w, = 2. The w, estimates are ob-
tained by multiplying the last D in each column by m/199.

N
~
-

s 8 & o A&
-
.

. %o

A

. Figure 5. The series in (23). N = 200.
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low due to an end effect produced by the shortness of the original

series which was 220. For another example using the sine-Butterworth

low-pass filter see [40].

4.2. Mixed Spectrum Analysis by Zero-crossings
Consider again the harmonic process (16), but suppose we now

add to it a noise component to form a signal plus noise process,

Z = E (A,cos w.,t + B.sin w.t) + ¢ (24)
] J J J

t j=1 t

where the Aj’ Bj, wj are as in (16) and {Et} is white noise made of
uncorrelated normal random variables with mean 0 and variance Oz.
It is assumed that {Et} is independent of the {Aj}, {Bj}' Then {Zt}
is again a stationary Gaussian process with zero mean since it is
the sum of two independent Gaussian components, the signal and the
noise. As before the problem is to determine the wj and p. This
time however, the problem is more involved since {et} adds to the
process a continuous spectrum whose highest frequency is m. There-
fore by Theorem 1, ﬂDj/(N—l) will converge to T and not to wp. It
is true that wp is still the highest discrete frequency, but this
is of no great help now. It follows that the technique of the pre-
vious section is not in general suitable for the mixed spectrum
case.

Luckily enough, the dominant frequency principle prevails in
this case too but in a rather subtle way which requires an explana-
tion.

The zero-crossing spectral representation (2) for the signal

plus noise process (24) reduces to
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TYED1 Oicos wl + ...+ 02cos w
cos ( ) = 7 P P (25)
o, + ... +0 +o0

1

o N
MmN

from which we can see directly that when wr becomes dominant (by
rendering Oi larger than 02 and O?, j # r) it can be estimated by
nDl/(N—l). Evidently, our problem is solved if we can render the
w's dominant in succession starting with W, -
Let us envision an ideal situation where wy becomes dominant
due to a low-pass filter which pushes the spectral mass to the left.
Then WDHl/(N-l) will detect it. By applying the high-pass differ-
ence filter V the power shifts to the right and suppose w, now be-
comes dominant instead. Then WDHZ/(N-l) will detect it. Ideally,
we apply V again, push the power even further to the right, render

w., dominant and detect it by ﬂDH3/(N—1). This iterative process

3

can be repeated until all the w's are detected by the D This

Hj®
idealization cannot of course be expected to hold exactly, but the
degree to which it does hold is surprising. The fact observed in
numerous cases is that the normalized higher order crossings
nDHj/(N—l) tend to "visit" the w's on their way to the highest fre-
quency as j increases. The same holds true for 1TkDH/(N—1) by
symmetry, except that now the sequence tends to "visit" the w's on
its way to the lowest frequency as k increases. This fidelity of
higher order crossings has been first observed in [27].

To demonstrate the curious tendency of normalized DHj to either

land on or pass very near the wj, consider again the process in (6)

with additive rardom noise,
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Zt = 0.8co0s(0.8t) + cos(1.25t) + €t, t=1,...,200, (26)

Var(at) = 1/12. For a low-pass filter we use (l+B)9 so that

DHj E lODj' From Table 2 we see that without prefiltering the se-
quence {ﬂDj/199} starts off near the dominant frequency 1.25 and
then increases toward m. Consequently no information is available

about the smaller frequency 0.8. But by applying the low-pass

D./199} starts off near 0.8 and then as

filter, the sequence {ﬂlo ;

it increases it also visits the second 1.25. Thus both frequencies

were visited. For more examples see [27].

No filtering Application of (l+B)9
j 15 'nDj/l99 lODj T 10Di/199
1 78 1.231 51 0.805 (%)
2 79 1.247 (%) 51 0.805 (%)
3 95 1.500 66 1.042
4 110 1.737 78 1.231
5 130 2.052 79 1.247 (%)
6 144 2.273 79 1.247 (%)
7 154 2.431 80 1.263
8 160 2.526 80 1.263
9 164 2.589 79 1.247 (%)
10 166 2.621 82 1.295
Table 2. Higher order crossings from (26) visit W) and by A

visit is indicated by (x).




Original series (26). N =

b

(26) filtered by (l+B)9

Figure 6. The scaled series (26) before and after filtering.
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4.3. Detection of a Weak Signal

The fact that the sequence thDHj/(N—l)} tends to contain
values which are attracted to discrete frequencies in the spectrum,
provides a powerful tool in detection. This will now be illus-
trated by applying the foregoing ideas in the estimation of a
single frequency of a sinusoid buried in random noise. In this
connection we make use of the periodogram evaluated at higher order

crossings,

"D N ir. D
._!atu:\ I L e+ PR
! ( N-1 / N I tzl /'t exp( N-1 q ’ ] 1, 2,004, (27)

and i = V-1. When a certain TTkDHj/(N—l) is close to a discrete
frequency, the periodogram will in general be inflated. 1In this
way we can tell which of the normalized higher order crossings
landed at or near a discrete frequency.

Periodogram analysis is an important tool in time series
analysis [47], [48]. Usually the periodogram is evaluated
at points of the form 27k/N, k=0,...,[N/2], and the idea is to
observe significantlvy lary .« r~iodogram ordinates. A point 2nk/N
which gives rise to an infl.ted periodogram ordinate indicates
that the data contain a periodic component with period N/k. In

our use of (27), the periodogram is evaluated at onlv a 920 points

i

which are not necessarily ot the form 27k/N.

Consider the process (24) with p = 1,

Zt = Alvns mlt + Blsin mlt + {t R 28)
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t=1,...,N, and again suppose we want to estimate w, from zero-

1
crossings. This problem was considered in [ 1], [ 3], [39], [41],

in

[42], [491, [50). 1t is actually possible [49] to solve for Wy

terms of D1 and D2 but it was shown in [50] that the solution may
be extremely sensitive to small changes in these higher order
crossings. The incorporation of certain filters gives more robust

estimates.

The first order low-pass filter is defined by the recursion
L(Zt) = (l—a)Zt + aL(At_l), (29)
0 <a < 1. Its squared gain is given by [33]

(1—(1)2

2
jow)? - ;
1 - 2acos w + o
The combination of this filter and repeated summation was found
very useful in higher order crossing analysis owing much to the

following fact [50].

-

Theorem 5.  Let {Zl}be given by (28) and without loss of generality
assume that C < Wy < m/2. Then regardless of the signal-to-noise

ratio, 01/0" we have
€

(a) For = sufficiently close to 0
-1
w, < -0 < cos ()

with equality holding when o = cos(ml).

(b) For o sufficiently close to 1 the inequalities are reversed.
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Theorem 5 tells us that as o increases away from 0 toward 1,

' Our strategy in

WDGl/(N—l) has a good chance for "visiting" W, -
light of the foregoing discussion is to increase o in small steps
and then evaluate (27) at each step. When a visit occurs, the
periodogram will be inflated. Since the theorem holds regardless
of the signal-to-noise ratio, Ol/og, this procedure gives hope in
detecting even very weak signals. For small Ol/oE it is perhaps
better to prefilter with (l+B)k for some k, e.g. k = 2.

As an illustration consider a computer simulation of (28) with
w, = 0.75, Ol/ﬁﬁ = -20dB, N = 2000. For each a-value,

a = 1/30,...,10/30, we obtained the zero-crossings BDGI' The
normalized 3DGl and the corresponding relative (out of 10 cases)
periodogram ordinates are given in Table 3. The highest relative
periodogram ordinate corresponds of course to 0.75 as it should.

The more startling fact though is that the normalized 3DC1 corre~

sponding to a = (0.1 landed exactly on w, -

i Tngcl/1999 Relative periodogram
ordinate
1/30 0.791 0.121
2/130 0.765 0.049
3/30 0.750 (%) 0.583
4/30 0.724 0.110
5/ 30 0.709 0.008
6/30 0.693 0.025
7/ 30 0.684 0.026
8/30 0.655 0.030
9/30 0. 640 0.002
10/ 30 0.627 0.046
1.000

Table 3. Relative periodogram ordinates cvaluated at cen ﬂBDFI/IQQQ

from (28). Jl/q~ = -20dB, T 0.75. (%) indicates a

visit.
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The series (26) with ap = (.75 and LFI/(S, = -20 dB.
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Figure 7. Random noise versus weak signal plus random noise.

The problem of detecting a weak periodic signal in noise by the
so-called harmogram is considered also in [51].  An example suggested
there is treated successtully by higher order crossings in detecting

the fundamental frequency [27].
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4.4. Search for Periodicities

As a final example of mixed spectrum analysis we consider
briefly a geophysical time series whose graph is given in Figure 8.
We do not attempt complete spectrum analysis but only further illus-
trate the interesting interplay between zero-crossings and linear
filtering in a case of real data. In this example the series con-
sists of 600 observations sampled every 10 minutes. The search for
periodicities is conducted mostly by low-pass filtering followed by
extraction of higher order crossings [40]. We confine ourselves to
low-pass filters which are combinations of repeated summation, the
first order low-pass filter (29) and repeated application of the

sine Butterworth filter with squared gain [35]
) L
2 :
IQ(”){ I — (30)

e (s )
51nv5wb

where W, is an ideal cutoff point and L. is the number of repetitions
of the filter. For each combination of filters we extracted 30
higher order crossings and the periodogram (27) was evaluated for
each of the 30 cases.

Starting with the filter (1—8)(1+B)12 followed by (29), with
o = 0.25, the relative periodogram ordinate (27) gave about 907
weight to ﬂlEDGZ/(N_l) = 0.1049. This corresponds to a period of
2n/(6 x 0.1049) = 9.983 hours.

For the same combination of filters but with « = 0.6, the
relative periodogram ordinate gave rearly 10070 weight to

J(N~1) = 0.0839. This corresponds to a period of 12,481 hours.

"13P62
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8 To detect even lower significant frequencies (or higher
periods) we used (30) with wb = 0.084, L = 2 together with
: (l—B)(1+B)lO and (29) with o = 0.1. The relative periodogram
: ordinate gave about 50% weight to "llDGQB/(N_l) = 0.0427 which
'

corresponds to a period of 24.525 hours.
. Therefore the data contain periodic components with periods
of about 10, 12.5 and 24.5 hours. For a discussion of signifi-

cance tests using periodogram ordinates in conjunction with higher

order crossings, see [27].

)
et % e
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1 | | ] | l i 1
00 160.0 320.0 480.0
. Figure 8. A geophysical time series.
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4.5. A Continuous Spectrum Case
An important class of stationary stochastic processes is the

one characterized by stochastic difference equations of the form
z =¢.2 + ... + 0 7 + € . (31)

When {Et} is white Gaussian noise and the roots of
1 - ®lx - e, - ¢pxp = 0 lie outside the unit circle, {Zt} is
stationary and Gaussian with mean zero [45]. (31) provides a use-
ful model for many applications [45], [52], and is referred to as
an autoregressive process of order p. This process has continuous
spectrum {(only!) with spectral density [32]

2

O 1

f(wy = —4 » ——— - -m < w <M. (32)

2m -iw _ -iwp;2°
[1 - ¢ e = b {

2
Except for the constant term oC/Zﬂ, f(w) is determined by higher

order crossings in agreement with Theorem 3. To see that, define

| b1 : Pr Py Ppa
o=1{: 1], o={: 4, r=[" ' "1 Ppe2
:’Jp OI)

“p—l Dp-Z

Then, the so-called Yule-Walker equations imply [45] that

-1 .
¢ =R "p. (33)

From (12) we know that ml,....pp are uniquely determined by

EDL,---,HDP, and so GI.---,WP by (33) are completely determined

from expected higher order crossings. This and the fact that
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. imply that the normalized spectral density (f(w) = f(m)/YO)
d 1-0.¢, - ... -p ¢
r 171
: F - DL 0
S 21|l - ¢e - - b |
>,
is completely determined by EDl,...,EDD. It follows that we can
- obtain fast estimates of (34) by solving for p and ¢ in terms of
2 the observed D,,...,D .
gy 1 p
As an example consider the first order case of p = 1. Then
%Q (34) becomes
. 2
s: _ 1 - (Dl
~ f(w) = 5 (35)
27 (1 - 2¢1cos w + ¢l)
. But ¢l can be estimated by [36]
' ¢, = e (36)
- I WA
N Thus f(v)) can e estimated very fast f{rom D1 only.
Similarly, in the second order case a fast spectral estimate
N is obtained from D]. D, by substituting these two higher crossings
:: for EDl, EDZ in (12). From this we obtain in succession estimates
,‘.’
_ for P1s 0y and then estimates for Wl’ iz trom (33, and finally an
] .
'3 estimate for f(w) by substitution iu (34).
~
N~ . . L. .
. This type of spectral estimate is reminiscent ol qutoreptessive
and maximum entropy spectral estimates [52], [53], but has not
R, :
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previously been studied in depth. Lxperience suggests however that
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this procedure can be of value for small p.
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i 5. SIGNAL DISCRIMINATION BY ZERO-CROSSINGS
L
£
In addition to the fact that higher order crossings contain
< useful spectral information, they also serve as a simple and
l
" . . . . R
; effective means for achieving drastic data reduction important for
|
discrimination and classification purposes. In what follows, we
-
- discuss various ways for using the higher order crossings {D,} in
‘\
' discrimination between time series by appealing to their monotone
) property and the rate at which they increase. It will become
: apparent that in general very few Dj are needed as their discrimi-
N i
P nation potency decreases rather rapidly as j increases.
Terms such as discrimination, classification, goodness of fit
\ .
; and signature analysis are sometimes used somewhat loosely to mean
:
- basically the same thing. By discrimination between time series we
shall mean the process of determining from the Dj the degree of
- similarity between two time series, or between a given time series
.
- and an hypothesized one. For example, given the Dj of an engine
signature, the discrimination problem is to determine how close
o these Dj are to the higher order crossings of a reliable engine.
-
. Throughout this section it is assumed that the highest fre-
quency is 1 as, for example, is always the case in the presence of
o white noise.
} 5.1. The Higher Order Crossings Theorem
A To quantity in some sense the amount of information in the Dj
ﬂ pertaining to discrimination, it is convenient to introduce a binary
-

X

process {XE' which we have been using implicitly all along. De-

. e ) ST B
ol tine 1X£])¥ bv clipping {U} 2oty

¢
* 3
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0, otherwise.

(1)

Clearly Xt

E Xt’ and Dj is precisely the number of symbol

Of interest is the behavior of {X

changes 1in X{J), (J).

...,XN

(i)
e

large j.
Because it is assumed that m is included in the spectral support,
(ii) of Theorem 1 tells us that

E

LS

-1, Jj > e (37)

Z

-1

This and the SLT imply that in (i) of Theorem 1 the inequalities are

strict,

ED, < ED, < ..., (38)

since otherwise if EDj = EDj+l for some ] we immediately have a
sinusoid and EDj/(N—l) will converge to the frequency of this sinu-
soid divided by m, which contradicts (37). Now, replacing EDj by

Dja we expect from (37), (38) that as j increases {XEJ)} approaches

a limiting state of alternating symbols:
...010101... . (39)

This degenerate state is independent of the initial process {ZL} as

long as 1 is io the spectrum.  This is stated formallv in the Higher

Order Crossings Theorem (HOCT) [441.




AL A

"
)
L}
-
-
L]
[ ]
-

RANCAA A A A At R e 4N LG o AT i i i St i Mt i iaNatiain e Jhh et Ml SR R

46

Theorem 6 (HOCT). Let {Zt}, t=...,-1,0,1,..., be a stationary
Gaussian process with mean zero, and a2ssume that 7 is included in

the spectral support. Then,

. ...010101..., with probability 1/2

(1) x =

...101010..., with probability 1/2,
as j > oo,
(ii) lim Jlim D./(N-1) = 1 with probability I.
Jore N

The theorem is demonstrated in two special cases in Figure 9 where
we see that the degeneracy (39) is achieved rather fast. The
binary arrays should be thought of as sections from infinite
binary arrays while the rightmost column gives Dl""’Dl6 from
series of length N = 1000. The process from which these data
were taken is (9) with ¢ = 0.8, 0.5.

From the above discussion we see that discrimination based
on Dj for large j is a fruitless effort since different processes
yield almost the same Dj' Moreover, experience shows that even for
moderate j the Dj are not very helptul. In Figure 9, for example,
later Di are relatively more similar than earlier ones for two
different processes.  [n other words, the ifnitial rate of conver-
gence toward the depenerate state (39) is quite fast.  This initial rate
however provides a very usetul discrimination measure and consequently
only very fow I)_] are needed for ettective discerimination {431, (a4,
[54]. Figure 10 nives the Dj' P=d,....10, avain from a first
order autorepressive process (9) corresponding to difterent values

of the parameter ¢, when N = 1000, The rate of increase in the 1)1
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1001000001 {1 1i1
oolL100110HT 1T
001100110101 101
011001100101 101
011001001 101001
010011001 10100l
olootiotiiolotl
01011001100101 |
010110010001010
otoloollolololo
010100110101010
ololol110101010
010101000101010
010101010I0I1010
010101010i101010
010101010101010

$=0.8
(0)

207
513
659
715
745
773
807
823
829
849
855
865
875
883
885
893
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using a first order autoregressive process.

N

(¢}

oi1t11ooooltitil
011000111010010
0100011 11010010
ot1o0o! 1otol0oli10
olololootololio
010101011010100
ololololiololoo
Ol01010I100I0I0l
010101010010101
010101010110101
010101010110101
010101010100101
0l10101010100101
ojololotolOl IOl
0101010i10101101
010101010101001

$=0.5
(b)

Demonstration of the Higher Order Crossings Theorem

= 1000.

331

567
690
738
774
798
810
829
837
848
854
858
858
862
868
870
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Oij
900}

800}
700+
600+
500+
400

3001

200
IOOT

Figure 10. Plots of Dj’ i=1,...,10, from a first order autore-

gressive process witnh parameter ¢, N = 1000.

(compare with (38)) differs initially from process to process, but
as j continues to increase the differences taper off.

Another example is provided by speech data obtained from the

utterances of "zero'", "one", and "two'. See Figure 11 for a typical

appearance of such data. The sampling rate was 8000 samples per

second and we used 2000 samples in obtaining D in each

1,....Dzo

of the three cases. The D, in each of the three cases are plotted

in Figure 12 and are seen to exhibit different initial rates of in-
crease corresponding to the various cases. The figure also suggests
that successful discrimination can be achieved by fewer than twenty

higher order crossings since from D o on the rate of increase in

1

the three cases is very similar. In many cases in practice eight

or even as few as six D, suffice for effective discrimination.
]




PR R o R

49

1

Figure 11. 250 samples from "zero" corresponding to 1/32 second.

"TWO

1000 -

200

LllllJllllllLLlllll]l=j

I 5 IO 15 20

Figure 12. Plotls of I),]. i=1,.00020, from specch data.




FERMTNTFTRTITE PSS

It is interesting to note that the apparent diminishing utility
of higher order crossings for discrimination purposes is essentially
a graphical fact. When observing the graph of a time series, the
most conspicuous features are zero-crossings, peaks and troughs,
and inflection points. But these three featurces correspond to
1 D2, D3 and the inability of humans to discern much beyond these

features parallels the fact that the Di for large j have virtually

D

no discrimination potency.

5.2. An Application to White Noise Testing

To measure the degree of similarity between time series, we
can use plots such as those in Figures 10 and 12. By themselves,
though, the plots are not sufficient since they do not provide a
clear~cut decision rule. To circumvent this problem we can obtain
probability limits which contain a given Dj plot with known proba-
bility. In a wide range of applications this goal can be achieved
if the variance of })j is known. Althouph simple closed form ex-
pressions for Var(bj) do not exist, various approximations are
available [54], [55]. A verv useful and simple approximation can

be obtained it » 0, as k » ®, gufficiently fast. Define

"k
A(k) = Pr(X(k) =1 | X(k) =1).
1 t e
fhen it was shown in [55] that when e =0, k m, tor some posi-~
tive integer v, we have
Var ”P
P im : SN = 1. (40)

k 20 (N~1)A(k)(l—A§K))




AL AYy

-
-

.
.

o € n €

Al i ate gl SLa Y Attt Rd sl el o Mbdnies b S SaLC At s B MR A A e M gl M Sy oo, Sk dhds it 20 St <

51

Thus, for sufficiently large k

k
Var(p,) ~ (N-l)A§ )(1-A§k)). (41)

It has been observed however that (41) provides a very good approxi-
mation for Var(Dk) also for small k in the white noise case.

Under the hypothesis of white noise D, has an asymptotic normal

k

distribution and also we know ED, exactly. Thus we can use the ap-

k
proximation (41) in ‘crming probability limits for Dk. Approximate
95% probability limits for Dk are given by [55]
. 1 1, -1 k-1 s 1 1 . -1 k=1..2..% .
(.J-l)[2 + - sin ( m )] ¢ 1.96{(N—1)[4 - (n sin ~( K NI (42)

The hypothesis of white noise is rejected if at least one Dj’
j=1,...,K, falls outside the limits (41). When all the Dj’
j=1,...,K, fall inside the limits (42), the initial rate of in-
crease in the Dj resembles that of white noise and the hypothesis
of white noise is accepted. For statistical considerations re-
rarding this test see {54], [55].

As an illustration of this graphical test, consider the geo-
physical series in Figure 8. The first ten l)i together with the
limits (42) are plotted in Fipure J13. Since the first two Dj lie
outside the limits, the series is not white noise as is well ex-
pected.

As another cexample consider the series is Figure 14, For this
case, the path of higher order crossings is completely inside the

limits (42) and so the hypothesis ot white noise is accepted.




“ " " ."‘ “.'

A, s,

600 |- WHITE NOISE LIMITS

400 -

200 -

Figure 13, Higher order crossings plot (broken line) from the peo-

physical data. The hypothesis of white noise is rejected.
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Figure 14,

Figure 15,

500

400
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100

line).

An oscillating time series.

Higher order corssings plot from the series in Fipure |

sericvs oscillates as white noise.
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5.3. A Graphical Similarity Measure

We have used above the rate of increase in the first few higher
order crossings as a basis for a white noise test. The same pro-
cedure can be used in testing the hypothesis that a given time
series follows a specific model; e.g. (31) with given parameters.

When the parameters are specified, under the hypothesis, EDk and

Aik) can be evaluated exactly from (l) as follows. Define pik) to

be the first autocorrelation of {szt},

(k)

_ k, gk
o, = corr(Viz ,Viz ),

-1

(0) - (k)
Py

where now = pl. Observe that pl

is given by (12). (1) im-

mediately yields

1 1 . -1 (k-1 .
ED, = (N-1)(5 - = sin pi )y (43)
and
! 1 1 -1 (k-1
Ai() =5 + 5 sin p§ ). (44)

Experience shows that substitution of (44) in (41) still provides
a reasonable fast approximation to Var(Dk), and so approximate 95/

probability limits for D are given by

k

L
D, * 1.96{var Dk}z. (45)

To obtain (45) we follow the following steps.

1. Specify a model for the time series by a hypothesis.

(2]
.

Obtain the first few autocorrelations for the hypothesized model.

3. Obtain o(lk) from (12).




4. Evaluate (43), (44).

5. Obtain the probability limits (45).
As an example, consider the Dj is Figure 9 (b). Figure 16

gives the probability limits under various null hypotheses H The

0
higher order crossings plot lies completely within the limits (45)
for a first order autoregressive process with parameter 0.5, as it
should, and the hypothesis is accepted. 1In all the other cases

the hypothesis is rejected. We conclude that the series from which
the Dj were extracted oscillates as a first order autoregression
with the indicated parameter.

For a power study of this test, as well as a refinement of

(45) see [54].

5.4. The Psi-square Statistic
Another device which exploits the monotonicity in the Dj is a
very simple quadratic form defined as follows. Define the incre-

ments in the Dj by

D, k=1
b = D =D, k= 2,...,K-1
(N-1) - D, k = K.

When N is sufficiently large, 0 < A < (N-1) and

K S
K
) oOA = N-l
kel <

Let m B EAk. Viewing the Ak as "frequencies" in a multinomial

experiment, we define a yeneral similarity measure by [43], [44]
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Figure 16. The rate of increase in Uj in (b) resembles that of a

first order autoregressive process with parameter ¢ = (.5. {ft}
2

are uncorrelated N(0,07) random variables. N = 1000. The solid

lines are the probability limits obtained under H .
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k=1 k

The wz statistic can be used in testing the hypothesis that

mk = méo), k=1,...,K, or simply as a distance measure, in
measuring the degree of similarity between time series.

The probability distribution of the psi-square statistic (42)
has been studied in [56], but no closed forms expressions are
available at present. It has been observed however that when the
Ak come from linear processes {45] of the type presented in
Figure 16, the tail of the probability density of wz varies very
little from process to process [43], [44]. In fact, computer simu-
lations show that in most cases Pr(lb2 >30) < 0.05, for K =9 and
sufficiently large N as can also be seen from Figure 17. We can
use the Wz—value 30 as a critical value which corresponds to a
significance level of less than 0.05. This means that the proba-
bility of rejecting a true hypothesis is less than 0.05.

As an example, consider again the Dj from Figure 9 (b), and
the four models in Figure 16. We obtain, by using (12), (43), the
mj under each of the four hypotheses. The Aj are computed from the

Dj' In case (a), the hypothesis is that of white noise and with

K =9, N = 1000, we have
w2 = 57.12 4 26.24 + 49.23 + ... + 0.50 > 30

and the hypothesis of white noise is strongly rejected. This of
course is not a surprise since the D] were generated by a nonwhite

, 2
noise process, and we expect a large ¢~ value. 1In case (b) both

i latiiochs

LIy W
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Figure 17. A density of 1.847x,,, versus an cmpirical distribution
(7) i -
2 . . 2 ,
. of 7 (X = 9, N = 1000) obtained from 100 ¥~ values. The underlying
‘ process is a first order autoregression with parameter 0.5, In 100
- 2 )
:. ¢~ values only two exceeded 30, three exceeded 29, four exceeded 28.
"
"u
2
. m, and A, come from the same process and we expect a small V7.
. J J
g 2 . .
- Indeed, we obtain ¢~ = 7.5 < 30 and the hypothesis of a first
.f order autoregressive process with parameter 0.5 is accepted. For
2 ,
the two other cases the §  values are over 40 and over 600, re-
N spectively, and the two corresponding hypotheses are rejected.  We
. , 2 e g
e sce that evaluating §  quantifics the results of I)i plots such as
s those in Figure 16.
- When the m] in (46) are replaced by observed A, from another
.. process, ¢ becomes a measure of distance. Suppose in the speech
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data the Aj from "zero" are taken as "expected" and Aj in the other
, 2 .
two cases as observed quantities. Then the ¥~ value from "zero"

. 2 '
and 'one'" is smaller than the ¢~ value from '"zero" and "two'". That

" "

is, "one" is closer to 'zero'" than "two'", but this is of course

well known.

5.5. Extension to Two Dimensions

The Higher Order Crossings Theorem can be extended to two di-
mensional processes Z(tl’tZ)’ tj = _,.,-1,0,1,..., j=1,2 [57],
so that the abov: methodology can be extended in a natural way to
discrimination between pictures and images. To describe the de-
generate state corresponding to (39) introduce the notation V_ to

denote a difference with respect to the index s,

VqZ(s,t) = Z(s,t) - Z(s-1,t).

-1 k-

Let X(k)(t ,U,) = 0 unless Vk Vk 1Z(t ,t,) > 0, in which case
1’72 t; &, 1’72

X(k)(t],t,) = 1. As Lk > o {X(k)} converges to

01L0LO1.
101010
010101

(47)




with probability 1/2 or to its shift, again with probability 1/2.
(47) is the degenerate state analogous to (39) when (n,n) is in the
spectral support. The higher order crossings are now defined as
the total number of horizontal and vertical symbol changes in

<1
1 ’tZ < N, and

binary arrays of fixed size {X(k)(tl,t2H3 1<t

enjoy similar properties as in the one dimensional case. For an
application of these higher crossings in texture discrimination

see [16].
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i 6. CONCLUDING REMARKS
We have described in some detail the domain of zero-crossings

to which we refer as the D-domain on account of the higher order

n, crossings D ..
. Kk Hj

it is a graphical~combinatorial domain. In retro-
spect, several points need further clasification. First, although
many of our results depend on the Gaussian assumption , our ex-

: perience shows that reasonable deviations from Caussianity have

almost no bearing on our previous conclusions. This is due

chieflv to the dominant frequency principle which is independent

of any Gaussian assumption. Still, it is of interest to know

whether a parallel theory of zero-crossings exists which disposes

N
g of the Gaussian assumption. In our opinion this is possible pro-
: vided there e¢xists a relation such as (2), but by no means the
same, which connects the zero-crossing count or a similar quan-
. tity with the spectral distribution function. The casc we have in
- mind is the class of bLownwd>d processes.
.
It is possible to obtain a representation analogous to (2)
- but in terms of the crossings or a random curve. Suppose {Zt} is
A a zero mean stationary bounded process,
3 {ZLI <A for all t.
-‘ 0
. Obviously {Zt? cannot be a Gaussian process. Tn the range (=A,A)
N PR - .
define a uniform, completely random, process {Vt} which consists
'.
‘ of independent random variables uniformly distributed in (-A,A).
‘

For ecach t, Ft has the probability density 1/2A defined (i.e.,

. we now

positive there) over (=A,A).  Corresponding to 7 N
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have the "random curve" Ul""’UN’ s0 that the time series

7‘1""'7‘\1 and the random curve Ul""’U'\I cross each other as in
1 i

Figure 18.

Figure 18. Random curve crossings.

Let C] be the number of such mutual crossings. Then it can be

shown that [58| the analog of (2) is given by
) r
) I (Cl) (.1 )
A 1 - v = cos(w)dF(uw). (48)

In principle we can now work out a new theory which parallels the
above development, but the new results do not assume simple forms.
The second point which needs o clarification is the choice of
A level (not random) at which we ¢lip to obtain crossines. In the
GCaussian case, there is a certain advantage in clipping at times at

Levels other than O [Hy], [60] but then the strong intuitive appeal

ot zero-crossings is lost.

PR AW Wy
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i
’
2

N

Our last point concerns a curious similarity between Rice's
formula and the zero-crossing spectral representation (2). The two

are not too far apart after all. To see that, apply to the cosines

in (2) a second order Taylor's series expansion to obtain after

some cancellation the approximation

- L
bii :
. mzdF(m)
th 1 -7
}\‘;:I >~ r; "r‘n [ — . (Ag)
J dF (w)
-

The left hand side of (49) is our definition of the expected zero-
crossing rate, while the right hand side has the form of Rice's
well-known formula [19, eq. 3.3-11] for the zero-crossing rate when

expressed in terms of the 2nd spectral moment, but modified to suit

the discrete time case.
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