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ZERO-CROSSINGS ANALYSIS

by

Benjamin Kedem

Department of Mathematics, University of Maryland, College Park

ABSTRACT

We advance a coherent development of zero-crossing based

methods and theory appropriate for fast signal analysis. Quite a

few ideas pertaining to zero-crossing counts found in the litera-
*1

ture can be expressed and interpreted with the help of this more

general setup. A central issue addressed in some detail is the

fruitful connection which exists between zero-crossing counts and

linear filtering. This connection is explored and interpreted with

the help of a certain zero-crossing spectral representation, and

is then applied in spectral analysis, detection and discrimination.

Zero-crossing counts in filtered time series are called higher

order crossings. The theme of this work is that higher order

crossings analysis provides a useful descriptive as well as ana-

lytical tool that can in many respects match spectral analysis.

To a great extent these two types of analysis are in fact equiva-

lent, but each emphasizes a different point of view. Advantages

offered by higher order crossings are great simplicity and a

drastic data reduction.
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ZERO-CROSSINGS ANALYSIS

by

Benjamin Kedem

1. INTRODUCTION

We shall be concerned in this paper with developing a certain

systematic approach to the analysis of random signals based on zero-

crossing counts. The need for such a development stems from the

interest in zero-crossing based methods and techniques in fields

such as signal processing [ 1], [ 2], [ 3], fluid mechanics [4]1, [ 51,

speech processing [ 6], [7]1, biomedical engineering [ 8], optics [9],

[101, neurophysiology [11], structural dynamics [12], [13], communi-

cations [141, [15], and image processing [161, [17]. It is felt that

a more general setup can provide a better understanding of these tech-

niques and of their outcomes, and furthermore, suggests interesting

and uiseful new methods of analysis.

The first serious attempt to study properties of zero-crossings

is the pioneering work of Kac [18] and Rice [19] who were mainly in-

terested in moment and distribution problems pertaining to zero-

crossing counts. This work and related level crossing problems CP

are discussed and reviewed in [ 2], [20], [21], [221, [23], [24],

where numerous additional references can be found. None of this

voluminous work, though, will be reproduced here.

There is a great deal more to zero-crossings other than the

classical distribution and moment problems, and we shall be con-

cerned with somewhat more general properties of zero-crossing

Codes
counts and zero-crossing based methods of analysis. In particular,
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the present work explores the fruitful connection which exists be-

tween zero-crossing counts and time invariant linear filtering.

As we shall wee, this connection sheds light on interesting and

surprisingly useful properties of zero-crossings appropriate for

the fast analysis of random signals. Furthermore, it will become

evident that zero-crossing counts in random signals and their

filtered versions essentially constitute a domain by itself which

in many respects is equivalent to the spectral domain. This will

be demonstrated and illustrated by a fair number of examples, using

real and artificial data.

To motivate some key ideas presented in this paper, it is in-

structive and helpful at this early stage to consider an example

* [251, [26], [27] which is most illuminating. Figure 1 presents

the graphs of two signals in discrete time, t =1,2,... ,100, each

made of a superposition of two finite sinusoids with angular fre-

quencies 0. 1 and 3. As a general rule we adhere to discrete time

which is more convenient for machine calculations. Consider the

* first graph (a) and suppose it is desired to estimate the highest

frequency which in this case is 3. Let DIand D 2denote the num-

ber of zero-crossings and the number of local minima and maxima,

* respectively, when the discrete time points are connected by line

segments. Since the low frequency component in (a) is obviously

dominant, D,=7 is too small for serving as a reasonable estimate.

On the other hand, D 2= 92 gives a good deal more information

about the periodicity of the high frequency component as it better

captures the component's oscillation characteristics. Indeed, by

using proper normalization, our estimate for the highest frequency
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is iT92/99 = 2.9 which is quite reasonable. Now D2, ignoring end

effects, is the number of zero-crossings in the differenced signal

and a difference is a high-pass filter which amplifies high fre-

quency components. Thus, the crucial point is that in this case we

must render the high frequency component dominant by a filter in

order to be able to estimate its frequency from zero-crossings. On

the other hand, in the second case (b) the high frequency component

is already dominant and D1 =95 yields 7T.95/99 = 3 as expected.

Note that in this second case D2  94 is very close to D which is

an indication [281, [29] of the presence of a strong periodic com-

ponent. It is seen that for the cases considered the pair (DI,D 2)

provides useful spectral information.

Another observation pertains to the discrimination potential

of (DI,D2). The two graphs appear to be obviously different and

this difference in appearance results in different pairs (DI,D 2).

This shows that differences in signals can be expressed very

economically by zero-crossings observed in the signal and in

functions thereof.

In what follows, these ideas will be developed within a con-

venient framework which is very effective in describing the domain

of zero-crossings.

The paper is divided into four parts. The first, consisting

of Section 2, introduces some basic notions and terminology of

stationary random processes. The second (3.1- 3.4) discusses

general properties of zero-crossings. As a matter of convenience

important points and facts are summarized at times in the form of

theorems. We do not prove these theorems hut give intuitive
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"Fure1i. Superpositions of two sinusoids with angular frequencies

0.1 and 3.

.'
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arguments instead of formal proofs. The third part (4.1-4.5) dis-

cusses spectral analysis by zero-crossings, and the fourth (5.1-5.5)

is devoted to discrimination between time series. The paper con-

tains quite a few examples and illustrations which enhance its

tutorial nature.
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2. SOME PRELIMINARIES AND NOTATION

A random signal in discrete time is commonly referred to as a

stochastic or random process. Without loss of generality we let

"discrete time" be the set of integers and denote the random

process by {Zt 1, t=...,-iOI,..., where for each fixed t, Zt is

a random quantity. Examples of such random processes are any elec-

tronic noise sampled at integral time points and random digit

streams. E will denote mathematical expectation or mean. In the

context of random processes E stands for ensemble average. Many

of the ideas which we would like to bring up are best explained if

we make the simplifying assumption that {Z t  is a real stationary

Gaussian random process with mean zero. By this we mean that

"statistics" do not change in time and that the joint probability

distribution of any finite vector (Z ,...,Z ) has a multivariatetI  t k

normal distribution. In this case for each fixed t,Z has the

usual Gaussian distribution. There are a number of very good

references 121], [30], [311, [321, [331, [34] which cover the theory and

applications of stationary processes and to which the reader is

referred for complete treatment. Here, however, we summarize very

briefly some basic notions needed in the sequel.

A stationary random process is characterized by the require-

ment that the mean EZ - be a constant and that the covariancet

funct ion

Yk - E(Z t - 1J)(7t+k -

is a function of the lag k only. Then the celebrated Wiener-Khint-

chine Theorem [331, p. 75, states that there exists a monotone
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increasing function F(w) such that

fT
Yk = 

f-Tcos(kw) dF (w)
-1

where 7r is the highest possible angular frequency due to the dis-

creteness of t. F is called the spectral distribution function of

the random process. F(ir) is equal to the variance (total power)

of Z since

_1
Y= f d(u).

Except for a constant, F behaves like a cumulative probability dis-

tribution function and therefore can be decomposed, for all practi-

cal purposes, into two components

F(w) = F1(W) + F2 (w).

F is a nondecreasing continuous function determined by a nonnega-

tive symmetric spectral density, f, by the relation

F(w) = f f(A,) d,.
FTT

F is a nondecreasing step function determined by a symmetric spec-
2

tral function, q, by the relation

F2 (w) = ' q(X.)
X.<W

where A (= A .) is a discrete set of frequencies. The spectral

mass or power associated with a set of frequencies A is determined

from the continuous and discrete components by the expression [331

( dF(,) = Y' q(\.) + ffQ)dO.
JA X A

1-A
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That is, both continuous and discrete components contribute to the

power. The spectrum is said to be continuous, discrete or of

mixed type according to the three cases (F1 % 0, F2  0),

(F1 = 0, F2 1 0) or (F1 1 0, F2 4 0), the last one being the most

general case. An important example of a process with a mixed

spectrum is furnished by a trigonometric polynomial with random

amplitudes plus noise. This type of process is useful for our

purpose.

By a time invariant linear filter [33], [35] we mean a linear

operation L on {Z t, of the form
t

Yt - L(Z)= h0Zt + h 1zt- + h2Z t-2 
+

which produces a new stationary process {Y t}. The transfer func-

tion H(w) is defined by the sum

r
r

1H0)I is called the gain associated with the filter

When a time invariant linear filter with transfer function H

is applied to a stationary process {Z t } the resulting process is

also stationary provided the matching condition

I 11 2 dF(A)

is satisfied. In this case the output spectral density and spec-

tral function are given by !H(,) 12 f(N) and !1,(A) 2q(), - <A [,

respectively.

In many cases it is convenient to normalize k by yO and de-
0

fine a new quantity ;,, by
K

. . . . . . . . ... .... . . ..." - '." .- ... . ....".- ,. .-.'. ". " ' -.. .. '-' . .-',"- -"" ', €
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Yk

Pk yO k 0,±,.

Pk is called the correlation or autocorrelation function and satis-

fies 1 1k < i.

One last point, any finite realization of a random process,

ZIZ2...ZN' is called a time series. Throughout most of the

paper, we deal with time series of length N from stationary

Gaussian random processes with zero mean. The only exceptions are

bounded processes discussed very briefly at the end.

.-d'L:. " - -. -: -> " : '-.. . - . . ; .". . . .- . ' . . . .

" - - - " " n n I ' " " - :i - " " -' - ' " " " -' " " .. ' " "" " ':
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3. SOME GENERAL PROPERTIES OF ZERO-CROSSINGS

In this section zero crossing counts in discrete time are

defined and are shown to possess a certain spectral representation

which shows their intriguing connection with the spectrum and

linear filtering. The representation also illustrates the funda-

mental principle that the zero-crossing rate tends to admit values

in a neighborhood of a dominant frequency. This principle is the

key factor in many of our results.

3.1. A Zero-crossing Spectral Representation

Let Zl,...,ZN be a zero mean stationary Gaussian time series.

To define what is meant by zero-crossings in discrete time we con-

sider the associated clipped binary series X t defined by

1, Z > 0

x t =1,... ,N,
t

0, Z < 0
t

and let d be the indicator function at time t,t

d -X + X -2XtX""t t ti t it-

Then d is 0 or I. When d = I we say that a zero-crossingt t

occurs at time t. The number of zero-crossings in Z ... ,Z N  is

denoted by 1)1 and is defined by the sum

S3d 2 + ... + dN.

As an illustration consider the time series Z t 1,...,12, and

its associated two binary series X t , d t , t= I,...,12 in Figure 2.

We have 1) = d2 + ... + d = 6, and it is seen that tie number

1• 1



D1 1]

DI =6

I I

1 0 0 0 1 1 1 0 0 1 0 1
I I 1 I I I 1 I

Figure 2. A time series of size 12 with 6 zero-crossings.

of zero-crossings is precisely the number of symbol changes in the

X series. As a digression we remark that the number of symbol

changes is a so-called sufficient statistic for stationary binary

Markov chains and as such this number carries information about the

chains' parameters [361.

In the classical theory of zero-crossings in continuous time

the expected number of zero-crossings per unit time is a useful

quantity [191, [2 1, and it is interesting to see where ED1, the

expected number of zero-crossings, leads us in the present case

of discrete time.

Since {Z t  is Gaussian with zero mean, EX. 12 and D71

EX X I /2 1 Sl -7 :
t t-l 4 21T K

which gives EDt  - sin I and therefore

1 1
ED) (N -1)(. sil--

.....................................................................
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By rearranging terms we obtain the basic formula [36]

P 1 = cos Ni / (1)

But from the definition of p1 and by the Wiener-Khintchine Theorem

follows the relation

7~T

TED, cos(w)dF(w)

Cos E (2)COS\-N- = f dFM(o

to which we refer as the zero-crossimg s'5eetraZ representation [271,

and one which plays an important role in our development. In par-

ticular, suppose {Z t } is operated on by a linear filter L with

transfer function H. Then the output is again Gaussian with mean

zero and its spectrum is given by JH(w)12 dF(w). Let D denote the

number of zero-crossings in the filtered series L(Z 1),..., L(Z N).

Then (2) implies the representation

c cos(w)jH(w)j2dF(w)c ED 1  -Tr (3)

N1 7T H(w) I dF(w)

(3) connects zero-crossings and linear filtering. Clearly, when L

is the identity (or do nothing) filter then H H I and (3) re-

duces to (2) as it should. We can now extend (3) to any sequential

filtering. Thus the sequential filter LiL2 ..L k with transfer

function H I'H2' Hk yields the generalization
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(TrED H H) fT cos(w)IHl1(W)12...jH k(W)12 dF(w)

cos I= (4)
1 H () 2. j.Hk(c) i 2dF(() )

where DH .- H is the zero-crossing count in the sequentially

filtered time series. In subsequent sections some interesting

properties and corollaries of (3), (4) are studied and discussed

in some detail. Of central importance to us is the degree to which

zero-crossings before and after filtering determine F.

The idea that zeros of fiLtered sigaals are of relevance in

applications is not entirely new. For example, in the continuous

time case in order to determine the expected number of extrema per

unit time we simply find the expected number of zeros per unit

time in the derivative of the random signal [19]. Upcrossings of

differenced time series are discussed in [381 while in [391 a

filter is applied prior to some counting procedures. The fact

that an application of a filter affects the zero-crossing count

is also recognized in [191. (3) was introduced in [271, [401 for

the purpose of defection of periodicities in time series. The con-

tinuous time analog of (2), (3) is known as Rice's formula 1191.

Another analog for a non-(;aussian case is given in [411.

3.2. The Dominant Frequency Principle

When F(u) is continuo,,; at the origin, an as.sumption we shall

adopt throughout the paper, symmetry implies that (2) can be ex-

pressed in terms of positive frequencies as in the expression

cos (TTFD I los (l) dF (w0)

I F)
cos \ .- 22."..

. . . . . . . . . . . . . . . . . . . .. . . . . . . .. . .. ,~...- ~......
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This shows clearly that the normalized expected zero-crossing rate

iTED 1 /(N-1) is a weighted average of the spectral mass. Therefore,

when a certain frequency band becomes dominant, i.e., carries more

power than other bands, it attracts the normalized expected zero-

crossings and TrED 1/(N-I) admits values in this band. Likewise

when a certain frequency w0, say, becomes significantly dominant

then (5) implies that rED I/(N-1) - w O" In the extreme case when

only w 0 is present, that is, for w c [O,fr]

F(w+) - F(w-) > 0, W W

4. 00
., W WO

we have the equality

TE D I

N-1 - 0

Thus, replacing ED1 simply by Di, we can see that when a certain

frequency becomes dominant the quantity 7D1 /(N-1) will land at or

near this frequency. In other words, a dominant frequency, when

it exists in the spectrum, can be quickly detected by zero-

crossings only. Now, when a time invariant linear filter is

applied to a stationary time series it modifies the spectral

weight given to the frequencies in the range f0,TtJ, emphasizing

some bands while attenuating others. Consequently, when a dis-

crete frequency exists in the spectrum it can be enhanced by a

filter and then estimated by nDHl/(N-I). This tendency of zero-

crossings (after proper scaling) to aidmit values in a neighborhood

of a significantly dominant frequency will be called the dominant

4.N
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frequency principle. This principle can be recognized as the basis

of many of our theoretical results. See also [41], [42].

To illustrate this principle and its application in fast fre-

quency detection consider the superposition

Zt = Acos(O.8t) + Bcos(l.25t), t =1,...,200. (6)

Realizations of this series before and after filtering are plotted

in Figure 3. The graphs were scaled but this has no effect on

zero-crossings! From (2) or equivalently (5) we know that D1 is a

function of the weights A, B. When A = B = 1, no frequency is

dominant. We obtain from Figure 3 (a) D = 67 and

riD /199 = 1.057 which is between 0.8 and 1.25 as expected. When
1

A = 0.8 and B = 1, the frequency 1.25 is dominant. From Figure 3

(b) we obtain D1 = 79 and ?TD /199 = 1.247 is very close to the

dominant frequency in agreement with the dominant frequency prin-

ciple. By operating on this second series with a low-pass filter

we can render the frequency 0.8 dominant. Figure 3 (c) gives the

scaled graph of the series in (b) after it was operated on with a
~-i 6
low-pass linear filter with transfer function (I + e ) . Now

the frequency 0.8 is dominant, D = 51 and 7TDHI /199 = 0.805

as expected.

At this point the reader may be puzzled by the fact that (6)

does not at all look random while our theory perta ins to random

time series. This ambiguity, should it arise, will be resolved in

Section 4.1.

4.

5%%
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D1=67, N=200

(a)

TtDI
Zt =cos(O.8t) +cos(1.25t). Neither frequency is dominant. N--=1.057.

D1=79, N=200

(b) A 1 i A

Z =0.8 cos(0.8t) + cos(I.25t). 1.25 is dominant. -=1.247.t N-I

DI=51 , N=200

.-A I,

Low-pass fi [ttring of (b). 0.8 is dominant. - 0.805.
N-I

Figure 3. Denonstration ot the dominan t t reque'CV principle. Zero-

crossing counts det e t dmni i t i r,.ithnci tke . Al] ;raphs are scaled.

S * - * . . = : ." , ' .• - " . :: - - " - F : o: : % .: % ': ' -: ' - . ", ,; : ' ': .; . ,• . : i - : , . ' v ; : ; i ; - ; -i ' : :t ,: : - ; -: : : -i
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3.3. Zero-crossings of Repeatedly Differenced Series

A useful filter associated with zero-crossings is the differ-

ence operator. To introduce this operator it is convenient to de-

fine the shift operator B as

BZt = Zt 1

-iW
with transfer function e The difference operator V is defined

-iW
by V E 1 - B with transfer function 1 - e Then the first

difference of {Z I is
t

VZ t (-B)Z t - Zt-1

and the second difference is

V2Zt = V(VZ t )  E (i-B) 2Zt = t  - 2Zt_ 1  + Z2 2'

In general the k'th difference of {Z t  is given by

k
t jvk7 t  (1 -B)k7 t k (k)(-l)Jz .

j=O

Define

D = of zero-crossings by V k-lz, t = 1,... ,N.
k

Then DI is as before the number of zero-crossings in Z1Z...,Z N

while D is the number of zero-crossings in VZ ... ,VZ and D
2 N 3

is the number of zero-crossings in V ... V and so on. The

Dk are called higher order crossings [431, 1441. When fZ t } Is first

operated on by ai filter L with transfer function I and is then re-

peatedly differenced, we use thc not:ation 1) to denote higher order
ilk

crossings in the filtered series L(t).

it

- U .'--..

*..................*. *~ 'N '.N N . ~CntXXXt~t~AtCC CtC ,.
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Unlike the process {Z t } which is defined over all the integers,

in practice we only have finite time series and lose an observation

with each difference. To avoid end-effects we must discard the be-

ginning of the series, and start indexing the observations or

samples by moving to the right. Thus if it is desired to evaluate k

higher order crossings the time index t = 1 is given to the k'th

or to a later observation. The D. must be evaluated from differ-J

enced records of the same Zength. For example, suppose the given

record is

1 6 1 7 8 9 2 3 0 7.

Subtracting the average we have the centered series

-3.4 1.6 -3.4 2.6 3.6 4.6 -2.4 -1.4 -4.4 2.6

In order to evaluate, say, DI, D2, D3 we record the series starting

with ZI = -3.4 and Z = 2.6 while reserving the first -3.4 and

1.6 for Z_ and Z0 respectively. We can now evaluate Zt, VZ, V2Zt

for t = 1,... ,8 as

Z: -3.4 2.6 3.6 4.6 -2.4 -1.4 -4.4 2.6

VZ: -5.0 6.0 1.0 1.0 -7.0 1.0 -3.0 7.0

2
V Z: -10.0 11.0 -5.0 0.0 -8.0 8.0 -4.0 10.00

Then A = 3, D2  5, D3 
= 7 and are all evaluated from records

of length 8. Observe that by our definition a shift from a negative

value to 0 is counted as a crossing. Similar remarks apply to other

filters as well.
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Since V is a high-pass filter it pushes the spectral mass to

the right so that {VZ t} becomes more oscillatory than {Zt 1. We

therefore expect that D2 > DI . V2 amplifies high frequencies even

more than V so that {V Z is more oscillatory than {VZ t and we

expect that D3 > D2, and so on. Also, if w", say, is the highest

frequency present in the spectrum, we see that by applying to {ZtIt

the filter Vk and letting k -+ o, the power is pushed all the way

to W* and renders it dominant! Therefore by the dominant frequency

principle 7D./(N-l) should converge in some sense to w*. This

heuristic argument is made precise in terms of the sequence of ex-

pected higher order crossings {EDj} 127], [281.

Theorem 1. Suppose {Z }, t =...,-l,O,l . is stationary andt

Gaussian with mean 0 and suppose w* is the highest frequency in the

spectrum, w < T. Then

(i) 0 < ED 1 < ED 2 < ... < (N-1)

TrED.
(ii) -- *, 0 + .

N-I1

The theorem says that the sequence {7ED./(N-I)} is monotone and
j

bounded and therefore it converges to its least upper bound which

is W*. Under fairly general conditions we can also show [271 that

lim lim Var(D./N) = 0.
N-- j -o

It follows that nD./(N-1) (without "E") approximates 0)* for suffi-

j

ciently large j and N. As we shall see in the next section this

estimator converges as j increass remarkably fast provided * is
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sufficiently removed away from . This discussion explains why 1)2

is in general a better choice than D1 in the estimation of the

highest frequency [251, [26], [27].

The monotone property of the sequence {ED.} in (i) follows
J

from (1) and the relation

1 -  P (7)

where PV(1) is the first correlation in {VZ t} [281. In general the

inequality

D >D. - (8)
j+l -

holds for j > 1. Experience shows however that we really have

D j+ > D. for sufficiently long series; e.g. N = 500 [431, [441.-~l j

Figure 4 gives the graphs of two time series of length N = 200

from a stochastic difference equation

Zt = Zt I + u t  (9)

where {u I are uncorrelated normal random variables with mean zero
t

and = +0.5 It is seen that even for these relatively short

series the first few D. tend not to decrease. (9) satisfies the
j

requirement for being a stationary Gaussian process when IJ < I

[451.

When some of the D. "touch", it is an indication of a strongJ

periodic component in the data. Consider the extreme case of a

sinusoid with a certain frequency. Then the differences are again

sinudoids with the same frequency but different amplitudes, and by

the dominant frequency principle a7l the ED. are the same provided
a..
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0.5

{uj. 59, 117, 134, 150, 164

16-0. 5

(b)I

Dj i1 5 140, 158,162, 164, 170

Figure 4. ligher order crossings from (9), N = 200.

they are obtained from differenced series of the same length. For

a Gaussian series, we can show that the converse holds as well [281,

[291. 1 This is phrased in the following theorem which is called the

Sinusoidal Limit 'hc)rem (SI.I).

• " --- : " " ' " " " " , "-' -\ : -:,"" "' - -"""""- :""" ." , -" " -" ~ ,: "- - '".G ".I.I ." ' .. .. ". ." ," ,
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Theorem 2 (SLT). Let Z be a zero-mean Gaussian stationary

process. Assume ED1 > 0, and suppose

ED ED21- (10)
N-I N-I

Then {Z is a pure sinusoid with period 2(N-l)/EDI'

The surprising fact is that when (10) holds aZZ the ED. are equal.

A more general Sinusoidal Limit Theorem of which Theorem 2 is a

special case is due to Slutsky [46].

Perhaps the most general statement that can be made about

higher order crossings is that they determine uniquely the spectral

distribution function F up to a constant. To see that, first note

that the higher order crossing spectral representation is given by

T cos(w)(sin w/2) 2kdF(w)
7'ED k+I) -rcos N-1 = - (11)

J_ (sin w/2) 
2kdF(w)

from which we obtain after some algebra the "long formula" [461,

2k + 2k + 2k . + (_l)k
rrEDk+l )lk-1 k k-2 -k+l

cosN-~) - ----- - . (12)

N -I 2k 2 p k ) + . . + (-I) k(k k-i k

2k
k-I

where V now operates on pk and k (12) provides a recursion for

obtaiin inc , , ... f rom ED ) ED, , . tFor eximple, for k = 0

(12) reduces to (1) so that .0 is determined from 1:1)]. For k = I

(12) gives

. -...
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TED I  TTED2

= 1- 2(1 - cos(--1))(1 + cos( -T. 2 )),
2 N-i N- I

while for k = 2 p3 is determined similarly from ED,, ED2 , ED3

In general p k is determined from (ED I ... ,EDk). Now recall that ok

is the k'th Fourier coefficient of F (w) - F(w)/y 0 , and so the pk

uniquely determine F. But from (12) the sequence {o k  is uniquely

determined by the sequence of higher order crossings ED. i. Itj

follows that F is completely determined by {A). K We haveJ

Theorem 3. For a zero mean stationary Gaussian process, the sequence

of expected higher order crossings fED. i uniquely determines theJ

normalized spectral distribution function F.

The above discussion can be summarized by the symbolism

{ED. k= 1 4 }  F (13)

which is another indication that zero-crossings of filtered series

contain usefUl information about the spectral properties of the

process. (13) may be viewed as a ramification of the Wiener-

Khintchine relation, and is an evidence of the existence of a

domain to which we refer rather loosely as the D-domain. The D

iowever -ar(_ fy no means the only features in this domain as is evi-

dent from the next sect ion.

3. 4. /Zero-cross ings ot Repeatedly Summed and Di fferenced Series

The counterparts of the D. are' zero-crossings of repeated sum-

milt ii,. C(nsider Liti suination filter (1+B3) whicl gives

(1+13)7. = 7. + 7
t t t l

• .]
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Define

.D / of zero-crossings by (1+B)- 1ZC t 1,...,N.

Then 1D E DI , and again we refer to the *D as higher order1 1' J

crossings. Whereas the D. tend to increase, the *D tend to de-J J

crease, but in many respects these two types of higher order

crossings are quite analogous. Thus, the counterpart of Theorem I

is the following fact.

Theorem 4. Suppose {Z t, t...,-,,i,.... is stationary and

Gaussian with mean 0, and suppose ,w > 0 is the lowest frequency

in the spectrum. Then,

(i) E D > E D > ... > 0

itE .D

(ii) - - -DN-I1 t, j o

Evidently Theorem 4 is another manifestation of the dominant fre-

quency principle, and provides a way for estimating the lowest fre-

quency. Again we can obtain a "long formula" as in (12) in terms

of {E .D}, by replacing in (12) all the minus signs by plus signs,I

which establishes the equivalence of this sequence of zero-crossings

and F.

There is no reason why we cannot put the D. and .1) together

to produce more versatile features. A more general definition of

higher order crossings is the following. Consider the filter de-

fined by m di fferences which follow n sums,

(-B)m(I+B) n (14)
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whose squared gain is given by

IG(w)I 2 = 2 m+n(l - cos w)m(l + cos w)n . (15)

Define the sequence {Dk} by

Dk  # of zero-crossings in (1-B)k- (1+B)J-lZ t, t =1,...,N.

Again we refer to the jDk as higher order crossings. Evidently, by

definition

D ; D D

because in these cases no filtering is applied to {Z t. When m,n

are large and m/n = c then 7I1DI/(N-l) will tend to admit a value

in the neighborhood of X whereC

-1i/1-cl-cos- I -- ,
c

provided X is a point in the spectrum. This is so since IG(.)12
c

in (15) is unimodal with a peak occurring at A which makes this
c

frequency dominant.

When prior to the application of (14) the series is operated

on by a linear filter with transfer function H we shall use the

notation

j Hk

to denote the higher order crossings in the filtered series. If

the filter is just the summation filter l+B, then clearly

l)Hk - 2 Dk
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4. SPECTRAL ANALYSIS BY ZERO-CROSSINGS

Our discourse leads us naturally to the importanL problem of

spectrum analysis. The relevance of higher order crossings to this

problem will become self-evident. A highlight of this section is

the design of a filter used in the delicate problem of detecting a

very weak signal from higher order crossings.

4.1. Analysis of Discrete Spectra by Zero-crossings

We are now finally ready to apply the above results in dis-

crete spectrum estimation. For this purpose consider the process

Zt= (A.cos w.t + B.sin w0.t), (16)
=1 J I J J

t=...,-1,0,l,.... where the w. and p are constants and {A.}, {B.}

are taken as uncorrelated normal random variables such that

EA. EB. 0 for all jJ I

EAi A = EB B = 0, i # j

2= ., i =jj

and

EA.B. = 0 for all i,j.
11

Further, without loss of generality we assume that

0 < wI < ")2 < ... < w < Tr. It follows [321 that {Z } is a sta-p - t

tionary Caussian process with mean zero. Its spectral distribution

1 2
function is a step function with jumps of magnitude of size V. atI

,. j= 1,... ,p. In order to realize Z , t = I,...,N, it is useful

to think of the {A.}, fB. as first being determined by some random
I -
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mechanism so that they become just constants throughout each reali-

zation. This resolves the ambiguity mentioned earlier, for the

constant values there may be thought of as being the constant

aZues of random variables. The point being made is that what we

a2tuaZZY observe is a trigonometric polynomial of the form (16)

with some unknown coefficients. Processes of the form (16) are

ideal for an illustration of all the foregoing discussion.

The spectral representation of the ED. (11) reduces to
J

csTEDj, 
p

N-1 = Wr(jW)cos(Wrr), (17)
r=r

where

r r 2 p 2 sin w /2 2J

P (I a sin w i/2
+i=l(% [i

i~r

An interesting representation analogous to (17) has been obtained

in [411. It is seen that Wr (j,w) 2 0 and L Wr(J, ) = 1. Also,
r=l

since the w. are ordered in (0,T] and since sin(x/2) is monotone1

there we have

F, r p

W (j,W) 0 , cfW.

- 1, r=p

iherefore as j 'X,

( ED.+

cos -cos( ),
s-1 p

or, since cos(x) is monotone in [0,71,
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TrED.
I -+ W 00 (18)

N-I p

and we have demonstrated (ii) of Theorem 1 in the purely discrete

spectrum case. That is, the normalized ED. converge to the highestJ

angular frequency w . Similarly, directly or from (ii) of Theorem 4
P

7TE D
E -N1 0 0 . ( 1 9 )
N-I 1

Now (2) reduces by (17) to

2 2
(TEDI a 2Cos W + + a Cos OW

= 1 2 2 (20)

1 p

Suppose a r 00 That is, suppose wr becomes dominant as expressedrr

by associating more power with the amplitudes A , B . Then (20)

obviously converges to cos(W r ) and we have by monotonicity

TT ED
- '- r ' 0 -+ o , ( 2 1 )

N-1 ' r

in accordance with the dominant frequency principle. Another useful

fact due to (17) is that

TED TED
W < 1< 2 < ... < (22)
1- N-1 - N-1l - p

Observe that wl = C if and only if fED 1/(N-1) I1) 2/(N-l) by

the SLT.

(18), or equivalently (19), provides a readily available method

for obtaining all the w's and p as shown in the tollowing algorithm.

Wc assume that N is sufficiently lirge so that EID./(N-1) in (18) can

he replaced by D./(N-1) for all practical purposes.I

. . .* -- -. - -
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Algorithm 1. Computation of wi .... ,wp and p given Z1,..... N

from the harmonic process (16). Assume 0<w 1 <w 2 < .. < < T.

Step 0: Let p* = 0.

Step 1: Determine w from lir TD /(N-l).
P j KO

If w = 0, go to Step 4.P

If w #0, let p = p* + 1. Print WP P

Step 2: Filter out w with an ideal low-pass filter withP

cutoff frequency w-
p

Step 3: Replace p by p -1. Go to Step 1 with the filtered

series obtained in Step 2.

Step 4: Let p = p*. Print p. End computation.

When p is known apriori the algorithm can be easily amended to

stop after the detection of p frequencies. Also, in practice we do

not have ideal filters and must be content with approximations [33],

[35].

To demonstrate the essence of the algorithm consider the sim-

pler case when p is known. Suppose (16) is of the form

Z = cos(O.8t) - 1.3cos(l.25t) + sin(2t), t = 1,...,200, (23)t

where p = 3. This is a fairly short series and it is interesting

to see what the algorithm produces in this case. Instead of a

close to ideal low-pass filter we use the much cruder low-pass fil-
)k

ter (I+B) which attenuates high frequency and which suffices for

this demonstration. The results with only eight higher order

crossings are given in Table I and are quite satisfactory given the

length of the data. The column corresponding to 3iI). starts too

- .1
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D D1 D.

1 77 50 47
*2 81 61 48
*3 89 79 48

4 108 79 48
5 126 80 49
6 126 80 49
7 127 80 49
8 127 79 50

Estimated
highest W 2.005 w 2= 1.247 w = 0.789
frequency

Table 1. Demonstration of Algorithm 1 with p =3, N = 200, and

W= 0.8, w2=1.25, w3= 2. The w. estimates are ob-

tained by multiplying the last D in each column by 7r/199.

Figure 5. The series in (23). N =200.
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low due to an end effect produced by the shortness of the original

series which was 220. For another example using the sine-Butterworth

low-pass filter see [40].

4.2. Mixed Spectrum Analysis by Zero-crossings

Consider again the harmonic process (16), but suppose we now

add to it a noise component to form a signal plus noise process,

Zt= (Ajcos Wjt + B sin w.t) + Et, (24)
j=l j

where the A., Bj, W. are as in (16) and {t} is white noise made ofJJ Jt
2

uncorrelated normal random variables with mean 0 and variance 0Y

It is assumed that { t } is independent of the {AJ, {B.}. Then {Z }

is again a stationary Gaussian process with zero mean since it is

the sum of two independent Gaussian components, the signal and the

noise. As before the problem is to determine the w. and p. ThisJ

time however, the problem is more involved since { I adds to the
t

process a continuous spectrum whose highest frequency is T. There-

fore by Theorem 1, 7Dj/(N-1) will converge to 7 and not to w p. It

is true that w is still the highest discrete frequency, but this
p

is of no great help now. It follows that the technique of the pre-

vious section is not in general suitable for the mixed spectrum

case.

Luckily enough, the dominant frequency principle prevails in

this case too but in a rather subtle way which requires an explana-

tion.

The zero-crossing spectral representation (2) for the signal

plus noise process (24) reduces to
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1 p
2 2

SITEDI oleos Eie + ... + o cos a N =l 2 2 (25)

os dominan i21 su c ss o sta tin wit w2 I* 2
tfrom which we can see directly that when w becomes dominant (by

rr

rendering larger than s and ., j r) it can be estimated by-,r J

lTDI/(N-l). Evidently, our problem is solved if we can render the

co's dominant in succession starting with 0oI"

Let us envision an ideal situation where 0oi becomes dominant

due to a low-pass filter which pushes the spectral mass to the left.

Then DI(N-I) will detect it. By applying the high-pass differ-

ence filter V the power shifts to the right and suppose 0 2 now be-

comes dominant instead. Then TrDH2 /(N-I) will detect it. Ideally,

we apply V again, push the power even further to the right, render

W 3 dominant and detect it by DH3 /(N-l). This iterative process

can be repeated until all the w's are detected by the DHj. This

idealization cannot of course be expected to hold exactly, but the

degree to which it does hold is surprising. The fact observed in

numerous cases is that the normalized higher order crossings

7iD /(N-1) tend to "visit" the w's on their way to the highest fre-
Hj

quency as j increases. The same holds true for k D H/(N-1) by

synnetry, except that now the sequence tends to "visit" the w's on

its way to the lowest frequency as k increases. This fidelity of

higher order crossings has been first observed in [271.

To demonstrate the curious tendency of normalized DHj to either

land on or pass very near the w., consider again the process in (6)

with additive random noise,
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Z t = 0.8cos(O.8t) + cos(l.25t) + E , t =1,...,200, (26)
tt

Var(Ft) = 1/12. For a low-pass filter we use (l+B)9 so that

D E D.. From Table 2 we see that without prefiltering the se-
*Hj 10j1

quence {TD./199) starts off near the dominant frequency 1.25 and
J

then increases toward r. Consequently no information is available

about the smaller frequency 0.8. But by applying the low-pass

filter, the sequence f0r D /199} starts off near 0.8 and then as

10 j
it increases it also visits the second 1.25. Thus both frequencies

were visited. For more examples see [27].

No filtering Application of (I+B) 9

j D. nD./199 D 7T D /199
1 l 10

1 78 1.231 51 0.805 (*)

2 79 1.247 (,) 51 0.805 (*)

3 95 1.500 66 1.042

4 110 1.737 78 1.231

5 130 2.052 79 1.247 (,)

6 144 2.273 79 1.247 (*)

7 154 2.431 80 1.263

8 160 2.526 80 1.263

9 164 2.589 79 1.247 (*)

10 166 2.621 82 1.295

Table 2. Higher order crossings from (26) 1 and 2' A

visit is indicated by (*).

. -"
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-0 (a) qII q iy~jI '11i r I

Original series (26). N =200.

(26) filtered by (1+139

Fij re 6. The scaled series (26) before and after filtering.
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4.3. Detection of a Weak Signal

The fact that the sequence Tik D Hj/(N-l)} tends to contain

values which are attracted to discrete frequencies in the spectrum,

provides a powerful tool in detection. This will now be illus-

trated by applying the foregoing ideas in the estimation of a

single frequency of a sinusoid buried in random noise. In this

connection we make use of the periodogram evaluated at higher order

crossings,

I =-I 2 txp( I HJ )2, j =1,2,.... (27)
t=l

and i = Vi. When a certain r kD /(N-1) is close to a discrete
kHj

frequency, the periodogram will in general be inflated. In this

way we can tell which of the normalized higher order crossings

landed at or near a discrete frequency.

Periodogram analysis is an important tool in time series

analysis [471, [48]. Usually the periodogram is evaluated

at points of the form 27k/N, k = 0,..., [N/21, and the idea is to

observe significantly Lir , -iodogram ordinates. A point 27k/N

which gives rise to an infi. cod periodo.,gram ordinate indicates

that the dita contain t periodic componen t with period N/k. In

our use of (-27) , t he pt-riodogr,im is t'va, 1 atcd aIt on1lv d '" points

which are not necessarilv of the form 2k/N.

Consider the pro( (24) with p = I

= A 0 S Il t + B sin t  + (28)
t2
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t = 1,..., N, and again suppose we want to estimate w from zero-

crossings. This problem was considered in [ 1 ], [ 3], [391, [411,

[42], [491, [50]. It is actually possible [491 to solve for w in

9I

terms of D1 and D2 but it was shown in [50] that the solution may

be extremely sensitive to small changes in these higher order

crossings. The incorporation of certain filters gives more robust

estimates.

The first order low-pass filter is defined by the recursion

L(Zt) (I-c)Z t + cxL(Z), (29)

0 < a < 1. Its squared gain is given by [33]

SG(,) 12 2 2
1 - 2acos (k) + (I

The combination of this filter and repeated summation was found

very useful in higher order crossing analysis owing much to the

following fact [50].

Theorem 5. Let 7) be given by (28) and without loss of generality

assume that 0 < < iT/2. Then regardless of the sisna!i-to-noisc

ratio, o /O , we have

(a) For : stifficientlv close to 0

i E D II

< _ < Cos ((X)
(N-I -

with equality holding whe:i tt = cos(.

(b) For t sufficiently close to I the inTieqlilitits ire reversed.

°1
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Theorem 5 tells us that as a increases away from 0 toward 1,

TID /(N-1) has a good chance for "visiting" w1. Our strategy in

light of the foregoing discussion is to increase a in small steps

and then evaluate (27) at each step. When a visit occurs, the

periodogram will be inflated. Since the theorem holds regardless

of the signal-to-noise ratio, a i/a this procedure gives hope in
1 c

detecting even very weak signals. For small /a it is perhaps

better to prefilter with (I+B)k for some k, e.g. k = 2.

As an illustration consider a computer simulation of (28) with

= 0.75, al/a& = -20dB, N = 2000. For each a-value,
-I 1

= 1/30,... ,10/30, we obtained the zero-crossings 3 D G The

normalized D and the corresponding rZative (out of 1.0 cases)
3 Cl

periodogram ordinates are given in Table 3. The highest relative

periodogram ordinate corresponds of course to 0.75 as it should.

The more startling fact though is that the normalized 3D G corre-

sponding to a = 0.1 landed exactly on w

TT D /1999 Relative periodogram
ordinate

1/30 0.791 0.121

2/30 0.765 0.049
3/30 0. 750 (*) 0.583
4/30 0.724 0.110
5/30 0. 709 0.008
6/30 0.693 0.025
7/30 0.684 0.026

8/30 0.055 0. 030

9/30 0.640 0.002
.4 10/30 0.627 0.046

1. 000

'able 3. Relativu ptriodoran ordinites vIlU Iatcd at (en i DI /1999
3 D Gl

from (28). /1 -20(d b.7. n(*) dicates a

Visit.

............................................................. ,
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Completely random series.

The series (26~) with ;,1  0. 75 and (7 /o 20 dB.

F igu re 7. R 1IM domnoi so ion weo k s ignal pluos ra ndom nio ise.

The problemT Of detect ing ;1 weak periodic signai I in no ise by the

so-cal led ha rnog ri-u is cnoi dt red -i I so in SiI An exam r 1 s iigg~s ted

there is trea ted suocceso;,t nl 1v lyl higher order crossings in detecting

the f Un d; M01n t a I req no I (' V 71



39

4.4. Search for Periodicities

As a final example of mixed spectrum analysis we consider

briefly a geophysical time series whose graph is given in Figure 8.

We do not attempt complete spectrum analysis but only turther illus-

trate the interesting interplay between zero-crossings and linear

filtering in a case of real data. In this example the series con-

sists of 600 observations sampled every 10 minutes. Dlh search for

periodicities is conducted mostly bv low-pass filtering followed by

extraction of higher order crossings [40]. We confine ourselves to

low-pass filters which are combination, of repeated summation, the

first order low-pass filter (2%) and repeated application of the

sine Butterworth filter with squared gain [35]

11b)2 (30)

L ( sin C b 1

where w b is an ideal cutoff point and 1. is the number of repetitions

of the filter. For each combination of filters we extracted 30

higher order crossings and the periodogram (27) was evaluated for

each of the 30 cases.

~12
Starting with the filter (I1-B)(t+B) followed by (29), with

a = 0.25, the relative periodogram ordinate (27) gave about 90,

weight to 1D G,2/(N-i) = 0.1049. This corresponds to a period of

2T/(6 x 0.1049) = 9.983 hours.

For the same combination of filters but with ux = 0.6, the

relative periodogram ordinate gave ,,earlv 100. weigiht to

SI31) G2/(N-1) 10.0839. This corresponds to a period 01 12.481 hours.

"1
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To detect even lower significant frequencies (or higher

periods) we used (30) with w = 0.084, L = 2 together with

(I-B)(I+B)1 0 and (29) with 0. 0.1. The relative periodogram

ordinate gave about 50% weight to T D GQ3/(N-1) = 0.0427 which

corresponds to a period of 24.525 hours.

Therefore the data contain periodic components with periods

of about 10, 12.5 and 24.5 hours. For a discussion of signifi-

cance tests using periodogram ordinates in conjunction with higher

order crossings, see [271.

0.000

l I I I I I I

0.0 160.0 320.0 480.0

l,'iJg r(. 8. A v, phys i ( I' t i 111 - ri0
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4.5. A Continuous Spectrum Case

An important class of stationary stochastic processes is the

one characterized by stochastic difference equations of the form

+ Z + g (31)
Z t = blZ t I + ... + 0 p Zt-p +Et .(1

When {c } is white Gaussian noise and the roots oft

1 - 0 1 x - ... - pX p = 0 lie outside the unit circle, {Zt } is

stationary and Gaussian with mean zero [45]. (31) provides a use-

ful model for many applications [45], [521, and is referred to as

an autoregressive process of order p. This process has continuous

spectrum (only!) with spectral density [32]

2aEI
f(W) = - i -_- 2 -7T < w < 7T. (32)27T 11 - -U . - Ip 1

2
Except for the constant term j2 /27, f(wi) is determined by higher

order crossings in agreement with Theorem 3. To see that, define

f1 1 I P 2 - PP-l

(. " ' = ". , R = PI - p-2

p op

p- I p-2 "

Then, the so-c;il led Yul I e-Wal ker equations imply [45 that

= R p. (33)

From (12) we know that , p are uniquely determined by

EI)I, . , ED p, and ,;o I . . ''p by (33) are compltely determined

from expected higher order crossings. This and the fact that
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20

YO =

PYo- - 01 I - . -..O~

imply that the normalized spectral density (f(W) f(W)/-YO )

_-op -.- p pf(- )- ie 2  (34)2 r-f 11 ie  - .. - p -i P 2

is completely determined by ED1 ,..., ED . It follows that we canP

obtain fast estimates of (34) by solving for p and in terms of

the observed DI,... ,D.

As an example consider the first order case of p = 1. Then

(34) becomes
2

1 -
f(W) - 2 (35)

27(1 - 2 1cos W + )

But $i can be estimated by [36]

C os Tf D (36)

Thus f(w) can be estimated very fast from D only.

Similarly, in the second order case a fast spectral estimate

is obtained from D 1), by substituting these two hiiher crossings

for ED,, ED in (12) . From this w, obtain in succession estimates
12

for o1 , i 2 and then estimates for 1 2 fronm (M), and finally an

estimate for f(in) by substitution ii (34).

This type ot spectral estimate is reminis;c'nt (it t.t sive

and maximum entropy spectral estimates [52], 1531, but hs n t
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previously been studied in depth. E'xperience suggests however that

this procedure can be of value for small p.

.1

J!

. . . .. . . . .. _ . . - . ... . .
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5. SIGNAL DISCRIMINATION BY ZERO-CROSSINGS

In addition to the fact that higher order crossings contain

useful spectral information, they also serve as a simple and

effective means for achieving drastic data reduction important for

discrimination and classification purposes. In what follows, we

discuss various ways for using the higher order crossings {D.} inJ

discrimination between time series by appealing to their monotone

property and the rate at which they increase. It will become

apparent that in general very few D. are needed as their discrimi-

nation potency decreases rather rapidly as j increases.

Terms such as discrimination, classification, goodness of fit

and signature analysis are sometimes used somewhat loosely to mean

basically the same thing. By discrimination between time series we

shall mean the process of determining from the D. the degree of
I

similarity between two time series, or between a given time series

and an hypothesized one. For example, given the D. of an engine
.1

signature, the discrimination problem is to determine how close

these D. are to the higher order crossings of a reliable engine.
i

Throughout this section it is assumed that the highest fre-

quency is IT as, for example, is always the case in the presence of

white noise.

5.1. The Higher Order Crossings Theorem

To quant it in sore sense the amouint of information in the D.

lpert,' ining to discrimination, it is convenient to introduce a binary

process IX( j) , which we havL hcen using implicitly all along. De-
t

fine f i 1 .1 ipping "J I;/"
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q 1, Vj .- 17 > 0

t O, otherwise.

Clearly X(1) Xt' and D. is precisely the number of symbol

changes in XI-X. Of interest is the behavior of IX t

large j.

Because it is assumed that 7r is included in the spectral support,

(ii) of Theorem 1 tells us that

ED.
J , j - o (37)

N-I

This and the SLT imply that in (i) of Theorem 1 the inequalities are

strict,

ED < ED 2 < (38)

since otherwise if ED. = ED j+ for some j we immediately have a

sinusoid and ED./(N-l) will converge to the frequency of this sino-
J

soid divided by i1, which contradicts (37). Now, replacing ED. byI

D., we expect from (37), (38) that as j increases {X M }"approaches
I t

a limiting state of alternating symbols:

.010101 ... . (3;9)

This degenerate st;itk, is indepjndent of the initlil process {Z as

lon,, as 11 is in the spectrum. 'b ,; is. slated forimlllv in the Higher

Order Cross ing, i'bcoi'm (P)('f) f44

- .-. .- % * ' % * * -- * ,
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Theorem 6 (HOCT). Let {Z}, t =...,-1,0,1,..., be a stationary

Gaussian process with mean zero, and assume that Tr is included in

the spectral support. Then,

S X(j) { ...010101..., with probability 1/2

t ... 101010..., with probability 1/2,

as j co.

(ii) lim Jim D./(N-1) = 1 with probability 1.

The theorem is demonstrated in two special cases in Figure 9 where

we see that the degeneracy (39) is achieved rather fast. The

binary arrays should be thought of as sections from infinite

binary arrays while the rightmost column gives D . 1)16 from

series of length N = 1000. The process from which these data

were taken is (9) with p = 0.8, 0.5.

From the above discussion we see that discrimination based

on D. for large j is a fruitless effort since different processes

yield almost the same D.. Moreover, experience shows that even forA

moderate j the D. are not very helpful.. In Figure 9, for example,.1

later 1). are relatively more similar than earlier ones for twoI

different processes. :i other words, the initial rate of conver-

gence toward the degencrat, state (39) is (iite fast. This iiti al rate

however provides a vt-ry use tui di- ciimin~ition ineasore and consequently

"nly very 1I(w 1). irt, needUd for ettectivw discriminiition 431, 1441,

f541. [i urk, 10 dive, t !., i ,. _ 10, again from a first

order aittrgre. i, press' (U) VV(t')erhllie t di t terclt values

of the paramtr , wh-n N 1 0)0. lh ra e ol in cleaIs' in the 1).
i1

€. . .
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'

.(j)D

{x '} {x, }

I 1001000001IlI I 207 0111000011111Il 331

2 001I001I0111111 513 0110001110I0010 567
3 0011001I0101101 659 01000111010010 690
4 Oi1I001100101101 715 0100011010101I0 738
5 011001001101001 745 0101010010101I0 774
6 010011001 101001 773 01010101I010O0 798
7 01001I011I0101I 807 010101011010100 810

8 0101001001011 823 010101010010101 829
9 010I0010001010 829 010101010010101 837
10 010100110101010 849 01010101011010 848

II 010100110101010 855 01010100 110101 854

12 010101110101010 865 010i01010100101 858
13 010101000101010 875 010101010100101 858

14 01010101010010 883 010101010I01101 862
15 001010101010i0 885 010101010101101 868
16 010101010101010 893 010101010101001 870

o.8 6 =0.5

(a) (b)

F iure 9. I)emoristrat ion ot the Hi ,hor ()rder Cro ssjngs Theorem

*using a first ordl'r autoregrssive procoss. N 1000.

°o

-S

. . ** *.. 4 .... ..... " . .. ~... -

":;"i:':~~~~~~~~~~~~...-..-':-""............ .. . ..... " ' -.. " " " " " " .. , "
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Dj

900

* 800- -. 75

7001 -0.50

600 -0.25
0.00

500

300 0.75

200

100

1 2 3 4 5 6 7 8 9 0

Figure 10. Plots of D., j =1,... ,10, from a first order autore-

gressive process with parameter , N = 1000.

(compare with (38)) differs initially from process to process, but

as j continues to increase the differences taper off.

Another example is provided by speech data obtained from the

utterances of "zero", "one", and "two". See Figure 11 for a typical

appearance of such data. The sampling rate was 8000 samples per

second and we used 2000 samples in obtaining I,...,I)20 in each

of the three c;ises. The D. in each of the three cases are plotted

in Figure 12 and are seen to exhibit different initial rates of in-

crease corresponding to the various cases. The figure also suggests

that successful discrimination can be achieved hy fewer than twenty

higher order crossings since from I[o on the rate of increase in

the three cases is very similar. In maniy cases inl practice eight

sr even is teW is six 1). SnlfiuC IOi ettective dislcriflilation.

.- 7,
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I r I j

Figure__11. 250 sarnj les from "zero' corresnonding, to 1/32 second.

1800 TWO"

1000

ZERO"

200-

1 5 i0 15 20

J'igiiru 12. (01 1 ). 1 ...... r) r lTi sp)It( dALt.
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It is interesting to note that the apparent diminishing utility

of higher order crossings for discrimination purposes is essentially

a graphical fact. When observing the graph of a time series, the

most conspicuous features are zero-crossings, peaks and troughs,

and inflection points. But these three features correspond to

D19 D2, D3 and the inability of humans to discern much beyond these

features parallels the fact that the D. for large j have virtually.1

no discrimination potency.

5.2. An Application to White Noise Testing

To measure the degree of similarity between time series, we

can use plots such as those in Figures 10 and 12. By themselves,

though, the plots are not sufficient since they do not provide a

clear-cut decision rule. To circumvent this problem we can obtain

probability limits which contain a given D. plot with known proba-]

bility. In a wide range of applications this goal can be achieved

if the variance of D. is known. Although simple closed form ex-

pressions for Var(l.) do not exist, various approximations are

available [541, 133. A vc rv useful and simple approximation can

he obtaiined it k 0, as k * ',, sufliciently fast. Define

k)

k) ( 1 X(k) I).
t = t-I

ihol it vs :huwn in 331 that when k= {} k i, Iur some posi-

ti ve i t i ;,r i-i, we h.a ve

Var
ir- m. (40)

k ., ' ( )

. . . . . . . . . . . . . . . . .. . . .

- - o . -p i " % ° ° % . , 
"

-' -% " - -. . , , .o.. . . . . . . % ' P . . * ° • . % . . ° -°, , . / ' - ° -. - ° - .
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Thus, for sufficiently large k

Var(Dk) ~((N-))A 1

It has been observed however that (41) provides a very good approxi-

mation for Var(Dk) also for small k in the white noise case.

Under the hypothesis of white noise D has an asymptotic normal
k

distribution and also we know EDk exactly. Thus we can use the ap-

proximation (41) in crming probability limits for D . Approximate

95% probability limits for Dk are given by [551

S-lk-l 1 - I k-1 2 (42)
(N-I)[- + - sin -- 1 .96{(N-l) n ((4

The hypothesis of white noise is rejected if at least one D.,

j= I,....K, falls outside the limits (41). When all the D.,]

j =1,...,K, fall inside the limits (42), the initial rate of in-

crease in the D. resembles that of white noise and the hypothesis
j

of white noise is accepted. For statistical considerations re-

garding this test see [54 ], [55 1.

As an illustration of this graphical test, consider the geo-

physical series in Figure 8. The first ten 1. together with the

limits (42) are plotted in Figure 13. S ince the first two D. lie

outside the limit!-, the s ries is 11,t white iioise, is is well ex-

)ec ted.

As ;inother example co sider tle se ries is Figure 14. For this

c ase, the potli of higheIcr order erosiui, i!; co ipletely inside the

limits (4.2) and so the hypothesis 0t white noise is ; AC'epted.
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C'j

60- WHITE NOISE LIMITS

400-

200-

0

O 2 4 6 8 10

Fi ire 13. Highe r order crossings plot (broken line) from the geo-

physical data-. The hypothesis of white, noise is relec ted.
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01

_Figure 14. An oscillating time series.

400-

200-

100-

1 2 3 4 5 6

Fi sure I). ig her order (erss in)rig plot fron the serie S ill Fi gllre 14

(broken I ill(e) .TIhe series; o~sc1ilates as white noise.
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5.3. A Graphical Similarity Measure

We have used above the rate of increase in the first few higher

order crossings as a basis for a white noise test. The same pro-

cedure can be used in testing the hypothesis that a given time

series follows a specific model; e.g. (31) with given parameters.

When the parameters are specified, under the hypothesis, EDk and

Ak) can be evaluated exactly from (I) as follows. Define p(k) to

be the first autocorrelation of {vkzt},

(k) - ktk
P corr(V z ,V

where now pt p1  is given by (12). (1) im-

mediately yields

1 1 . .1 (k-l)
EDk (N-) sin p (43)

and

(k) 1 I 1 (k-l)
1 sin p (44)

Experience shows that substitution of (44) in (41) stitt provides

a reasonable fast approximation to Var(I)k, and so approximate 95;'.
k

probability limits for Dk are given by

I'D + 1.96{Var Dk} . 4

k k

To obtain (45) we follow the following steps.

1. Specify a model for the time series by a hypothesis.

2. Obta in the first few autocorrelations for the typo th esized model.

3. Obt;al, 00n from (12).

- - -~ . .. *.*... :- ~ -. . - . * * *-I
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4. Evaluate (43), (44).

5. Obtain the probability limits (45).

As an example, consider the D. is Figure 9 (b). Figure 16

gives the probability limits under various null hypotheses H The
0.h

higher order crossings plot lies completely within the limits (45)

for a first order autoregressive process with parameter 0.5, as it

should, and the hypothesis is accepted. In all the other cases

the hypothesis is rejected. We conclude that the series from which

the D. were extracted oscilZates as a first order autoregression
J

with the indicated parameter.

For a power study of this test, as well as a refinement of

(45) see [541.

5.4. The Psi-square Statistic

Another device which exploits the monotonicity in the D. is a
J

very simple quadratic form defined as follows. Define the incre-

ments in the D. by

D k= I

k  D k  D k_1  k 2,... ,K-1.

1) -l k = K.

When N is sufficiently large, 0 k (N-I) and

K
) A N-1.

k= k

Let m k , . Viewinc the A as "frequencies" iii a multinomial

experiment, we define a g;eneral similarity measure by f431, [441

~.......
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Dj (a) Dj(b

800- 800-

500-50

200- Ho: WHITE NOISE 200- Ho: Z1.zO.SZt..I + Et

I I I I I 1 1 - I I I I 1

1 2 34 56 1 23 4 56

Dj (C) (d)

800- - - - 800------

50-500 /

200- Ho: Zt Et+O.5Et.I 200 Ho: Ztz0.4 Zti-O.?Zt 2 +4E t

1 2 3 4 5 6 ~ 1 2 3 4 5 6

F igure 16. '[he rate of increase in T) in (b) resembles that of a

first order autoregressive process with parameter 40 0.5. {c t

-ire uncorrelated N(0,(3 ) random variables. N = 1000. The solid

lines are t he p robabhility linits 01)tained un~der 1i
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K (A mk)2

2 X k (46)
k=l k

The 2 statistic can be used in testing the hypothesis that

(0)
mk  'k , k =1,...,K, or simply as a distance measure, in

measuring the degree of similarity between time series.

The probability distribution of the psi-square statistic (42)

has been studied in [561, but no closed forms expressions are

available at present. It has been observed however that when the

Ak come from linear processes [45] of the type presented in

Figure 16, the tail of the probability density of p2 varies very

little from process to process [433, [44]. In fact, computer simu-

2
lations show that in most cases Pr( 2 >30) < 0.05, for K = 9 and

sufficiently large N as can also be seen from Figure 17. We can

use the !) 2-value 30 as a critical value which corresponds to a

significance level of less than 0.05. This means that the proba-

bility of rejecting a true hypothesis is less than 0.05.

As an example, consider again the D. from Figure 9 (b), and
J

the four models in Figure 16. We obtain, by using (12), (43), the

m. under each of the four hypotheses. The A. are computed from the

D.. In case (a), the hypothesis is that of white noise and with
J

K = 9, N = 1000, we have

2
1P = 57.12 + 26.24 + 49.23 + ... + 0.50 > 30

and the hypothesis of white noise is strongly rejected. This of

urse is not a surprise since the I). were generated by a nonwhite
n

noise proceass, and we expect a large i 2 vw] te. ]n ca,'se (b) both
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0.I

I'

2

I \

4 I
I

I

Figure 17. A density of 1.347X (7) versus an empirical distrijbution

of 2 (K = 9, N = 1000) obtained from 100 2 values. The underlying

. process is a first order autoregression with parameter 0.5. In 100

values only two exceeded 30, three exceeded 29, four exceeded 28.

m and A. come from the same process and we expect a small 2.

2

Indeed, we obtain 2_-7.5 < 30 and the hypothesis of a first

order autoregressive process with parameter 0.5 is accepted. For

the two other cases the 2 values are over 40 and over 600, re-

spectively, and the two corresponding, hypotheses are ri e(td.

2
se that ealuating oquantifies the results of i). Plots such as

those inl i, re 16.

-vWhen the M. ie (46) are replaced by observed A, from another

2 12
.process, becomes a measure of distance. Suppose in the speech

%

I I

°2

spc iel ,adth wo.resod n yotee.: e eete..
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data tile A. from "zero" are taken as "expected" and Ai in the other
J

two cases as observed quantities. Then the p 2 value from "zero"

and "one" is smaller than the i2 value from "zero" and "two". That

is, "one" is closer to "zero" than "two", but this is of course

well known.

5.5. Extension to Two Dimensions

The Higher Order Crossings Theorem can be extended to two di-

mensional processes Z(tl,t 2 ), t. . .. = 1-,0,..... il,2 [571,

so that the abov2 methodology can be extended in a natural way to

discrimination between pictures and images. To describe the de-

generate state corresponding to (39) introduce the notation V tos

denote a difference with respect to the index s,

V Z(s,t) Z(s,t) - Z(s-l,t).S

Let X ()(tt- 0 unless V k-z(tl 0, in which case
2 t2 un,t 2)

X(t t) 1 Ask{(k)}
x(k)ti~t2 1. As k , X converges to

S .. L . .

S .1 010 . . .
.0 •0.0..

0 1 ( ) 1 0 1 . . .( 4 7 )

1 0 1 0 1 0 . . .

0 1 0 1 0 1 .

1 0 1 0 1 0 . . .

10101.a.

.................................................................................
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with probability 1/2 or to its shift, again with probability 1/2.

(47) is the degenerate state analogous to (39) when (7,Ti) is in the

spectral support. The higher order crossings are now defined as

the total number of horizontal and vertical symbol changes in the

binary arrays of fixed size {X (k)t t 2 } 1 < t 1 , t 2 < N, and

enjoy similar properties as in the one dimensional case. For an

application of these higher crossings in texture discrimination

see [16].

-i
o

h % ~ > . . . . . . x . %~
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6. CONCLUDING REMARKS

We have described in some detail the domain of zero-crossings

to which we refer as the D-domain on account of the higher order

crossings kD Hj. it is a graphical-combinatorial domain. In retro-

spect, several points need further clasification. First, although

many of our results depend on the Gaussian assumption , our ex-

perience shows that reasonable deviations from Gaussianity have

almost no bearing on our previous conclusions. This is due

chiefly to the dominant frequency principle which is independent

of any Gaussian assumption. Still, it is of interest to know

whether a parallel theory of zero-crossings exists which disposes

of the Gaussian assumption. In our opinion this is possible pro-

vided there exists a relation such as (2), but by no means the

same, which connects the zero-crossing count or a similar quan-

tity with the spectral distribution function. The case we have in

mind is the class of iko m.d'J processes.

It is possible to obtain a representation analogous to (2)

but in terms of the crossings or a random curve. Suppose {Z t } is

a zero mean stationary bounded process,

z A for all t.

)bviouslv . cannot be a (;aussian process. In the range (-A,A)t

define a uniform, completely random, process I1' which consists
t

of independent random variables uniformly distributed in (-A,A).

For e,,ich t, IV has the probabilitv density 1/2A defined (i.e.,

positive there) over (-A,A). C orrsponding to . N we now

,,N,
, ', .. '.. Z.. ... ,.... , . . '-' '%l-. o .........................................-....... ".".-......-. '-
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have the "random curve" Ul.. N ' so that the Lime series

Z I .... zN  and the random curve U ,...,U N  cross each other as in

Figure 18.

Zt

- - -- -Ut

A

-A

Figure 18. Random curve crossings.

Iet C be the number of such mutual crossings. Then it can be

shown that 1581 the analog of (2) is given by

A 1- 2-(-C ) _ cos(.,)dF(w). (48)

In princ ip we ,-h n w w,,rk ou t i new thee ry whiclh p-irai I llIs the

;ahove development, but the new rusults do not- :isslme simple forms.

Ith sec(d p ? in? rl (;I ne ,lari fic/ation is thu choice ot

.a level (not) ]Liic)a wli(Ic Wk- clip to obtalintl ssns. t he

(anussian k-ae, thre is a certain ldvalta;eo il ci ipping; at tines at

, I ther tIl[ () [ ], 6001 but then the stro ng intuitivw appelt.,

o)t zelro-cross in),s is lost

i - .-..'- - - - ... - - " - - - - - " ".. . .- - -. ' :--7
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Our last point concerns a curious similarity between Rice's

formula and the zero-crossing spectral representation (2). The two

are not too far apart after all. To see that, apply to the cosines

in (2) a second order Taylor's series expansion to obtain after

some cancellation the approximation
2

ED J - dFw)
1 1 (49)

N-I FT (IT

7Td F (,)

The left hand side of (49) is our definition of the expected zero-

crossing rate, while the right hand side has the form of Rice's

well-known formula 119, eq. 3.3-11] for the zero-crossing rate when

expressed in terms of the 2nd spectral moment, but modified to suilt

the discrete time case.
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