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~:j Abstract

_*:‘ We study the asymptotic behavior of maximum values of birth and
G death processes over large time intervals. In most cases, the

X distributions of these maxima, under standard linear normalizations,
:: either do not converge or they converge to a degenerate distribution.
ks However, by allowing the birth and death rates to vary in a certain

Ez manner as the time interval increases, we show that the maxima do indeed
N

::' have three possible limit distributions. Two of these are classical
B~

extreme value distributions and the third one is a new distribution.

:: This third distribution is the best one for practical applications. Our
_:: results are for transient as well as recurrent birth and death processes
A and related queues. For transient processes, the focus is on the maxima
- conditioned that they are finite.
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o l. Introduction

When modeling the dynamics of a parameter of a system by a

o stochastic process, the questions one addresses depend on the nature of
E the parameter. In some instances, the extreme values of the parameter
rather than its usual values may be of paramount interest. In a

] manufacturing plant, for example, a typical parameter is the queue length
; of parts waiting to be processed at a work station. Small to moderate
values of the queue may indicate that the system is operating

48 successfully and the queue fluctuations are unimportant., On the other

hand, large queues may call for extraordinary measures such as allocation

" of auxiliary storage space, employee overtime, or rescheduling of

v

:: production. A natural question is: What is the probability that the
z

iy
‘:f queue will exceed a specific critical value in a certain time period?
Y

Extreme value questions like this are the topic of this paper. More

specifically, our focus is on characterizing the asymptotic behavior of

O the maxima of birth and death processes and related queues.
The gist of our study is illustrated by the following results for

the M/M/s queue. Consider such a queueing process in which customers

. arrive to s servers according to a Poisson process with rate A, and the
independent, exponentially distributed service times have mean u.l. Let
M denote the maximum queue length in the time interval [O,Tn], where T
is the nth time the system becomes empty. Our interest is in finding

." norming constants a, bn > 0 and a non~-degenerate distribution G such

that

4 (1.1) lim P((M_ - a )/b_ < x) = G(x),

-, n-+®

for each continuity point of G. When such a s bn’ G exist, we say that

e - - , e PR L e T R LR G,
! T T N - AT A A T A \5..\‘}'!
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Mn has the limit distributicn G. Otherwise, we say that Mn does not have

a limit distribution. As usual, we consider only linear normalizations.

We can write Mn = max{Yl,...,Yﬁ#, where Y, is the maximum of the
queue in the interval [Tk—l’Tk]' Since the queuing process is Markovian,
then YI’YZ”" are independent identically distributed random variables.
From the classical extreme value theory for independent identically
distributed variables (see for instance Galambos (1978) or Leadbetter et
al. (1983)), we know that the possible limit distributions for Mn are
only exp(—x-y), x »0, or exp(-e-x), xeR. One consequence is as follows;
this is a special case of Theorem 2.5.

THEOREM l.}l. If the queueing process is null recurrent (A = su), then

~1
lim P(Mn/(n(x/u)ss!) <x) =e * , X »0.

n» =

Cohen (1969) proved an analogue of this for the M/G/1 and G/M/1 queues;
related studies on extreme values of queue lengths and waiting times are
Heyde (1971) and Iglehart (1972).

Another classical result for discrete random variables is that the

convergence (l.1) can take place only if

lim P(Y

m oo

1 - m)/P(Yl > m-1) = 0.

Consequently, we have the following anomaly.
THEOREM 1.2. 1If the queueing process is positive recurrent (X < sy),
then Mn does not have a limit distribution.

This non-convergence theorem is surprising, especially in light of
Theorem 1.1, since positive recurrent processes generally have nicer

properties than null recurrent ones. Cohen (1969) and Anderson (1970)
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give insights on typical liminf's and limsup's for the distribution of
(Mn-an)/bn.

Our point of departure is to establish the convergence (1.1) for
queues and birth and death processes in spite of the non-convergence
described in Theorem 1.2 and its generalization, Theorem 2.3, Our
approach is to allow the birth and death parameters (A,u,s for the M/M/s
queue) to vary with n when considering the convergence of Mn. Such
parameter variations in limit theorems are not uncommon. A classic
example is that if Sn is a binomial random variable with parameters n,p
and if p = P, varies with n such that np_ A>0 as n + = then the
distribution of sn converges weakly to a Poisson distribution with mean
A.

Here is an example of our major results. Suppose Mn is the maximum,
as above, of an M/M/s queue, where the arrival rate A = A(n) and service
rate y = u(n) depend on n. Let Py = An)/(su(n)).

THEOREM 1.3. Suppose that Py <1 for each n and that Py * 1. The
possible limit distributions for Mn are Go(x) = exp(-x-l), x 2 0; G (x)
= exp(-e-x), x€R; and

(1.2) Go(x) = exp(-c/(ex-l)), x 20, for 0 < ¢ ¢ =,

The Mn has the limit distribution Gc' where 0 < c < », {f and only if
n(l-pn)/s! + ¢. Appropriate norming constants an, bn are as in Theorem
3.1.

Note that G0 and G_ are classical extreme value distributions. The
third distribution (1.2) has not appeared in the literature before.
Numerical work has shown that this new distribution is the best one for
practical approximations. Namely, for the standard M/M/s queue with

traffic intensity p= Msy,
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P(-Mnlogp <x) = exp(cn/(ek-i)), x 20,

where cn = n(l-p). This approximation is good for n > 15 and for all
p< 1.

This completes our introductfon. Here is what lies ahead: Section
2 consists of preliminaries, including classical convergence and
non-convergence theorems for extreme values of birth and death processes;
Section 3 contains our main results for recurrent birth and death
processes; Section 4 contains analogous results for transient processes;

and Section 5 gives applications to M/M/s and related queues.

2. Preliminaries

We shall consider a continuous~time birth and death process on the
nonnegative integers with birth rates AO,AI,AZ,... and death rates
My = 0, HysHysees This is a Markov process that evolves as follows:
Upon entering state k, the process remains there for an exponentially
distributed time with mean (Ak+uk)-l, and then it moves to state k+l or
k-1 according to the respective probabilities Ak/(xk+uk) and uk/(xk+uk).
We assume for now that the process is positive recurrent or null
recurrent - transient processes are discussed in Section 4. We also
assume, for convenience, that the process at time zero begins in state
zero. Let Mn denote the maximum value of the process in the time
interval [O,Tn], where Tn is the time of the nth visit of the process to
state zero. The Mn and Tn are finite valued since the process is
recurrent. We shall study the asymptotic behavior of the distribution of
Mn as n + 0.

We can write M = max{Yl,...,Yn}, where Y, 1s the maximum of the

birth and death process {in the time interval [Tk-l’Tk]’ here Tb = 0,

Since the process is Markovian, the random variables Y ,Y ,... are
1 2
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-j:~. independent and identically distributed. Consequently,
e N

a1 n
" . P(Mn < x) = P(Yl < x,:..,Yn < x) = F(x) ’
¥ %
',,:‘. where F is the distribution of the Yk‘s. To obtain an expression for F,
[} "‘P

ChTs
s-": note that the successive states of the birth and death process form a
oh
K,

e simple discrete~time random walk that moves from state k to state k+l or
'-“-‘

. -
‘:j-": k-1 according to the respective probabilities ).k/(xk"'uk) and uk/( kk+uk).
Y Su )
:f.‘\- Then clearly F(x) is the probability that, starting from state 1, the
e random walk reaches state 0 before it exceeds x. Thus, from Section I.12
')-.

o of Chung (1967), we know that

-

> .
N X -1
S (2.1) F(x) =1-(Z rk)
WA k=0

»
:’ where L 1 and L (ul...uk)/( Al...kk), k > 1. Furthermore, the birth
-

-:,}-:‘ and death process is recurrent when 2:=0rk = o and is transient when
'f‘:' Zw { o
RN k=0"k ~ °

AN Here are some asymptotic properties of the ratio Xk/uk, depending on
:::::f: whether the birth and death process is transient or recurrent; we let
oo -
YRR (2.2) p=liminf A /u and p = limsup A\ /u .
= fotnf 3/ insup N/
L

o L
J\ LEMMA 2.1. 1If 2k=0rk < =, then )\k/uk > 1 for an infinite number of k's,
e and p 1. If L, .r, = = then p < 1

ey p 21 Dem0Tke ™ y

A

L Proof. Suppose 2;;0 Ty { ® For any N > 1, we have
Y - -
R .

o S TR U L UL

u.‘,,s' =

:3',\ Thus )‘k/uk must be > 1 for an infinite number of k's; otherwise, the
A

.'t first sum would be infinite. To prove p » 1, fix € > 0 and let N be such
v
.r.:x,‘
o
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that Ak/uk 2 p- ¢, k »N. Then

0 N-1 L) -n
®» > L r, = L r, +1r 2(p-¢ .
k=0 © k0 ¥ Nogeo

Consequently, (p—e)-l < 1 for each € > 0, and hence p » 1. The second
assertion is proved similarly.

Keep in mind that, for now, we are considering only recurrent birth

and death processes. Our interest is in the weak convergence of the
distribution
(2.3) B((M_-a)/b <x) = Fa_ + bnx)n =[1-Q-Fa + bnx))]n,
where a, and bn > 0 are constants. It is well known that, for any yneR
and -» < y < = the convergence (l+yn)n +e’ 1s equivalent to ny, * Y.
This property applied to (2.3) translates into the following known result
(cf Corollary 1.3.1 of Galambos (1978) or Theorem 1.5.1 of Leadbetter et
al. (1983)). Here 0 < g(x) < o,
CONVERGENCE CRITERION 2.2. P((M_ - a )/b < x) + B 46 n » = if and
only if n(1 - F(an + bnx)) + g(x) as n + », Note that this criterion is
also true when F varies with n.

We begin by characterizing when the maximum Mn does not have a limit

distribution and when it might have one. Here we use the notation (2.2)

m

and B = g,=lr<l+1 Azluz.

THEOREM 2.3. (i) The maximum Mn does not have a limit distribution if

and only 1if

m-1
(2.4) liminf < o,
=0 %em

n-+»

(1i) 1Inequality (2.4) holds when 2:;0 limsup % < »or when p< 1.

m >
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(111) 1Inequality (2.4) does not hold when 2;;0 liminf 4, = ®or when

m >

p »1. The condition p » 1 is equivalent to lim )\u/uk = 1.
ko

(iv) 1If @ = lim 4 exists for each k, then inequality (2.4) holds if

m »>oe

and only if I, o < =
Proof. (1) We know, from Theorem 1.7.13 of Leadbetter et al. (1983),
that there exist X and 0 < 1< « such that n(1 - F(xn)) + Tasn + = if
and only if

(F(m) - F(m - 1))/(1 = F(m-1)) 0 asm + =,

The latter condition, in light of (2.1), 1is

-1 m-1 -1
r/ %0 Tk = (kjb “hm) +0 asm + o,

Then, by Criterion 2.2, the Mn does not have a limit distribution if and
only if the last convergence does not hold, which is equivalent to (2.4).
(11) 1If the sum Z:;O limsup L is finite, then by Fatou's lemma this

m >0
finite sum is an upper bound for limsup Z::é %m and hence (2.4) holds.

m +»

Now suppose p < 1. Then for any c in the interval (p,1), there is a

number N such that Ak/uk <c for k » N, It follows that, for m > N,

m -1 N m
(205) z =r Ir, + T
k=oa“"' B =0 & kel Yl
m—-N
-1 m-N L
< rN c z rk + I ¢

k=0 2=0

+1/(1l = ¢) asm + o,
Thus (2.4) holds.

4
(111) By Fatou's lemma, the sum zk=0 liminf LY is a lower bound for the

m oo

left side of (2.4). Thus, if this sum is infinite, then (2.4) does not

"
-

.. R
M VS, - W
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hold. Now suppose p > 1. Then for any ¢ < 1, there is an N such that

i Ak/uk » ¢ for k > N. The display (2.5) clearly holds with the inequality

reversed and so

m
liminf g @ > 1/(1-¢).
k=0

m +o

Letting ¢ » 1 implies that (2.4) does not hold. To prove that p » 1 1if

Ao . .
” .

~

i\ and only 1if lim Ak/uk = 1, we need only show that p > 1 implies
b ~‘?~ k+o
] -
B p=p= 1. But this is true because, by Lemma 2.1, we know that
fnj; p<p <1,
jb@ (iv) This part is a consequence of parts (ii) and ({iii).

!\--

Q\‘\.
N The preceding theorem yields the negative conclusion that the
-lf' existence of a limit distribution for Mn is the exception rather than the
q.:’-:

:fi: rule: There is no 1limit distribution for a typical positive recurrent
-,
-

process with limsup Ak/uk < 1, but one might exist for an atypical

—_— k +oo

.'_\:,
,}f; process with lim Ak/uk = 1 (such as a null recurrent process). For those
o ke
“;“: instances when there might be a limit distribution for Mn’ we have the
‘{ . following properties from the classical extreme value theory.
: *. JI
R
:::t PROPERTIES OF Mn 2.4. (a) The possible limit distributions for Mn are

v

o - -

Jj only exp (-x Y), x » 0, or exp (-e x), X eR.
;fﬁ (b) The first of these distributions is the limit if and only if
A3d

-'*r, t tx Y
ue (2.6) (1 - Fex))/(1 = Kt)) = £r/ Lr +x asxs=,
Lo k=0 = k=0

o, "
7‘;' Appropriate norming constants are a = 0 and bn = min {m: ﬁ:=0rk >n}.
;ft? (c) The second distribution in (a) is the limit distribution for M, if
-I_:.'.
{fﬂ and only if there is a positive function g(t) such that
¥
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t t+xg(t)
(2.7) (1 - Pt + xg(t)))/(1 - F(t)) = = r,/ L
k=0 k=0
-X
+c as t + o

In this case, one can choose
t o k -1
g(t) = Ir E(Zrm) .

k=0 k k=t m=0

and a = min {m: Z(LOrk >n} and bn = g(an).

A special case of (b) is as follows. This applies, for instance, to
a null recurrent process with Ak = W k > s, for some s (such as the
M/M/s queue in Theorem 1.1l).

THEOREM 2.5. If ):;;0 It = A /u | < =, then

-1
(2.8) 1im P(Mn/nb <x)=¢e X x >0

»
1 >0
a
where b= I Xk/uk.
k=1

Proof. A basic property of infinite products of real numbers is that

I (1-a, ) exists when )::_ la, | < = 1In light of this, the hypothesis
=k =1'%

implies the existence of the limit b, Now

k
1lim r, = lim 1@ ul/k = b-l.
k>0 O
Consequently, al ):::O r, * b-l, and so
o NS
n(l - F(nbx) } = [bx(nbx) b rk] > x as n + ®,
k=0

This convergence and Criterion 2.2 yield (2.8).

3. Main Results

We saw above that the maximum Mn does not have a limit distribution

for a wide class of birth and death processes, including those in which
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limsup Ak/uk < 1. However, Mn might have a limit distribution when

k+

lim )\k/uk = 1. These negative and slightly positive findings prompted

k>

us to explore the convergence of Mn when the parameters Xk = and

Ank
vary with n such that Ank/unk is nearly 1 for large n and k.

uk unk
This is the basis of our following results.

Consider a sequence of recurrent birth and death processes indexed
by n=1,2,..., where the nth process has the respective birth and death
rates Ank and Mok when in state k = 0,1,... For the nth process, let Mn
denote its maximum up to the time of its nth return to state zero. This
Mn has the same meaning as the one in Section 2, but here its defining

parameters Xn vary with n as well as with k. That is, Mn is the

k* Mok

maximum of n independent random variables with the common distribution

x -1
F(x)=1- (2% r_ )
n k=0 nk
where rno = () and rnk = (unluoaunk)/(knlooo)\nk), k > 1.

We shall assume that, for each n, there is a positive number Py <1

and a positive integer Sh such that

(3.1) Ank/unk = P for k > S
and
-1 Sn
(3.2) 1im n z L 0.
n »o k=0

The parameter s may be bounded, unbounded, or independent of n, such as

L) -k
k=s pn
n

s_ = 1. Assumption (3.1), with G <1, implies that ¢

>
n

=0" nk
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= o, yhich ensures that the nth birth and death process 1is recurrent.
Assumption (3.1) is satisfied automatically for M/M/s queues: the s, s

the number of servers. Assumption (3.2) holds when s and Tk are

bounded or when r B for k <s and s B /n + 0.
nk n n nn

We shall show that when IS 1, the possible limit distributions for

(M - a)/b are as follows. Here c = lim ¢ and
n n’' “n n

n-+o
-1 Sa
(3.3) ¢, = n(l - pn)rnsn = n(l - pn)kg1 Ank/unk'
Case Limit Distribution Norming Constants
..1 s
c=0 Go(x) = exp(-x ), x>0, a =s -1 bn = nkBT )\nk/unk
X
0<cK =™ Gc(x) = exp(-c¢/(e"=1)) a =s - 1 bn = -1/10gpn

c= Gqﬂx)

)

exp(—e-x). XeR, a_

-1 -1ogcn/10gpn

A

bn = -/logpn.

An easy check shows that the distributions G, (0 € ¢ < =) are of distinct
type: Gc and Gc' are of the same type (Gc(x) = Gc,(a + bx) for some a,b)
if and only 1if ¢ = c'.

The following result gives sufficient conditions for the existence
of limit distributions for Mn.
THEOREM 3.1 Suppose (3.1) and (3.2) hold and py * 1. If ¢, *cas

n > o ywhere 0 < ¢ < %, then

(3.4) lim P((Mn - an)/bn <x)= Gc(x), xeR,

n»w

where the Gc’ a , bn corresponding to the limit c are displayed above.

Proof. By the Convergence Criterion 2.2, it suffices to show that c, *c

implies

(3.5) lim n(1-F (a_+ b %)) = x !

n +®

when ¢ = 0

= c/(ex-l) when 0 ( ¢ ¢ =

............
.....

------

vy
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):‘.:: =e X when ¢ = =,

e

\ To this end, let mn(x) denote the integer part of a + bnx. Using
:"..-f (3.2), we have

Q‘. .i
_<_:~. -1 mn(x) -1

S (3.6) n(l - F(a +Dbx))=(" I r,)

s k=0

v s -1 m_(x)

b = (n 1 o Tt n L ns s> Py (k sn)) 1

LI =0 n k=s

e n

Y -1

Y = (o(l1) + z (%))

?::-.r n ’

. where

3 -~

e s -m (x)
:::-_j; z (x) = (p - p)/c,  when p <1

e -1 -
_.:.\. (mn(x) sn)/(m'nsn ) when Py = 1.

S Then to establish (3.5), it suffices to show that zn(x)'—1 converges to
‘::'_':: the values on the right side of (3.5). Three cases present themselves.
i

e Case 1: c +c = 0. Here

. - L -1

T mn(x) =a + bnx + 0(1) = s, -1+ xnr o+ 0(1).

i "

_-::f-: First consider the special situation in which I 1 for each n. Using
o

- -1

S n rnsn + 0, we have

‘::;:: z (x).l = nr l [(m (x) - s)

A n ns " n n
0N -1 1

A = (x+ o(l)) = +>x = as norex,
'_ Next consider the general situation in which IS 1. Because of the
T preceding, we may assume that p < 1 for each n.

e

;.‘,; Using

‘.. logp = - (1 - p) + o(l - p) and eu=l+u+o(u)

N n n n
= as u » 0, it follows that |
[

"

.-.:,-,

d'. \'
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sn—mn(x)

©
i
©
[

exp[(s - m (x))logp ] - o

exv[xcn + o(l—pn)l - py

1+ xc + O(l-pn) + O(Cn) - e,

xe  + O(I-pn) + o(cn).

Substituting this in the expression for zn(x), and using (l-pn)/cn

_l .
=0 r > 0, we have the desired convergence
n

zn(x)—1 s [x + O(I-pn)/cn + o(l)]-1 > x.l as n » o,
Case 2: <, +¢ and 0 < ¢ £ », Here
mn(x) =s - 1 - x/logpn + 0(1).
Using logpn = o(l), we have
_l_
z (x) ~ = cn/(exp[(sn m (x))loge ]l =0 )
= cn/(exp[x + o(1)] - pn)
»> c/(ex -1) as n +» o,
Case 3: cn +¢c = o Here
mn(x) =5 - 1 - x/logpn + logcnllogpn + 0(1).
Using logpn = o(1), we have
8 = mn(x)

Py = exp[(s_ - m (x))logp ] = c e

x+o(1)

Thus

x+o(1) _ pn/cn)-l 2 e X asn se,

-1
z (%) (e
This completes the proof.
Theorem 3.1 says that the convergence of <, is sufficient for Mn to

have a limit distribution when 0, l. The next result says that the

convergence of c is necessary as well, and that Mn has no limit

v'J'vI .r.._.-. e 4-,

‘-%"-‘.
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:-:: distribution other than those above.

-

-
- THEOREM 3.2. Suppose (3.1) and (3.2) hold and LI 1. The possible
::-:::- limit distributions for Mn are Gc’ 0 <c < = and Mn has the limit
'_.-
::-:t: distribution Gc if and only 1if <h +#casn + o,
;‘ Proof. Suppose Mn has the limit distribution H. Since [0,«] is a closed
'ffi set in the extended real line, there are positive integers n e and c
Mg

-..::- in {0,*] such that ¢, *cas k + », Then by Theorem 3.1, we know that
O k

Mn has the limit distribution Gc' Moreover, Mn also has the limit

- k k
:-:'; distribution H. From Khintchine's theorem on convergence to types of
S
Ty
oy distributions (see for instance Theorem 1.2.3 of Leadbetter et al.
68 (1983)), it follows that H and G are of the same type. This proves that
-

o any limit distribution of M must be one of the distributions G.»

-~

> 0 <¢c € o
- We now prove that c, *c is necessary and sufficient for Mn to have
:15 a limit distribution. The sufficlency follows from Theorem 3.1. To
3:} prove the necessity, suppose that Mn has the limit distribution Gc' Let
Efl ¢ be any convergent subsequence of c. and let ¢' = lim ¢, Arguing as
o ks Tk

E:':_: in the last paragraph, it follows that Gc' as well as Gc is a limit
735 distribution of Mn and that Gc' and Gc are of the same type. Conse-
-.:'- quently, ¢' = ¢, Thus, we have shown that any convergent subsequence of
e c, must converge to c and hence ¢+ c.
' APPROXIMATION OF P(Mn €< x) FOR PRACTICAL APPLICATIONS 3.3. Consider the
®
o maximum M of a birth and death process with rates A ,u (without the

g artificial dependence on n) that satisfy xk/uk = p, k 8, for some 0 < p
A

5
'_-_" <1 and s »1l, Theorems 3.1 and 3.2 yield the approximation

RS (3.7)  P((M_- s+ 1)(-logp) < x) = exp(c /(e" - 1)), x >0,

~I
£
R

LA .
) !
::_':: Y ..:._-- .‘~;..-1, "xl.‘(...t'l“-s .;.-(,'—‘ e e et -_4."...'_# Carnl T "'-’\" .-‘-.‘.:_'J'_‘__." ‘._' ’.'\' ‘-n- -.n"- ) ‘-' -
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- where c, = n(l-p) 1 Ak/uk and n 1s large.

s k=1
g3 There are analogous approximations for P(Mn< x) by G0 when c is
L
:: small and by G when cy is large. However, these are not as good as

-

*u
:x (3.7), which is superior for any che This is because G0 and G_ are only
.~ theoretical limits for the two “unobtainable” values of h in {0,%]; they
N are not functions of the actual ¢ as the right side of (3.7) is. For

) the case when the process is null recurrent (p=1), Theorem 2.4 yields the

]
? classical approximation P(Mn/nb < x) = Go(x), where b = kflkk/uk. We

were pleasantly surprised that the approximation (3.7) is accurate even

when p is not near one. This is apparently because p appears on the

47\ Yiyhang

.: right as well as left side of (3.7). For the M/M/1 queue, we found from
:E numerical computations that the difference between the two sides of (3.7)
™ 1s below 0.018 when n = 15 and below 0.0l when n = 20, for any p in

z 0,1).

PROPERTIES OF THE LIMIT DISTRIBUTIONS 3.4. Let xc denote a random

'y
> e

variable with distribution Gc' 0 <c € » and let Y denote an
exponentially distributed random variable with unit mean. Standard
change-of-variable computations show that

x. 21/Y, x_@-1ogY, x_ 2 10g(Y +¢c) - logy, 0<c< =

0 P g) c g g’ [
where these are equalities in distribution. Solving the equations for Y

and using obvious substitutions, we also have

",,.-.».véa,;. - AT |

2 - 2 -
y xo exp(-X ) c/(exp(xc) 1) A
. X, @ logx, & log((exp(X ) - 1)/c)
2
h® X, @ 10g(1 + cxo) € 10801 + cexp(-X _)).
v The G_ can be viewed as the limit of G, as c » @ in that

T

.

Ta ™ e «
“'_-".u';'.-
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:::: Gc(x + loge) ~» Gm(x) as ¢ » = ({.e, Xc - loge - !(_). It is known that
K4S w
- EX_ = E(-logY) = - f e Y logy dy = vy,
B - 0

.:::-4 m

TN where Yy = .5772... is the Euler-Mascheroni constant y= 1lim ( £ 1/n -
... m+e® n=]

LA
“ \ logm), and
o E(e®w) = E(¥™% = K1-a), for a< 1,

NN .

.~ where N(a) = [ u” e " du. In comparison, for 0 < ¢ < =, we have
) 0

" Exc = E(log(c + Y) - logy)
:'::': [
o = e [ e logu du + v.

N

Ny 0

Yy Hence

¢

.r;.j c

- EX, = vy+e(y, -7,
:::::: where Y, =~ fce-u logu du, which can be interpreted as the

e 0

Euler-Mascheroni constant on {0,c] (recall that Y, = Y). The Y, can be

., computed by numerical integration; it is a positive continuous function
:* in ¢ that increases on [0,1] and decreases on [1,»]. Furthermore, using
o

J the binomial expansion, we have

:"*:" g k

',::;: E(exp(aX )) = E(1 + ¢/Y)%= I (l‘:) e (S a), for a< 1.
oot ¢ k=1

o We end this section with further insights into the irregular

.—: behavior of M. Can M have a limit distribution when p, does not

::,_: converge to one? Can Mn have a discrete limit distribution? The

v

::::-: following results show that the answer to each of these questions is
{ X

e yes.

NN

:::_'- PROPOSITION 3.5. Suppose the birth and death processes satisfy (3.1),
:_":

Lo (3.2) and Py * P < 1. Let a_ be a sequence of integers. Then the
/ :

.

N>

i -P.

. ?

A -

L

~

R A

P4

VLI -*. R
A%y .’ A" '."’ g *

.;.-;a{-(f‘ ;‘, Ay AR S AR AT KN NS vy (:',v“.r;'.a".':f“.-:'f".' e e ) e
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N distribution of Mn - a, converges weakly to a nondegenerate limit H as n
\ 4
' + » if and only if
¢ -1 sn—an
E (3.8) n rnsnpn >a>0 as n > o,
It In this case,
- -1 [x]
H(x) = exp(-a (1-p)p '), xeR,
- where [x] denotes the integer part of x (H is concentrated on the
! integers).
n Proof. With no loss in generality, we may assume that Py < 1 for each n,
e —_—
;; By (3.6) with mn(x) =a + [x], we have
- -1 sn—an-[x] -1
n(l - F (a_ + x)) = (o(1) + n rnsn(pn =)/ =0 )) .

Recall that n-lrns + 0 because of (3.2). Then clearly
n
[x]

e f e

n(l - Fn(an+x)) »> orl(l-p)p if and only if (3.8) holds. Hence, the

AN
s a4

assertions follow by Criterion 2,2.

iRy
.

- Proposition 3.5 may not be too useful for applications since (3.8),
:i apparently, is rarely satisfied. Indeed, we know from Theorem 2.3 (i)
" that there do not exist a that satisfy (3.8) when xnk’ Mk’ ®n and G
Li are independent of n. A subtle variation in these quantities as n+= is
$ therefore needed for the existence of a that satisfy (3.8). Here is

:- such an instance.

0 =1/{1logn]

o EXAMPLE 3.6. Consider the special case in which Ank/unk = n ,
y s

7 k >s,and T A ,/u, »yY>0asn + e Then (3.1) and (3.2) hold and
" n nf

e =1 )
{ Py exp(-logn/[logn]) =+ e-l. Let a = [logn]. Then

o

R

‘N

)

N

Ly

tl

-

L.

\‘ 3

"
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s-a
-1 n s -1 -8
n r_ p =2 r p +Y'e

as n + o,
ns'n nsn

Hence Proposition 3.5 yields
[x],

lim P(Mn - an< X) = exp(—Be- » XER,

n >

where 3 = Yes(l-e-l). This limit distribution is a discrete version of

G (x) = exp(—e-x).

4, Extreme Values of Transient Processes

Consider a birth and death process, as in Section 2, with rates

[ J
Xk,uk. Assume that the process is transient, that is, the sun B= £ r
k=0

is finite. Let Mn denote the maximum of the process up to the time Tn of

k

its nth return to state 0. Because the process is transient, the Mn and

Tn may be infinite: from (2.1) we know that

X

P(M1 <x)=1-(12 rk)-l, and so P(Ml {® =1-1/B<1l. Of interest,
k=0

therefore, is the asymptotic behavior of Mn conditioned on Mn < o,

Accordingly, we now consider the convergence of the conditional

distribution
(4.1) P((M - a)/béx | M <= =Ha +bx",
where
X -1
(4.2) H(x) = P(M, <x | M <= =(1=-(CZ r) )/(1-1/B).
1 1 ko

Similar to the terminology above, we say that Mn conditioned on
Mn < = has a limit distribution or doesn't have one according to whether

or not the distribution (4.1) converges weakly to a nondegenerate

o

- _:..’.:_,.:, e

e R . T et et AR
LAk \"-.‘\' Lo "'\."\ .
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distribution. The following result is analogous to Theorem 2.3. Here we
_ k
use p= liminf \/u, p= limsup A, /u , and B, = 0 u .. /X2 . ..
2 o N M b he Ve mk © 0 M e Cmeg
“ e
. THEOREM 4.1. (1) The Mn conditioned on Mn { =« does not have a limit
-'{-:
::'-:.' distribution if and only if
4 V\' a0
.:__.‘n (4.3) liminf & B8 K < =,
e mse k=m
o (1ii) Inequality (4.3) holds when ):: limsup B . < = or when p > 1.
| !‘-“I =0 mk
W me
o (111) 1Inequality (4.3) does not hold when £:=0 liminf B8 K= ®or when p
,_-‘. J m-»e n
::\: € 1. The condition -{) <1 1s equivalent to lim xk/uk = 1,
T e
(iv) If 8 = lim B exists for each k, then inequality (4.3) holds if
——rd m @
ot @
.-::. and only if £k=0 Bk < oo,
::: Proof. From (4.2) and a little algebra, we get
-. L] m @ 1
(4.4) (H(x) - H(x - 1))/l -Hx~-1))=(2 rk/ Z rk)( z Bmk) .
-:...-: k=0 k=0 k=m
:;;:: Then arguing as in the proof of Theorem 2.3 (i), it follows that Mn
“
o~y conditioned on M { = does not have a limit distribution if and only if
.‘ expression (4.4) does not converge to zero, which is equivalent to (4.3)
s
:-:.': (the first term on the right of (4.4) converges to one).
]
:}: Part (1iii) follows since, by Fatou's lemma and the product form of
s
DN Bmk’ we have
'\_ o © o K
o lminf I B, > I Unminf g, > I b,
or m+e  k=m k=0 mee k=0
.-"‘ and the second assertion in (i11) is proved the same way its analogue in
e
0oy
R
wf
A
4 .
-
o, .
03
"
. %)
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Theorem 2.3 (iii) was. Part (ii) follows by a similar argument, and part
(iv) is a consequence of (ii) and (iii).

Theorem 4.1 says that for a typical transient process with liminf
k +o

Ak/uk > 1, there does not exist a limit distribution for Mn conditioned

on Mn < =, but there might be a limit for a process with lim Ak/uk =1,

k»o

When it is possible for the limit to exist, then the asymptotic behavior
of Mn conditioned on Mn ¢ = is analogous to Properties 2.4. Here we have
a further simplification.

REMARK 4.2. The distribution (4.1) has the same limiting behavior as the

X

distribution H(a_+ b x)n, where H(x) = B“1 £ r,. This follows since
n n k=0 k
~ —1 X
1 - Hx) = (1 - 8/Q -8 & r),
k=0

and so ratios of the form (1 - H(xn)/(l - H(yn)), like (2.6) and (2.7),
have the same limiting behavior as (1 - ﬁ(xn))/(l - ﬁ(yn) when x , y

The preceding observations lead to the study of M when the ratio
)\k/uk depends on n and is nearly unity for large n. Accordingly,
consider the maximum Mn’ as in Section 3, for a sequence of birth and
death processes with rates Ank’ unk that depend on n as well as k. Then

n
P(M_ < x | M < @) = H (x)

where

X
(0 = (1= (T r ) O/ - 1/8),

and ro ™ 1,
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L~ LY = =

*Q#: Fnk (unl v unk)/(knl e xnk)’ Bn kfo Fak®

o Assume that (3.1) and (3.2) hold and that Py > 1 for each n., Then each
-\-‘:_‘

et birth and death process is transient since Bn is finite:
[- :“: ©

P ‘..- = —m = -

- (4.5) B, = Too f o /(1 =1/p).

! n m=0 n

‘i:{ The following result, analogous to Theorems 3.1 and 3.2 combined,
o

{:i says that when Py 1, the possible limit distributions for Mn

N

i conditioned on M < =are G, 0 <c < = Here we let

:N}' c_=n(l - 1/p )1‘-'1 c = lim ¢

2 n n° ns n

-\’: n n-+o

ol and
o .

a =s =1 b = ar when ¢ = 0

e n n n ns

~
Y
]
n
[
—
o
(]

lllogpn when 0 € ¢ ¢ =

.: A e n n
a =s - ) log(l/cn - 1/n)/logp bn = l/logpn when ¢ = o,
;u;ﬁ This notation is that of Section 3 with L replaced by l/pn and the last
e
ey a  changed slightly.
- THEOREM 4.3. Suppose (3.1) and (3.2) hold, R > 1 for each n, and
J
o pn + 1. Then Mn conditioned on Mn < ® has a limit distribution if and

only if <, + ¢ where 0 < ¢ < ®» 1In this case

-

S (4.6) lim P(M_- a )/b < x | M < =) =G (x), xeR,

G n+o°

e where an,bn are defined above.

;t;: Proof. We will prove that c *c implies (4.6). Then the rest of the
n'*-:_A

i;: assertion will follow by the argument we used in the proof of Theorem

3.2. Similar to (4.5), we can write, for m > 8.

Ay
e

]

é% m n_, -mts -1
O
f'-
‘\.':'\
W
fﬁ
oo
. [ ]

g,

e

%
>
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:_: Let mn(x) denote the integer part of a + bnx. Then using (4.5) and
Y
N (4.7), we have
_'z".' m_(x)
- -." n
o (4.8) n(l - H (a + b x)) = n(B / kfﬂ r - D/(B 1)
N -m_(x)+s -1
-, n n -1
. = - - - /
D) Cn((l Py ) 1/ c /m
AN mn( x)—sn+1
N = 1/((1/e = 1/n)(p - 1)).
-" Suppose c, G where 0 < c < » Then by Cases 1 and 2 in the proof
X of Theorem 3.1, with N replaced by p;l, it follows that
:: mn(x)-sn
:;:__ (4.9) lim n(l - Hn(an + bnx)) = lim cn/(p -1
o n > n-+o
-\ = x ! when c = 0
u x
. = c/(e” - 1) when 0 < ¢ < =,
o
D Next, suppose cn + », Here
o
L
mn(x) =s - 1 - log(l/cn - l/n)/logpn + x/logpn + 0(1).
Sy Using this in (4.8), we have
C A
:;_-.,.-. mn( x)-s +1
o (4.10) 1im n(l - H (a_+ b x)) = lim 1/(1/c_~- 1/n)p “
n “n n n n
:::_- k > n -
J = lim exp(—(mn(x) - s + 1)logpn - log(l/cn - 1/n))
\_'.u.‘ n-»o
-X
\._'.' = e .
g Thus, (4.9), (4.10) and Criterion 2.2 yield (4.6).
B v . ‘a
>. REMARK 4.4. The analogue of Approximation 3.3 for the birth and death
_:::::: process with X /u = p, k >s, and p> 1 1s as follows
::::::j (4.11) P((Mn - s + l)logpn <x | L { =) = exp(cn/(ex - 1)), x >0,
q s
o where ¢ = n(l - 1/p) I AT :
;:‘-‘: n -1 A'k uk 1
e |
e |
e |
o L !
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N 5. Extreme Values of Queues
e We now apply the preceding results to the M/M/s and related queues.
S The M/M/s queueing process described in Section 1 is a birth and death
- process with birth rate A = (the Poisson arrival rate of customers)
C and death rate W = M min{k,s} (the rate at which k customers depart from
5 the s servers).
N For our first result, we suppose Mn is the maximum of this M/M/s
b queue up to the nth time the system becomes empty. The limiting behavior
§ of Mn depends on the queue's traffic intensity p = A/suy. The queueing
f: process is positive recurrent when p < 1, null recurrent when p = 1, and
i transient when p > 1. The following is an immediate consequence of
N Theorems 2.3, 2.5 and 4.2.
N COROLLARY 5.1. If p< 1, then Mn does not have a limit distribution., If
p=1, then
. _x-l
i (5.1) lim P(mn/nb <X) =e , X >0,
n+o
where b = (A/u)ss!. If p> 1, then Mn conditioned on Mn < = does not
have a limit distribution.
N For the next result, we suppose that Mn’ as in Sections 3 and 4, is
N the maximum for an M/M/sn queue with arrival rate Ank = Mn), service
;! rate Mok = u(n)min{k,sn}, and number of servers S.° The traffic
E intensity of the queue is GO A(n)/(snu(n)). Clearly Ank/unk = 0 for
& k > s - We will use
{ ;p Sh P
Te = = '
: T . Mg/ Mg = Spl(u(n)/x(n)) .
- n =1
-. COROLLARY 5.2. Suppose n 'r +0 and p_ + 1.
AN nsn n
.
il
N
¥,

2 Tl A d T T I T I Rl el S il Sl Sy 2.,
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(i) 1f P, < 1 for each n, then Mn has a limit distribution if and only

if n(l - pn)r;; +c, where 0 < c < ®, In this case, the limit distri-
n

bution is Gc and appropriate norming constants are as in Theorem 3.1.
(ii) 1f pn > 1 for each n, then Mn conditioned on Mn { ® has a limit

distribution if and only if n(l - l/pn)r;; +c, where ) < c € », In

this case, the limit distribution is Gc and appropriate norming constants
are as in Theorm 4.3.

Proof. The two assertions are special cases of Theorems 3.1, 3.2 and
Theorem 4.3, respectively. Note that condition (3.1) is satisfied, and

so is (3.2) since

R R i T
k=0 nk ns_

REMARKS 5.3. (a) The number of customers in an M/M/* queueing system
over time is a birth and death process with rates Ak = X (the Poisson
arrival rate of customers) and uk = ky (where p is the service rate of
each of the infinite servers). The traffic intensity is p = A/ pu. The
first and third assertions of Corollary 5.1 also hold for this queue, but
there are apparently no analogues of (5.1) or Corollary 5.2.
b) Consider a service system in which the number of customers in the
system over time is a birth and death process with rates Xk’ W that
represent customer arrival and departure rates when k customers are
present. We assume that Au/uk = p for k > s, where s is a specific
state, but we place no other restriction on the rates. We call this an
M/M/GR~s queueing process, where GR stands for general rates. General

rates are used for modeling such phenomena as balking and reneging of

customers; non-standard service disciplines; dynamically changing rates

MR AR I A
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\_.Jf:_ .‘-,.‘.r:‘ﬁ .(-\.. _-.l\-\- Ey



. -y W L . - - Sal LA S Ar L N A dARSat AT S sllathait i A ik el R i SRk NN
»
Ll .
.. .
- .

A 25

P

Pals

r_r
£
-.-

A

under a control policy that minimizes the system cost; and simultaneous

e
a_e

i'l,"'.'l'
4

customer processing, where My is the total workrate when k customers are
ﬁ present and customer i receives Py of the workrate (p1+...+pm =1).
- Corollaries 5.1 and 5.2 readily extend to M/M/GR~s queues.

‘ ; (c) The approximations (3.7) and (4.11) apply to the M/M/s and M/M/GR-s

. queues.
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