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ABSTRACT 

A Hopfield model of 120 "neurons" has been simulated on an LDSP (Lincoln Digital 
Signal Processor). The model has been applied to the study of problems in automatic 
discrimination of vowels and consonants. In the first problem, a spectral cross section was 
extracted by performing a fast Fourier transform on a 20-ms segment from the steady-state 
portion of the vowel in a single-syllable word. The spectrum was then smoothed and a 
one-bit gradient measure applied at 120 frequency values, thus obtaining an assigned state 
for that vowel. This procedure was repeated until eight such assigned states were obtained. 
From these data, the connection matrix Ty was obtained using the associative equation, 

7 

T:; = Z xsxs 

Each xs was the component of one of the assigned states. 

A discrimination experiment was performed by specifying, as input, half of the 120 
bits for each state. This specification was performed randomly, 8 times for each of the 8 
states, resulting in a set of 64 runs. For 51 of these runs, the convergence to the correct 
state was perfect. Of the 13 spurious states generated, most were closest to the correct 
assigned states. 

Using the same Ty matrix, a second experiment was performed. Each of the words 
containing a given vowel was scanned and a new input pattern was obtained every 10 ms. 
Each of these patterns was applied as an initial state to the neural network, which was 
allowed to iterate until convergence. Many (but not all) of the vowel cross sections were 
most closely identified by the network as the assigned state associated with that word. 
Outside of the vowel, results were random. 

The final experiment was an initial attempt to automate the Diagnostic Rhyme Test 
that is widely used to rate speech-processing devices such as vocoders. In this test, the 
listener must choose between two initial consonants (e.g., pool vs tool) that generally differ 
in only a single distinctive feature. Several algorithmic additions to the Hopfield model 
have been tried; to date, the most successful one is a two-state model that has some fore- 
knowledge of the critical intervals of the rhyme pair. Work is continuing on this problem. 
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HOPFIELD MODEL APPLIED TO VOWEL 
AND CONSONANT DISCRIMINATION 

1.   INTRODUCTION 

Although the study of both real and artificial neural networks has been a subject of continu- 
ing interest for many years,1-2 recent work by Hopfield and associates has catalyzed a new spurt 
of activity.3"5 In particular, Hopfield's proposed model of associative memory has raised ques- 
tions concerning the applicability of the model to traditional problems such as speech and image 
recognition. This report describes some computer simulation results on vowel and consonant dis- 
crimination based on this associative memory model. 

Section 2 of this report reviews several properties of the associative memory model. Sec- 
tion 3 presents the results of a Hopfield network simulation that performs vowel discrimination 
among eight vowels when random errors perturb the representation. Section 4 describes further 
work where the network scans an entire word, searching for vowels that are similar to one of the 
stored vowels. Section 5 describes an approach to the consonant discrimination problem and 
some preliminary results. Section 6 is a brief description of the simulation facilities. 



2.    SOME PROPERTIES OF HOPFIELD NETWORK ASSOCIATIVE MEMORIES 

Figure 1 represents a digital simulation of an N1*1 order Hopfield network. Each element is 
described by a first-order difference equation. This results in a set of graded outputs x0,Xi...Xj...xN_[. 
Inputs to any one element come from all the other N-l elements via a transformation or connec- 
tion matrix Ty (T;; = 0). Each graded output x; is passed through a memoryless nonlinear element 
(n£e) to generate the signals x;. Figure 2 shows some candidate nonlinear elements.* Fig- 
ure 3 shows the operation of a single element in this array of N elements. The memory of the 
system of Figure 1 resides in the matrix T„- via the following procedure: 

Let X° = (xj,i;,...xj,.,) 

~ 'X0'X1'"-XN-1-' 

vM-l = r£
m-' Om-l     ~m-K 

The Xk define a set of assigned or stored states. The network will behave as an associative 
memory if 

m-1 

Ty=2x?x? (1) 
J      s=0   '  J 

Given this "recipe" for the Ty- matrix, then, under appropriate conditions, the network will 
evolve to one of the assigned states even if the initial state is other than a stored state. That is, 
the state of the network will change with each iteration until its state becomes one of the stored 
states, at which point it will remain in that state. Thus, the assigned states are stable states of the 
network. 

The algorithm that describes the evolution of the network is given by the equations 

N-l 

qi(n) = 2 Ta Xj(n - 1) (2a) 
j=0 

Xj(n) = a Xi(n - 1) + q; (n) (2b) 

x;(n) = n£e[xj(n)] (2c) 

In these equations, n represents discrete time samples, a is the time constant of the unity 
gain (at zero frequency) first-order digital filter. (In all our simulations a has been set to 0.75.) 
n£e represents the function of the nonlinear element of Figure 2(a) which we use in Figures 1 
and 3. 
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Figure I.    Digital simulation of a Hopfield net. Network state is defined by the N values X0,XJ,...XN_J. 
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Figure 2.    Some representative nonlinear functions of a "neural" element. 
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Figure 3.    Operation of a single element in a Hopfield net. I 

In general, the network can drift to spurious states; that is, stable states that are not one of 
the assigned states. The precise relationship between a network and its spurious states is not well 
understood. A useful rule of thumb is this: for m < 0.15N, there is a high probability that the 
network will converge to an assigned state. For m > 0.15N, there is a high probability that the 
network will converge to a spurious state. 

If the initial state of the network is set by some external input that is, in some sense, reason- 
ably close to one of the assigned states, the network has a good chance of converging to that 
assigned state. Another way to say this is that the network can recognize memorized states that 
are only partially described. This basic property makes it possible for the network to correctly 
identify a noisy input and also to continue to operate successfully when individual elements are 
inoperative. 

* See Reference 1 — results in this report are based on the nonlinear element of Figure 2(a). 



3.    APPLICATION TO SIMPLE VOWEL DISCRIMINATION 

In order to apply a Hopfield net to the processing of real data, a suitable representation of 
those data must first be found. In the case of vowel discrimination, such a representation must 
be derived from the spectrum. There is much evidence that the peripheral auditory system (8th 
nerve) of humans performs such an analysis before relaying to higher levels. Our simulation has 
been restricted to Hopfield net elements with binary outputs; that is, in Figure l,.the variables x; 

are permitted to take on only the values ±1. Thus, we need to find a suitable binary representa- 
tion of the spectral cross section of a vowel. Our procedure is the following. 

a. Perform a high-resolution spectrum analysis on overlapping segments (of 20-ms duration) 
of a spoken word. This analysis is performed every 10 ms and the signal is first multiplied by a 
Hamming window before being analyzed. Analysis is accomplished via a 512-point fast Fourier 
transform, from which a 256-point magnitude function covering the range 0 to 5 kHz can easily 
be derived. 

b. This magnitude function is then smoothed in frequency to produce a spectral envelope 
function such as shown in Figure 4 for a specific cross section of the steady-state portion of the 
vowel in the word "vill." 

c. Finally, a suitable pattern (for entry into the associative memory) is generated in the fol- 
lowing way: let S(f) be the magnitude vs frequency function. Let S(fj), i = 0,1,...119 be samples of 
this function. Then, if S(fj) > S(fi.1), set the variable x; in Figure 1 to +1. If S(f;) < S(Fi_,), set X; 
to -1. If S(fj) = S(f;_i), randomly choose +1 or -1. 
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Figure 4.    Smoothed spectral envelope function for vowel in "vill.' 
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Figure 5.    Evolution of a Hopfield net in vowel discrimination. 



(It should be noted that a variety of representations can be invented that lead to a binary 
sequence suitable for input to the Hopfield net. We shall see for instance that a different represen- 
tation is used for processing of consonants.) 

The next task is creation of the network by using Equation (1) to compute the T;: matrix. In 
our case, the chosen parameters were m = 8 and N = 120. The parameter m defines the number 
of stored states. Since m < 0.15N, our rule of thumb says that convergence to a stored state is to 
be expected. The waveforms and spectra of eight words (listed as the first of the word pairs in 
Figures 8 to 12) were examined and for each word, a steady-state region was identified by inspec- 
tion. Then, a single spectral cross section was subjected to the representation process described 
above and, via Equation (1), the Ty matrix was computed and became a fixed part of the 
Hopfield net. 

The main purpose of this experiment was to determine how accurately a given vowel must 
be represented in order to successfully retrieve its prototype from the network. Another way to 
ask this question:    How much partial information is needed in order to retrieve the total informa- 
tion? (the stored representation of the correct vowel). If we chose as the input or initial state one 
of the unadulterated stored states, then we would be supplying all, or 100 percent of the required 
information. If, on the other hand, we supplied 50 percent of the required information and 
allowed the remainder to be supplied randomly, we would, on the average, be supplying 75 per- 
cent of the correct bit pattern. In a formula, 

PI = 1 - 2 ER (3) 

where PI is the resulting partial information based on a given fractional error rate. 

In our experiment, an initial state was derived from one of the stored states by randomly 
creating errors in the 120-bit representation of that stored state. The system was then subjected 
to the iterations defined by Equation (2) until convergence; i.e., the state of the system remained 
constant despite continued iterations. An example of the evolution of the network is shown in 
Figure 5. For convenient viewing, the 120 bits are presented as a 10 X 12 matrix. Also, Figure 5 
displays the difference between any state and the stored target state. Thus, iteration 0 (upper left- 
hand corner) of Figure 5 displays the difference pattern between the perturbed stored state (which 
is also the initial state of the network) and the unperturbed stored state from which it is derived. 
Each iteration is numbered and we see that convergence occurs at iteration 7; the network now 
stays in the original unperturbed stored state despite repeated application of Equation (3). 

We note that no change at all took place in the first two iterations and that the real 
"action" occurred at iterations 3, 4, and 5. This result agrees with Hopfield's remark3 that the net- 
work converges in several iterations. In our simulations, implementation of the initial state was 
accomplished by setting the initial values of the x, to a large positive or negative value (depend- 
ing on the sign of the assigned state components x;). Due to the time constant of the first-order 
digital filter, the network was slow in getting started. 



Figure 6 shows the evolution for the same initial vowel with a different random error genera- 
tor. In this case, although the net began with fewer errors than for Figure 5, the system con- 
verged to a spurious state with Hamming distance 4 from the target state. This demonstrates that 
the behavior of the network is not like that of a correlator or matched filter looking for min- 
imum Hamming distance but a more complicated device. One of the challenges of this work is to 
understand in finer detail how the system evolves under different conditions. 
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Figure 6.    Evolution of a Hopfield net with different initial conditions. 
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The overall performance of this simple vowel discriminator is shown in Figure 7. Each of 
the 8 vowels was randomly perturbed with 25 percent error rate. Since different sets of random 
errors create different results, .we ran each vowel 8 times, for a total of 64 runs. Figure 7(a) 
shows that convergence to the target stored state took place 51 out of 64 times. Usually, when 
convergence was to a spurious state, that state was closest (using a Hamming distance measure) 
to the target state, but several times the network converged to a different vowel. 

Figure 7(b) gives the frequency of occurrence of the run length; that is, the number of 
iterations to convergence. We see that on the average, about 8 to 10 iterations were needed 
for convergence. 
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4.    CONVERGENCE OF NEW VOWELS TO A "FAMILIAR" STATE 

Figure 8 shows the waveforms of the two words "vill" and "bill." Each line corresponds to 
150 ms so it can be seen that the steady-state portion of the vowels in these words last for sev- 
eral hundred milliseconds. However, it is well known that the measured spectra during vowels do 
not remain constant; both initial and final consonants can strongly affect this measurement. 
Furthermore, the vowel in "bill" is modified by a different initial consonant than the same vowel 
in "vill." 

On the fourth line of Figure 8 is a small asterisk. This signifies that 20-ms portion of the sig- 
nal for which an assigned state is defined. For each word pair of the list on the right of Fig- 
ure 7, a 20-ms portion defines an assigned state. Thus, we construct a network using Equation (1); 
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Figure 8.    Convergence of new vowels to a "familiar" state. 
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Figure 9.    Convergence for the word pair "pot "-"tot. 
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indeed, this is the same network we constructed for the experiment of Section 3 but now the task 
is different. The initial states are now obtained by scanning the entire word pair; every 10 ms a 
new representation is entered into the network as an initial state and the network iterates until 
convergence to an assigned or spurious state. At convergence, the final state is compared with all 
eight assigned states and the assigned state that is minimum Hamming distance is declared to be 
the "winner." The numbers in Figure 8 show the sequence of winners every 10 ms. We see that in 
Figure 8 the network has found many "familiar" states, that is, states that were identified as the 
vowel "i" (as in "vill" or "bill"). This "recognition" was based entirely on the single asterisked seg- 
ment shown in Figure 8. (It should be pointed out that both "vill" and "bill" and, indeed, all 
other word pairs processed for this section, were the utterances of a single speaker. Recognition 
of "familiar" patterns across speakers has not yet been tried.) 

Figure 9 shows analysis results for the word pairs "pot" and "tot." Comments are included 
on the figure. It is seen that results similar to those of Figure 8 were obtained. 

Figure 10 shows a case where the network did not succeed in recognizing familiar patterns. 
The target state was 2 (bank-dank), but this was rarely attained. This result can be explained by 
observing the position of the chosen assigned state (asterisk on line 1). The beginning of the 
vowel is in the transition period where the initial consonant has the greatest effect, resulting in a 
spectrum that is grossly different from the steady-state portion of the vowel. Why the network 
converged to (or was closest to) the indicated target states is not clear. 

Figure 11 is a repeat of Figure 10 except that the asterisk has been moved closer to the cen- 
ter of the vowel. The results show that many more "familiar" vowels are identified, although in 
"dank," there are still many "unfamiliar" answers. 

The results in Figure 12 are particularly interesting because the vowel (bid-did) is the same 
as in (vill-bill). The network converged to one or another of these assigned states with compara- 
ble frequency. This indicates that the same vowel but from a different context can still be classi- 
fied as "familiar." 

15 
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5.    CONSONANT DISCRIMINATION WITH A HOPFIELD NET 

We have seen that vowels tend to have "steady-state" regions during which there is little 
change in the vowel spectrum. Most consonants do not obey this model but usually involve rapid 
changes in the spectrum, especially during the transition from the consonant to the following 
vowel. Also, consonants almost always have appreciably less energy than vowels so that noise 
and other disturbances can more easily mask the intelligibility of such sounds. For these reasons, 
it is expected that classification of consonants by Hopfield nets (or any other method) is appreci- 
ably more difficult than classification of vowels. For example, it did not seem reasonable to use 
the same algorithms or parameters for consonants as for vowels. Instead, it seemed more appro- 
priate to study the ability of a Hopfield net to perform the Diagnostic Rhyme Test (DRT). 

DRT is one of the classical methods used to assess the intelligibility of speech communica- 
tion systems. The listener is presented with a list of about 200 rhymed word pairs (e.g., pool-tool, 
bank-dank) and is asked to choose which of the pairs she/he heard. DRT score is defined as, 

T^__ _ correct decisions - wrong decisions Ky DRT Score = ——~— x 100 
total decisions 

Thus, a completely random choice would result in a score near zero and a "perfect" score 
would be 100. There are much data available on the DRT. Typically, high-fidelity speech in a 
quiet acoustic background would yield a score of 98, whereas a 2400 bps vocoder subjected to 
the DRT words in a noisy environment (0 to 6 dB signal-to-noise ratio) might yield a score of 60 
to 70. 

We asked: Could a structure based on Hopfield nets perform an automatic DRT that would 
compare favorably with the documented results using human listeners? Would this structure bear 
any resemblance to structures found in simple animals that make yes-no decisions? 

We began our work with the (plausible) assumption that there is a relatively small time seg- 
ment in each of the word-pairs during which a distinction can be made. This segment is either 
embedded in the consonant or in the transition region between consonant and vowel. At the 
outset we felt it expedient to make a very significant compromise. Whereas a human listener can 
focus on the critical intervals "on the fly," we found it necessary to give our system an a priori 
determination of these critical regions. That is, for this experiment we have bypassed the very 
important problem of "attention," deferring it until we have better understood the problem of 
binary decision between two consonants that generally differ in only a single distinctive feature. 

Our procedure begins with a representation based on a 512-point FFT followed by smooth- 
ing in the frequency domain to produce a spectral envelope. Thus far, this is the same as the 
vowel representation but now, rather than find 120 binary values based on the spectral gradient, 
only 30 such values are found. The 30 samples are spread over the same frequency range as 
before, namely 100 Hz to about 5 kHz. However, four contiguous such measurements are made 
in four successive spectral frames, spaced by 10 ms, and the four results of 30 bits each are con- 
catenated to generate a pattern of 120 bits. Thus, we have the same value of N as before but it is 
based on four consecutive spectral cross sections, or about 50 ms of speech. 
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The next step is to define the appropriate decision network. But there is no need for us to 
employ a single network to make decisions for all word pairs. In fact, it seems reasonable to use 
a separate two-state network for each distinct DRT pair. This results in a value of m = 2 for 
N = 120, which seems like a case of overkill (given the rule of thumb that m ^ 0.15N). However, 
given the conditions of most practical DRTs where the speech is processed through a low-rate 
vocoder or a noisy environment, these numbers did not seem implausible. Furthermore, in some 
sense it emulated the conditions of a human listener taking a DRT, who also simply needs to 
make a binary choice for each word she/he hears. 

Our data base was the set of word pairs listed in Table I, spoken by a single speaker. For 
each of the 32 words, a complete pattern of 120 bits was generated every 10 ms and these results 
were printed, as well as the average spectrum plus some measure of the spectral change from 
frame to frame. These data, plus observation of the waveforms, allowed for a good guess as to 

TABLE I 

Word Pairs 

by Single Speaker 

news — 

fault - 

coop — 

sag — 

teak — 

keep — 

dot - 

boast — 

sheet — 

pooh - 

thank - 

taunt — 

thought - 

moon — 

tea — 

bend — 

dues 

vault 

poop 

shag 

peak 

cheap 

got 

ghost 

cheat 

- foo 

- sank 

daunt 

- fought 

noon 

key 

mend 
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the critical regions to be used as assigned or stored states. A total of 16 Hopfield nets were thus 
defined, each with N = 120 and m = 2. Given the word pair from which one of two words would 
be "heard" by the network allowed us to choose which of these 16 nets to employ. 

In Section 6, implementation and simulation issues will be discussed; we wish now to say 
only that computer running time became rather long so that extensive data were not collected. 
We did process all 32 words, (a) after passage through a vocoder, and (b) after polluting the 
speech with additive noise. (Note that the Hopfield nets were derived from the original noiseless 
data.) Figure 13 shows how well the networks distinguished between the consonants for all 32 
words. The curves of Figure 13 were derived by performing a two-state discrimination every 
10 ms, using the Hopfield net corresponding to the input word-pair. Zero on the horizontal axis 
in all cases corresponds to the critical region; that segment of the signal used to obtain assigned 
or stored states. The curves show the total number of errors when all 32 words are processed; 
Figures 13(a), (b), (c), and (d) are for different degrees of computer-generated white additive 
noise; Figure 13(e) is for the output of an 8-kbps channel vocoder for noiseless input. We see, in 
general, increased error rates for decisions made away from the critical region. These (automatic) 
DRT scores listed near each curve correspond to the results obtained at the critical regions. 
Figures 13(a), (b), (c), and (e) are all based on the same single network algorithm, but Figure 13(d) 
is based on a three-network algorithm. In addition to a network with stored states from the criti- 
cal region, there are networks with stored states based on the waveform 20 ms earlier and 20 ms 
later. Each of the three networks makes a binary decision at its own critical region and then a 
best two out of three determines the final outcome. We see from Figure 13(d) that there was a 
substantial improvement compared to Figure 13(c), where the additive noise was the same. 

The computer-generated noise was based on an algorithm that generated a uniformly distrib- 
uted stochastic variable each sample. The parameter /3 controls the amount of additive noise; in 
Figure 13, the different values of /? that were used are shown for each of the curves. The var- 
iance of the noise is /32/3; the mean is zero. For the speech plus noise signal of Figure 14, if we 
make the assumption that the speech is also uniformly distributed in amplitude (and given that 
the maximum value of the speech is 10140, as shown) we can postulate a 20-dB signal-to-noise 
ratio during the steady portion of the vowel and perhaps a 0- to 5-dB signal-to-noise ratio during 
the initial consonant in the word "dues." This ratio corresponds to Figures 13(c) and (d) if we 
assume an average ratio of vowel to initial consonant of 20 dB. 

The same set of 32 DRT words with additive noise with {$ = 1024 was scored using three 
human listeners; the score was 83.3 which is reasonably close to the score obtained using the 3- 
network configuration, which yielded the result Figure 13(d). This very preliminary result encour- 
ages us to continue research on an automatic DRT system using Hopfield nets. 
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Figure 13.    Results for Automatic Diagnostic Rhyme Test based on 32 words. 
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6.    SIMULATION OF HOPFIELD NETS 

In this section we describe our facility for simulating the algorithm described in the previous 
sections. We also speculate as to how the facility can be improved. 

The LDSP6 is a 16-bit, fixed-point, general-purpose computer. A typical instruction (includ- 
ing the instruction fetch) is completed in 200 ns, but because of the pipelining feature of the 
architecture which allows for overlap, a new instruction, most of the time, is available every 
50 ns. An exception is the multiply instruction which takes 100 ns. The structure of the simula- 
tion program using LDSP is shown in Figure 15. It is important to note that the size of data 
memory and program memory are 4096 and 2048, respectively. In simulating a Hopfield net of 
size N, a total of approximately N2 values of Ty are needed so that for large values of N (100, 
200), there is insufficient memory capacity. This problem is to a great extent overcome by a large 
peripheral memory (LPM). Two of the four available LDSPs have such a peripheral, each with 
256K words of storage. As seen in Figure 15, this involves communication between the LDSP 
and the LPM. This should allow us to simulate networks for N as large as 500 without resorting 
to the appreciably slower mass memories of the main frame. 

<7> 

DISK 
STORAGE 

FOR INPUT 
AND OUTPUT 

DATA 

MAIN FRAME 
PRINTER (PDP-11/44) 

t 
LDSP          | 

. 2048 
PROGRAM 
MEMORY 

4096 DATA 
MEMORY 

LPM 

1 LARGE 
PERIPHERAL 

MEMORY 
(T,j) 

ALU 256 K 

Figure 15.    Structure of the Hopfield net simulation using the Lincoln Digital Signal Processors. 
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Operation of the programs may be divided into two parts: "learning" and "deciding." At the 
present stage of our knowledge, learning for the problems discussed here is intrinsically a non- 
real-time operation, involving the judgment of the experimenter in choosing the appropriate states 
to memorize. For example, in Figure 9, the spectral cross section to be memorized (denoted by 
the asterisk) is chosen by the experimenter after studying the waveforms and after printing out 
octal versions of the 120-bit binary representation. Future work should focus on automatic ways 
for the system to learn the necessary patterns for stored states. Once a set of patterns represent- 
ing some aspects of either a vowel or consonant is chosen, the Ty matrix must be computed and 
stored in the LPM, but in our experiments this need be done only once for the entire word so 
that that particular computation [Equation (1)] is an insignificant portion of the entire computing 
load. 

The major computational load is the iteration of the network. Each iteration involves the 
computation of Equation (2). To compute each new value of Xj(n) takes N operations so that N2 

such operations are needed to compute all the Xj for each iteration. The program is assumed to 
converge after 32 iterations; experiments have shown that convergence always takes place sooner 
for the problems we have worked on. With the present program, processing of a 2-s speech 
utterance [with Equation (2) being applied 32 times every 10 ms] takes about 5 min.; nearly all 
this time is taken by simulation of the network iteration. 

Raffel7 has suggested a method of increasing the processing speed by the inclusion of a 
special-purpose processor connected as a peripheral to the LDSP. Figure 16 shows the overall 
structure of such a proposed device. First, the N memories must be loaded from the LDSP with 
the Ty matrix. Any particular x;(n) can be computed in parallel by simultaneously accessing the 
j-required values of Ty, performing the indicated gating, summation and nonlinear operation, and 
sending the result back to the ith 1-bit state variable. Assuming that the computation of a single 
X; can be carried out in 500 ns, a complete iteration for N = 120 would take 60 /xs and 32 itera- 
tions would take 1.92 ms. Thus a complete Hopfield net computation performed every 10 ms 
would run appreciably faster than real time. Also, this structure would allow for the successive 
computation of several, or many, nets by simply stacking Ty matrices in the N parallel memories. 
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7.    DISCUSSION 

In the preliminary experiments described in this report, Hopfield networks have proved to be 
fairly robust implementations of associative memory modules. For speech-processing applications, 
an appropriate binary representation of the speech is central for obtaining good performance. 
For different applications (e.g., recognition, vocoding, pitch detection) the representation is 
bound to be different. 

Our attempt to devise an automatic DRT with Hopfield networks indicates that incorporat- 
ing null states could significantly enhance performance. In a rhyme test such as a DRT, the criti- 
cal interval of the speech is at or near the consonant-vowel boundary. If the noncritical intervals 
could be made to converge to such a null state while the critical regions converged to a true 
memory state, much of the human editing could be eliminated. Several proposals have been 
made (but not yet tested) on this subject: (a) introduce new "phony" states orthogonal to the 
"real" states and to each other; convergence to any "phony" state would be interpreted as a null 
state; (b) introduce a bias in the threshold computation; this would tend to favor, for example, 
the state component x; = -1 over x, = +1, and the null state could be defined as the state where 
all the Xj's are -1. 

The experiments described in this report are only a beginning toward finding useful applica- 
tions of neural-network-like structures. Experimental and theoretical studies of such networks 
have high priority in future efforts in this new and interesting area. 
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