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ABSTRACT

$ -E'he theoretical basis and performance characteristics of two new methods
for the computation of the coefficients of the terms of asymptotic expansions at

1. reentrant corners from finite element solutions are presented. The methods, called
the contour integral method and the cutoff function method, are very efficient:
The coefficients converge to their true values as fast as the strain energy, or faster.

In order to make the presentation as simple as possible, we assume that the
elastic body is homogeneous and isotropic, is loaded by boundary tractions only
and, in the neighborhood of the reentrant corner, its boundaries are stress free.
The methods described herein can be adapted to cases without such restrictions.

hU.

KEYWORDS

---finite element methods, p-extension, fracture mechanics, elasticity, stress
intensity factors, mixed mode, extraction methods, convergence, error estiaJ
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1. INTRODUCTION.

Our understanding and ability to control the error of approximation in finite

element computations has advanced very substantially in the last two years. Two

developments are especially important: (1) Under assumptions which are generally

satisfied in engineering computations, we are now able to realize exponential rates

of convergence in any quantity of interest; and (2) using feedback information from

finite element solutions we can ensure that the error in all quantities of interest

is small. In this paper we describe two new methods for the computation of

generalized stress intensity factors in two dimensional problems of linear elasticity

and demonstrate their performance by examples.

We will restrict our attention to the displacement formulation. We denote

the solution domain by 0 and the displacement vectors defined on 0 by a or

(equivalently) {u}:

Z S {'!* (u,(z,) (,y)}. (1.1)

We denote the work done on the elastic body by the stresses corresponding

to a when the elastic body is subjected to displacements 6 by B(, 61; the strain

energy by (- and the potential energy by H(u-). Note that 2U(u = B( C). We

denote the set of all displacement vector functions defined on 0 for which U(a) < oo

by E(fl) and associate the energy norm with this set:

We denote the set of all admissible displacement functions by t(fl). By definition,

a displacement function a is admissible if it has finite strain energy and on those

boundary segments of 0 where one or both displacement components is prescribed

the components of il equal the prescribed displacement components values. That

is:

uP *1-



where a=, f are prescribed displacement components and MI
-D) (resp. 0n(D))

represents those boundary segments where u. (resp. u,) is prescribed. The exact

solution of the generalized formulation of a problem of plane elasticity qex satisfies:

)n('x) = mi II(ul. (1.4)

In finite element analysis we seek to approximate qlax. We do this by con-

structing a finite element mesh A on fl. Each quadrilateral (resp. triangular) finite
Selement is mapped onto a standard quadrilateral (resp. triangular) finite element

by suitable mapping functions. We define sets of basis functions on the standard
triangular and quadrilateral elements so that any polynomial of degree p or less

defined as the standard element can be written as a linear combination of the basis

function.

The polynomial basis functions defined on the standard element are mapped

onto the elements of the mesh A and are joined to form a set of basis functions

on f. These basis functions are continuous across interelement boundaries but no

restrictions are imposed on their derivatives across interelement boundaries. Thus

the basis functions are exactly and minimally conforming. The basis functions

defined on 0 are characterized by the mesh A, the polynomial degree p and the

mapping functions Q. The set of functions that can be expressed by linear com-

bination of the basis function is denoted by S'(1, A, Q) and called: finite element

space. Because the basis functions are continuous across interelement bound-

-o aries, S'(n, A, Q) is a subset of E(fl). We denote the set of admissible functions in

SP(O, A, Q) by '(n, A, Q). The number of basis functions in &'(n, A, q) is called the

number of degrees of freedo,. and is denoted by N. The finite element solution

FEB satisfies:

and has the following property:

IICSX - i rJlZn,= min IIx - llj-. (1.6)

The finite element method selects ipls from S'(fl,&,Q) on the basis of criterion

(1.6). We can reduce the error of approximation by mesh refinement, increase of

-2-.
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the polynomial degree of elements, or a combination of both. These are called

extension processes. If the polynomial degree of elements is fixed and the error of

approximation is reduced by mesh refinement then the process is called h-extension

(h refers to the size of the elements). If the mesh is fixed and the polynomial degree

of elements (p) is increased then the process is called p-extension. We remark that

neither the mesh refinement nor the distribution of polynomial degrees has to be

uniform. There is a substantial improvement in performance* and no significant

*increase in computational overhead if properly designed meshes are used instead

of uniform meshes. On the other hand there is no significant improvement in

I. performance but there is a significant increase in computational overhead if graded

p-distributions are used instead of uniform p-distributions. For this reason we will

• use uniform p-distributions, characterized by a single number, p. When the error

of approximation is reduced so that mesh refinement is combined with increasing

p then the extension process is called h-p extension.

In the case of h- and p-extensions the rate of convergence is algebraic. That

-' is:

11IaBX5 - OFB 118(0) -5 N (1.7a)NO

where N is the number of degrees of freedom; k and p are positive constants,

independent of N but dependent on 6sx and the finite element meshes. In the

case of h-p extensions, when proper mesh refinement is used in conjunction with

p-extension, the rate of convergence is exponential:

.. UX - 8 -() :xp(-N) (1.7b)

where k, -f and e are positive constants. Under certain assumptions which are

generally satisfied in engineering applications e > 1/3.

Although it is difficult to write computer programs that automatically design

meshes and assign polynomial degrees so that the rate of convergence (1.7b) is re-

o° alized for all N, very similar performance can be achieved when properly graded,

* In this contezt 'performance' means: rate of change of error in energy norm with respect

to the number of degrees of freedom.

-3-
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fixed meshes are used in conjunction with p-extension. In this case nearly exponen-

tial convergence rate is achieved for low N but convergence slows to an algebraic

rate for high N. Clearly, the mesh should be designed so that the desired level

of precision is achieved before the rate of convergence slows. Properly designed

meshes are such that the sizes of elements decrease in geometric progression with

a common factor of about 0.15 toward points of stress singularity. Selection of the

mesh and the polynomial degree of elements depends on the accuracy one wishes

*to achieve. For details and examples see (1-8].

We are now in position to outline the central point of this paper: In [91 a

new approach for the computation of functionals from finite element solutions

was presented. In this approach a desired functional value 0(aF,) (e.g. a stress

component at a point; stress intensity factor, etc.) is computed from an expression

which is of the form:
O(tZFS) = B(ilFE, V) (1.8)

where 6 is a suitably chosen function, called extraction function. Methods of this

type are called extraction methods. In [10] it was shown that the error in the

* "functional value computed by extraction methods can be written as:

S- <-(i1Fz)I IIsx - 0FjsE(n)Il zx - FE;is(O) (.9)

where aril is the finite element solution of an auxiliary problem, the exact solution

of which is ajx. In the auxiliary problem the domain and the mesh are the same as

in the original problem but the loading is computed from the extraction function*
6. The auxiliary solution serves theoretical purposes only: It is not necessary

to know c;Ex or qrs in order to use (1.8) for computing 0(iF,&). It is possible

to select the extraction function 6 so that 1aczx - Fzsls(n) -. 0 not slower than

11 Ijzx - r!Fa1(0) - 0 as N - oo in an orderly extension process. Therefore functional

values computed by extraction methods have the same order of accuracy as the

strain energy or better. Functional values computed by extraction methods exhibit

superconvergence [10,11].

In this paper we describe procedures for the extraction of the amplitude of

stress singular terms associated with reentrant comers in plane elasticity. We as-

sume that the plane elastic body is homogeneous and isotropic; loaded by bound-
iary tractions only; in the neighborhood of the reentrant comer the boundaries are

. "-4-
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stress free, and in (1.3) = 0, iv, = 0, however the method described herein can

1be generalized to other problems such as fixed-free boundary conditions; inter-

section of material interfaces with external boundaries; etc. We demonstrate the

performance of the extraction procedures on the basis of three test problems.

2. THE EXACT SOLUTION IN THE NEIGHBORHOOD OF

REENTRANT CORNERS.

In the neighborhood of reentrant corners (Fig. 2.1) we examine Airy stress

functions of the form:

U = U(,) = ,A+IF(g). (2.1)

Y a/2

* Fig. 2.1. Reentrant corner. Notation.

Because U satisfies the biharmonic equation:

a2  1ia 1 a2 ai(2 1ia 1 (2\a -+ 78078- -7, U= 0 (2.2)

F(O) must satisfy:

+ 2 (. + 1)1" + ('X2 1) 2 F = 0 (2.3)

where the primes represent differentiation with respect to 9. The general solution

of (2.3) for A 9 o and A 4 ± 1 is:

F(O) = a, coe(A - 1)s + a2 cos(A + 1)0 + as sin(A - 1)e + a4 sin(A + 1)0. (2.4)

I
a,.'..,,... .: .:,, '.:; ' . . ..,, .,.,;...... .'.' .,-;, .. .-. ,.,.. '.



We need to determine X and combinations of ai (i = 1, 2, 3, 4), such that the edges

that meet at the reentrant corners are stress free. From the stress function U we
have:

a2U FO
= Ar (MA +1) ix O (2.5a)

and:

r ra + = 0-ArAII() (2.5b)

Along the reentrant edges (at 0 = ± a/2) we have as~ =,r = 0. Consequently, from

* (2.4) and (2.5a,b), after straightforward algebraic manipulation, we have:

co(A -1)2 cos(A +1):! 0 0 [a,

Asin(A-1) sin(A-tI)* 0 0 1a 2 t
0 0 sin(A- I)- sn(AX+ 1). )asf= 26

0 0 coo(A -1) 2 A cas(A +1)~ 1 a4 J

where:

A= A (2.7)b+
Note that a,, a2 are independent of as, a.. A nontrivial solution exists only if the

corresponding determinants vanish:

cs(A - 1) sin(A + 1) c - Acoan(A - 1) ccs(A +1) -a 0 (2.8a)

sin Aa + Asin* 0 (2.9a)

ss inA a - Ainct=0. (2.96)

See also [12-16]. Observe that if A is a solution of (2.9a) or (2.9b), then -A is also

a solution, however the corresponding stress field has finite strain energy only if

the real part of Ais greater than zero.

-6-
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Assume now that AI' i (i= 1,2,...) is a solution of (2.9a) and A ' ) is real and

simple. Then, from (2.6):

a, coo (A.1  1)~ + a2 csA + 2) (2. 10a)

a1 V)1 sin (A -1) 1 + a2 cos(A 1 ) + 1)~ 0 (2. lob)
'2 2

where: P)1 Let us define:1 + P )

cos(AP' ) - 1)- sin(' - 1"1
Q~)a )=-6 % 2 (2.11)

a, cos(,') + )7 sin(A') + 1)7

With this notation (2.1) can be written as:

U =r~'~ (COB(A' -1a + Q 1) cos(A\ '1 + 1) a) (2.12a)

Similarly, if \(2) is a real, simple root of (2.9b), then the corresponding stress

function is:

where: u = ,rA!I +1 (Sin(A!2) - ) + Qj2) !i(A2 ) + 1) e)(.1b
i where:

S - ()\2)_1)2 (~2) cos(A~2
= -22) (2.13)

) + ) + A!2) CoB(A! 2 ) + 1). .
22

Note that (2.12a) is symmetric with respect to 0, whereas (2.12b) is antisym-

metric. From (2.12a,b) expressions from stress and displacement fields can be de-

rived. These expressions are most conveniently obtained by first writing (2.12a,b)

in terms of the complex variable z, and then using the method of Muskhelishvili
1c

fd[15]. The stress and displacement fields corresponding to (2.12a) a re called Mode
1 fields. The stress and displacement fields corresponding to (2.12b) are called

Mode 2 fields. Specifically, the Mode 1 displacement components, up to rigid

body displacement and rotation terms, are:

0Q- = -!- [(r.- Q ')(, + 1)) os , A - P)', cos(A) -2) 0] (2.14a)

,. = - , + Q () + 1)).sinAP) + P,)in(P) 2)0] (2.14b)

-7-



i which can be written in the form:

{ -- )} " 2 I=A { t(2.14c)

In (2.14a,b,c) G is the modulus of rigidity, and x depends only on Poisson's ratio.

For plane strain:

=3 - 4v (2.15a)

and for plane stress:

- " (2.15b)

The Mode 1 stress tensor components are:

.( ir) 2 - Q)( ) + I1) cos( I) - 1) 0- -  1) cos()( ) - 3) ) (2.16a)

- r--) [(2 + Q 1)(,W) + 1)) coa() - 1)0 + (A) - 1)cos(P -3) 0] (2.16b)

a :(.) rA(1) [(l ) - 1) si((; 3) 0 + Q ') (0) + 1) sin( ) - 1)0]. (2.16c)

The Mode 2 displacement components, up to rigid body displacement and rotation
-:" terms, are:

SS gi (2A2)!.2) ( A2) gn(!2)-2)0 (.1a

U()= (2) r,1 (2) (K + Q() ( ) + 1)) cA2)9 + )( -2) (2.17a)
2G ..

which can be written in the form:

U 2 G (2.17c)

, The Mode 2 stress tensor components are:
"0,,-----(2)~ ,A) r')- [(2 -Q02 (A[ 2" ,  +_, 1))suin(A 2')- 1) - (A}2 ) - 1)sin(A}2 ) - 3)0] (2.18a)"(2) S ) 2) )a.)-. 1) - + ))

r [(2+ , ( ))s 1) 1)sm( 3) .18a)
-( 

2 
) r,')-I () +1) ( -  2 , 1) + - 1) s.(. !2X )

,.-.. A.w r 2 3 ) 0] (2. 18b)

\*2 L") -1) CO(\2 -3) 9+ Q 2 (,\! 2 ) + 1) Coq('2 _ 1)0]. (2-18c)

In fracture mechanics we have: a = 2wr. In this case (2.9a,b) are identical

V,4 (sin 2Air o), and all roots are real and simple:

P, +!2 ±2, 1:,.. (2.19)

-8-
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Assuming traction free crack surfaces, finite strain energy, and neglecting rigid

body displacement and rotation terms, in the neighborhood of the crack tip any

solution can be written in the form:

_20 A {,{*I(#))+ L 2 (2.20)

This infinite series converges absolutely for r < ro for some ro > 0. The coefficients
A' ) and A!2 ) are called generalized stress intensity factors. The coefficients A"1 )

and A(') are related to the Mode 1 and Mode 2 stress intensity factors, K, and

K,, as follows:

A 1) = K, A(2
) = :"L. (2.21)

72P tr

Methods for the determination of the generalized stress intensity factors are dis-

cussed in the following sections.

When a # 2r, then not all roots are real, and multiple roots (both real and
b.

C.. complex) can exist. The cases of complex roots and multiple real roots are beyond

the scope of this discussion. From the point of view of engineering analysis, the

B solid angles of 270, 240, 225 and 210 degrees are of the greatest importance (in

addition to the 360 degrees already discussed). In these cases the smallest roots

are real. Their values are shown in Table 2.1.

Table 2.1. Smallest positive roots of (9a,b)

for selected solid angles (a).
"I.., a 41)x 2

3600 0.500000 0.500000
2700 0.544484 0.908529
2400 0.615731 1.148913
2250 0.673583 1.302086
2100 0.751975 1.485812

o. When the solid angle is greater than 257.45 degrees, then 4 > 1 and the

Mode 2 stress components are bounded. The Mode 1 stress components are un-

bounded when a > 180.

.. . -9"-



3. BETTI'S LAW. THE PATH INDEPENDENT INTEGRAL Ir. (a, i).

We denote the strain tensor components, corresponding to the displacement

field 9l(x, Y) by e( "), -( u,}). The strain-displacement relations are:

") - -a ,, _ , : =, + ay ax (3.1)

Similarly, we denote the stress tensor components corresponding to displacement

field C(x, y) by a( ), a4vu) and ) .The stress-strain relations are:

(3.2)

where ( ( } = (a?)- ,,"I) r(")}T; (e(-)} ( (- ) ys )} and fE] is a symmetric,

positive definite matrix, called the material stiffness matrix. We have assumed

that the initial strain is zero. We shall assume also that the body forces are zero

and that a is such that the coresponding stresses, computed from (3.1) and (3.2),

satisfy the equilibrium equations with zero body forces:

+: _! =0; -- + = 0. (3.3)az C a-- ax-  a

. We denote the direction cosines of the normal to the boundary of the plane

elastic body at boundary point P by n., n,. The traction vector components in

terms of the stress components at point P are:
,;') : ,, +,. },,, (3.4a)

T () =)n. + a (u) n, (3.4b)

Let - (v} = {v.(z, y) v,(z, y)} be an arbitrary displacement vector field and

assume that the strain energy associated with v' is finite on f0. Assume further that

tractions are specified along the entire boundary of 0. We denote the boundary

of fl by afn. In the absence of body forces, thermal loading and elastic constraints

S.the principle of virtual work, states that:

f eW)'(a")dx dy J {()}TLEI(C(uA)} dz dy f (TI')t,. + T'v1 ,) da (3.5)

-10-
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holds for any iv. v is called virtual displacement. The strain components e(9)) are

related to 6 by (3.1). Because [El is symmetric, (3.5) can be written as:

ff (IE](cs. )T {e("))dzdy =ff (ou(-))T~e(uA)}dzdy =f (T.(u)v. +T' 1 )ds (3.6)

which is the same as:

{(d = -(-)v.+T.U)v.)dS. (3.7)
CI, .1 Y. •, Y ,

Applying Green's lemma and using (3.4a,b) we have:

f 0 (T.(I~t& +41),)d. - L (T.(")v + 2~tv )d. -

ax ay us + -Yu dzdy. (3.8)

When the stresses corresponding to both it and V satisfy the equilibrium equations

with the body forces equal to zero, that is (3.3) then we have Betti's law-

where the integration is countreclockwise around n. We denote the normal and

tangential traction vector components respectively by T. and T and the normal and

tangential displacement vector components by y and ut. Because: T(' ) u )+T'u =

T±'()u. + T(')ut, etc., Betti's law can be also written in the following form:

f (T u.+ T' , = f(T (-) v.+ Tu() v)ds. (3.9b)

Let us now consider a subdomain of f, denoted by no, in the neighborhood

A of the reentrant corner. no is bounded by two continuous curves, r*, and r;, and

the reentrant edges, as shown in Fig. 3.1. Let (u) and (v) be two displacement

fields, both satisfying the equilibrium equations with body forces and initial strains

equal to zero, and the stress free boundary conditions along the reentrant edges

(= = o at e a ± ,,/2). Then, according to Betti's law:

-*11-

I
'pt



r|

Fig. 3.1. The subdomain rn.

f+ T',, e , + j (2€')-ia + ",(3.10)

We integrate around fl in the counterclockwise direction. Therefore integration

along r*2 is in the counterclockwise direction, while integration along r*, is in the

clockwise direction with respect to the reentrant comer. Let us reverse the sense

of the direction of the integral along r; so that both contour integrals are in the

-P counterclockwise direction with respect to the reentrant comer. We will use the

symbol f; to indicate integration along r; in the counterclockwise direction with

respect to the reentrant comer. In this case we have:

(T''v,. + It')vt,)d, - f+ w",,)) =

f - (TA(0u, + t(,)u)d.. (3.11)

Therefore, the integral:

Ir.il 1, j(T2('v+Tt Ivd- f (7 ,.'Iu1 +71t')ut)ds (3.12)

-12-



is independent of the path r*. Of course, ro must begin on the reentrant edge and

terminate on the other reentrant edge, as shown in Fig. 3.1, and the integration

must be counterclockwise with respect to the reentrant corner.

When the stresses corresponding to {u) do not satisfy the equilibrium equa-

tions and the stress free boundary conditions along the reentrant edges, then

instead of (3.11) we have:

*(14.0 v + 7 - j (2- + 4)td-
,p.

f ('.()v+ 2 )v)d. - (72tu)u,, +7 t)ud- f (7.(')u,, +7''utds-

,. '-' "-= + - -Y u+ d'-' -' '-z zdy. (3.13)

The sense of integration along r3 and r4 is shown in Fig. 3.1.

4. EXTRACTION OF STRESS INTENSITY FACTORS.

In the following we consider only real and simple roots of (2.9a) and (2.9b).

This is the case in linear elastic fracture mechanics. We present two algorithmic

procedures for the computation of coefficients A!') (i = 1, 2,...; m = 1, 2) in (2.20).

.' The restriction to real and simple root is not essential however, and all coefficients

of asymptotic expansions, similar to (2.20), can be determined by the methods

described in this section.

4.1. The contour Integral method.

Let ', be a circle of radius p centered on the crack tip, and assume that p is

sufficiently close to the crack tip so that the exact solution (usx) is represented

by (2.20) on r,. The traction vector, corresponding to {usx), can be written as:

00 2

(,ux),-,,. (4.1)
% " im1 m==l

where A!') > 0 is a real and simple root of (2.9a) and A!') > 0 is a real and simple

root of (2.9b).

-13-
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Let -A(") be a negative root of (2.9a) or (2.9b), and denote the corresponding

displacement function by {v (']}:

(V("?} At') r-Al%) '}e) (4.2)

where A(' is a constant, to be determined later. Note that (vm) does not have

1P finite strain energy on nl and, therefore, is not an admissible displacement function

on nl. It is admissible, however, on n* (Fig. 3.1). The traction vector on r,

corresponding to (uv-,is

Wai))

{TI.; A' -~ r {T" (). (4.3)

We now show that:

IFr, (ilx,i) if=,ad , (4.4)
0 otherwise

where r, is a circular arc of radius p centered on the reentrant corner. gin )f

depends only on A m). The proof is straightforward. By direct evaluation from the

absolutely convergent series (2.20), we have:

* 002

= (n= 1, 2) (4.5a)

where:

1 f+/2

* ]a2 {I,(0))}T{T m)(0)) + {41) (e))IT(Tr(n)()) dO. (4.5b)

Because h', (flajx, v_9 is independent of r,, it is independent of p. IfA~n#nte

this is possible only if the integral expression (4.5b) is zero. The other possibility

is that A!- = A ), but n 0m. In this case, however, the integrand in (4.5b) is

the sum of the dot products of symmetric and antisymmetric vector functions

-14-
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therefore the integral is zero. Denoting: c(m) (a) c(-, we have (4.4) and letting

A(-) = 1/c!m)(a), we have from (3.10):

K ~A!-) =f (f(~)TTa} i- {~1{~~)) do (4.6)

where ro is, of course, arbitrary. The function {v(' )) is an extraction function

for A!'). Of course, we do not know {ux} and {TI-u)). We therefore substitute

{UFE} and {T(...)} in (4.6) for {uEx} and {T('-x)} to obtain an approximation to

Atm). If r; includes an external boundary where the imposed tractions are known,

then the imposed tractions can be used in (4.6). Implementation would pose

some difficulties, however, and computational experience has shown that the use

of {T(u - )} instead of the imposed tractions generally yields satisfactory results.

Examples are presented in Section 5.

* 4.2. The cutoff function method.

Let us now assume that both contours r* and r; are circular arcs with radii
A p, and pl, respectively, p, < p2. We define the following extraction function for

{w!.( } = *lr){v(_ )} (4.7)

where {v 7')} is defined by (4.2), and o(r) is called the cutoff function and is defined

by:

1-3)= _3 +2P +2( P< r<P2 (4.8)

0 2!tP2.

In this case the extraction function satisfies neither the stress free boundary con-

ditions on the reentrant edges nor the equilibrium equations. Therefore, (3.13)

* must be used for the computation of Ai' ), instead of (3.11). Specifically, if we

select A(_7.) as before, i.e: A( )f = 1/c!m)(a), where c!-)(a) is computed from (4.5b)

with {v(-7 ) } replaced by {w(' )), we have:

A.-) J (T +1- f (T U + T tt) d

r-15-



+afn + az ay )u,,I dxdy. (4.19)

The contour integrals must be evaluated along the reentrant edges in the counter-

clockwise direction with respect to fl (see Fig. 3.1). The advantage of the cutoff

function method is that stresses and tractions corresponding to (uFrB } do not have

to be considered. For this reason the cutoff function method is more accurate than
the contour integral method.

5. EXAMPLES.

The contour integral and cutoff function methods can be implemented in any

finite element computer program. However, the error in the computed data is

closely related to the error in energy norm and therefore the design of the finite

element space SP(fl, A, Q) [10,11]. Also, the cutoff function method requires the use

•" of smooth mapping techniques. The following example problems were solved by

means of a new computer program, called PROBE. PROBE implements the p-version

of the finite element method, that is sequences of finite element spaces sp(n, A, Q)

can be conveniently created by letting p = 1, 2,... 8 while keeping the mesh A and

the mappings Q fixed. Of course, the mesh and the mappings can be changed

also. The mapping of finite elements is by the linear blending function method.

S.Curved boundaries, such as circles, and other conical sections are represented

exactly in the computation of stiffness matrices and load vectors. PROBE also

q permits specification of loading by FORTRAN-like expressions, hence boundary

tractions specified herein were represented exactly in the load vector computations.

Twelve Gauss points used in the computation of load vectors independently of the

polynomial degree. In the case of extraction methods 12 Gauss points are used for

evaluating the contour integrals in and 144 Gauss points are used for evaluating

*. the area integrals, independently of the polynomial degree. Additional details

concerning PROBE are available in [171.

C. Other examples of the application of extraction methods, based on experi-

mental (research) implementations, are available in [18,19].

* 5.1. L-shaped plane elastic body.

We consider the L-shaped plane elastic body of thickness t, shown in Fig.

5.1, loaded by tractions corresponding to the first symmetric and antisymmetric

-.,..,-..- .r":"'':'Y .':".''X ;."'.' .' .. .. .. .:....% ..' : ..... : -..:.9 ... ... :.?. -1.6--.'...i



eigenfunctions of the asymptotic expansion of 98x about the reentrant corner.

4 This example is representative of plate and shell intersections and reentrant corner

problems in general.

00 A

Fig. 5.1. L-shaped plane elastic body. Mesh design (18 elements).

( We select &, = 0.3 and assume plane strain conditions. Therefore x

S0.54448374; Ql)= 0.543075579; A()= 0.90852919; Q2) = -0.218923236 [see (2.15a),

(2.9a,b), (2.11) and (2.13)]. We superimpose the tractions corresponding to the

stress components (2.16) and (2.18) along the boundaries of the L-shaped plane

elastic body with the stress intensity factors selected so that A(') = A, (A is arbi-

trary) and:

A -A - (5.1)

P where a is the dimension shown in Fig. 5.1. In this way the exact strain energy

can be computed:

U(i x) = 6.77776914 (5.2)

-' where E is the modulus of elasticity.

In the contour integral method (CIM) the integration was performed along

* the circle of radius 0.15 a and the finite element solutions were computed from the

ielements inside the circle.

The number of degrees of freedom, the computed values of the normalized

strain energy and the normalized stress intensity factors, defined by:

del ~ -(2jFz A 2) def _(4~)F8
= A A -( 2 )

4 1 ' ,  (5 .3 )

-17-
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are listed in Table 5.1. Of course, A,') has to converge to I and, in view of (5.3),

A 2 has to converge to 2.

Table 5.1. L-shaped domain. Strain energy and
the normalized stress intensity factors A"), A (2 ) computed by

the contour integral method (CIM) and the cutoff function method (CFM).

P N (Aa 4 1I)3t (CIM) (CFM) (CIM) (CFM)

1 41 6.42072796 1.18041 0.95268 2.43474 2.29075
2 119 6.74137580 0.95418 1.02177 2.01352 2.08422
3 209 6.77029847 1.02786 1.00250 2.02597 2.02239
4 335 6.77575144 0.99014 1.00073 1.99801 2.00437
5 497 6.77683967 1.00444 0.99991 2.00265 2.00097
6 695 6.77719530 0.99784 0.99985 1.99939 2.00022
7 929 6.77736281 1.00074 0.99987 2.00036 2.00005
8 1199 6.77746228 0.99952 0.99990 1.99988 2.00001

00 oo 6.77776914 1.00000 1.00000 2.00000 2.0000

We see from Table 5.1 that the stress intensity factors computed by both

methods converge strongly and obviously, although not monotonically. Greater

accuracy and more nearly monotonic convergence is exhibited by the cutoff func-

tion method than the contour integral method, nevertheless both methods yield

solutions which are within the range of precision normally needed in engineering
computations at p = 2 or p = 3.

*We have plotted the relative error in strain energy and the absolute value of

the relative error in the Mode 1 and Mode 2 stress intensity factors computed by

the cutoff function method against the number of degrees of freedom on log-log

scale in Fig. 5.2a and on a semilog scale (the logarithms of the relative errors

vs. N /3 ) in Fig. 5.2b. These choices of scale are motivated by estimates (1.7a)

and (1.7b), respectively. These diagrams indicate that the error in strain energy

behaves differently in the range of low p values than in the range of high p values.

In the range of low p values it curves downward in Fig. 5.2a and very nearly

follows a straight line path in Fig. 5.2b, suggesting that estimate (1.7b) holds. We

will refer to this as Phase 1. In the range of high p values it follows a straight line

path in Fig. 5.2a but has a positive, decreasing curvature in Fig. 5.2b. We will

-18-
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Fig. 5.2a. Convergence of the strain energy and the Mode 1 and Mode 2
*. stress intensity factors computed by the cutoff function method. Log-log scale.
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Fig. 5.2a. Convergence of the strain energy and the Mode 1 and Mode 2
stress intensity factors computed by the cutoff function method. Log-log scale.
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refer to this as Phase 2. Transition from Phase 1 to Phase 2 occurs at about p = 4.

Phase 2 is the asymptotic convergence for p-extensions: Estimate (1.7a) holds

with f = 2 41), in this case = 1.089. Phase 1 is characteristic for h-p extensions.

p, Obviously, the rate of decrease of the error is much faster in Phase 1 than in

Phase 2. We can extend Phase 1 by refining the mesh further so that the elements

are graded in geometric progression toward the reentrant comer with a common

factor of about 0.15. Thus the next layer of elements around the reentrant corner

would have the size of 0.15 3 a. In general, the mesh should be designed so that

the desired level of precision is achieved in Phase 1. In this example the relative

errors are less than one percent in Phase 1, therefore no further refinement was
*-. necessary.

The convergence path of the Mode 1 stress intensity factor follows closely

that of the strain energy, whereas the the Mode 2 stress intensity factor converges

faster. This point is discussed in [10,11].

b5.2. Edge cracked panel problem 1.

Let us now consider the edge cracked panel shown in Fig. 5.3. We assume

"S plane strain conditions and Poisson's ratio of 0.3. In this case I I - 1/2,

* therefore Q}l) = -1/3 and Q(2 ) = 1. Once again we denote the thickness of the panel

by t. We apply tractions along sides A, B, C, D, E, F of the edge cracked panel

shown in Fig. 5.3 that exactly correspond to the stresses of Mode 1 and Mode 2

stress fields. in this case, using appropriate trigonometric identities, (2.16a,b,c)

P and (2.18a,b,c) can be written in the following form (see, for example, [20]):

(1) - A co s 2 (5.4a)

7 2 .. 3

oal MirrCOB ( l+ sin !sin(1 r (5.4b).= - 2 2

(1) K, . 0 0 30

.. where -,: <a < r. The Mode 2 stress components are:
(2) K,, . 9 9oj ~ k! s-(2+cos-cs- (5.5a)

;7-ir 1 2 2 2j

(2) Kz 0 0 30(5

72/i-r 2 2 2

(2) Kc, , ! 1 -9 s (5.5c)

-20-
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* . . . .. ..- b -

The generalized stress intensity factors A(') and A,), are related to the stress

intensity factors by (2.21). We select K, = K = v7 A (A is arbitrary) and define

the normalized stress intensity factors i(') and A(2) as follows:

Al) df (All ))FE' 2  (AI)FE (5.6)
A A

In this way the computed values of both V~') and A(2 ) converge to 1 and therefore

I it is easy to monitor convergence of the stress intensity factors. The exact strain

energy is known:

,aix) 10.5412281 E (5.7)

SE ___ ____D -"A"

SF CR\ACKl

IA "aZa 0.0225

"L-a a --- 0.1"a-

Fig. 5.3. Edge cracked panel problem 1. Mesh design (24 elements).

The number of degrees of freedom, the computed values of the normalized

strain energy and the normalized stress intensity factors defined in (5.6) are shown
* in Table 5.2.

We see from Table 5.2 that again the cutoff function method is somewhat

more accurate than the the contour integral method. In the case of the cutoff

function method the relative error falls below 1 percent at p=3; in the case of the

• .contour integral method the relative error drops below 1 percent at p=5.

The telative errors in strain energy and the absolute value of the relative

error in the Mode 1 and Mode 2 stress intensity factors, computed by the cutoff

-21-
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Table 5.2. Values of A(') and A(') computed by the

contour integral and cutoff function methods.

p N A2 at (CIM) (CFM) (CIM) (CFM)

1 53 9.5959919 1.16972 0.91371 1.31197 1.00163
2 155 10.4114292 0.92515 1.02702 0.92840 1.04058
3 273 10.5085887 1.03787 1.00277 1.04413 1.00637
4 439 10.5302827 0.98483 1.00025 0.98360 1.00134
5 653 10.5354556 1.00609 0.99943 1.00737 0.99992

op 6 915 10.5374132 0.99650 0.99944 0.99639 0.99978
7 1225 10.5384252 1.00083 0.99954 1.00125 0.99978
8 1583 10.5390566 0.99907 0.99964 0.99917 0.99982

c co 10.5412281 1.00000 1.00000 1.00000 1.00000

function method, are plotted against the number of degrees of freedom on log-log

scale in Fig. 5.4. The inverted S-curve, typical of p-convergence when strongly

graded meshes are used, is clearly visible. The stress intensity factors converge at

about the same rate as the strain energy. The curves appear to enter Phase 2 at

p= 7 or p =8. The results are in agreement with the theoretical estimate given in

[10].
POLYNOMIAL DEGREE

I2 3 4 56 78
20 1

zW
C.) I
0,

irSTRAIN ENERGY

4

71J

"'~ a' II

40 100 1000 2000
NUMBER OF DEGREES OF FREEDOM (N)

Fig. 5.4. Convergence of the strain energy and the Mode 1 and Mode 2
stress intensity factors computed by the cutoff function method.

Finally, let us examine the vector length of stress intensity factors which
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can be computed by the energy release rate method also known as the stiffness

derivative method. Because we have selected for this test problem K, = K, =

v/2A, we define the computed values of of the normalized vector length of the

stress intensity factors as follows:

(VK KrI(5.8)

In this way k must converge to 1. The normalized vector length of stress intensity

p factors, computed by the energy release rate method, the contour integral method

* and the cutoff function method, is shown in Table 5.3. The three methods are

seen to converge strongly. Again, the performance of the cutoff function method

is seen to be the strongest.

Table 5.3 Normalized vector length of stress intensity factors (k)
•.J computed by the energy release rate method (ERM), the contour integral

method (CIM) and the cutoff function method (CFM).

p ERM CIM CFM

1 1.06576 1.24288 0.95868
2 1.02237 0.92678 1.03382
3 0.99926 1.04100 1.00457
4 0.99663 0.98421 1.00080
5 0.99658 1.00673 0.99967
6 0.99733 0.99644 0.99961
7 0.99795 1.00104 0.99966
8 0.99840 0.99912 0.99973

00 1.00000 1.00000 1.00000

5.3. Edge cracked panel problem 2.

The two problems just discussed were constructed so that only the first sym-

metric and antisymmetric terms of the asymptotic expansions were nonzero. This

permitted us to examine the performance of the contour integral and cutoff func-

tion methods. In practical problems no such restrictions apply and the exact

solution is not known. The following test problem is more nearly representative

of practical problems.

The problem definition and mesh design are shown in Fig. 5.5. Plane stress

condition and Poisson's ratio of 0.3 are assumed. Solutions were obtained by
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Fig. 5.5. Edge cracked panel problem 2. Mesh design.

-.~.the virtual crack extension method, the contour integral method and the cutoff

function method. We normalize the stress intensity factors Kr, Kzz and their vector

length K as follows:
.4

I ,-. d i Kr" -'- ' - ' -'f( (.9)

-The results are shown in Tables 5.4 and 5.5. This problem was solved by Sha and

Yang using the virtual crack extension method [21] and by Andersson (22] using

, i'. a technique similar to that proposed by Rybicki and Kanninen [23]. The results

presented herein agree very closely with the results given in [21,22].

The results indicate that the computed values converge strongly. Our ability

to go beyond the level of precision we actually need at a small marginal cost is

very important from the point of quality control: There are no other means for

ensuring the quality of computed data in practical computations where the exact

solution is generally not known.

Finally we note that the contour integral and cutoff function methods require

substantially fewer CPU cycles than the virtual crack extension method. In the

4,, -24-
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Table 5.4. Solution by the energy release rate method.
Normalized strain energy and vector length of stress intensity factors.

p N U9pE k
2 1 W

1 43 1.4849947 1.439
2 125 1.6162227 1.605
3 221 1.6593481 1.587
4 355 1.6940543 1.656

* 5 527 1.7010749 1.666
6 737 1.7030296 1.671
7 985 1.7035357 1.673
8 1271 1.7037223 1.674

Table 5.5. Solutions by the contour integral and cutoff function methods.
Normalized stress intensity factors and their vector length.

b W,
N , ~ k, krz f k

(eOM) (CFM) (CIM) (CFM) (CIM) (CFM)

1 43 0.54127 0.42259 -0.37480 -0.29005 1.650 1.285
2 125 0.49708 0.55588 -0.25578 -0.28292 1.401 1.563
3 221 0.58909 0.56161 -0.28951 -0.27074 1.645 1.563
4 355 0.57864 0.59232 -0.28319 -0.29022 1.615 1.653
5 527 0.60558 0.59825 -0.29398 -0.29012 1.687 1.667
6 737 0.59672 0.60043 -0.28897 -0.29097 1.662 1.672
7 985 0.60313 0.60119 -0.29196 -0.29091 1.680 1.674
8 1271 0.60032 0.60132 -0.29042 -0.29095 1.672 1.674

case of this example five elements have vertices on the crack tip. Therefore, using

the central difference formula for evaluting the rate of change of the potential

energy with respect to the crack length, we needed to recompute the stiffness

matrices of five elements twice. At p = a the virtual crack extension method

required 13.5 (resp. 10.5) times the CPU time required by the contour integral

_ (resp. cutoff function) method. Also, the contour integral and cutoff function

methods yield the Mode 1 and Mode 2 stress intensity factors separately whereas

. the virtual crack extension method does not.
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6. SUMMARY AND CONCLUSIONS.

We have described two methods for the computation of the amplitudes of

the first symmetric and antisymmetric terms of the asymptotic expansions of the

solution at reentrant corners with stress free boundaries. This class of problems is

very important from the practical point of view because it includes the problems

of linear elastic fracture mechanics and in many cases the sites of failure initiation

are reentrant corners.

The limiting assumptions of this paper were adopted in order to keep the pre-

:" sentation as simple as possible: The extraction methods described herein are not

intrinsically limited to the class of problems considered here, but implementation

for the general case is somewhat more difficult. For example, we have considered

real and simple roots of (2.9a,b) only. If the solid angle is 360 then all roots are

real and simple and the procedures presented herein can be applied directly to

computing any number of coefficients of the asymptotic expansion. If the solid

angle is arbitrary and the amplitudes of several terms of the asymptotic expan-

sion are of interest then the implementation must account for multiple real roots

and complex roots as well. Complications arise also when the material properties

change, such as along the edge of a composite panel. In such cases determination

of the eigenvalues and eigenfunctions is more difficult than in the case discussed

here. (See, for example, [241.) These difficulties notwithstanding, implementation

of procedures for the computation of the asymptotic expansion of stress singu-

lar terms is feasible. We have demonstrated that the amplitudes computed by

the contour integral and cutoff function methods converge to their true values at

about the same rate as the strain energy, or faster. Thus the amplitudes can be

computed accurately and inexpensively by these methods.

The accuracy depends on the design of the finite element mesh and the choice

of polynomial degree. In general the mesh should be designed and the polynomial

degree chosen so that the desired level of accuracy is reached just before transition
occurs from Phase 1 to Phase 2 in the p-extension process. Procedures for correct

tmesh design and proper selection of p are discussed in (7,25].
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P-extensions can be implemented, and in fact have been implemented in

PROBE, so that once the solution for p = po is available the solutions for p < po

can be obtained very inexpensively. This is because stiffness matrices and load

vectors have hierarchic structure [17]. Consequently the marginal cost associated

with obtaining stress intensity factors for p < p is very small. This is not the case

when the h-version of the finite element method is used.

Development of theories for the prediction of failure in metallic and nonmetal-

I1 lic materials is a problem of very obvious practical importance. Several failure
theories have been proposed, each requiring computation of some parameters of

the elastic stress field (see, for example [26-31]). In linear elastic fracture mechan-

ics the amplitude of the first symmetric term of the asymptotic expansion of the

solution about the crack tip have been correlated with crack extension through

laboratory experiments. It is conceivable that much like crack extension, failure

initiation (e.g. the formation of cracks at weldments and reentrant corners; the

onset of delamination in composite materials, etc.) can be correlated with the

amplitudes of the terms of asymptotic expansions also. In fact, linear elasticity

cannot be useful for predicting failure initiation events unless parameters of the

elastic solution can be consistently correlated with occurrences of such events.

Certain parameters can be computed only by extraction methods. Others can be
- ." computed directly from the finite element solution [321. We have shown that ac-

curate and inexpensive determination of the amplitudes of asymptotic expansions

in the neighborhood of reentrant comers is possible.
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