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1. Introduction

One of the great contributions of Ada to the field of programming languages is the notion that a
language should have a design rationale document. One always wonders, confronted with some
bizarre aspect of a language, whether it is deliberate or accidental. A rationale, more by omission
than commission, can reveal the answers to such questions. It is thus with a deep sense of duty,
and no small amount of trepidation, that we offer this document to the curious user of E-L.

The Ada rationale is organized along the structure of the language-the reason for this or that
construct is such and such. In discussing the design of E-L, there are a number of broad issues

p that permeate the design, and would not fit such an outline. Thus this document is a collection of
* relatively independent essays that address what we felt to be important issues in this design.



2. The Philosophy Behind E-L

U - E-L is a software development environment designed to achieve a dramatic increase in software
productivity while retaining or improving the efficiency of software produced. To appreciate the
rationale for its design, one must first understand in general terms where there are productivity
gains to be made by using a new kind of software development environment and what steps are

Thee retheemai wysinwhch -Lwil mpov productivity by comparison with current
practice. The first is by supporting software development and evolution as an iterative,
exploratory, on-going process, rather than as a straight-line sequence of steps. The second is by
aiding the re-use of design and implementation knowledge. The third is by permitting programs to
be written at a level and in a style of language that is most appropriate for the application at hand.
Let us briefly discuss each of these aspects of E-L

We begin by observing that the cost of maintenance usually dominates the cost of initial
development in the construction of a large, long-lived software system. The word "maintenance",

.z of course, is a widely-used misnomer that encompasses not only "repair" but "enhancement" and
"evolution". A large software system is not static like a piece of machinery. Software can rarely be
assembled once from pre-specified parts and then remain rigidly the same for its useful lifetime. It
is more like a living thing that begins to function early in its development and then grows gradually
into maturity. Like living things, software systems must be adaptable to changing stimuli, i.e., to
demands for new behavior, new functionality. Therefore the product of a software project should
not be just some code, a user's manual and a service manual, as if the program were a machine.
The product should include the wherewithal to enable a "maintainer" (i.e., a re-developer) to
resume development by altering specifications design, code and/or documentation. He should
have should have access to

0up-to-date specifications for the system,

0 a documented development plan (a "program-in-the-large", showing how system
components are put together and what resources they provide one another),

9 a family tree, if the system is being maintained as a multi-version family,

0 prototype models used for testing particular aspects of the design,

0 facilities and data for regression testing,

0 instrumentation data gathered in previous use of the software,

* and whatever other materials an initial developer would have needed. Obviously, these items are
worse than useless if they are not kept up-to-date. If specifications and documentation fall out of
correspondence with the implementation, software becomes brittle and eventually unmaintainable.

.1 E-L will enhance productivity, therefore, by reflecting the view that software development is in
general an iterative process in which specification and documentation are intertwined with
implementation. It will support a software database containing not just code and manuals, but all
the documents and data needed to resume and revise development. The database will explicate the
interrelationships between these items, e.g., by linking documentation and code at a detailed level.
To the greatest extent possible, items in the development database will be usable by tools; for
instance, a development history will be "replayable", so that software can automatically be
regenerated after a modification. In short, E-L wili make it much easier for developers to invest in
supporting the future enhancement of their products, rather than treating software construction as
an assembly-line operation.

A second way to increase productivity is to support re-use of proven design and b

implementation knowledge. A great deal of software engineering amounts to innovative application

- ~ ~ -



The Philosophy Behind E-L 2-2

of well-understood algorithms and data structure classes. It ought to be possible to reduce the cost A
of adapting and coding these algorithms and data types. Unfortunately, the use of library packages
to avoid this redundant effort has not borne much fruit. It is often not sufficient to tailor a package
by setting some parameters, either because an application lies outside the capabilities of the package
or because efficiency considerations dictate optimizations that depend on subtle facts about the
setting in which the package is being applied. E-L supports a technique for encoding and re-using
knowledge about how to apply generally useful algorithms and data structures and how to tailor
combinations of them to operate efficiently in specific circumstances.

A third way to increase productivity is to arrange for programs to be written at a level and in a
style of language that is appropriate for the problem being solved. It is generally agreed that
software productivity can be increased by raising the level of the language in which programs are
written. This has been borne out by studies comparing projects implemented in assembly language
with others using high level languages. As the level of abstraction becomes higher, programs
become more concise, more easily understood, easier to change, and more machine-independent.
We can expect continued improvements in these areas if we can lift the programming level even
higher. In fact, if performance were no object, it would be relatively easy to produce functionally
correct software more economically.

Unfortunately, given current compiling technology, raising the programming level usually
causes the efficiency of the final product to drop. A guiding principle behind the design of E-L is
that efficiency matters. Our aim is to support development of large, long-lived production software
systems in which the cost of execution is an important figure of merit; sizable embedded systems
fall into this category, as does most system software (e.g., development environments
themselves). In this respect, E-L differs from other highly integrated environments, such as
Smailtalc, which give strong support to rapid development of well-structured programs but provide

* only for relatively inefficient execution, entirely within the development environment. E-L is
designed to allow production program to be extracted completely from the environment. Our plan
is ultimately to use the method of highly optimized code generation that we are now developing (cf.
[CGBC]) to make the programs produced as efficient as could be produced by hand or more so.
There is no doubt that the attainment of acceptable efficiency is one of the chief sources of
complexity in programming, and there is good reason to believe that the need for human insight in
making certain programs efficient will extend many years in to the future. However, it is our thesis
that by acknowledging the efficiency problem, and by giving programmers both high level means
of specifying algorithms and separate ways of obtaining efficiency, we can truly raise the level at
which programming is done.

To achieve a clear programming style and an iterative, exploratory development style, re-using
design and coding knowledge while still producing efficient software, we use a method that we call
transformational refinement (TR). We will say more about this method in subsection 1. 1; for now,

* it suffices to mention that TR is most successful when used with a wide spectrum programming
language and that it depends on the support of efficient tools for mechanical application of
transformations and for semantic analysis of programs. A wide spectrum language is one in which
many styles of programming, ranging from specification-oriented to machine-oriented, can be
accommodated within a single language framework. Before beginning the design of E-L, we had
experimented with TR for several years using a programming language that had not been designed
with transformational refinement in mind. That experience contributed to our decision to create
simultaneously a new development system that would support TR and a new programming
language that would cater to the needs of the environment and would support the transformational
methodology. The name E-L stands for environment and language. E-L is one of very few
development environments in which the design of the programming language has been made
subordinate to the needs of the larger system, and it is the only such environment we are aware of
that is intended to produce efficient, free-standing production programs.

The design principles behind E-L follow directly from the methodology that it is intended to
support. A true wide spectrum language will either be based on strong facilities for extension by its
users or else it will be a "kitchen sink" language, incorporating an irregular jumble of features p

intended to accommodate all styles of programming. E-L provides for extension of syntactic
notations, of data types, and of control structures. On the other hand, extension facilities must not

E-L Design Rationale



The Philosophy Behind E-L 2-3

be used in an undisciplined manner. The importance of uniformity and of being able to analyze
programs at all levels and in all styles follows not only from the needs of human readers of code,
but also from the needs of tools that use analysis in supporting program realization. Therefore, the
extension facilities of the system are governed by axiomatic constraints that ensure regularity andU enable tools to depend on assumptions that they could not always detect or verify for themselves.
The language has a firm semantic bpsis in that most of its built-in facilities are reducible to a small,
uniform kernel language. In fact, the reduction mechanism used to describe the language
rigorously will be identical to extension facilities that are provided for users. Thus, the formal

defnitonof the language is unusually accessible to its users and can serve both as an explication of
rebuili trby and as a guide for user extensions. Finally, the desire to enhance productivity and

relabiitybyre-using programming has been a strong motivation, particularly in the design of the
function family and data type facilities of the language.

Although E-L is evolutionary in the sense that it embodies research that has evolved gradually
over recent years, we view it as a revolutionary step because we have chosen not to constrain the
design to be compatible with conventional practice, conventional formal semantics, conventional
host equipment, or conventional syntax. While we have not been whimsical in choosing to break
conventions, we have felt free to make choices that can lead to more economical program
development, even if those choices imply significant dependence on modern workstation
technology and some investment in learning a new language and a novel style of software
development.

The following subsections expand on the philosophy behind E-L by summarizing
transformational refinement and its implications for language design.

J'a



Transformational refinement 2-4

2.1 Transformational refinement

Transformational refinement (MR) is an approach to the process of implementation that we have
been studying and experimenting with for the last several years. It reflects our view that, to theI greatest extent possible, implementations should be derived mechanically from their specifications.
Our particular focus is on the derivation of efficient, readily compilable code from a generic
program model that represents the design of a whole family of implementations. We strive to
formalize and mechanize the process of software design and implementation, so that the rationale
behind this process is clearly exposed and documented, and so that major parts of the design can be
re-used when a software product needs to be adapted to a new hardware configuration or to new
requirements for performance or functionality.

Under TR, the system implementor's task is not just to produce a final, concrete system that
matches stated requirements. Rather, it is to produce a very high level program, which we call a
program model, together with one or more formal plans for its realization as a concrete system. A
plan is a structured description of the mechanical steps needed to refine the program model by
applying program transformations. The transformations may either be developed by the
implementor or they may be drawn from a collection of rules whose validity has been certified and
whose domains of effectiveness are well documnented. The program model, the development plan,
and the project-specific transformations are actively maintained for the life of the software system.
They are the keys to understanding what the system does and how it works.

Transformational refinement increases productivity and reliability without diminishing the
efficiency of systems that can be produced. It enhances productivity both because coding takes
place at a high level of abstraction and because the method promotes the re-use of design and
implementation knowledge. Program models from which implementations are derived can be
concise and clear because they omit implementation-dependent details and they employ notations
and abstractions tailored to the application domain. Deriving concrete programs mechanically
instead of writing them by hand facilitates re-use of previous work not only because the method
encourages program modules to be written in a highly generic style, but also because so much
knowledge about the design and realization of each system product becomes formally encoded and
documented and remains available for re-use, either in the evolution of that system or in the
development of completely new ones.

Our methodology promotes reliability because the correctness of a high level program model
written in domain-specific terms is more easily checked-whether by inspection, test execution, or

* formal verification-than that of a low level implementation, and because transformation rules can
V be independently verified prior to system derivation and checked for applicability as they are used.

The method permits highly efficient software to be developed in spite of the use of a high level
coding style because the implementor's insight can enter into the selection of data representations,
access methods, low level communication protocols, and other details that are appropriate to the
target configuration and to performance requirements.

a, The successful practice of transformational refinement for developing large software systems
depends critically on computer support, both because transformation of large amounts of code by
hand is unacceptably tedious and error-prone, and because the method entails retaining and re-using
a great deal of information about each software project. It demands effective tools for applying
transformations and for performing the semantic analysis necessary to guide and validate them. It
requires a powerful and capacious project database to hold the program model for a software
system, the concrete instances derived from it, and analysis for all of these versions, together with
enough dependence information to permit the developing system to evolve incrementally with a

* minium of rundundant effort. A shift towards more machine-intensive methods in order to raise
productivity makes sense economically, of course, since skilled personnel become ever more

* expensive while the cost per unit performance of computing capacity continues to drop. E-L2s
design, while not dependent on exotic machine architecture, does assume the use of modem
workstations with high bandwidth user interface equipment and considerable processing power and
storage.

The design of tools for program transformation and refinement is an active area of research, by
us and by others, and does not fall within the scope of the E-L project. Nevertheless, our

E-L Design Rationale
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experience with TR to date has strongly influenced the design of the environment and the language.
The decision to provide a robust and extensible facility for attaching annotations to programs down
to the expression level, for example, will support TR both by allowing the attachment of analysis
results directly to code and by providing direct links fr-om a program model to the concrete code that
realizes it. Also to facilitate transformation, we designed the language to accommodate a wide
spectrum of programming styles within a single framework. This aspect of the design is the
subject of the next section.

E-L Deign Raional
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2.Wide spectrum extensible language-

In one sense, transformational refinement is an extension of the familiar process of program
compilation, differing in that it allows a software developer to use his insight to control detailed
choices about data representations and the optimization of high level algorithms. However, TR is
different from compilation in several ways, and the special requirements of the transformational
approach have influenced the design of E-L. Whereas compilation is the simultaneous translation
of all aspects of a program from one language to a very different one, refinement is an iterative,
incremental process in which each step may realize only a single aspect of the program. The reason
TR proceeds incrementally is that users must be able to understand and to compose individual
transformation rules. A rule drawn from a standard library must have a narrow, clearly identified
purpose so that it is easy to combine with others. A rule provided by the user should not be forced
to accomplish many tasks at once; if rules are complex, then the structure of the implementation will
be obscure. A transformation may introduce lower level language features than those used in the
version of the program being refined. It may be part of a series of transformations designed to
reduce the program entirely to low level terms. Nevertheless, the program that results from
applying a single transformation must not be in semantic limbo. The newly inserted pieces must fit
together meaningfully with the parts left unchanged, because in order for refinement to continue,
tha analysis of the new parts must be integrated with the analysis of the old.

Most languages don't offer a wide enough range of styles and abstraction levels. E-L is
designed to embed a wide spectrum of language styles within a single framework. In principle, the
spectrum of language dialects that could usefully be incorporated in a transformational development
environment is very wide indeed, ranging from high level non-procedural specifications on the one
hand to silicon chip designs on the other. These extremes are outside the scope of the E-L project.
Our objective is to make it possible within E-L to create a clear procedural model of a software
system or family and then to refine that model to the level at which an optimizing compiler can
produce a highly efficient production version of it. At the model level, the programmer must feel
free of language constraints aimed at promoting efficiency and must be able express his algorithms
in terms natural to the problem domain. At the compiler input level, the mapping from code to

* machine facilities must be direct, so that it is clear which parts of a program are expensive and so
* that optimizations beyond the capabilities of the compiler can be made explicit by the developer.

A couple of examples may illustrate the ways in which E-L satisfies the need for a wide
spectrum language. At the model level one can use the type mechanisms for behavioral effect and

U for modularization without being forced to deal with constraints intended only for efficiency. The
fundamental built-in numeric types, such as integer and rational, are abstract types
describing ideal numbers; constraints resulting from the finiteness of computing machines are
introduced by refinement of these abstract types to machine-oriented realizations (which will
typically be built-in themselves). E-L's facilities for polymorphic programming are extraordinarily
flexible. Parameterized types are user-programmable, finite and infinite union types are supported,
and the parameters of functions can be described by type patterns or "templates", rather than
specific types, to maximize the re-usability of function definitions. On the other hand, all of the
necessary declarative mechanisms for refining programs to strongly-typed form are included in the

* language. Furthermore, the axioms for the behavior of type operators inhibit undisciplined or
counter-intuitive uses of type flexibility.

Another aspect of programming that illustrates the wide spectrum approach is storage
management. A program model should deal with the behavior of values and objects without
concerning itself with managing the storage they occupy. Efficient storage handling can be
introduced during refinement by making use of facilities (pointer types, heaps, and so on) that are
not normally needed at the model level. Moreover, because refinement is based on analysis of a

IF particular program, this approach can produce much more efficient and/or reliable results than
would be possible with a language that predefines a fixed set of storage management facilities. For
instance, programmed deallocation of storage, which is ordinarily excluded from high level

* languages and is a source of hard-to-detect bugs in low level programs, can be used safely if it is
introduced only by correct transformations.

It would be disastrous to design a wide spectrum language as a large monolith. It would be

E-L Design Rationale
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Wide spectrum extensible language 2-7

impossible to anticipate all the facilities that would be needed, either at the program model end of
the spectrum or at the machine-oriented end. And the result would almost certainly be a semantic
jumble, filled with unexpected interactions and ambiguities. Therefore, E-L is an extensibie
language system. While the built-in langauge provides an ample basis for programming in a a
number of styles, it will sometimes be inadequate. In that case, nearly every aspect of the
language, including syntax, data types, function families, declarative constructs and control
structures, can be extended by users. In fact, most of the built-in language is defined formally
from a very small kernel language using exactly these facilities. (Thus, experienced users of the
language will be able to understand and make use of its formal definition.)

Furthermore, E-L's extensibilty does not come at the expense of analyzablity, since that would P
defeat the purpose. A program model can only be correctly refined if it can be analyzed in
sufficient detail to guide program transformation. Therefore, every extension facility is governed
by associated axioms that must be obeyed by user-provided extensions. In many cases , adherence
to the axioms can be verified; in a few cases, they have the status of unpoliced rules of the game.
In any case, tools can assume a high degree of regularity and predictability in user-defined
extensions, without having to interpret their implementations in detail.

Some earlier extensible languages have been unsuccessful because they attempted to build on
too low level a base language and because they expected every tool cope with any program in the
language. Since every abstract construct was defined by reduction to a low level implementation
model, tools were not able to make use of subtleties apparent only at the abstract level. In E-L, not
every tool deals with the full spectrum of the language. A certain analysis tool may handle only the
model-oriented end. A code generator may only handle the machine-oriented end. There may be
different transformation tools for different phases of refinement.

The built-in tools accommodate the built-in language styles, together with modest extensions.
For more elaborate extensions, it may be necessary to extend the set of tools by adding new ones.
For example, it might be desirable to add a logic programming style for use in program
specification. If so, one could make specifications executable by adding a resolution-based logic
language evaluator to the E-L tool set. At the other end of the spectrum, an unusual target machine
architecture might occasion the need for special machine-oriented language facilities and for a

* special code generation tool to compile them.
In short, E-L is able to cover a wide spectrum of language styles not only because of its

language extension mechanisms, but also because its tool set is extensible. The environment is
conducive to tool extensions lie those mentioned above because of the generality and flexibility of
its project database and its program annotation facility.

* E-L Design Rationale



3. State

3.1 Machines and logic

Turing's machine and Church's lambda calculus have served as intellectual tools for computer
scientists since before computers. The former has been used chiefly to study the complexity of

.V computational problems, including undecidability, completeness, and related issues. If we expand
L'd' the notion of machine to include finite state and pushdown automata, multi-tape and random access

machines, and a few other variants, we have the basis for most known and conjectured results for
upper and lower complexity bounds.

The lambda calculus has had a somewhait different role. While the computational power of the
lambda calculus was shown early on to be equivalent to a Turing machine, the lambda calculus has
served a role in serious language designs beginning with Algol [Algol 58, Algol 601. If we expand
the notion of "the" lambda calculus to include variants in which lambda expressions, i.e.,
functions, can be named (to allow an intuitive notation for recursion), it provides an elegant
linguistic mechanism for the description for many computational problems. Indeed, it is our view
that the important contribution of the lambda calculus to practical programming is not its relation to
formal semantics-most programmers don't care about formal semantics anyway-but rather it use
as an organizational tool in expressing programs. There is no doubt that for most purposes it is far
more appropriate than a finite state machine cunm memory model.

These intellectual traditions would not have quite the appeal they do without the existence of
hardware. Hardware works by changing state. This makes hardware irrevocably more closely tiedI
to the mathematical "machines" discussed above. This is not a coincidence, of course, for these

* mathematical ideas were created and named with physical devices in mind. But the existence of
hardware leads to the software problem, and utilizing these devices is best done with languages that
are largely inspired by the lambda calculus, and there is little argument that the more heavily a
language relies on a stateless view of the world, the less efficient it will be. This is only fair: if
you don't pay attention to matters of efficiency, you will have less of it.

A language design picks some way to wed state and the lambda calculus. Sometimes, this is to
the exclusion of lambda calculus, as with machine language or BASIC, two languages noted for
their lack of suitability in large programming problems. Other languages combine the two by the
device of writing in something that resembles lambda calculus, but then allowing "assignment" to

* the formal parameters of the lambda expressions, thereby changing the values that they previous
had, and maybe or maybe not changing values of other parameters, by now typically known as
variables. Languages that use this approach include Pascal and current LISPs. Other languages,
the "applicative" or "logic" languages, attempt to abandon state entirely. This has lately achieved
considerable academic respectability, but it is not a satisfactory basis for a wide-spectrum language.
On efficiency grounds alone, it would have to be discarded, for efficiency is evidently not easily
achieved from these starting points [SETLI. But there is a further problem, in that this view of
computing is not sufficently rich. There are many computing problems, from numerical
simulations of physical systems, to the management of windows on a workstation screen, in which
"1state" is a natural part of the problem, not only an artifact of the computational solution of a
problem. The stateless view of computing isolates the programmmer from the natural formulation
of the problem. The necessity to achieve efficiency or deal with problems involving state often
causes the modification of stateless languages with features that let notions of state creep back in,
such as the "prog" feature in LISP (once an applicative language).

5,. The fundamental semantics of E-L fully embraces the notion of state, without apology or
excuse. It also embraces a very lambda-calcul us- like kernel representation and interpretation of
programs. The combination is not done by compromising the lambda calculus with allowing the
assignment of values to formals, but in a quite different way, which we hope is a happier synthesis
of the two traditions. This approach has consequences that percolate up to the surface of the
language, and our present purpose is to show how some of the more unusual aspects of E-L

originate from this semantic basis. The essence of E-L's connection of machines with the lambda
calculus is that there are certain values with state. There is a sharp distinction between a value with
state, call it v, and the value or values that one imagines describing the state of v. In subsequent
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sections, we shall review the principal values with state that are built-in to E-L.

.2 Places

The paradigm for values with state are place values. For example, suppose that v is a place value,
and that w is another value that currently describes the state of v. It is highly unikely that v = w; in
machine terms, this would correspond to location 211 containing the value 211-not impossible, to
be sure, but only coincidence, and probably a fleeting one at that. Of course, if the type of v were
place (integer), then it would be impossible for its contents to be itself, because the contents
would have type integer, which is not convertible to a place (integer). Many languages
get by without ever making place (integer) a notion that the programmer must think about.
Considerable insight in to the reason for the elevation of this notion into the (at least occasionally)
visible part of the language comes from recalling the semantics for as sign, using Floyd-Hoare
notation for pre- and post-conditions: ,

ASGN-CNT1 For a placep and a value v:

assign(p, v)
{contents(p) = v}

ASGN-CNT2 For places P1 and P2, and any value v:

{contents (pl) = vandpl # P2)

assign (P2 , v)
{contents (pl) = v}

The crucial aspect of these rules that distinguishes them from similar rules in other languages is that
the equality function (= and #) that is being talked about is the equality of E-L itself. In particular,
the question of whether or not the places themselves are equal (p 1 

# P2) is very often a
meta-question in semantics of other languages.

There is a good reason why the equality of places should not be a meta-question: the need to
simultaneously have both analysis and extension. For example, determination of common
subexpressions relies heavily upon being able to ascertain the limits of the side effect of an
assignment-it relies heavily on ASGN-CNT2. In order for analysis to be possible, then, there
must be some such rule for the behavior of assign and contents. On the other hand,
extensions like the sparse array extension (RM13.5) rely upon being able to extend exactly those
two functions. Indeed, an extension of this kind is impossible in any other language known to us. .
Now, if the rule governing assignment is a meta-rule, relying on a model of the program outside
the program, then the possibility of extensions is ruled out. If the extensions are ungoverned by
any rules, then analysis is ruled out. To provide both, we have stated the rules for assign and

*" contents in terms of a function which is itself subject to extension, namely, =. It might have
Sbeen more appropriate to call the rules ASGN-CNT-EQL 1-2, because they actually state

relationships between all three functions.
Let us consider a program in kernel E-L, i.e., one in which reductions do nothing. Its

evaluation is specified by a canonical tree walk of the program, with functions applied in the usual
way introduced to the computing community by Algol. If the program has no values with state,
then this algorithm gives it the usual denotational semantics. However, if the program does have
values with state, then the order of the scan matters. The values with state are produced, ultimately
from values without state, by primitive functions like new-place. Once such a value is
produced, it is passed around like other values in the function application process. Occasionally,
however, there are applications of other primitive functions, like assign or contents, that
change or query the state of the value with state. Sometimes, the answers from these queries affect

E-L Design Rationale
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a State 3-3

the flow of control of the walkc that describes the program's semantics. In essence, the query
functions act like oracles. In values like places, these oracles are controlled by the program; in
values like input ports, the oracles are uncontrolled. And dually, some changes to state may change5 later behavior of the program, as in places, and others do not, as in output ports.

3.3 The limits of place

The question arise, is perhaps the notion of place not sufficient? Can't we always view any value
with state as the place of some sufficiently complicated value that does not have state? The answer
to these questions is yes, from a sufficiently theoretical point of view, but a definite no from the
point of view of axiomatic style and mental model. In many cases, it is not natural to retrieve the
entire state of a value with state using a single function application. For a place this is natural,
because intuitively it holds only one value. But for a table, it is more natural to describe the
behavior of, and program in terms of, the enter and lookup functions. One could formalize a
table as a set of key-datum pairs, and could of course axiomatize it in this way. But this is not the
way one really thinks of a table, and certainly not the way it is implemented. It is just as simple to
axiomatize the behavior of enter and lookup in the style of ASGN-CNT 1-2, and in this style,
one never talks about the whole state of the table, only about incremental changes to it. Even if you
want access to all of the entries of the table, say for printing it out, it is more natural and more
efficient to provide and use an iterator than a function that produces a giant set of all the key-data
pairs. In the table case and in others, it may be logically possible to provide an analogue to
contents, say by extending it to the type in question, but there are cases where the provider of
an abstraction does not want to allow easy access to the entire state. For example, in a database
with sensitive information, users might be allowed to make updates, and to ask about certain
summary information, like averages, but not be allowed to ask about particular entries.

Further evidence that places alone are not enough is notational. In passing values with state as
parameters, one almost never wants what would be potentially massive contents of the place, one
wants the place itself. Sometimes this is for reasons of efficiency (not to be ignored!); sometimes it
is because the whole point of passing it as a parameter is to update its state-grabbing the entire
state, i.e., essentially copying it, would be incorrect. If the only way to describe values with state
is as the place of some other value, then every formal that takes such a value needs a shared
bindclass. Such a notational burden is not the end of the world, of course, but it indicates that the

* concept is not quite right.
Still further justification for allowing values with state that are not technically speaking places

arises from a consideration of list structure. For example, a tree that can grow and shrink, as well
as have node labels that change, could be formalized as the place of a nested tuple. This is very C
strained, and a horrible image to implement directly. The problems in thinking this way multiply if
one has not merely a tree, but a graph with cycles, whose connectivity varies over time. The
semantics that E-L uses are quite direct: a value with state may have constituent values that are
themselves values with state. In this example, of course, the image becomes very pointer like.

* Stated differently, it says that pointers may lead to other pointers, hardly revolutionary.

3.4 The treatment of variables

The reader of the E-L Definition cannot help but notice that a great deal of machinery is brought to
bear on the treatment of variables, specifically, in hiding their true value-with-state nature from the
casual programmer, i.e., from the surface of the language. If E-L's view of places is so superior to
the usual notion of variables in other programming languages, why not just force the programmer
to program in terms of places? The answer to this is partly historical and partly notational. There is
a long tradition in programming of "variables", of being able to assign to them, and to use their
values (contents). Beginning with FORTRAN, one could utter statements like "A = B". To the
modern, the use of the equality symbol for this purpose seems particularly unfortunate, and this
custom was quickly abandoned-Algol used := instead. But the notation that stuck was that the
name of a variable could occur on the two sides of the assignment operator, even though it
evidently means quite different things in the two places. The question is not why assign should
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take arguments of completely different type, but how the custom of writing assignment in this way
ever arose in the first place. At this point, one can only speculate, but a possible explanation is that
what the early designers had in mind was the machine instruction syntax "LOAD A,B", which
copies the contents of location (place) B into the location A. The assignment statement "A=B" was
thought of simply as an encodement of this instruction.

There is another possible explanation. Knuth's famous empirical study of FORTRAN
programs [Knuth] found that a very large percentage of assignment statements were in fact of the
simple form "A=B". This might be an artifact of the programming style that FORTRAN El
encourages, but it nevertheless should give a language designer pause: the act of setting one
variable to the current value of another may be a very common thing to do, and we were reluctant to
replace a familiar and comfortable notation with one that was both novel and potentially awkward.
This reluctance was strengthened by experience with several languages in which identifiers are
generally regarded as places, and the contents operation must always be explicitly indicated. The
first of these, to our knowledge, was (B)CPL, and later there was BLISS. In each, the contents
operator was indicated by ".", indicating some concern on the designers' part with cluttering of the
program text. The consensus is that even the dot is a visual nuisance.

In order to provide both familiar syntactic structure and novel semantic structure, we introduced
the notion of mode to mediate between the two worlds. The only part of this seen by the naive user
is bindclasses, like shared, but these are easy to relate to similar markers in other languages,
like "var" in Pascal or "in out" in Ada. The slightly more sophisticated user might want to extend
assign and contents, but even this can be done relatively naively--the mechanism connecting
<- with assign need not be fully understood in order to utilize the extension mechanisms. It is
not surprising that one of the most commonly used syntactic aspects of the language has the most
tortuous connection with the semantics of the language; the same kind of thing happens in natural
languages, where the most commonly used verbs tend to be the most irregular. We anticipate that
both the syntax of variables and the semantics of places will turn out to be quite comfortable.

3.5 Arrays

4. In deciding on the precise question of semantics for arrays, the question of whether an array is
essentially place-like must be answered. Even if places are not a sufficient basis for all values with
state, can't an array be treated as the place of a tuple with a well defined structure? E-L does not
treat arrays in this way, but arguments can be made in opposition to this decision, and there are
syntactic and "mental model" consequences of the choice, so the various options are considered
here in some detail. We begin with a short review of how E-L does treat arrays. We start with the
premise that one wants to change the value of individual components of the array. In order to base
array semantics as far as possible on semantics of simpler objects for which there is independent
need, it seems natural that the fundamental operation on an array be a function that takes as
arguments an array and an index-a tuple of integers, to support multi-dimensionality-and
produces a place. This function is called pselect, axiomatized thus:

PSELO The function pselect is well-defined, pure, and has two arguments, the first of
which is a compound-place (of which array is an instance). The result of
pselect is a place.

PSEL1 The function pselect is 1-1 on its second argument. r

We take as given that basic extensible families be well-defined. This requires that, at least in the
kernel language, that arrays be equal according to whether they provide the same map of indices to
places, not according to whether the contents of these places are equal. Arrays work in surface
syntax the way they do in kernel semantics. Suppose you define two arrays as follows: #A
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r5 i
Array A(3, 5) initially 0
Array B(3, 5) initially 0

If you ask A = B, the answer is false, because they are different sets of places. It is tempting to
think that you might want the answer to this to be true, after all, it is evident that A and B are
different arrays, and the question that you are really going to be asking is whether A and B have the
same current state. Let us explore the consequences of different ways of arranging the semantics to
produce true for this surface syntax. The alternative that comes most immediately to mind is the
one posed at the beginning of this section: let names introduced in an Array declaration be
variables whose values are tuples of a certain form. Give these names the mode (7r), so that when
they appear in an unshared context, such as operands to =, a contents is automatically
introduced. This produces the true result, but it has several untoward consequences. The first is
that whenever an array is passed as an argument to a function, there will be an implicit contents
operation introduced unless that argument position has a shared bindclass. While we do not
have an empirical study to back up the claim, it seems probable that in most cases where arrays are
used as objects with state, the tendency will be to pass them to functions with the expectation that
side effects will occur, so that this proposal would probably cause a proliferation of shared
bindclasses in function headers, and a strong correlation between an array type and this bindclass.
A further problem arises when costs are considered. The content s operation on a place
containing an integer is relatively inexpensive, in both time and space. But a contents
operation is expensive on large arrays, and it seems inadvisable to implicitly introduce an operation
with such great expense. A programmer will necessarily be aware of the expense, and is likely to
begin using shared not because he wants to modify the array, but to avoid the expense. This
leads to a burdening of the shared bindlcass with an additional purpose, thus blurring what is to
be understood by its appearance.

A second problem with an array as the place of a tuple comes from considering what happens
with assignment. If arrays had this semantics, consider the effect of a statement like:

A[2, 3] <- 1

I In kernel terms, this changes the contents of the place given by pselect (A, <2, 3>),but
- it also, in any reasonable semantics, would have to change the contents of A itself. This

violates the axiom ASGN-CNT2, because the place A is surely not equal to (using =, of course) the
.,. place pselect (A, <2, 3>) To support the semantics of an array as the place of a tuple, we

would thus have to have a more complicated version of ASGN-CNT2, by giving some topological
property of places, something to the effect that contents don't change so long as the places don't

%intersect. This is not impossible to do, but recall the ground rules under which axioms must be
,%: written. Because the necessity precludes the formulation of axioms using an external model,

whatever operation is used in the statement of ASGN-CNT2 must itself be subject to extension,
i.e., it must be something whose definition the user can contribute to. This greatly complicates the
responsibilty of the user when doing an extension. Further, a more complicated ASGN-CNT2
makes it that much more difficult for analysis tools like common subexpression detection.

The arguments for arrays as places as against arrays as a different kind of place may be
summarized as follows. In favor of arrays as places:

A = B tells something more interesting than whether two arrays are the same maps to places.

A <- B can be used to copy one array into another.

In favor of arrays as they are actually defined:

E-L Design Rationale
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There are fewer appearances of shared, so that it retains a strong association with variables.

An expensive operation is not implicitly introduced.

ASGN-CNT2 remains an equality-based axiom, with attendant advantages of simplicity.

A fundamental tenet in the design of E-L is that the language must support, in a radically improved
way, the analysis and transformation of programs. It will, as far as possible, support a wide
variety of programming styles, of providing syntax that one might want. But the design of E-L has
not been done on a sometimes-might-want basis. Tough decisions are ultimately based on the
consequences that they have for formal program manipulation, and in this case, the choice is clear.
The structural simplicity of an axiom, in particular, allowing it to be based on equality, overrides
the occasional desire to compare the states of arrays using =.

e.

LN
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4. Equality

The equality function has had a pervasive influence on the design of E-L, in a way that may not be
evident from other documents. The Reference Manual admonishes that equality "is among the first

* things to think about when you define new types". This principle has been applied relentlessly to
the design of many aspects of E-L, not only types, leading to a certain coherence that would

4 otherwise would not exist. This section considers several aspects of E-L whose design has been
dictated by thoughts about equality.

4.1 The family itself

Equality is the first example in the Reference Manual of a function family that is treated in detail
(section 9.2). It is the archetypal family for several reasons. First, it is an axiomatized family,
using the traditional three rules for an equivalence relation. On the one hand, such an
axiomatization is a clear practical necessity, if there is to be any analysis at all of a generic function
that uses equality. The only possible way to have both extensibility and analyzability is to say that
families are governed by rules, which their members must ensure. On the other hand, the rules are
based on a classical mathematical notion, that of an equivalence relation. This idea has its origins in
the definition of congruence of integers modulo n, introduced by Gauss in the opening pages of
Disquisitiones Arithmeticae, and is used in countless ways in standard mathematics. The
mathematical heritage gives us some reason to hope that we will not encounter untoward
consequences of equality's strictures, which after all, we have imposed for largely pragmatic
reasons.

A second reason for the importance of equality is related to the use of equivalence relations in
mathematics: it is occurs specifically in mathematical "constructions", almost invariably with
functions that are well-defined over the equivalence relation. Gauss not only defined congruencea modulo n, but immediately went on to show that addition, subtraction, and multiplication were
well-defined over the relation. Thus, the discussion in the reference manual of addition in
connection with integers modulo n is not without historical precedent. There are, of course, many
other mathematical constructions that can be implemented on computers, and many have been, long
before the design of E-L. The point is to support the approach, so successful in mathematics, quite
directly in the programming environment and language.

This brings us to a third important facet of equality, its role in forming the boundaries of an
encapsulation. There is often a choice in the construction used to implement some particular type
and associated operations. For example, in the integers modulo n, we can keep representatives
reduced, or not. Similarly in rational numbers, we can require that the pair of integers representing
a rational number be relatively prime, or not The different choices of representations and the
different implementations of fundamental operations on the representations often have different

V, costs, and it is not always clear a priori, or even constant from application to application, which of
the choices has lower costs. Nevertheless, if an application uses only functions that are
well-defined on the type (including its equality function), then the implementation can be changed,
affecting only the cost. Again, this is not a point new to E-L, but the availability of an equality
function, and program analysis and manipulation in terms of well-defined functions, may
encourage programmers to use these old ideas more effectively.

4.2 Conversion

To implicitly convert or not? That is a question that has often plagued language designers. It is
clearly possible to allow too much conversion. The disastrous and unintended complications of all
the conversion allowed in PL/I are generally conceded. But completely disallowing implicit
conversion is also acknowledged to be a great pain; programmers working in such languages tend

V, to complain and/or cheat How should E-L come down on this question?
In answering this question, we were fortunately governed by a fundamental E-L design

priniciple that whatever is done for built-in types must be available for the user's types. This
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caused us not to focus on what might or might not be intuitively reasonable for types that we
understood, like integer and boolean, but to look for principles to apply. With equality
always in the front of our minds, it was natural to ask what equality might say about the situation,
and this question quickly leads to the relationship between = and convert that is stated when
conversion is first discussed (Reference Manual, section 10.2): conversion supplies tJ7 e criterion
for cross-type equality. But in truth, it was equality that supplied the criteria for conversion.

Basing conversion on considerations of equality allows some of the conversions that have
served programmmers relatively well, for example, from integer to real. It also disallows
some conversions that have not served very well, for example between boo lean and integer.

4 There is a surprise, however, in the partial conversions that are required by the symmetry of
equality. To our knowledge, only Common LISP has any trace of this idea, in its partial
conversion from real to integer. One would be curious to know their rationale. There is no doubt
that an argument can be made that sometimes one might want an implicit conversion not based on
equality. But E-L, to the best of our ability, has not been based on a sometimes-might-want
approach to language design. For many reasons, the goal is a principled design, with few
principles, each having maximum consequences.

One of the nicer consequences of basing implicit conversion on equality concerns function
application, a point at which some of that implicit conversion occurs. If a function is declared with
types for its formals, there will be implicit conversion done by the mechanism responsible for
applying typed or templated functions. Because of the relationship of equality and convert, the
values of the actual parameters and their corresponding formals will be equal, i.e., =, even if the

* types change. Thus, analyzers that trace equality information, and this is a large class, can continue
to provide useful information, even when they cannot determine exactly what the types are.

4.3 Assignment

Let us consider the possibility of extending assignment, for the moment forgetting what is in the
Reference Manual, chapter 12. What might such an extension mean? After the experience with

* equality and conversion, it is natural to try to discover reasonable axioms of assignment.
Attempting to stay away from any preconceptions, an intuitive explanation of assignment is:

The value of the right hand side is associated with the left hand side, so that when the left hand
side is mentioned at some later point, the value can be retrieved. But the association does not

* last forever, because it can be supplanted by subsequent assignment to the left band side.

Now, try to bring equality to bear on the problem: where in the above description is there anything
about equality? We claim there are two instances: in the phrase "the value can be retrieved", what
is meant is the same value as the original right-hand side. Similarly, the phrase "subsequent
assignment to the left hand side" refers to the same left hand side as the original left hand side.
Given our predilection for basing semantics on equality, we formalize "same" using ~

If we apply this principle to most programming languages, we get into trouble. Consider the
* consecutive assignment statements A <- C; B <- C. When we say "same" left hand sides, we

cannot ask whether A = B, at least not with the same equality as used in the program. We are left r
with the choice of proliferating notions of equality, or revising our notion of assignment. The
former approach was evidently taken in Common LISP, which has =, eq, eql, equal, char--'char-equal,..For the design goals of E-L, the latter approach is preferable, and is the reason

*that the fundamental assignment function is as s ign, rather than < -. By accepting the primacy of
equality, one is lead to the notion of "place" (this is what a left hand side is), and the emergence
into visibility of the usually implicit contents function. These lead naturally to extensions that
are otherwise inaccessible (the sparse array example), and to a closer correspondence between
analysis and execution (for example, tracing aliases amounts to tracing place values). Again,
focusing on equality leads the design in what we consider are desirable directions.
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4.4 Types

Chapter 1 of the Definition discusses the question of equality of types in great detail, including
rationale issues, and it is not the point to review all of that material here. Very briefly, each
elaboration of a type declaration introduces a distinct type, one that is not equal, i.e., #, to other
types. The reason for the disequality is that types have functions associated with them, and in
separate elaborations of a single declaration, one cannot guarantee that the functions are the same.
In order for operations on types to be well-defined, in particular those operations that locate
functions associated with the type and apply them, it is necessary that the types be different.

Similarly, in thinking about types that are the results of type constructor applications, these
should be distinct from atomic types and from types that are the results of applying different type
constructors. Because one of the operations on a type is retrieving the values that were arguments
to the type constructor, for the retrieval operations to be well-defined, one wants distinct types
resulting from application of a type constructor to different arguments. Note that this involves the
equality of other types in the equality of types themselves.

The above issues are all quite simple and non-controversial. The only interesting question is,
how should the equality of cyclic types be defined? Section 1.6 of the Definition has a somewhat
intricate plausibility argument that a reasonable definition for cyclic types is given by a unique fixed
point rule. For a type t and a template tpl other than the identity:

t = cyclic (tpl) if and only if t = tpl(t)

It is not even immediately apparent that this is a definition, but as things turn out, there is one and
S".only one way to define equality obeying this rule, and as explained in section 1.6, there is a

beautiful connection with regular languages that may be exploited, generalizing the more ordinary
tree-based techniques for template matching. In presenting cyclic modes to the first time reader, it
is reasonable to use the plausibility argument of section 1.6 as the primary rationale for the
definition of cyclic types. But for those steeped in considerations of equality, there is at least as
much appeal in the unique fixed point axiom and its relation to regular languages. In any case, the
definition of the equality of cyclic types has a gratifying inevitability to it.
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-j. Flow of Control

Our emphasis in providing flow of control constructs in E-L, as in many other areas, has been on
providing a mechanism whereby the user can contribute to the extension process. Several of the
built-in constructs are standard, and not at all controversial, like if then ol.a and Whiledo, and are not discussed here. We do, however, review some of E-L's novelties.

5.1 Iteration

E-L takes a very different approach to iteration from that found in most languages-there is a single
syntactic construct for iteration over a sequence of values (actually, over a sequence of value
multiples). Even iteration over integers uses this general mechanism, and the user is encouraged to
provide iterators by built-in syntactic help, such as Iterator declarations, and by a tie-in to
types, via the iterate family.

It is unfortunate that most language designs short-change the user by not allowing user-defined
*iteration. The lack becomes more glaring as the level of the language gets higher. Many languages

[Ada, Pascal, Lisp] allow a great deal of data abstraction, but provide no decent mechanism for
stepping through the elements of an otherwise nicely encapsulated data type, although CLU and
Alphard provide some support for doing so. While we expect that heavy use will be made of the
natural connection provided between types and iteration, we should emphasize that the connection
is actually made in two stages. First there is the syntax-Ior in do-which sets up an
application of the function iterate, and then there is the extension of this family by types. The

* ,.* user can exploit the syntax without extending a type, by using the convenience of Iterator
" declarations, and this is utilized in several built-in iterators, for example, to, fold, and the

[... I notation.
The mechanism underlying the syntax and extensions is quite simple. As discussed in D5.2, the

body of an iteration literally becomes the body of a lambda expression, where the names that
receive the iterated values are the formals. The reductions are slightly counter-intuitive at first,
because what one might think of as "results" of iteration are in actuality arguments to this lambda
expression. However, it is some respects amazing that the conncection between iteration and
function application has not been exploited more heavily. After all, iteration binds differing values
to a name (or names), and executes the same piece of code. This is the hallmark of a function.

5.2 Processes

The idea of coroutines was introduced nearly thirty years ago in the classic paper [Morris].
However, the ideas have seldom been incorporated in popular programming languages, perhaps
because they have stack-based implementations and consequently simple storage management
languages.

In the design of E-L, there has been no doubting the necessity of supporting a coroutine style of
programming. The expressiveness, and in particular the modularity, that it allows is crucial when it
is needed. A classic example is that of merge (see RMI 1.2), but there are many other cases in
which a program written for a call-and-return evaluator will be terribly intricate and involuted, only
because there is no good way to separate sequential access to data structures from the flow of
control of the program. Writing such programs with processes makes one realize that the
alternative version of the program has been turned "inside-out", only to get the flow of control
aspects working right.

There are a few languages, like Scheme, that allow flow of control patterns that are essentially
coroutine-like in nature, based upon the idea of "continuations", which in the absence of
optimization can lead to considerable runtime overhead. Scheme has quite an elaborate storage
management system already, so the incremental cost of using continuations may not be an
important consideration in its design. While recognizing the necessity of supporting coroutine flow
of control, we nevertheless have not wanted to commit E-L to an overly elaborate storage

management regime for every program. Thus, rather than taking the notion of continuation as
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primitive, we have provided the primitive routines described in D5.3. Only one of these
(new-process) interacts with storage management. As seen from the examples, the use of
these primitives seems quite natural, at least as much so as continuations. Save for storage
management issues, their implementations are quite simple.
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6. Function Families

A polymorphic function is one that can be applied to any of several different kinds of data to
produce the same or a related abstract effect for each. In most languages, the arithmetic operators
are polymorphic; + can be applied to integers to yield an integer, to floating point numbers to yield
a floating point number, and so on. The ability to program polymorphically lends greatly to the
readability and re-usability of programs. Without it, it is often necessary to write several versions
of what is essentially a single function, simply to cater to the different possible data types of its
inputs. For example, a sort routine might have to be replicated in order to work for arrays of
different types, simply because a single function could not legally accept differently typed arrays or
use the same comparison operator for different types of elements.

On teother hand, some languages have achieved polymorphism by giving up static type
declaration altogether [PPL]. This diminishes clarity and analyzability. EUi [ECL] permits a
mixture of static checkability and polymorphic: flexibility; function parameters can be declared to
have one of a finite set of types (or else the infinite set ANY, which covers any actual argument
type), and types are runtime values, so that conditional code for different argument types can be
included in a single function. However, ELi's approach has two drawbacks of its own. One is
that it is not easy to declare an infinite set of admissible formal parameter types and still retain some

* selectivity. (The sort function might like to accept only array's, but of any element type.) This
problem is handled in E-L using type templates (see next section). The second problem stems from
the desire to make incremental changes to a program incrementally. In ELl, when a new type is
defined for which it makes sense to extend a polymorphic operator, it is necessary to edit the
previous version to expand its formal parameter type and add conditional code to cover the new
case. It would be preferable to be able to make a completely separate declaration to cover the new
case without even touching the previously written and debugged code.

Smalltalk and other object-oriented programming languages [Smalitalk, Trellis] make ease of
incremental program adaptation a primary objective. In Smalltalk, when one defines a new class of
object, one can define the "method", i.e., function definition, to be used when a particular function
name is applied to instances of that class. The methods corresponding to a given name comprise a
family of functions that achieve a presumably uniform effect on different types of data. This
approach is quite successful for functions that are primarily unary, i.e., where the interesting
polymorphic behavior occurs in only one argument position. The trouble is, the world of functions

P is not all unary. For example, print (object, output-stream) represents a function
* family that might reasonably be extended both to new types of objects and new types of output

streams. Smalltalk and similar languages force the choice of one or the other.
Ada's "overloading" feature [Adq] is a more symmetric approach to the incremental adaptation

problem. Overloading allows the programmer to associate different function bodies with a given
function name for use in different calling situations, as determined by the number and types of the
actual arguments and the expected result type at a given call. Instead of behavior being associated
with individual types, it can be associated with type combinations. Neither functional abstraction
nor type abstraction dominates; both are supported and the connection between them is a natural
one.

E-L's function family mechanism is similar in some respects to Ada's overloading facility; in
particular, it is a clean solution to the incremental adaptation problem. In E-L, a family is a
mapping from a tuple of values, called the parameters of the family, to a function body that
specifies corresponding behavior. As in Ada, the intent is that the arguments to a call on the family
will determine the parameter values from from which the particular family member to call can in
turn be found and called. But there the similarities end. Apart from some informal rules of good
style that govern some of the built-in operators, Ada has no notion of the declaration of a function
family as such. A "family" comes into being as the result of a series of individual function
declarations with the same function name. In E-L, a family is a declared entity, with clearly stated
stucture and rules of behavior. It may not be extended in an arbitrary way. For example, in E-L
any extension of the + operator must conform to the rules given in RMlO.4. It must be pure,
well-defined, commutative and associative. It must take two unshared arguments and return
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one unshared result, all of the same type. Now, many families may have less rigid structure
than the + family. But in every case, the programmer is expected to describe the rules that family
extensions must conform to. In E-L, the parameters that are the keys to the function family-
mapping are not simply extracted in some predefined way from the header of the family member.
The number and types of a family's parameters are in general declared when the family is created,
and their relationship to the fornmals of the family members can be different for different families.
Although + is a binary family, it has a single parameter, namely the type that is the type of a given
family member's arguments and its result. Of course, E-L makes it easy to declare standard
families in which the rule for taking parameter descriptions from a family member's definition is as
simple as Ada's. However, the ability to tailor a particular family's behavior is extraordinarily
powerful. The convert family, discussed at length in chapter 3 of the E-L Definition, is a good
illustration of how complex rules of family behavior can be constructed without having to
"hard-wire" them into the primitive semantics of the language.

Ada's overloaded functions act like extended, structured names. It is as if the signature of the
overloading function body were appended to the function name to form a compound identifier.
Family extensions in Ada obey the same scope rule as if they were individually named, and the
language evaluator in effect generates a compound name from a call on the family using the
argument and result descriptions and then looks up that name as it would any simple identifier.
This is not at all the E-L view of function families. In E-L, a family has a value in its own right,
namely the mapping from parameter tuples to member functions. The purpose of an E xt en d
declaration is to locally augment that mapping, not to introduce a compound identifier into the

* current lexical context. This design stems in part from E-L's type flexibility. Whereas Ada
requires strict typing of formal parameters and results, it is very useful in E-L to be able to extend a
family for aninfinite class ofparameter values at once, as in

Extend + for modulo (?n) with ...

so that it is impractical to think of the family member's signature as a hidden part of its name.
Furthermore, since a function like sort may have a generic type description such as
array (< ?length >, ?elm-type), it is not practical for family member declarations to
follow the same lexical scope rules as simple named constants and variables. To see why, imagine
that the sort function has been defined as shown here in skeleton form:

Function sort(a:array(< ?length >, < ? elm-type >)

if a(i] gt a[j] then

Now gt is a function family. The particular member that is chosen when sort is invoked will
depend on the element type of sort's array argument. Conventional languages with strong static
typing and a lexical scope rule would prohibit the use of gt within sort unless it were declared in
the lexical context enclosing sort and visible at its point of declaration. E-L requires the family
gt to be declared and visible, but allows sort to make use of family extensions made after
sort's declaration. In particular, if a new type t is declared after sort, gt can be extended for -

use on t values, and so rt can be applied to an ar r ay(< .. . >, t) without error.
E-L tempers this flexibilty with axioms of family extension that discourage code that is deceptive

* or inconsistent. For example, the behavior associated with a type via function family extension
must be introduced at the time the type itself is introduced, not delayed so that the type exhibits one
behavior for part of its lifetime and another for the rest. This rule is especially important for the
convert family. Suppose f is a function that involves two types, ti and t2, and suppose that
at some point f attempts to convert a ti1 value to type t2. It would be unacceptable for the result
of this attempt to depend on the dynamic state of the convert family if that state could be changed

E-L Design RationaleU
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" at arbitrary times in the lives of t 1 and t 2. In such a case, two apparently identical calls on f
could have drastically different effects. Therefore, E-L's laws rule out extensions to convert that
would change the behavior of any previously defined type.

L!
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7. Tyetemplates

As mentioned in the previous section, the design of E-L stresses the importance of polymorphic
programming. The function family mechanism is one novel feature that results from this emphasis.
A related but independently useful feature that also supports polymorphism is the type template and
the ability to use ? fornals in declarations and to have corresponding implicit parameters added to
the local scope. For example, consider a function that returns the sum of the elements of its array
argument:

* Function array-sum (a: array(< ?length >, ?elm-type))
->(?elm-type)

Variable total:elm-type is 0;
For i ini1to length do

total <- total + afi];
total

Here the ? formals length and elm-type are bound as additional formal parameters of sum,
and their values are extracted from the actual argument in the course of conversion.

To our knowledge, no implemented language has included a mechanism this general for the
description of generic types and the extraction of implicit parameter bindings by matching with
templates. Alphard [Shaw] has a similar facility, however, and although it was never implemented,
its designers made extensive studies of example programs in the language. They were enthusiastic
about the expressive power of Aiphard's template-like feature. It is intuitively clear that templates
support polymorphic flexibility while retaining excellent readability and declarative precision.

On the other hand, the study of conversion given in chapter 3 of the E-L Definition makes it
entirely understandable that such a feature has not occurred in other programming languages. It is
somewhat unsettling that the apply rule for the convert family cannot be guaranteed to terminate
when type templates are used instead of plain types as conversion targets. (This apply rule is the
algorithm that chooses a conversion path from the type of the source value to the desired target
type.) Nevertheless, we hold that the usefulness of the template facility outweighs the possibility
that evaluation of some conversions might not terminate, provided such cases are extremely
unusual. We believe that our conversion algorithm will in fact handle nearly all cases that arise

* naturally in practice. And of course, it will not actually run forever; it will stop and warn the user if
it seems to be looping fruitlessly. We decided that the risk of occasionally having to interact in this
way with the environment is preferable to the imposition of artificial strictures on the use of
templates. Experience may reveal a set of contraints that can assure termination without fettering
the programmer unnaturally. Meanwhile, we expect little or no inconvenience to result from the
undecidability of conversion with templates.

As noted in D3.6, one pleasant result of the design of the convert family is that a potentially
troublesome problem arising from the use of type templates turns out not to introduce additional
undecidability and in fact has a nice solution. The issue arises during conversion when a target
type template depends on ? formals that the source type template doesn't mention. For instance,
consider

Extend convert for mixed-sequence, array(?d, ?t) with..

Here we're imagining that mixed-sequence is a compound-place of arbitrary length whose
elements need not have the same type. It is natural to expect to convert a particular
mixed-sequence, all of whose elements happen to have the same type, to an appropriate
array type using the convert family member declared in this way. And if a specific target type,

* such as array (< 42 >, integer) , is in hand, it is clear how to obtain a binding for the
array dimensions parameter d and the element type parameter t by matching against that specific
target type. More interesting is what happens when this particular conversion rule is part of a series
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of conversion steps that may lead on to other types from which no binding for one or both of d
and t can be gleaned. That is, the ultimate target might be a template sequence (?t),
representing homogeneous linear sequences of arbitrary length, that is reachable by the rule

Extend convert for array(?d, ?t), sequence(?t) with ...

In this case, what can the ? formal d be bound to when the earlier convert family member is
called? The answer, given in chapter 3 of the Definition, is that d can be bound either to an actual
dimension tuple or to a value of type template. The family member then simply does a dispatch
of the form

Type-case d of
ntuple (integer) => (there is an explicit value for d);
otherwise (the result need not satisfy any constraints on d)

When array dimensions are not explicitly specified by the target type, the conversion function is
free to create an array with whatever dimensions are suitable given the source value.

The convert apply rule has the freedom to choose which path to take from a source value type r
to the target because the axioms of the convert family have been carefully chosen to make sure that
it makes no semantic difference which path is taken. For instance, in the example above, suppose
there were some other type template T through which an mixed-sequence (?t) might convert
to sequence (?t). Then, since the axioms for convert require T to be interconvertible with
array (?d, ?t) either path is equivalent to the other.

The convert family is an excellent paradigm for family specification because it shows how
axioms for family members can be designed to ensure effective operation of the family dispatch
method. For example, the apply rule for convert depends delicately on axiom CVY (section I
D3.2), which specifies what each family member can expect to be given and what it is expected to
produce.
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8. Syntax

8.1 Grammatical conventions

The syntax of E-L is novel in several respects. By comparison with most serious languages for
systems implementation, it is relatively free of context delimiters, such as begin and end.
Instead it makes use of two-dimensional layout to delimit scopes. Line breaks and indentation
carry higher grammatical significance than in most languages, in which they merely separate
lexemnes. The result is that very few lines are spent on isolated keywords that serve only to bound
groups of phrases. The reason for this design is not to save a few extra characters per phrase
when a program is input. Tools for structured code entry can handle keywords for the programmer
with a minimum of typing effort. Rather, the assumption is that programs will most frequently be
read on a video screen. Screen real estate is precious, so there is a premium on keeping program
fragments as small as possible consistent with readability. The fact that indentation is significant
means that the reader of code is less likely to be misled by a program that is confusingly laid out by
its author. What you see is what you get, at least as far as nesting is concerned. Very long
program fragments may be difficult to scan with the unaided eye, but it will be simple to provide
aids for judging alignment, such as a vertical grid. Furthermore, as the chapters on program
preparation in the Reference Manual indicate, E-L will provide numerous inducements to keep code

* fragments small.
Another fairly novel decision is the use of boldface tyl,. as syntactically distinct from plain.

Where no confusion is likely to result, we have taken advantage of the distinction to make double
* use of some important words, such as type (Type) and f unction (Function). This

decision is based on the assumption that E-L will be implemented on equipment for which the
display and printing of text containing boldface type will be no problem.

The simple grammatical scheme outlined in section 1.3 of the Reference Manual is obviously
designed more for ease of extensibilty by users than for efficency of parsing. In E-L, the former is
likely to be far more significant than the former, since extensibility is one of our highest design

* priorities, and since parsing is likely to take place mostly in short bursts interspersed with
interactive program entry. Since the software database will usually hold a parsed version of each

* piece of code it contains there will be little need for large batches of parsing.
Very little of our design time has been spent investigating syntactic schemes for E-L. We have

* proposed some unusual conventions, and we plan to try them out. If they prove unsatisfactory, we
* will be able to revert to more traditional methods without severely affecting other aspects of the

design.

8.2 Syntactic reductions

The E-L Definition makes abundantly plain that E-L is designed to be reducible in a purely syntactic
way to a very small kernel language. Even if such a reduction is not used as the basis for an
implementation, the decision to design the language so that it can be will benefits for the user. For
one thing, static reducibiity imposes a certain discipline on programmers. As mentioned in

* ~.? section 3, one aspect of the reduction is to eliminate bindclasses such as shar~ed and
delayed and to modify programs to handle explicit place values and explicit functions instead.
In order for this to be possible, functional parameters and function results must be carefully
specified if they are going to make use of these features. (Chapter 4 of the Definition discusses the
calculus of "modes", i.e. syntactic descriptors, used to propagate these specifications.) That means
that readers of unfamiliar code will be alerted to uses of these potentially tricky constructs.

A further benefit to E-L programmers lies in the existence of the E-L Definition itself. It will bee a formal specification of a substantial portion of the language that-unlike make formal language
definitions-can be used by ordinary programmers.

If the syntactic reduction described in the Definition is given a key role in the implementation, as
seems quite likely, then additional benefits will accrue. First, the reduction scheme can be made the
basis of tools for notational extension. If a large fraction of the language is in fact implemented by
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extension, then its extension facilities are likely to robust enough to handle user extensions as well.
And users will have even more reason to appreciate the Definition as a guide to the language.

Furthermore, if programs in concrete syntax are reduced before being given to tools for
analysis, transformation, interpretation and compilation, these tools can take advantage of the
normalization that results when the numerous convenience features of the concrete language are
eliminated in favor of kernel forms. In a system with as many different tools for processing
programs as E-L will have, the existence of a simplified common representation will have a
profound effect on system performance. Of course, the programmer's original input will not
simply be set aside once it has been read and reduced by the system. A major objective of the
implementation is for the system to interact with the user in his own terms to the greatest extent
possible, rather than force him to adjust to program text that has been reduced and reconstituted.

E-L Design Rationale



* ~p -- -~. ,---- 71W.-.V- 1 .2 - - .

9. Abstract Types

The principle of separating the specification of a type from its implementation is now widely
supported from a methodological standpoint, and some language designs, notably Alphard's
[Shaw], have gone a long way towards making this principle easy to follow in practice. Still,
every language of which we are aware assumes a one-to-one correspondence between a type
specification and its realization. The fact is, however, that in large systems development, one often
needs several simultaneous realizations for a single type specification, either because each is best
suited to some particular task within the system or because the implementor is making a
transformation from an initial realization to a more refined one, and it is necessary for both to exist
simultaneously while that transformation is in progress.

In E-L, one can specify a type abstractly and postpone connecting a representation to it.
Properly specified abstract types can be used in programs wherever types are expected, and tools
for analysis and transformation can process these programs in spite of the lack of any concrete
representation. Of course, in order to execute such a program, the implementor will supply one or
more realizations for its abstract types. A realization is a type that has a specific representation and
that meets the specifications for the abstract type that it realizes. For example, a programmer might
define an abstract type mu lti s e t that represents integer sets allowing repetition. He could
provide functions insert and remove for inserting and removing mult iset elements and a
function count (n, s) that returns the number of elements equal to n in mult iset s. Other
functions on multiset values might be written entirely in terms of these three; for example, a

-* predicate to test membership in a mu1tiset could be

Function member(n, s:multiset) count(n, s) gt 0;

But having no Based-on subdeclaration, the type multiset has no representation.
Programs involving abstract types like multiset can be understood by human readers and

analyzed by tools. In particular, there can be tools that suggest representations for mult iset,
based on the particular programs in which it is used. Suppose that, just to begin debugging, the
programmer chooses a naive representation which is a simple list of the elements of the multiset,
including duplicates. He creates a type called simple-list-multiset. This type has a
subdeclaration such as:

Based-on cyclic (int-list)
4 'union({nil}, record(element:integer,

.-*A rest:int-list));

And it also declares itself to be a realization of multi set using the subdeclaration

Realizes multiset;

simple-list-multiset must provide definitions for insert, remove, and count, which
were only "promised" in the abstract type. It need not supply a definition of member, since the

S,. definition given with multiset is adequate. On the other hand, because the list representation is
so naive, the programmer may want to supply a more efficient version of member with
simple-list-multiset, a version that doesn't depend on count. This he is free to do.

A program written in terms of multiset can run with the abstract type bound to a realization
such as simple-list-mu1tiset. This is how debugging will typically begin. There may
soon be other realizations, and in that case, the abstract type mult iset can be bound to a union
of the realization types, or to an expandable union that is capable of encompassing representational
variants as they may arise in isolated regions of the program. Ultimately, the implementor will
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wish to decide-perhaps with the help of tools-which specific occurrences of muti set should
continue to act like unions of several concrete types, which should be treated like one-of type
designations, and which ought to be bound to specific realizing types. These decisions can be
implemented using the program refinement machinery of E-L. The result will be to annotate
selected scopes of the program or even selected occurrences of the abstract type, so that an
appropriately precise and efficient realization is used in each case.
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10. Object-Oriented Programming

The increasing popularity of object-oriented programming, in environments that are dedicated to
that approach [Smalltalk, Trellis], in most dialects of Lisp that are under active development
[Flavors, Commonloops, HPLisp, ObjectLisp], and in some implementation language varian s
[ObjectiveC], naturally invites comparison with the style encouraged by E-L.

Like E-L, Smalltalk is an environment designed in tandem with its programming language and
'C' based upon many of the same concerns for productivity, for example in the ease and safety of

modifying existing systems. Smalltaik, however, is not intended to emit free-standing production
versions of programs. The features of E-L that permit a great deal of control over representation

*choice are absent from Smalltalk and are at least superficially inconsistent with its basic style.
Furthermore, as we have discussed previously, Smalltalk's "unary" bias is overly confining in a
number of situations. The E-L function family mechanism seems to achieve the same benefits in a
more general and flexible way.

In cases in which object-oriented facilities have been added to existing environments and
languages, such as the Flavors subsystem of Zetalisp, the results have been useful and popular, but
from a language designer's point of view, they seem baroque and complicated to document and to
learn. Apparently, it is difficult to blend such different programming idioms in an elegant and
simple way.

As we made clear in section 3 on the concept of state in E-L programs, we are entirely in
sympathy with the view that is at the basis of object-oriented programming, namely that there are
many programming problems in which the most appropriate way to model the key entities being
manipulated is as values with state, i.e., objects. We further believe that other aspects of the
object-oriented style have beneficial effects on productivity and reliability in software development.
For example, the ability to derive one type from another incrementally, by inheriting its properties
and then augmenting it with additional state and behavior, is an excellent way to re-use proven
material without having to alter it. The generalization to multiple inheritance, which permits the
composition of several existing types, or collections of useful behavior that can contribute to types,
is also extremely useful. But because so many issues are raised by the attempt to combine types
gracefully (how to resolve conflicting component and function names, what type to ascribe to the
parameters of inherited functions, how to access obscured elements of inherited types, or"superclasses" in the jargon of object-oriented programming, and so on), we feel that
object-oriented capabilites should be achieved by extension, rather than building them into the
language.

E-L has the flexibility to allow this to be done. The expandable union type can be used to
represent a class of object instances having certain components and behavior. New subclasses can
be declared as variants of these classes. Multiple inheritance, or type composition, presents no
difficulty since a given type can be a variant of more than one class, i.e., expandable union.
Because the mechanism of function family dispatch can be controlled completely, it is possible to
define a category of function families that might be called "methods", using the Smailtalk term.

"* Methods can have rules of dispatch that search the class hierarchy to find function attributes as
would an object-oriented evaluator. Composite types can be obtained by embedding the
constituents in a compound representation and then hiding the extra level of structure with an
extension to the appropriate selection function.

In short, E-L can be extended by its users or by library package designers to gain the benefits of
object-oriented programming without compromising its design principles, including reducibility to
a simple underlying mechanism.
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