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Summa ry

Analytical stress solutions are presented for a metallic rocket motor case
reinforced with a prestrained fibre overwind, with viscoelastic properties,
under both constant and varying temperature histories. The treatment is
in terms of the "reduced time" proposed by Schwarzl and Staverman, with

the Williams/Landel/Ferry form of the "shift function".

The analysis is reduced to the solution of a Volterra integral equation.
For a constant temperature history and using the "standard linear solid"

representation of the material properties of the overwind, this equation
can be solved in closed form. For varying temperature histories the

equation is solved using a finite-difference techniaue proposed by Lee

and Roger and improved by Margetson. T1;e effects of fibre relaxation on
the internal pressure reouired for the initiation of yield in the rotor
case are evaluated and discussed for a number of temperature histories

and end conditions.
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INTRODUCTION

In an effort to construct rocket-motor cases with greater specific strenpths,

several attempts have been made to utilise the higher strength raraging

steels. This has resulted in serious quality-assurance problems, often

associated with reduced ductility, and, in some instances, rocket 1otors

have been observed to fall in a brittle manner.

With the choice of suitable constituent materials, however, a composite

motor case can be constructed with a specific strength which exceeds that
of any homogeneous steel design. A lightweight alloy case overwound with

a high strength polvamide fibre is a particular example. Moreover, if the
fibre is wound under tension a compressive stress is induced in the case,

reducing the net tensile stresses developed in operation, and effectively
increasing the specific strength. However, this strenpth-enhancement

technique can create problems associated, for instance, with the dependence

of the mechanical properties of the overwind on environmental conditions
and sustained loading'. Nevertheless, the considerable possible gains in
specific strength often outweigh these potential disadvantages.

A recent extensive study of the behaviour of the overwound rocket motor

case
2
-
4 

has included analyses of the initial winding process, the effect
of changes in the thermal environment and the behaviour of the motor case

on pressurisation. The work has been limited to linear elastic conditions;

the effects of fibre relaxation, which is known to occur, on the initial

stress state and subsequent yield behaviour of the motor have not been

considered.

In this report procedures are developed for the stress analysis of a metallic

motor case overwound with a thermorheologically simple, linear viscoelastic
fibre. The Young's modulus of the fibre is assumed to he time-dependent;

the Poisson's ratio and thermal expansion coefficients are assured to be
time-independent. These assumptions are valid given the temperature

ranges considered in this work. The case material is assumed to be

linear elastic up to yield.

The development of the viscoelastic analysis is presented and techniques

for solving the resulting integral eoustion are discussed. The manner in
which the storage temperature affects the relaxation rate is considered.

Methods for predicting the yield pressure behaviour for various winding

configurations and relaxation rates are presented, and typical numerical

results are discussed.

2 CONSTITUTIVE EQUATIONS

2.1 Temperature-Independent Analysis

As a precursor to the temperature-dependent analysis, in which variations
of mechanical properties with temperature are considered, the constitutive
equations for temperature-independent behaviour are briefly discussed.

The viscoelastic constitutive law can be expressed either by the differential

operator method
5 

or, alternatively, by the more general representation of the

3
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hereditary or Duhamel integral
6, in which the strain is treated as

consisting of successive increments, applied over a sequence of times
0 t' t, giving the stress as:

t

o(t) = c(t)E(O) - dE(t-t ') c(t')dt
of dt

(1.)

In this equation a(t) and e(t) denote the components of stress and strain
respectively at time t, and E(t) is the relaxation modulus.

The form of variation of the relaxation modulus E(t) with time is shown by the
central curve in Figure 1; particular inportance attaches to the short-term
value E(O) (ie the "instantaneous" modulus) and the long-term asymptotic
value F(-) (ie the "equilibrium" or "rubbery" modulus).

2.2 Temperature-Dependent Analysis

2.2.1 Constant Uniform Temperature Change

In the preceding section no allowance was made for changes in the mechanical
behaviour of the linear viscoelastic material arising from possible differences
in the winding temperature and the subsequent temperature. For most suitable
overwinding materials such effects are second order and may be neglected7,
but there may be applications in which the mechanical properties are
significantly influenced by temperature changes and these effects cannot
be neglected. This section deals with such applications and it is assumed
that the structure experiences a constant spatially uniform temperature change
subsequent to winding.

Early work by Leaderman 8 revealed that, by adjusting the time scale, it
was possible to represent the temperature-dependence of several mechanical
properties of a wide range of viscoelastic materials by means of a series of
Aester curves. Such materials were later to be defined as "thermorheologically
simple"9 .

The existence of this simple translational shift led Schwarzl and Staverman 9

to propose the following equivalence relationship between the relaxation
modulus and temperature:

T(Tt) - E(To,C)
(2)

where C - t/aT (T)
0 (3)

In the above equations T denotes the temperature, TO a reference temperature,
t the time elapsed from the completion of winding, and C the "reduced" or
"shifted" time, rela,.ed to the real time via the "shift function" aT (T).

0

4
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Since the relaxation curve (see Fig 1) shifts to the left for a temperature

increase and to the right for a temperature decrease, it follows that for T
greater than TOO aT (T) is less than unity and vice versa. It is noteworthy

0

that both the instantaneous and equilibrium moduli are temperature-independent.

The relaxation modulus at an arbitrary temperature can thus be expressed in
terms of the reference temperature behaviour using a new time scale which is
dependent upon the particular temperature. Expressing the stresses and strains

as functions of reduced time, the viscoelastic constitutive relationship,

Equation 1 becomes

a( i) - ec ;)E(O) -f dE( C-C)rc )

(4)

2.2.2 Time-Dependent Uniform Temperature Change

Since the uniform temperature considered in Section 2.2.1 was constant, a
simple expression for calculating the reduced time resulted. It is now

necessary to extend this analysis to deal with time-dependent temperature

histories. Again spatial temperature variations are assumed to be zero; the
size and thermal diffusivity of the components under consideration ar- such
that this assumption is not unrealistic. It is also necessary to assume that

the shift function aTo(T) at a particular temperature is independent of the
prior temperature history. Experimental evidence by Williams et al

0

suggests that such an assumption is valid.

With these assumptions it follows from Equation 3 that

dC(t) - dt/aT (T(t))
0 (5)

Hence integrating and noting that at t = 0, 4(t) - 0

t

C(t) - f dt'/a T (T(t))
0 0 (6)

In establishing a general form of the shift function, Williams et all
0

found that the empirical relationship

-k (T-T o)
log .[aT (T)] . 1=

0T o k 2+ T - T O 
( 7(7)

in which kI and k2 are material constants, gave good results for a large
range of viscoelastic materials.

5
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3 VISCOEIASTIC ANALYSIS OF THE RFINFOPCEF MOTOR CASE

For a body subjected to a series of external loads and displacements, the
stresses and strains at any point must satisfy the basic requirements of

equilibrium and compatibility and must conform with the appropriate
constitutive relationships. Moreover, the stresses and displacements at
the boundary must comply with the applied external forces and displacements.

The gradual decease in the relaxation modulus of the fibre, Ef(c), will
result in a time-dependent expansion of the pre-stressed motor case. If

u(c) denotes this expansion, then from elementary thin-valled cylinder
theory, the initial strains in the fibres and case are modified according
to the relations

(i,n). (i,n) u)

( c) C (if (0) + 2 , 1l,2,...,n,

(P)

(n) (n) (o __ac ( Be R c() u
P

(9)

(i,n) (n)
In these equations Lef (0) and ce (0) are the initial strain

components for the ith of n fibres and the case respectively, as given in

Reference 2, and ; is the reduced time defined by Equation 6. The quantity
R denotes the mean radius of the motor case.

When the composite motor is subjected to a spatially uniform temperature
change, thermal strains are induced in the fibres and case, further
modifying the initial strains produced during winding. In general the

coefficient of expansion of the fibres (af) will be less than that of
the case (oc), and hence an increase in temperature will increase the
compressive stress in the case and vice versa.

From a previous thermal analysis
3
, it can be shown that the strains in

the Ith fibre layer and the case resulting from a uniform temperature change

AT(C) at reduced time C are given respectively by

(i,n) + 6f(c)tefAT (0 - a AT(.)
(10)

and

(n)4 - acAT(C)

(11)

These strains consist of two components, (i) a component due to unconstrained

thermal expansion and (1i) an Interference component (6f(c)/R for the

fibres, 6c(C)/R for the case) resulting from the interaction of the two
materials.

6
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(i,n)
It follows that the total strain E&TOT(C) for the fibres may be obtained
by adding Equations 8 and 10 to give

(,n) (I,n)
cefTOT (W) = cof (0) + Atf(C) + af&T( ), il,2,...,n,

vhere (12)

&t(C u~ + ____
f R R

(13)

Similarly for the case, the total strain is obtained by adding Equations
9 and 11, giving

(n) (n)
£8cTOT(;) = te (0) + Ac() + %AT(

(14)
where

AC (C;) - UWc + 6___0C (15)

As the fibres and case are assumed to remain in contact, compatibility of

(i,n) (n)
radial displacements requires that gf ( ) and cOcAT(;) are

equal. It therefore follows from Equations 10, 11, 13 and 15 that

-c( ) = Af(c) + (of - %c)AT( )
(16)

Using Equation 16 the quantity Acc(4) appearing in Equation 14 can be

eliminated in favour of Aef(4) to give

(n) (n)
F0cTOT() - cec (0) + Af() + aftT(;)

(17)

In Equation 4 the strain c(;) is the mechanical strain, ie the total
strain minus the free thermal strain. Making the appropriate substitution

for the mechanical strain from Equation 12 into Equation 4, it follows that

(i,n) .(i,n)

a 1 ( ) = lf(0){e (0) + Acf(O)

-d~f ( -C) { (i~n )0

f J ~ Cef (0)

+ e €)} 'il ,. (1n)+ Ac f(ift)

7
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(i,n)(¢

where o (C) is the stress in the ith fibre layer at reduced time C.
SimilarIy, the circumferential stress in the metal case at time

(n)
C, oec (C), follows from Equation 17 and the linear elastic stress-strain
relations in the form

(n) (n)
o~ () Ec [te (0)+Atf(0) + (f0)T0

(19)

Fadial stresses are small and have been omitted from these equations.

In the absence of an internal pressure, It is an equilibriur recuirement
that the sum of the forces associated with these stresses (ie Ecuations
18 and 19) is zero

3
, ie

n (i,n) (n)
I Oaf (O)tf + oC (n)tc__ =0

i11 (20)

where tc and tf denote respectively the case thickness and the effective
thickness of a single fibre layer. Substituting into Equation 20 from
Equations 18 and 19 for the fibre and case stresses results in the
following integral equation for the unknown quantity Acf(;)

G(O)Acf(;) - f ( f( )

(21)
where

f(;) - E(tC[E 8(){*f

-(af-ac) AT(0) I]

and G(;) = nEf(;)tf + Ectc.
(22)

Equation 21 is a Volterra integral equation of the second kind
5 
which, for

a specified f(4) and G(4), has a unique solution for Acf(;).

With this solution, the change in the mechanical strain in the case ACc(C
can be computed from Equation 16. The corresponding stresses then follow
from Equations 18 and 19. Details of the solution procedure are given in

the following section.

4 SOWUTION PROCEDURE

Solutions of equations similar in form to Equation 21 may be obtained
using Laplace transforms. This solution procedure eliminates the time-
dependence of the system equations in favour of the transform parameter,

P
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thereby reducing the viscoelastic analysis to an associated elastic
problem. Inversion of the resulting equations yields the solution to the
original viscoelastic problem.

For elementary models, eg Maxwell and Kelvin idealisations
7
, analytical

inversion is often possible, but these idealised solutions are usually of
limited practical interest. For many practical problems, the relaxation

modulus can be represented by the Dirichlet-Prony series 11

m
f( ) = - f( ) + fj e- / J (23)

J=l (3

where V (-) and Ef. denote the long term modulus and the jth of m Prony
coefficients respe dtively and Tj is the relaxation time associated with
the jth Prony coefficient.

Appropriate numerical techniques (eg those proposed by Bellman et al1
2
)

can then be used for inverting the Laplace transforms. Using this approach
for the present problem, spurious oscillations in the solution were
observed, particularly at times corresponding to large relaxation rates,
which could not be eliminated.

An alternative solution technique was therefore developed in which the
integral appearing in Equation 21 was expressed as a sequence of analytical
expressions, as originally proposed by Lee and Rogers13 and subsequently
improved by Margetsonj4. If the time interval 0 to C is divided into a

sequence of time intervals by the time values, i, i = 1,2, ..., L,
such that Cl, - 0 and CL = C, and the fibre strain change uEf( ) is the
mean value taken over the interval, Margetson has shown that the strain
change umf(C), for C - L, can be obtained from the equation

m -( L-L-)f/j +
Acf(L) f(L) + I ntfEfj{SJ,L-le

J=l (24)

kAcf( L-1)(1-e -(LZI/j ) I/

m -( qi.- CLI)/ j)

{G(O) - 1I ntFf(1-e

In the above equation the quantity Sj,L denotes the recurrence vector

Sj,L - Sj,L-je

+ f f L-) }  (25)

{ .. 
(  L - L - I / T J
{I-e }

9
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Once Acf(CL) has been evaluated, the stress states for the fibres and
case can be evaluated. It can be shown 14 that the time-dependent fibre
stress, Eouation 18, is given by

oef(1,n)(CL) - Ef(O)Acf(ci.) + f(l,n)(O)Ef(CL )

- [ EfjSj, L  , i = 1,2,...,n,

(26)

where Sj L is the recurrence vector defined by Equation 25. For the
case, tfe corresponding stress component then follows from the equilibrium
condition given by Equation 20.

The finite difference scheme outlined above has one notable advantage
over the original technique proposed by lee and Roger 13, in that the
use of the recurrence vector dispenses with the storage of all strain
values other than those obtained at the last two time intervals, thus
reducing the necessary computer storage and improving numerical efficiency.
It is noteworthy that the finite-difference scheme introduces no
complications when the time intervals are unequal. This enables larger
time intervals to he utillsed in the regions of small relaxation rates.

The time-marching process is initialised by defining Acf(O), ie Acf(Cl).
Since u(O) must he zero, it follows from Fouation 13 that Acf(cl) is
equal to Sf(C)/R. This quantity is readily obtained from Reference 3.

If the thermal history contains temperature discontinuities, the foregoing
procedure can be applied, provided that the strain contributions due to
the discontinuities are dealt with separately.

By considering the net change in the circumferential force in the n fibre
layers and case due to the kth thermal discontinuity it can he shown that
the step change in Acf( ), at = qc, is given by

S(a c + ofnA(O))(A(AT(r&)))
1 + nA(O)

A(O) - Ef(O)tf
Ectc (27)

In the above equation the quantities A(Acf(Qk)) and A(AT(Q)) denote
the step changes in Acf(C) and AT(c) respectively at C - qk. Once
A(Aef(QA)) has been calculated the value is added to the immediately
preceding fibre strain change. This is then substituted into the recurrence
vector, Equation 25, and the solution procedure continued.

10
UNLIMITED



UNLIMITED

5 YIELD INITIATION PRESSURE

The composite motor mu-c withstand all in-flight loads without excessive
distortion or failure. Although set-back forces and aeroheat effects may

be significant, the predominant in-flipht load will always be the firing
pressure. In general, motor cases have been designed so that no plastic
deformation occurs under this pressure loading. Although this design

approach does not make full use of the strength reserves available in the
case, and in this sense is inefficient, in this work the pressure for the
onset of yield has been adopted as the basis for design.

In the preceding sections the stress and strain components for the fibres
have been related through a time-dependent constitutive equation, Equation

4, in which the relaxation modulus is known to decrease with time. For
loadinp histories extending over many decades (ie 10-6 h t 10

5 
: the

changes in the relaxation modulus will have a pronounced effect on the
stress and strain states in the motor. For very short duration loadinp,
eg the firing pressure, which lasts typically for less than one second and
rarely exceeds several minutes, relaxation effects are usually neglected.

Thus, for the pressurisation analysis, the stresses and strains are
related through the conventional Nookean equations. In a previous analysis 3,
expressions for the elastic stress changes in the fibres and case

corresponding to an applied internal pressure were derived. If the
pressurisation process is regarded as an instantaneous load application,
these expressions can be readily incorporated with Equations 18 and 19 to

give the following expressions for the stresses in the fibres and case
at cp, the time of pressure application:

aefp (i,n)(E) {t(O)'(i'n)(o) + At ( %) i

- CD dEf(Cp-V) {(in)(o)(

+ dc (28)

f

Pi RA(O) _ {_2 i 1,2,...,n,
tf(1-1A(O)) 2 R2

(n)( - Ec{cec(n)(0) + Af(C)

+ (cf-c)AT(p)}
(29)

" pip {I + nvcA(O) ( Re2

tc(l+nA(O)) 2 =LR-

UNLIMITED
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In these equations vc denotes Poisson's ratio of the case material, Pe is

the effective throat insert radius
3 
and pi the applied internal pressure.

When the final circumferential stress (Equation 29) and, where appropriate,

the axial stress are known, the pressure for the onset of yield can be

evaluated using the von Mises yield criterion, the most appropriate for

the materials under consideration 15.

If the radial stress is again omitted from the analysis, the mathematical

form of this criterion is given by

(oecp(n)( p))2 + (Ozcp(n))
2

-6cp (n)( p) Ozcp(n) . y2

(30)

where oy is the uniaxial yield stress of the case material, and azc (n)

the axial stress component induced in the case during firing, is given by

zcp 
(n ) . Pi (R

2 
- Re

2
)

2Pt c  
(31)

Substituting for the circumferential and axial stress components in

Equation 30 from Equations 29 and 31, a quadratic equation for the pressure
for the onset of yield in the case can be derived, in which the coefficients
are functions of the winding conditions, fibre-relaxation characteristics,

end conditions, temperature and dimensions. The maximum allowable firing

pressure is the positive root of this quadratic.

6 NUMERICAL RESULTS

To illustrate the effects of fibre relaxation on the behaviour of the

overwound motor case, a sample motor (the same as that considered in
Reference 3) was analysed first with a constant uniform temperature equal
to the winding temperature and then for two examples of varying temperature

conditions. Motor details are given in Table 1.

6.1 Constant Temperature Conditions

Because the reference temperature may differ from the winding temperature

the following analysis is presented in terms of the reduced time, given
by C - t/aT (T), rather than the real time t.

o
For the purposes of illustration the viscoelastic behaviour of the overwind

will be characterised by means of the Dirichlet-Prony series
11 

truncated

after the first two terms.

Ef() - Ef(-) + {Ef(O) - Ef(-) 5-Ldr (32)

12
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where Ef(O) and Ff(w) denote the instantaneous and long-term modulus
values respectively, and r is the characteristic time, le the time for a
modulus change of 63% of the difference between the instantaneous and
long-term values. This material (the standard linear solid) displays
both instantaneous and asymptotic long-term elastic behaviour, and is
one of the simplest characterisations of a viscoelastic solid.

With such a material it is possible to solve Equation 21 analytically to
obtain the time-dependent fibre strain AEf(C). Noting that AT(C) is
zero, Equation 21 modifies to:

G(O)Acf () - fCdG(;-')Acf(')dC'

a (n) _ Ef( )" (0)EctcFYT** - I

(33)

Substituting from Equation 32 into Equation 22 and thence into Equation
33, a first-order linear differential equation in Acf(4) can be derived,
which, with the boundary conditions Acf(O) - 0, has the solution (see
Annex A).

(3d)

where Af(-) = Cc()()(X-l)/(l+ A(- ) ,

(35)

A(-) - Ef(-)tf/Ectc
(36)

and . - Ef(-)/Ef(O)
(37)

y = (l.IiA(-))/(.+nA(o))

(3R)

Once Acf( ) and, as a consequence, Arc(C) (see Equation 16) have been
obtained, the stresses in the viscoelastic fibres and the case resulting
from an applied internal pressure can be estahlished. For the fibres the
time-independent and time-dependent stress components are evaluated by
substituting Equations 32 and 34 into Equation 28. Adding the resultant
expression to the pressure component (see Equation 28) gives, after some
manipulation

13
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Oefp(in)(Cp ) - {Ef(in)(O) + Acf()lEf( )

- Acf(-){Ef(O)e-Y 
T +

[Ef (O)-Ef (-) [e- p/"T-e-Y p /"T]1

l-y

PiRA(O) v _Re 2

t f (l+ nA (O )) 2 =R ( 39)
(39)

Similarly, for the case, the final stress is evaluated by substituting

from Equation 35 for Aef(-) in Equation 34 and thence into Equation 29
to give

) ) - Fc 'c(n)(O){l + (-l)()-e- )II+nA (-) 
( 0(40)

+ piR 11 +nvcA()11Re 
2

tc(l+nA(O)) 2 +=

For a non-zero axial stress, Equation 31 may be used to eliminate Pi from

Equation 40 in favour of Czcp(n)
, 
resulting in the expression

Oecp (n)(
) 

- Ec Cc(n)(
O ){ 1 

+ ()L-1)(1-e- '
l+nA(-)

(41)
(n) 1 2 + vCnA(0)]1

+ 0 cp '(1 - - 21+nA(o))2

( 2 -

Once the total circumferential stress in the case is known the pressure

for the onset of yield can be obtained by substituting Equation 40 and,

where applicable, Equation 31, into Equation 30. Previous work
3 
has

shown that the quantity Re has a significant effect on the yield pressure

of the overwound motor. This effect is examined in the following sections

in terms of the maximum and minimum values of Re -

6.1.1 Open-Ended Solution

When Re approaches R, the axial stress (Equation 31) tends to zero and

the circumferential stress in the case (Equation 40) becomes

14
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0 c p n = E(cn( n ) ( ) + ( _ - _ ( -e Y r ITl _

'p) -CCOCl+nA('.)

+ pi
R

tc(l+A(O)) (42)

Furthermore, the yield initiation pressure, Piy, becomes solely dependent
on the magnitude of the circumferential stress. Hence, from Equation 42,

it follows that

Piy . (1l+nA(O))tc {°o-Ecft~(n)(
O )rl+ ( X-l)(l-e-P /r) /() 1 } "

(43)

For the Table I motor the variations in yield pressure with n for several
values of the non-dimensional reduced time, rp (ieC It), are depicted
in Figure 2. It can be seen from the figure that the increase of Piy

with n is almost linear and that for ZP4,. Piy becgmts almost identical

to the fully relaxed solution ( -- ). Since cectn)(o) (see Reference
2), is directly proportional to Ehe winding strain ew,Piy varies linearly

with ow.

6.1.2 Closed-Ended Solution

When the quantity Re becomes very small, ie the motor approaches its

closed-ended configuration, the axial stress (Equation 31) becomes non-

zero. By substituting the two principal stress expressions (Equations 31
and 40) into the yield criterion (Equation 30) a general expression for

the yield pressure is obtained. For the Table I motor the variations of

the yield pressure with n for several values of ^ are shown In Figure

3. In contrast to the open-ended solution (Fig 23 the yield pressure

reaches a maximum value and then decreases as additional layers are

introduced. For the instantaneous elastic solution (ie ; p O), this

maximum occurs with 21 layers. For the long-term solution (^ - w), 29

layers are required. It can be shown (see Annex B) that the maximum

yield pressure is independent of the initial winding configuration and

the fibre-relaxation characteristics, and is equal to 4oytc/Rv'
"
. For the

sample motor this maximum pressure value is 46 MPa.

From Figure 3 it is evident that, for the Table I motor, the yield pressure

decreases with increasing Zp for all n values less than 24 and increases

with increasing Zp for all n values greater than 24. These contrastinp

trends are further evident in Figure 4, where the yield pressure is

Plotted against for different values of A, for the two arbitrary n
values of 12 and 40. For n - 12 the yield pressure is seen to decrease
with decreasing X, whereas for n - 40 the opposite occurs. It is noteworthy

that when Ef(-) becomes zero the residual stresses in the case disappear,

and the pressurisation response of the motor will depend only on the
instantaneous elastic modulus of the fibres.

15
UNLIMITED



UNLIMITED

An insight into these effects can be obtained from Figure 5, in which the
elliptical von Mines yield boundary for a bi-axial stress state is plotted;
the line bR in the figure represents the Instantaneous elastic solution
of Equation 41. It has been shown previously

3 
for elastic conditions

that, when the prestrained motor is pressurised, the stress response proceeds
along the line bB until the point V is reached, at which point yield
occurs. The corresponding yield pressure is proportional to the ozcp (n)/-

ordinate at this point and can be evaluated using oauation 31. More
generally, for viscoelastic conditions, the a c (O)Ioy value
representing the length Oh is given by the firs term on the right-hand

side of Equation 41, which is time-dependent, and the slope of the line
is obtained from the second term of Equation 41, which is time-independent.
With relaxation, therefore, the stress response line bB moves to the

right in the figure, retql ing the original slope, with the changing
length Ob* given by a p In)( ()/ o. The yield intercept, V, becomes
V* as Indicated. It is clear tha, depending upon the initial position
of V in relation to the acme of the ellipse and the maximum shift of the

bS line, the pressure for first yield may increase, decrease or increase

to a maximum and then decrease with p.

6.2 Varying Temperature Conditions

In the previous section constant temperature conditions were assumed and

it was possible to obtain stress solutions and yield pressure values in
closed form.

By contrast, for varying temperature conditions the stresses are obtained

numerically by solving the integral Ecuation 21 for Acf(;) and substituting
into Equation 29. In representing the stress behaviour graphically,
Equation 31 is used to eliminate Pi from Equation 29 to give a simple

linear relationship between Oacp(n)(p) and Ozcp(n) of the form

aep(n)(r%) - Ec{%ct(n)(o)+Acf( )+(f-ct)&T(;P)
+ a (n){ I [ 2 , nA()) I

zcp (1+nA(O)) c

e2\

For the purpose of illustration, the above equation can be represented

exactly as in Figure 5. The slope of the bB line is obtained from the
second term on the right-hand side of Equation 44, and is independent of

both temperature and time. The intercept Ob* is given by the first term
on the right-hand side of Equation 44; it will he dependent on both

temperature and time and its variation will be governed by the relative

magnitude of the two strain components Are(rp) and (of-qc)AT(Cp).

16
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To illustrate the effects of varying temperature conditions upon the

yield pressure, the Table 1 motor has been studied, overwound with 12 and
40 fibre layers and subjected to temperture histories of the form AT(t) -

a sin we, first with a - 50*C and w = 21 (hours-
1
) and then with a -

50°C and w - 0.
2
w (hours-

1
). The motor was assumed to be closed-ended

with Re equal to zero. Five complete temperature cycles were considered
for both histories. Three forms of material behaviour for the overwind

have been assumed;

a. elastic,

b. viscoelastic with temperature-independent properties

(see Section 2.1).

c. viscoelastic with "thermorheologically simple" properties
(see Section 2.2).

Nolte and Findley
16 

found that a generally varying temperature history
could be satisfactorily represented by a series of time intervals over

which either the temperature or the temperature rate was assumed constant.
In the present work, however, only the latter will be considered. For
both temperature histories each thermal cycle was approximated as

illustrated in Figure 6.

6.2.1 12-Layer Configuration

For the 12-layer configuration the intersection of the bB line with the

ellipse (point V, Fig 5) lies to the right of the acme of the von Mises

yield ellipse. Conseouently the yield pressure will decrease with
decreasing case pre-stress (as indicated by the length Oh), and vice versa.
Since of is less than ac, it follows for the elastic conditions that

the yield pressure increases with increasing temperature, the opposite
occurring for a decreasing temperature. For the Table 1 motor this
behaviour is illustrated in Figures 7 and 8, where the yield pressure is

plotted against time for the two temperature histories considered.

When viscoelastic effects are included these trends are modified. The
yield pressure may, depending on the temperature history and fibre-

relaxation characteristics, increase or decrease with increasing temperature.

The following features are evident in Figures 7 and 8:

a. In Figure 7, with the faster temperature cycle, the
variations in Piy derived from the temperature-independent analysis

(curve 2) follow the temperature changes with a reduction in
successive peak values due to relaxation. It is evident that the

time scales of the temperature changes and the relaxation effects

are such that initially the former dominates. Relaxation effects
are seen to be practically negligible after 5 cycles.

b. By contrast, for the thermorheologically smple analysis
(curve 3, Fig 7), it is seen that after an initial increase, Piy
decreases with increasing temperature, indicating that relaxation

effects quickly become dominant. The effect is reversed before
the first temperature peak, implying near-!ompletion of the

relaxation process.

17
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c. For the slower temperature cycle (Fig 8), it is clear
that relaxation effects are dominant over the first quarter-cycle
for the temperature-independent analysis (curve 2), since Ply

decreases with increasing temperature. (This is in contrast with
curve 2, Figure 7 - see a. above.) There are no further relaxation

effects after the first half-cycle.

d. Apart from the absence of the initial increase in Ply,

Y there is little difference in the prediction derived from the
thermorheo ically simple analysis for the fast and slow
temperature cycles (see curve 3, Fig 8 and curve 3, Fig 7).

6.2.2 40-layer Configuration

In contrast with the 12-layer configuration, the bE line (Fig 5) for the
40-layer configuration intersects the von Mises yield locus to the left

of the acme of the ellipse and the yield pressure will increase with

decreasing aecp(n)(r. )/o and vice versa. It follows therefore that
the trends described iii ection 6.2.1 will he reversed. This is evident
in Figures 9 and 10. Additional features worth highlighting are:

a. There is a marked lack of symmetry of the variations in

Ply about its mean value, particularly for the elastic analysis,
for both long and short period temperature variations.

b. The amplitude of the Ply variations, again particularly

for the elastic analysis, is considerably greater than that
observed in Figures 7 and 8.

c. In Figure 10 for the slower temperature cycle, the
predicted Ply values from the two viscoelastic analyses are
practically identical after the first temperature cycle.

7 CONCLUSIONS

I Solution techniques and illustrative results have been presented
for the stresses developed in a cylindrical metallic motor case

circumferentially overwound with a prestrained viscoelastic fibre for
both constant and varying temperature histories. The internal pressure
required for the initiation of yield in the reinforced case has also been
determined.

2 Felaxation effects may result in either an increase or a decrease
in the yield initiation pressure.

3 With a constant temperature history and assuming open-ended

conditions in the cylinder (le motors with an effective nozzle radius

which approaches that of the motor case) the yield initiation pressure
for a particular example increases almost linearly with the number of
fibre layers (n) and decreases non-linearly with time for a given n,

approaching the fully relaxed conditions at times greater than about four
times the characteristic time of the fibre.

18
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4 With a constant-temperature history and closee-ended conditions

in the case, the yield-initiation pressure increases to a maximum with
increasing n and thereafter decreases as additional layers are introduced.
There is a markedly non-linear time-dependence, which varies with n.

5 The variations in yield-initiation pressure resulting from two
sinusoidally varying temperature histories have been studied for the

closed-ended configuration. The effects on the yield-initiation pressure
of:

a. the period of the temperature cycle

b. the material behaviour assumptions

for two distinct winding configurations have been illustrated and discussed.

19
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9 NOTATION

aT (T) shift function (see Equation 7)

A(O) see Equation 27

A(-) see Equation 36

E(t) relaxation modulus at time t

Ec Young's modulus of case material

Ef(C) relaxation modulus of fibre overwind at reduced

time

Efj jth Prony coefficient (see Equation 23)

f(O) see Equation 22

G( ) see Equation 22

m number of Prony coefficients associated with

Equation 23

n number of applied fibre layers

Pi internal pressure

R,Re mean and effective throat insert radius of

case respectively

Sj,L recurrence vector (see Equation 25)

t real time

tf,tc effective fibre thickness and case thickness

respectively
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To  shift function reference temperature

AT~ time-dependent uniform temperature change

u(W) time-dependent radial expansion of motor case

Of, qc  thermal expansion coefficients of fibre over-

wind and case respectively

y see Equation 38

6f(0),6c(;) time-dependent interference displacement of
fibre and case respectively (see Equations 10
and 11)

C(t) time-dependent strain (see Equation 1)

ef (in)( ), :,(n)( ) time-dependent circumferential :-train components

in the ith fibre layer and case respectively

ACf ( C),&cC) time-dependent strain changes in fibre and case
(see Equations 13 and 16)

reduced time (see Equation 6)

Znon-dimensional reduced time (ie C/T)

fibre modulus ratio (ie Ef(-)/Ef(O))

o(t) time-dependent circumferentia] stress (see
Eouation 1)

f n ) ) time-dependent circumferential stress components

in the ith fibre layer and case respectively

oy case yield stress

Ozcp (n) axial stress component in metallic case

T characteristic time of standard linear solid

Tj relaxation time associated with jth Prony
coefficient (see Equation 23)

Vc Poisson's ratio of metallic case

W angular frequency

Subscripts

p due to pressure application

TOT total

AT associated with a uniform change in temperature

22
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TAKlE 1 Sample Composite Motor Case Data

Case Young's modulus: Ec .' 72.4 CPa

Fibre relaxation moduli: Ef(0) -93.1 CPa

Ef(-) -46.5 CPa

Characteristic time of fibre: I . 1.Ohr

IPoisson's ratio: 'Vc . 0.3

Case yield stress: .470.0 MPa

Wall thicknesses: tc 2.Ori
tf 0 .lnmh

'Motor radius: -47.0mm

Winding strain: EW . 4.0 x 1-

Thermal expansion coefficients: C .22.5 x 10-6 /*C

Of 3.6 x 10-
6 /*C

23
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ANNTEX A

ANALYTICAL SOUTTION TO THE CONSTANT TEMPERATURE ANALYSIS INTEGRAL EQUATION
(EQUATION 33)

In Section 6.1 the integral equation

G(O)Acf() -
f

4 dC-C') _, )d C'

0 dc I)~(I~~

= (n) (O)Ect cEf() -1]

Ef(O)
(Al)

was derived for the constant temperature analysis where, from

Equation 22,

G(4) - nEf(4)tf + Ectc
(A2)

For the standard linear solid the relaxation modulus Ef(C) appearing

in Equations Al and A2 can be readily characterised by the truncated
Dirichlet-Prony series

1
l, in the form

Ef ( ) Ef(oo) + E 1e- /T(

(A 3)

in which (see Equation 32)

El = Ef(O){l-X)

(A4)

With this characterisation Equation A2 modifies to:

G() - ntffEf(-)+El e -/T) + Ect c  (A5)

Substituting from Equations A4 and A3 for Ef(C) in Equation Al and

noting from Equation A5 that

(-') e-(-')/T
d'

(A6)

where

1 =ntfEl
G T

(A7)
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the following modified integral equation is obtained

c(o)uf( ) - Ce-(C-C'll/Tcf( ')d '

0

= ( )(O)Ft [Ef (-).le -
Coc c L Ff(O) (AS)

Differentiating the above equation with respect to C gives, after some
manipulation, the following first-order linear differential equation in

Atf ( C)

d Ef( ) + _ L I __-___}_ _A_-

+ -r G(f)(] T( I+nA(O))
(A9)

which, with the boundary condition AEf(O)-O, has the solution

Aef(C) ACf()(le-YCIT)

(AIO)

with

ACf(,, C .e(n)(0). xl
f 1+nA()

(All)

and

y l+nA(-)
l+nA (0) (A12)

Once Acf(C) has been obtained the corresponding strain change for the

case material acc( ) then follows from Equation 16. The time-dependent
fibre and case strains and stresses are then evaluated via Equations 12
and 14 and Equations 18 and 19 respectively.
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ARNEX B

MAXIMUM YIELD PRESSUPE ANALYSIS
ISOTHERMAL CONDITIONS

If the radial stress component, which is a second-order quantity,
is omitted from the von Mises yield criterion, Equation 30, the
simplified expression is obtained

(Gecp(n))2 + ( zcp(n))2 - Ocp(n),zcp(n) . ay2

where the circumferential and axial stress componerts, o0 cp(n) and

ozc p ( respectively, have the functional form

°p ( n ) 
. ,cp ( n ) {Ply' rp

Gecp _p P(B2)

Ozcp(n) - azcp(n){piy} (B3)

These quantities are also functions of the winding conditions, moduli,
geometry, etc, but for the purposes of this work they are assumed to take

prescribed values.

Differentiating Equations Bl, B2 and B3 with respect to c and setting
apiy/acp to zero, the follo!iing relationships for the maximum yield

pressure conditions can be derived

either Baec(n) .

3;p (T14)

or 2aecp (n) - zcp (n) (B5)

Since aec 
(n ) 

is a monotonically increasing function of Cp (see
EouationctO) it follows that only the second condition, Equation B5,
applies. Equation B5 can now be used to eliminate Ocp(n) from
Equation B to give the simple relationship

o (n){piymaxi - 2 o
zcp i x 13 Y

(B6)

where Plymax denotes the maximum yield pressure. Using Equation B6,
the maximum yield pressure then follows from a simple rearrangement

of Equation 31, ie

BE
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4tcoyR

Piymax ' 3(RZRe 2)  (B7)

Once Piymax has been obtained, the time to the maximum yield pressure
condition, Cpmax, for the standard linear solid then follows by substituting
from Equation B5 for aocp (n) in Equation 41, and thence from Equation
B6 for Oacp(n) in the resulting equation to give, after some manipulation

I " n °
( 2 (p- 1 + Cec(n)(o) +1

-Pma x Y €EA~ ® A (f

(B8)

where

€= C _(n) (0)(-1 , (see Equation 35),Acf(=) 1+nA ()

(B9)

1 2 +v nA(0)]

(I+nA(O)) [ c
(1- Re

2
) (1lO)

2

Equation B8 can now be easily solved for r~max. Only positive values

are admissible.
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