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20 fractiles with approximately equal numbers of examinees in each. The item
parameters are then estimated by assuming that the 20 fractile means are
representative of the entire ability distribution. The sequence of ability
estimation, ability grouping, and parameter estimation is repeated until the item
parameters converge on stable values or fail to improve.

This procedure was evaluated using Monte Carlo simulation techniques. The
current version of ASCAL was then compared to the current version of LOGIST
(Wingersky, Barton, & Lord, 1982) and a prior version of ASCAL that was used to
estimate the parameters in the adaptive item pool of the Armed Services
Vocational Aptitude Battery. Parameters were estimated for the items in each of
three different simulated tests. Three different evaluative criteria were used:
(1) root mean squared error between true and estimated item parameters, (2) the
correlation between true and estimated item parameters, and (3) calibration
efficiency. This last criterion measures the amount of information in the
estimated parameters relative to the information in the true parameters and is an
indication of the joint effects of calibration error in the individual
parameters.

The results of this evaluation suggest that ASCAL produces parameter
estimates that are at least as accurate as those produced by LOGIST. There were
only minor (and inconsequential) differences in the three evaluative criteria
between the two versions of ASCAL. The differences between ASCAL and LOGIST were
slightly larger than the differences between the two versions of ASCAL; however,
even these differences were small. Item parameter error increased markedly (for
each of the three parameters) according to all three criteria and for all
calibration procedures when items with an exaggerated range of difficulty
parameters were calibrated. Only the difficulty parameter correlations were
unaffected by this manipulation.

'4,.



ABSTRACT

ASCAL is a microcomputer-based program for calibrating items according
to the three-parameter logistic model of item response theory. ASCAL employs
Lord's (1974) modified likelihood equations (for items that are omitted or not
reached) and Bayesian prior distributions on the discrimination, guessing, and
ability parameters to arrive at final estimates of the item parameters. No
ability parameters are produced.

ASCAL uses a modified multivariate Newton-Raphson procedure for
estimating item parameters. The estimation process begins by specifying -.

starting points for the ability and item parameters. In this procedure, abilities
are first estimated using the preliminary estimates of the item parameters.
After ability estimates have been obtained for all examinees, they are sorted
and grouped into 20 fractiles with approximately equal numbers of examinees
in each. The item parameters are then estimated by assuming that the 20
fractile means are representative of the entire ability distribution. The
sequence of ability estimation, ability grouping, and parameter estimation is
repeated until the item parameters converge on stable values or fail to improve.

This procedure was evaluated using Monte Carlo simulation techniques.
The current version of ASCAL was then compared to the current version of
LOGIST (Wingersky, Barton, & Lord, 1982) and a prior version of ASCAL that
was used to estimate the parameters in the adaptive item pool of the Armed
Services Vocational Aptitude Battery. Parameters were estimated for the items
in each of three different simulated tests. Three different evaluative criteria-
were used: (1) root mean squared error between true and estimated item .4%"..
parameters, (2) the correlation between true and estimated item parameters, and
(3) calibration efficiency. This last criterion measures the amount of ,-S
information in the estimated parameters relative to the information in the true
parameters and is an indication of the joint effects of calibration error in the
individual parameters.

The results of this evaluation suggest that ASCAL produces parameter
estimates that are at least as accurate as those produced by LOGIST. There
were only minor (and inconsequential) differences in the three evaluative
criteria between the two versions of ASCAL. The differences between ASCAL
and LOGIST were slightly larger than the differences between the two versions
of ASCAL; however, even these differences were small. Item parameter error
increased markedly (for each of the three parameters) according to all three
criteria and for all calibration procedures when items with an exaggerated
range of difficulty parameters were calibrated. Only the difficulty parameter
correlations were unaffected by this manipulation.
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INTRODUCTION

The MicroCATtm Testing System is a self-contained system of programs for
developing, administering, and evaluating psychological tests using both
adaptive and conventional strategies (Assessment Systems Corporation, 1984).
The system runs on IBM personal computers, either individually or in a local
area network. MicroCATtm uses item response theory (IRT; Lord & Novick,
1968) to calibrate adaptive test items. The program within the MicroCATm
system that performs IRT item calibration is called ASCAL.

ASCAL was the first IRT calibration program for microcomputers. The
most popular IRT calibration program, LOGIST (Wingersky, Barton, & Lord,
1982), was available only for mainframe-class machines and was typically quite
expensive to run. It was not unusual for the cost of calibrating the items in a
single test to exceed $50 for computer time alone.

Three-Parameter Logistic IRT Model

Both LOGIST and ASCAL estimate parameters for the three-parameter
logistic IRT model, which was developed for use with dichotomously scored
multiple-choice items. The item response function in this model expresses the
probability of a correct response as a function of examinee ability, theta (0),
and three item parameters, a, b, and c. The item response function is an S-
shaped curve going from a lower asymptote equal to the c parameter (the
pseudo-guessing parameter) to a maximum value of 1.0. The midpoint of this
curve has its projection onto the ability scale at b (the item difficulty
parameter). The slope or rate at which the probability increases as a function .
of ability is a function of the a parameter (the discrimination parameter). The
three-parameter IRT model is specified in Equation I.

pLgo. - Prob (Ug1 - 1 Iag, b , c , e ) ..

C + (1 - c) [Da( - b

where

the subcripts L and g index the examinee and item,
respectively;

1%-
1 if examinee I answered item g correctly

9~i - 0 otherwise;

j'(X) - 1 / (1 + exp(-x)); and

D - 1.7.
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LOGIST's method for estimating item parameters is based on an adaptation,
proposed by Lord (1974), of the maximum likelihood principle. This model
makes allowances for items that are unanswered or omitted by an examinee.
When all examinees respond to all items in the test, Lord's procedure is
equivalent to the classical maximum likelihood procedure.

Lord made a distinction between items that were omitted and those that
were not reached. Unanswered items embedded within the sequence of items to
which the examinee did respond were considered omitted items. That is, it was
assumed that the examinee had the opportunity to respond to the items but
chose, for some reason, to skip or omit those items. On the other hand,
unanswered items at the end of a test were considered not reached. In this
case, it was assumed that the examinee did not have enough time to respond to
all of the items in the test. Similarly, items that are never presented to some
subset of examinees can be considered not reached for those examinees.

In Lord's scheme, unreached items are not used to estimate an examinee's
ability; the scored response vector does not include the block of unanswered
items that occurs at the end of a test. To score unreached items as incorrect
would mean that an examinee's score is depenL :nt, at least partially, on the
speed with which he or she answered the items on the test. This is a major
violation of the assumptions of IRT, which models the probability of a correct
answer on item characteristics and the examinee's ability only.

On the other hand, examinees are given partial credit for those items that
they chose to omit. The rationale for this is twofold: (I) it is assumed that the
examinees were administered these items and had ample time to respond to
them, and (2) they would have answered some of these items correctly if they
had guessed rather than skipped the item.

Bayesian Estimation of Ability and Item Parameters

Maximum likelihood procedures for estimating item parameters have
several desirable characteristics (for example, under certain conditions, they
produce estimates that are asymptotically efficient and asymptotically normally
distributed). In practice, however, such procedures are often difficult to
implement. For example, no maximum likelihood ability estimate can be
obtained for an examinee if he or she answers all of the items correctly or
answers fewer items correctly than would be expected by chance. Furthermorc,
for complicated estimation situations (such as item calibration), numerical
compromises must often be made; a number of ad hoc decision rules and
auxiliary estimation procedures were incorporated into LOGIST during its
development. For example, estimates of the c parameter cannot be obtained by
LOGIST for items that are too easy. This is because typical data sets do not
provide sufficient information to allow such parameters to be estimated by the
maximum likelihood method with any accuracy. Thus, LOGIST will set the c
parameters of such items to the average c parameter of the remaining items.

The calibration procedures of ASCAL were modeled after those in LOGIST.
However, ASCAL makes a different set of numerical compromises that allow,
in effect, a conceptually simpler approach to item calibration. That is, ASCAL
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adds Bayesian prior distributions to the pseudo-likelihood functions for the
ability estimates and the a and c parameters (no prior distribution is used for
the b parameter). Thus, the pseudo-maximum likelihood estimation process of
LOGIST is a pseudo-Bayesian estimation process in ASCAL. The prior
distribution of ability chosen for ASCAL is a standard normal distribution. By
convention, all three-parameter IRT calibration programs set the scale of
ability to have a mean of zero and a variance of one; the normal shape of the
prior distribution used here was chosen as the most representative general form
for a distribution of ability.

Symmetric beta distributions were used as the specified Bayesian priors for
the a and c parameters. These distributions were chosen because they provided
a continuous bounding mechanism consistent with intuition concerning probable
values of the a and c parameters. The prior distribution for the a parameters
was specified as B(3.0,3.0) with upper and lower bounds of 2.60 and 0.30,
respectively. The prior distribution for the c parameters was specified as
B(5.0,5.0) with a lower bound of -0.05 and an upper bound equal to 0.05 plus
twice the reciprocal of the number of alternatives. The classical beta density
functions were redefined (using a simple change-of-variable transformation) to
have the bounds specified above instead of upper and lower bounds of one and
zero, respectively (see below). These transformations ensured that the a and c
parameters were in the appropriate range. The estimates of the b parameters
were bounded by + 3.00.

The criterion function maximized by this pseudo-Bayesian method is shown
in Equation 2. This is the pseudo-likelihood function proposed by Lord (1974;
Wood, Wingersky, & Lord, 1976, Equation 4) weighted by a univariate normal
distribution on theta and univariate beta distributions on a and c.

N nI v 1-v
L*- n El P(9 1 Q gi e [2]

1-1 g-I

f(a , 3.0, 3.0, 0.3, 2.6) *
g

f(c , 5.0, 5.0, -0.05, (0.05 + 2/K))

where

n. is the number of items that were answered by examinee i;

Q 9(o1) 1 - P 9(eoi);

I u if examinee I responded to item g

V - tg

1/K otherwise, where K is the number of alternatives;

a 3
...................................................-.-... .......



(pis the standard normal density function;

f(x,r,s,jk) - y- * * * r
B(r,s) (k - j) Lk-iJ

X_2 _ s-1

for upper and lower bounds k and j, respectively,

and beta-function parameters r and s;

and B(rs) - yr- (1 - s-l d7

is the classical form of the beta function.

Simultaneous solution for the roots of the derivative equations for all
parameters is numerically intractable. Therefore, ASCAL uses the general
iterative procedure followed by LOGIST. In this procedure, the ability
parameters and the item parameters are estimated separately. First, the
abilities are estimated while the item parameters are assumed to be known; then
the item parameters are estimated while the abilities are assumed to be known.
This process is repeated, and the ability and item parameter estimates are
updated and refined at each stage. While there is no guarantee that this process .

will converge on final ability and item parameter estimates, the experience
with LOGIST and ASCAL has been that acceptable estimates are produced.

NUMERICAL IMPLEMENTATION ,

Overview

ASCAL uses a modified multivariate Newton-Raphson procedure for
estimating the parameters. The estimation process begins by specifying starting
points for the ability and item parameters. Once these starting points have
been obzained, the modified Newton-Raphson procedure begins. In this "r
modified procedure, abilities are first estimated using the preliminary estimates
of the item parameters.

After ability estimates have been obtained for all examinees, they are
sorted and grouped into 20 fractiles with approximately equal numbers of
examinees in each; this grouping is done for computational convenience. After
grouping, the fractile means are weighted by the number of subjects in each
fractile and then standardized. The mean ability for each fractile is taken as
representative of all examinees contained in that fractile. The item parameters

4..
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are then estimated by assuming the 20 ability levels to be representative of the
entire ability distribution.

The sequence of ability estimation, ability grouping, and parameter
estimation is repeated several times until the item parameters converge on
stable values or fail to improve. The details of each of these processes are
described below.

Initial Estimates

A Newton-Raphson iteration requires that initial estimates be specified for
all of the parameters that are to be estimated. These estimates must be
reasonably accurate or the iteration process may diverge and fail to produce
acceptable estimates. *.

The initial ability estimates are obtained from raw formula scores. These
scores are computed as the number of items answered correctly minus a
fraction of the items answered incorrectly. For each incorrect item, the
fraction subtracted is equal to the reciprocal of one less than the number of
alternatives. These formula scores are then standardized using a linear
transformation based on the mean and standard deviation of the formula scores
in the group of examinees.

The initial item parameters are obtained through heuristic transformations
of the classical item statistics as described by Jensema (1976). The c parameters
are estimated as the reciprocal of the number of alternatives for each item.
The initial estimates of the a and b parameters are then computed from the
corrected biserial item-total correlation and the proportion of examinees
answering the item correctly.

In the first of the iterations that follow, the initial item-parameter
estimates are used to obtain the first estimates of ability. The initial ability
parameters obtained by standardizing the formula scores are used only as
starting points for the Newton-Raphson iteration.

Ability Estimation

Ability estimates are obtained through Newton-Raphson iteration on the
derivative with respect to theta of the criterion function L* shown in Equation
2. Using both the first and second derivatives of the criterion function, the
iteration proceeds for each examinee individually until an ability value is
found for that examinee that results in a root for the first derivative of the
criterion function. The estimate thus obtained is very similar to a Bayesian
modal estimator of ability. It differs from a true Bayesian modal estimator in
that this estimator incorporates Lord's pseudo-likelihood function rather than a
true likelihood function.

Ability Grouping ."41

When the item parameters are estimated, the criterion function must be
summed over all ability levels. This could be done for each examinee

5
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individually or the examinees could be grouped into fractiles and the sum
could then be taken over these groups. The latter procedure results in
considerable computational savings, and is the procedure employed by ASCAL,
using 20 fractiles. There is precedent for grouping abilities in this way; such a
procedure is used both in LOGIST and in a related calibration program,
LOGOG (Kolakowski and Bock, 1973). LOGIST documentation recommends
using grouped abilities only in some stages of estimation. Like LOGOG,
ASCAL uses grouped abilities for all stages of estimation.

The ability-grouping process begins by sorting abilities from low to high.
ASCAL then attempts to group these abilities into 20 fractiles, each containing
an equal number of examinees. To accomplish this, the ability level for the
examinee at each 20th of the distribution is obtained as a bound. Examinees
are then grouped into the fractiles with a bound most immediately above their
ability levels. This process results in equal-sized groups except when examinees
with equal abilities span a fractile boundary or when the number of examinees
is not evenly divisible by 20. Typically, neither of these conditions results in
any substantial differences in fractile sizes. Fractile divisions are done on a
running total of sample fractions so that round-off error does not result in an
excessive number of subjects in the last fractile.

The mean ability is then computed in each fractile and taken as the
representative ability for all examinees in that fractile. Whereas the median
ability in the fractile might be more appropriate for a procedure such as
LOGOG or LOGIST which uses maximum likelihood estimates of ability (with
the potential of infinite ability estimates on finite length tests) the mean
ability is an appropriate characterization for ASCAL in which the abilities are
obtained by a Bayesian method.

The 20 fractile means represent all ability levels in the group of examinees.
These 20 ability levels are then standardized so that they have a mean of zero
and a standard deviation of one (as was assumed for the ability distribution).
ASCAL performs the standardization by weighting each fractile mean by the
number of examinees in the fractile. If the grouping procedure produced
exactly equal numbers of examinees in each of the fractiles, this weighting
would be unnecessary. The weighting is done to preclude complications in
cases where the numbers of examinees are not exactly equal.

Parameter Estimation

The item parameters are estimated for one item at a time. The a and h
parameters are estimated using a Newton-Raphson procedure. The c parameters
are estimated by systematically stepping through possible values. Thus the a
and b estimation procedure is performed within a loop that steps through all
reasonable values of the c parameter.

For computational efficiency, the c parameter stepping process is done in
two stages. In the first stage, trial values of c are evaluated starting at the c
estimate from the previous loop and stepping outward in steps of 0.05. The
process first steps down until a limit is reached or the criterion function
decreases. Then, if no increase was observed while stepping down, the stepping

6
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process steps up until the criterion function decreases or a limit is reached. A
second stage of iteration is then performed starting at the best c value obtained
in the first stage and proceeding outward (in steps of 0.01) to a maximum
distance of 0.04 from the second-stage starting point or until the criterion
function f ails to increase.

At each trial value of c, the a and b parameters are estimated. These
parameters are estimated jointly using a bivariate Newton-Raphson procedure
if the matrix of partial second derivatives is positive definite. Otherwise, the a
and the b parameters are estimated independently. To prevent wild
fluctuations in the a and b parameters during the estimation process, the .
maximum adjustment to the a parameters is limited to plus or minus 0.2 and the
maximum adjustment to the b parameters is limited to plus or minus 0.4. The a
and b parameters are considered to have converged for a trial value of c if the
sum of the absolute change in a and the absolute change in b is less than 0.01.

If the a and b parameters have failed to converge after 10 iterations, the
* change indicated for each parameter by the Newton-Raphson procedure is

reduced by a power of 0.8 for each additional iteration. Thus, the prescribed
change is dampened or multiplied by 0.8 on the eleventh iteration, by 0.64 on
the twelfth iteration, etc.

Program Termination

ASCAL terminates its iterative process either when the parameter estimates
con verge on constant values or when the maximum number of iterations
allowed by the user is reached. The item parameters are assumed to have
converged if the sum of the absolute changes in a, b, and c from one iteration
to the next is less than 0.01 for two consecutive iterations on every item.
Alternatively, if the total number of loops reaches the maximum number
allowed by the user, the program terminates.

Program Operation

The details of program operation are described in Chapter 12 of the User's
Manual for the MicroCAT Testing System (Assessment Systems Corporation, 1984).
ASCAL was designed to estimate item parameters only and was not intended to
be a scoring program; thus, no ability estimates are provided for the examinees.
Because no editing capabilities are included in the program, it is assumed that
all data are input to ASCAL in correct and final form.

In put. The input data file contains raw item responses for each examinee.
This data file must also contain the item-specific information required for item
calibration; this additional information is included in the data file and not in a
separate program-control file. In addition to the raw item responses, then, the
input data file contains the following information: (1) number of items, (2)
symbol codes for omitted and unreached items, (3) rudimentary formatting
information indicating how many columns of the examinee response record 1

contain identification data, (4) the number of response alternatives for each
item, (5) the keyed response for each item, and (6) a flag for each itemL%
indicating whether or not it should be included in the analysis.
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The interactive operation of ASCAL is quite simple. The user needs only
to provide the name of the input file, the name of the output file, and the
maximum number of loops through which the program should proceed, if it has
not converged prior to that point. Ten iterations usually provide adequate
estimates.

Output. ASCAL output is a simple listing of the following information: (1)
the user-specified program-control parameters, (2) the heuristic item parameters
used as initial starting values, (3) parameter changes at each stage through the
parameter-estimation process, and (4) the final parameters and their Pearson
chi-square lack-of-fit test results.

System requirements. ASCAL runs on an IBM PC, PC XT, or PC AT and
many of the IBM PC-compatible computers. Memory requirements for ASCAL
are somewhere between 128K and 192K. ASCAL will run on systems either
with or without the math coprocessor chip; however, the run time without this
chip can be excessive. For example, for a 50-item test administered to 2,000
examinees, the typical time with the coprocessor chip is approximately 2 hours;
without the coprocessor chip, the same run may take more than 24 hours. In
either case, the results will be identical.

PROGRAM EVALUATION

Method

ASCAL was evaluated using a Monte Carlo simulation (see Ree, 1978, or
Vale & Weiss, 1975, for a full description of a simulation). In this study, scored",
responses to items with known ("true") a, b, and c parameters were generated
using the three-parameter logistic IRT model. ASCAL was then used to
estimate item parameters from these simulated item responses. The estimated
item parameters were compared with the true item parameters using several

different criteria. This simulation procedure is discussed in more detail below.

Simulated item responses. Three sets of true parameters were used. The
first set of parameters was obtained from a 25-item test containing general
science items. To obtain an effective test length of 50, each item and its
parameters were included in the test twice. All items in Test 1 had four
alternatives. Test 1 had a restricted range of item difficulty, typical of a
conventional test, but inappropriate for adaptive testing. To create a test more
appropriate for adaptive testing, Test 2 was created by multiplying all of the b
parameters in Test 1 by 2.0. Thus Tests I and 2 were identical except for the b
parameters. Test 3 was modeled after a 57-item test of shop knowledge. Each
item in Test 3 had five alternatives. Since Test 3 was developed as part of an

adaptive item pool, it had a slightly wider range of difficulty than did Test 1,
although its difficulty range was not as wide as that of Test 2. Table I
presents the means and standard deviations of the true parameters used as
models for the simulations.

8
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Item response data were generated for 2,000 examinees for each of the
three tests. Examinee ability levels were sampled from a standard normal
distribution.

Calibration programs. Although the objective of parameter estimation is to
obtain estimates that are identical to the true values, in practice this never
happens. Thus, to provide a basis for comparison, the current version of
LOGIST (LOGIST5; Wingersky, et al., 1982) was also used to estimate
parameters from these data.

Table I
Means and Standard Deviations of the True Item Parameters for
Tests 1, 2, and 3

Test I Test 2 Test 3
Parameter Mean S.D. Mean S.D. Mean S.D.,.:

a 1.492 0.410 1.492 0.410 1.041 0.417
b -0.090 0.910 -0.179 1.820 0.675 1.069
c 0.230 0.082 0.230 0.082 0.198 0.028

Two versions of ASCAL were used to estimate parameters on these data.
Version 2.0 is the version of ASCAL that was used for estimation of the
parameters of the item pools for the computerized adaptive version of the
Armed Services Vocational Aptitude Battery (ASVAB). Since that calibration,
several numerical improvements were made to ASCAL resulting in the current
version, Version 3.0. Both versions were used here to investigate the magnitude
or the differences between the two versions.

Evaluative criteria. Three different criteria were used to evaluate the
accuracy of the item calibration programs. The root mean squared error
(RMSE, the square root of the average squared difference between the true and
estimated parameters) was computed for each of the three (a, b, and c)
parameters in each of the three tests. Similarly, the Pearson product-moment
correlation coefficient between the estimated and the true parameters was
computed for each parameter in each test. The third criterion was a calibration
efficiency criterion.

The efficiency criterion is a relative-information criterion suggested by
Vale, Maurelli, Gialluca, Weiss, and Ree (1981). Their procedure computes the
amounts of psychometric information (Birnbaum, 1968) that would be extracted
from the items if they were scored using the estimated or errant parameters;
the relative efficiency of the estimated parameters (i.e., the ratio of the
information in the estimated parameters to the information in the true
parameters) can be determined for each theta level by comparing the errant
information with the true information. This process is described below.

9 a.



Theta-gamma transformation. The theta metric can be defined as the
criterion metric along which the true parameters are anchored and along which
the response probabilities are accurately described by the IRT model
incorporating the theta level and the item parameters. A second metric, call it
gamma, is produced by scoring item responses using parameters other than the
true parameters of the theta metric (i.e., by using the errant or estimated
parameters). The gamma metric, then, is a one-to-one transformation of the
theta metric. The gamma level corresponding to a given theta level could be
determined, conceptually, from administering a test scored using the errant
parameters an infinite number of times and scoring all the responses
simultaneously. Each theta value would then asymptotically converge on a
single gamma value.

It is, of course, impossible to administer an infinite-length test or to repeat
a finite-length test an infinite number of times. However, the theta-gamma
transformation can be determined by more practical means. The maximum
likelihood estimate of theta, which is asymptotically unbiased, can be obtained
by finding the root in theta of the following likelihood equation given by
Birnbaum (1968, p. 459):

n An w()U
a *[Da (-b) - 0 [3]

g-l g g & g-1 D

where

W (e) - Da 9 *[Da (9-b) in(c )] [4]

are locally best weights as defined by Birnbaum (1968, pp. 442-444), 0 is
an estimate of e, and all other terms are as defined earlier, except there
is no subscript indexing each examinee.

If each item were repeated r times, Equation 3 could be written as:

n r n r A u
a * fDa (e-b X) -] gg - 0

g-1 h-1* o g g-1 h1 D D

or

nn A r
r Eg[ag9[Dag (6-b w (9) Ugh  0 [61

91-1 D h.

or
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nl n A

a *[Da( -b)] - Y D P - 0 [7]
9 _j g -

where P - the observed proportion of correct responses to* g
item g in r repetitions.

This is simply Equation 3 with P substituted for U . If the three-
parameter model holds and true paraiketers are available, Pg can be computed
using Equation 1. When this P is substituted into E92ation 7 along with true
item parameters, the root of the equation is found at e.= 6.

In a simulation, we can control when the true parameters are available and
when estimates must be used. Let us view Pg as the probability with which an
examinee will respond to item g with a correct answer. The probability of an
examinee's response being correct is governed by his or her true ability and the
true item parameters. Thus, Pg should be computed using 0 and ag, bg, and cg.
When we estimate ability (i.e., in a real-world environment), we musk use the
estimated parameters. If the parameters are in error, our estimate ('e) will not
converge on 0 but rather on F. The value of IF corresponding to a given 9 can
be determined by substituting the true Pg into Equation 7 and finding the root
using the errant parameters. Thus, using 9 to denote the true ability; 1" to
denote the asymptotic value obtainble.cwith erpant parameters; a b and cg
to denote the true parameters; and ag, b9, and c to denote the estimlted
parameters, we can rewrite Equation 7 as:

A
nl A A A fl w"

a 4' Da -b) [8
g-1 g g & g-1 D

(c + (1-c ) 4[Da (e-b ]) - 0

where

*A A A A

w (F) - Da *[Da (F- b ln(c )] [91
g g g g g

If the errors of calibration are zero or the estimated parameters are
consistent with the true parameters, the transformation of theta to gamma will
be linear. When this is not the case, as in almost all real calibration situations,
the transformation will be nonlinear. This transformation from theta to gamma
completely describes the asymptotic effect of item parameter error on ability
estimation.

In 44.a.
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VI. A

Efficiency. The information at theta for a specific test score (or scoring
function), X, can be expressed as the ratio of (I) the squared derivative of the
expected value of the scoring function, to (2) the variance of the scoring
function at theta (Birntaum, 1968, p. 453):

.1(e) - .O; X) - [ [10]
axle

When the score is a linear combination of 0-1 item responses, the components of
the information equation can be written as:

d nd '
SE(xIO) - h' E(Ug 1O) [1

d d
E 2 ~VP(0)

g-1 d

n
- : V P (s)

and

2 n 2
axle - w Pg(e)Qg (e) [121

g- 1 g

where w - w (e) is defined as in Equation 4; and ,"
g g

P;(e) - (1-c ) Dag * [Dag(e-bg)]. [13]

The information available from scoring response vectors using errant

parameters can be viewed as equivalent to the information available in a lincar

combination of item responses using those weights determined to be locally best

at r, using the estimates of the item parameters. Thus, substituting Equations I

and 13 and the errant weights from Equation 9 into Equation 10, the

information available from the errant parameters is given by Equation 14.

1'
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n 2

A A A L (r) P (e
i(e; a, b, c) - , [141

n A2

W (r) P (e) Q (e).
g-1 g g

Equation 14 represents the information contained in the errant parameters
as a function of 0. To produce a single-quantity estimate of the information
available, this function may be jointly integrated with a standard normal
density function (i.e., numerically integrated).

To provide a relative efficiency index, the information thus obtained may
be compared to information available from the parameters. This information
may be computed in the same manner using true parameters throughout, or it
may be computed using any of the formulas provided by Birnbaum (1968).

Efficiencies for this study were computed in the manner described above.
Efficiency, as reported herein, refers to the ratio of errant to true information.

Results

RMSE. Table 2 presents the root mean squared error between the true and
estimated parameters for Tests 1, 2, and 3. For each of the tests and each of
the calibration programs, the c parameter had a smaller RMSE than did the
other two parameters. The largest RMSEs in each calibration run were
observed for the a parameter for Tests 1 and 2, and for the b parameter for
Test 3.

There were only minor differences in parameter estimation error observed
between the two versions of ASCAL. The RMSE for estimating the a parameter
dropped from 0.150 to 0.132 (from Version 2.0 to Version 3.0) for Test 1, and
increased from 0.378 to 0.386 for Test 2. In all other cases, the RMSEs were %
essentially the same for both versions.

On the other hand, there were consistent differences in the RMSEs between
ASCAL and LOGIST. In nearly every case, the RMSE for the parameters
produced by LOGIST were larger than those produced by either version of
ASCAL; for the Test I b parameters, for example, the RMSE for LOGIST
estimates was more than twice as large as the RMSE from ASCAL. The single
exception to this occurred for the a parameter in Test 3. Here, the LOGIST
RMSE was equal to 0.150; ASCAL Versions 2.0 and 3.0 both produced
parameters with an RMSE of 0.161.

13
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Table 2
Root Mean Squared Error Between True and Estimated Item
Parameters from Calibration Programs ASCAL 2.0, ASCAL 3.0,
and LOGIST5 for Tests 1, 2, and 3

Iterm Calibration Program
ASCAL 2.0 ASCAL 3.0 LOGIST5

Test I
a 0.150 0.132 0.231
b 0.088 0.088 0.182
c 0.049 0.049 0.080

Test 2
a 0.378 0.386 0.497 :. : :
b 0.190 0.189 0.250
c 0.079 0.079 0.090

Test 3
a 0.161 0.161 0.150
b 0.176 0.176 0.183
c 0.054 0.055 0.066

Correlations. The product-moment correlations between the true and
estimated parameters are presented in Table 3 for each test and each
calibration program. These correlations ranged from .596 to .952 for a, from
.986 to .996 for b, and from .377 to .828 for c.

Few differences in the correlations were observed between the two versions
of ASCAL. The correlations improved for the a parameters in Test I (from
.935 to .952) and for the c parameters in Test 2 (from .613 to .620); in all other -'
instances, the results from the two versions of ASCAL were essentially
identical.

The correlations between the true and estimated b and c parameters were
lower for LOGIST than for ASCAL across most comparisons of the three tests;
these differences were pronounced for the c parameters and small for the b
parameters. However, the differences in the correlations for the a parameters
were not consistent between the two types of calibration programs. For Test 1,
the correlations for the ASCAL-produced a parameters were .935 and .952; for
LOGIST, this correlation was .848. For Test 3, the a parameters from LOGIST
correlated more highly with their true values than did the a parameters from
ASCAL (.934 versus .926 for both versions of ASCAL). There were essentially
no differences in the a parameter correlations for Test 2.

14 i. %~



Table 3
Product-Moment Correlations Between True and Estimated
Parameters from Calibration Programs ASCAL 2.0, ASCAL 3.0,
and LOGISTS for Tests 1, 2, and 3

Item Calibration Proeram
ASCAL 2.0 ASCAL 3.0 LOGIST5

Test I
a 0.935 0.952 0.848
b 0.996 0.996 0.986
c 0.826 0.828 0.612

Test 2
a 0.598 0.598 0.596
b 0.995 0.995 0.991
c 0.613 0.620 0.498

Test 3
a 0.926 0.926 0.934
b 0993 0.993 0.990
c 0.463 0.463 0.377

Efficiency. Table 4 presents the efficiency statistics computed for the three
". calibration programs and the three tests. Calibration efficiency ranged from

.971 to .990 in this table and was generally lowest for Test 2 for both LOGIST
and ASCAL. There were essentially no differences in calibration efficiency
between the two versions of ASCAL; these values were .990 versus .990 for Test
1, .977 versus .975 for Test 2, and .985 versus .984 for Test 3.

4.%.

Table 4
Efficiency Statistics from Calibration Programs ASCAL 2.0,
ASCAL 3.0, and LOGIST5 for Tests 1, 2, and 3

Item Calibration Program
ASCAL 2.0 ASCAL 3.0 LOGIST5

Test 1 0.990 0.990 0.981
Test 2 0.977 0.975 0.971
Test 3 0.985 0.984 0.986
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The calibration efficiency for LOGIST was lower than that for ASCAL for
Test 1 (.981 versus .990 for both ASCAL versions) and slightly lower for Test 2
(.971 versus .977 and .975). LOGIST's efficiency was slightly higher for Test 3
(.986 versus .985 and .984).

Summary. There were only minor (and inconsequential) differences in the
three evaluative criteria between the two versions of ASCAL. The differences
between ASCAL and LOGIST were slightly larger than the differences between
the two versions of ASCAL; however, even these differences were small.

The only difference between Test 1 and Test 2 in this study was in the
range of the b parameters (i.e., the Test I difficulty parameters were multiplied
by 2.0 to produce the difficulty parameters in Test 2). This had a dramatic
effect on item calibration for both ASCAL and LOGIST: (1) for all three item
parameters, RMSE was substantially larger in Test 2, (2) the correlations
between the true and estimated a and c parameters were substantially smaller
in Test 2, and (3) calibration efficiency was lower for Test 2. Only the b
parameter correlations were unaffected by this manipulation.

DISCUSSION

The results of this evaluation suggest that ASCAL produces parameter .-,'4

estimates that are at least as accurate as those produced by LOGIST. Thus, . ,
although different assumptions and different procedures are used in estimating
the parameters, the parameters obtained from either program should be
considered of equivalent quality.

However, considerations other than accuracy must also be weighed when z4
choosing between LOGIST and ASCAL. Convenience and cost would dictate
that ASCAL be chosen because it is very easy to use and runs economically on
a personal computer. On the other hand, ASCAL currently has a limit of 100
items and 5,000 examinees; LOGIST's corresponding limits are somewhat larger.
Furthermore, since ASCAL is run with virtually no user-specified options, it
lacks the flexibility of LOGIST. Finally, the sole purpose of ASCAL is to
estimate item parameters. It has no data editing or transformation capability
and it does not produce scores or ability estimates for the examinees. If any of
these features are required, LOGIST may be a better choice for item
calibration. Otherwise, the ecenomy and simplicity of ASCAL appear to make
it a better choice.
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