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1. Introduction. A method of developing approximations for boundary crossing prob-

abilities which has received some attention of late is that of writing the probability as an

expectation of a conditional boundary crossing probability given an appropriate random vari-

able, and then developing an approximation for the conditional probability. Such a method

has been used with some degree of success, as measured by the accuracy of the approximations,

by Siegmund (1982, 1985, 1986), Hu (1985), and James, James, and Siegmund (1985).

Let X 1 , X2 , ... be independent, identically distributed N(14, a2) random variables, with

S,, = Xi+.-.+X,. and UX=X+.-+X . Given a function g(t), 0 <t< 1, and m > 1, let

r be the possibly defective stopping time

r = r.. = inf {n > : S > mg (n/m))

Siegmund (1982) studied the asymptotic behavior of the conditional probabilities

P(r < mIS,.=m o), 0<g(1),

and used the results to approximate the tail probability of the Smirnov statistic and the power

function of repeated significance tests for a normal mean when 0,2 is known. In this paper, we

extend Siegmund's method to study the asymptotic order of the conditional probabilities

(1.1) P(r < m I S, m o, Ur MAo), Co < 9(1),

s.'

and apply the result to some change-point problems.

Our main result is stated and proved in the next section, after some preliminary lemmas.

The proof uses a likelihood ratio argument, but we believe the result could also be obtained

using the method of Woodroofe (1982, Chapter 8). On the other hand, the method of mixtures

of likelihood ratios (cf. Lai and Siegmund, 1977) and the method of Siegmund (1985, Theorem

9.54; see also Hu, 1985), which seem particularly simple in certain related problems, appear to

be difficult to adapt to the present situation.

Our motivation for studying the conditional probabilities (1.1) comes from our investiga-

tion of the following change-point problem: Let X1,. , X,,, be independent random variables

with Xj - N(/A, rr2), and suppose we wish to test the hypothesis of no change in mean, H0
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l~ - " - p,, , versus the alternative of a single change, H1 :I = ="- ijt # jj+ - "

for some j E {1,..., m- 1}. We can then use the theorem of the next section to obtain approx-

imations for the significance levels of several tests of H0 , as well as to obtain likelihood-based

confidence sets for the change-point j. These applications are given in Section 3.

2. Asymptotic conditional boundary crossing probabilities. Throughout this

section, the following assumptions and definitions will hold. X 1 , -.. ", X are independent,

identically distributed normal random variables, without loss of generality assumed to be

N(, 1), with S = X,+-.+ X and U. -= X1 +.-. + X,, n = 1, 2,.-, m. The real-valued

function g, defined on (0, 1], has two continuous derivatives. For a fixed 0 < g(l), there exists

a unique point to E (0, 1) which minimizes the function

h(t) = g(t)- cot
{t(1 - t)}1/2

and further satisfies h(t*) > 0, liminft_.oh(t) > h(t*), and h"(to) > 0. The stopping time

r = r,. is defined by

r = inf {n < m: S,, > mg (n/m)};

we let r = +oo if the defining set is empty. Let Ao be such that Ao > g2(to)(t) - + {g(t') -

0o} 2(1 - t*)- 1 , and define A and a2 by A = g(t')/t" and a 2 = Ao - g2(to)(to)-I - {g(t*) -

-o}2(1 - t)-'. Let m = rn~o and A = mAo. Finally, for any x E B and y > 0, we let

P (A) = P(A I S. ,. Uy)

for A belonging to the a-field generated by X 1, ... X,,X.

It can be seen that or2 
= A0 - - h2(t), which in turn implies that Ao > Q2 and

or/(Ao-Co2
) < 1. Note also that the condition h'(t*) = 0 implies p-'(t*) = (j-C0)/{2(1-t')}.

Since h(t*) > 0, this implies p - g'(t*) > 0. It can also be shown that the conditions on h

imply that I + 2g"(t*)t*(1 - t*)(I - g(t*)} - l > 0. Thus, the terms that appear in (2.6) in the

statement of the theorem below are all well-defined, with the factor O'
2 /(A 0 - Co2) taking on a

value between 0 and 1.

The following two lemmas are technical and will be used in the proof of the theorem.
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Lemma 1. Assume a, -+ co with a, = o(ml/ 2 ), and let b, = m 1/2 log m and I. = (mt* -

a,, m 1/2, rt" + a,,ml/ 2 ). The following bounds all hold as m -- co:

(a) mxnm. p,,, ) (S,, > m g (n/m)) = 0 {m1/2 (o2/(Ao - m-) (m3)/2};

(b) A' (S !rmg (n/m)) = 0 /(\o- 6o2))(-s)/2}

(C) P!,) (jr/rn - to 12 a,,Mrn 1/ 2 ) {(0,2/(,\o - C2)) (.-3)/2}

(d) P(') (jr/m - tl < am-1 /2 , S, - mg (r/m) _ bin) = o j(472/(Ao - Co2))('--)/2 and

(e) for each fixed c > 0, uniformly for n and r such that In- mt* -! an m1/ 2 and 0 < r < b,

p,) (jU,/m - (a2 + p2 )t' > eI , = mg (n/m) + r) = o(1).

Proof. (a) The conditional density of Sn given Sm = C and U,, = A, which is easily obtained

via the conditional joint density of Sn and Un, is given by

S, (-TI S , Ur m i) r((rm - 1)/2)
,, - n,, = = )/ rcm -2)/2)

(A )-m-3)/2 ( -( X_:), 2)(m-4/
M A m-n nr

if zx2n- +(-z) 2(m-n)- ' < A (and = 0 otherwise). After integrating and changing variables,

we obtain

P('') (Sn > mg (n/m)) r((m - 1)/2) i(1 -
2 )(m- 4)/ 2 dy,,, - .w-/2rFYn-- 2)2) 1- B. .-./

where B,, = { y : 1, y e (Ao - Cl.)-1/2 h(n/m)). Now if 0 < a < 1 we can show, by a

change of variables (z - y2 ) and appropriate bounding of the integrand, that

(1/

(2.2) [ #('/ 1 - -a )m-) /

Stirling's formula for the gamma function implies r((m - 1)/2)/r((m - 2)/2) - (m/2)'/2 .

Thus, it follows from the fact that h(n/m) 2_ h(t*), together with (2.1) and (2.2), that

(2.3) p) (sn > mg (nIrn)) < Km - 1 2 0 h2(n/m)' (m-)/2..~~A - _ T

for some K > 0 and all m > 3 and n such that M(nlm) < Ao - o2 (the bound is 0 otherwise).

Part (a) now follows from the relations a2 - AO - Co2 - h2 (t) and h(n/m) > h(t*).

3""
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(b) and (c). Note that

P(m) (r/M - t* > am-/) < P(-) (S,, > mg (n/m))

and that (2.3) implies

(2.4) P (S, mg (n/r)) < Km 1 /
2  17  )(--3)/2 ( Ao - -- --h(n/ ) (m-3)/2

Both (b) and (c) will follow by developing bounds for appropriate sums of the last factor

above. By the assumptions on h, this factor will be of exponentially small order in m if n/m

lies outside any fixed neighborhood of t; thus, for any fixed 5 > 0, we may restrict attention

to n such that In/m - t < S. But Taylor's series expansions on log(1 + z), to one derivative,

and h(t) around t°, to two derivatives, yield the existence of K0 > 0 and 5 > 0 such that

AO - C2- h2 (/) (m3)/2(nr-
,o /m' < <p(-'o(nm t

, Ao - 02- h2 (to) <

for n such that I(n/r - t <6 . Parts (b) and (c) follow by summing these bounds over n in

Af and I and bounding the sums appropriately by integrals.

(d) By a process similar to that used to obtain (2.4), we have that

P.- (1r/ - t( a,,m- 1,,. S"-,rg(,,) > bn) < P(') (S > mg (n/m) + bW)

and for some K' > 0, all m > 3, and all n such that [h(n/m) + b,/{n(m - n)}11/11 < A0 - 01,

th~nm) b/( Y1/212\ (mn-3)/2P(' (S,,, > rn (nrn) + b" ) < Krn-1 l2 ( A0- °- [h A0)+bl nm n ''') ' - ) '  
- -"-

<K'm1-2 /2 - - 2 -(n/n) - b ./{n(m - )}

C2Ao- ) -Ao - h2 (t) J
Ar - ) -<--

2r,2

where the last inequality uses the fact that h(n/m) > h(t*). Part (d) now follows by using the

relation 1 - a < e- for 0 < a< 1.

4 '.9!.



(e) By Markov's inequality

(2.5)p(-) 2 [~~ fISf, lUn/M - (a2 +.)1 >u 2 I = )- wru/i =, = ,U.. A )
1{(~m S,,=z (Un/ Sn S

+ {E(n/m I S = z, S. , A) - (o2 +'2)t'}2

Conditionally, U,1 is a linear function of a beta-distributed random variable. In fact it can be

shown that the random variable

V U. - S.2/ n
U. - s.2/n - (S. - s.)2/Cyn - n)'

whose numerator is one of two independent chi-squareds making up the denominator, has a

beta distribution with parameters (n - 1)/2 and (m - n - 1)/2 and is independent of the vector

(S,, Sm, Ur). Therefore,

i. ECG,,S, ==,&= {, U', = A)-z2 (--+ A ({'-)2m Z2 ) (n - 1) -v ,m-i::

E(U I S =, Sm , Um A) -+ 1A '
n km-n n (m -2)

and

Var(U, I Sn = z, S. , U. = A)=2 (A (nz) _ (-1)(m- -1)m- - n m(m - 2)2  i

Part (e) now follows from (2.5) and the above by algebra. I

Lemma 2. For each e > 0,
(a) P,' (IS/M - JtI > C, r < m) o {(u 2 /(Ao- C2)) ( - - 3 )/12 and

( P(-) J

(b) p ,, (IU/m - (a 2 + I 2)t1 > C, r < M) = o {(2/(AXo - ))('-3)/2}

Proof. Let a, = log m. Applying first Lemma 1(c) and then the triangle inequality, we have

LHS(a) = P(-) (IS./m - P1 > ', Ir/m -t'l < a.m-/) +o{a0 _-(m ;:<.<.A( -. ) 2
_ P,-) ST - mg (r/m) > - rim - tj < a,m/-2)

+ . (Ig (r/m) - it'I > , i/m - t1 < a,,m - f + o{ )}

The second summand on the right-hand side above is null for n sufficiently large, since g

is continuous and g(t*) = ut*. The first summand can be handled by Lemma 1(d), thus

completing the proof of (a).

I5
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Apply parts (c) and (d) of Lemma 1 to get

LHS(b) = P(- (IUT/m - (0' 2 +2 > C, S, - mg (rim) b, rim - tI < ainmi/){( t
2  )(--3)/21

Now decompose the above event according to the value of r, letting 1 ,,, be the interval (mt" -

a. mi 12 , mt* + a,, m1/2):

LHS(b) <_ E P(-) (IU,,/m - (u 2 + 142)t"I > c, 0 < S,, - mg (n/rn) < b,,,)

+0 2 { A )(--)/ 2 1

_ P ) (S > mg (n/rn)) A-) (IU/m - (. 2 + IA)t > c 0 < - mg (n/r) < b,)
nEJ,,

+0

Part (b) now follows by applying first Lemma 1(e) and then Lemma 1(b). 3

Remark 1. We will show in the course of the proof of our main theorem that P(')(r < m) >

K{o 2 /(Ao - 0)}(n1s)/ 2 for some K > 0. Then Lemmas 1(c) and 2 will give us convergence

of r/m, S,/m, and U,/m to t, pt*, and (0,2 + jA2 )t* in conditional P (' -probability given

{r < m}, i.e. for each e > 0

P(' (Ir/m - t'l > e I r < m) -*0,

P(,) (IST/n - ptl >C I r < m) - 0,

and

P . (UT/rn - (, 2 + , 2 )t*1 > C I r < M) - 0.

Remark 2. Formula (2.1) shows that the marginal probability P,)(Sn >. mg(n/m)) is maxi-

mized by that n which minimizes h(n/m), i.e. by some n not far from mt*. When m is large,

then, it would seem reasonable that if the partial sum process were to cross the curve at all,

it would do it for n near rto. We see from Remark 1 that this holds.

61
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Theorem. Let v be the function defined for t > 0 by

(t) -- 2t- 2 exp -2 002 1/2(-tnl'/2) ,

where P is the standard norm distribution function. Then, as m -- *),

(in ) +

Remark 3. The function v can be evaluated either directly by numerical computation or

approximately, at least in the range 0 < t < 2, from the local expansion

v(t) = exp(-pt) + o(t2 ), t -. 0,

where p is a numerical constant which is approximately equal to .583. See Siegmund (1985,

" Ch. X).

Proof. Let , denote the restriction of P() to the a-field generated by Xi, , X,. Let

*1 = mp and A1 = m(a 2 + ,2). The idea of the proof is to use a likelihood ratio argument,
(M)wit repec toP(,) The values of i and A, are chosen

based on the likelihood ratio of P,,., with respect to I T

because of the approximately equivalent local behavior of the pre-r process under P(1) and,

conditionally, under P ,) given {r < m}. In fact, given {r < m}, Remark 1 tells us that

S,/r - t4 and U 7 /r --- a + 2 2 in A-')-probability.

Let L, denote the likelihood ratio of the absolutely continuous part of P(n) relative to

P(m ) A straightforward calculation shows that for n < m - 2,
Ei,Ax,n"

A__- ____- _________ (mn3)/2 (A 2 (-3)/2L , , -U n (C l - s ) /( M, A) C 2/

if A, - - (U. - S,) 2 /(m - n) > 0 and A - Un - ( - Sn) /m - n) > 0, and L, = 0 if

A - - ( - S,)/(m - n) 0 0 < A, - u. - (i - S) 2 /(M - n).

By a slight generalization of Wald's likelihood ratio identity (see e.g. Siegmund 1985,

p. 13),

(2.7) P.)(r < m- 2) J,---,) + P(- ({r < m -} 2 nA),

7



where A {A - U, - - S,) 2 /(m - r) > 0}. By Lemma 1(a), it is sufficient to show that

the integral in (2.7) is asymptotically equivalent to the right-hand side of (2.6) and the final

probability in (2.7) is of smaller asymptotic order.

Upon substitution of the likelihood ratio, the integral in (2.7) becomes

* (2.8) (2 (m) f(A - U,. - (~-S,.)2 /(m - r) (--)2dP(-)
J(Ao - 0l (A, - U,. - -S,)

2 /(M - T)J

Law of large numbers arguments indicate that under P(m" as m -

r p t LU" 2
--), -- _+ _,t, and --- ,P (u2 + A,2 )t,

so that

* ~(2.9) m (A - U, - (&-ST OF A, -*) -1 (A - r +~~~l or( )

Since log(l + z) x + O(z 2 ) as x - , we have

(2.10) A - , - S,)2/(m, - r) A - , - - 2S,( - Cl)}(M - T)

A,-U,.-(C,-S,) 2 /(M-r) A, - U,. - (- S,) 2 /(m- r)

+0,, _JA2 2(Co - IA)__ ______

Letting R, be the excess over the boundary, i.e. R, S, -mg(r/m), and using a Taylor

expansion on g at t, we get

{ ~ ~~g"(t'( -t) 2 + ( r n r /  - ) 2

(2.11) S, =-R-- + m {g(t*) + g'(t') (r/m - t*) + 2 - ,, + c (rim) (r/m -

where c(t) - 0 as t -V t. To obtain the limitingjoint distribution of R, and m 1/2(r/m-t" ) we

must appeal to an appropriate nonlinear renewal theorem for the conditional process governed

by P(.) For an intuitive discussion of nonliner renewal theory which leads one to the correct

limiting joint distribution, see Siegmund (1986, Appendix 2 and Lemma 2.16). Hu (1985,

Chapter 4, Theorem 10) has proved a general result which provides a rigorous justification.

The upshot is that R, and ml/2(r/m - t) converge in distribution and are asymptotically

independent under P(-) the limiting distributions will be seen below. This, together with



some algebra, means that the right hand side of (2.10) can be written as

p 2(o - p)(R + mg"(t)(r/m - t) 2/2 + mc(r/m)(r/m- )2) - -

If we insert this in the integrand, (2.8) becomes

Application of (2.9) then yields

2.8--)/=( 2  m3

(2.12) - r.cm-
(m -(o - )(Rm + mg"(t')(r/m - t)/ 1 2) + o,(1)'} dPc')

exp +0(1 - t)+

It follows from (2.9) that

so that if we may interchange expectation and limit in (2.12), we will be able to evaluate the '

order of (2.8) by using Hu's result. This result states that as m -*

p(1) mtA).s - "'(t*))

S0 (mt(l - t)) + -P

where s is the standard normal distribution function and R is the excess over the con-

stant boundary c of a random walk, generated by independent, identically distributed N(4 -

g'(ta), 2 ) random variables, which is stopped the first time it exceeds c. If R is a random

D
variable such that R, - R as c -. oo, then renewal theory (see Siegmund, 1985, Chapter VIII)

allows us to calculate

Eexp ( o - } =j){ 2(j "- :(t*))}

where we use the fact, noted earlier in this section, that I - g'(t*) (A. - Co)/{2(1 - t')}. If X

has a chi-squared distribution with one degree of freedom, the remaining factor will have the

form

E 9  (( -" ) 2g"(t)t(l - t)E exp{ t'(-tX} = 1 +

A - (t.) + 91t

,, Y-9



Therefore, we will be able to conclude that the right-hand side of (2.6) is asymptoticaly equiv-

alent to (2.8) if we can make the exchange of expectation and limit alluded to above.

Fatou's Lemma for convergence in law implies that the right-hand side of (2.6) is an

asymptotic lower bound for (2.8). By Lemma 1(c), pt)(ml/21r/m - ro > a,) is of asymp-

totically smaller order than this if a, -- oo and a, = o(ml/ 2 ). The analog of formula (2.7)

with {m'/ 2 jr/m - t* > a.,.} in place of {r < m - 2} then implies that

Therefore, for any sequence {a,} such that an -- co and a,, = o(ml/2))

(2.8) , ~ G O 2 m3) -,/2 ,I/, ,- I< .tnA

(2.13) (
U1, S,) 2/(M r) (-.3)/2

U,. - IdP(-)
G - U,. - (Ci - S,)I(M - r) -

From Lemmas 1 and 2, via Remark 1, we see that for all e > 0

/ (IT? (~~ 1 -S,) 2  erm2\

."m( M 0. (1 t )l > e l r < m 2 _ 0,

so that we may replace the event A in the above by {(A, - U, - ( i - S,) 2/(m - r))/m >

a2 (I - t*)/2}. We may use the fact that log(1 + z) < z if z > 0 to obtain bounds for the

integrand in the right-hand side of (2.13) in the region of integration:

A, U,.- ( - S,,) 2/(M-

u, 2(A, -s,) - (- )

,/(2.11)< 1 x 2(m-r-3)( °-lz)(Rm'Pmg"Ct*)(r/m-t*)s/2 +mf(r/m)Cr/m)-t*)s}2j1-t)( /)"°

< 1 V exp + mE/m)v/ - m
nlarge rM(rlM - t*""{'C
< Ivex A~"(* +~ t) 2 {(/mj : + exp(Ka 2)

for some K > 0 and m large enough to make a,,,/ml/ 2 sufficiently small. We may then choose

a suitabie sequence {a,}, converging sufficiently slowly to +co, to allow us to finish the proof

of the asymptotic equivalence of (2.8) and the right-hand side of (2.6).

-0
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Equation (2.14) also indicates that the final probability in (2.7) is of smaller asymptotic

order, because it implies that P(') (A I r < m -2)-*0.

As an aid in applying the theorem, we note that if g has two continuous derivatives, then

the other conditions on g and h will be satisfied if (i) t* is the only point at which h' = 0, (ii)

h(t*) > 0, and (iii) h"(t*) > 0. This will be the case in the examples considered in the next

section.

3. Application: Tests and confidence sets for a change-point.

3.1. Approximate significance levels. Let Xi, i = 1,..-, m, be independent normal

random variables with unknown means 1 and constant unknown variance o,2 > 0. We consider

testing the hypothesis of a constant mean against the alternative of a single change-point, i.e.

testing HO : i=, "=s. versus H1 : for some j E({,.--,m- 1},, = ""= , #j+I =

We will focus here on three tests considered in James, James, and Siegmund (1985): the

likelihood ratio test, a Studentized version of a score-like test due to Pettitt (1980) which was

introduced for the case of known variance, and a modification of the recursive residuals test

proposed by Brown, Durbin and Evans (1975). Approximations to the significance levels of

these tests were given, without formal justification, in James, James, and Siegmund (1985). We

will now show how the theorem of the last section can be used to obtain these approximations

and also obtain approximate confidence sets for the change-point j. We first give the test

statistics for the three tests being considered.

The generalized likelihood ratio test can be easily shown to be based on the statistic

Isn -nf(.
max

i!5n! m-l {n(1 - nm1/S

where S, = X,+-.+X,, f(, = (Xi+...+X )/n, and S = {m-I I- I(X - X.)2}/. In

the 1985 paper cited above, we considered the larger family of tests based on statistics of the

form

T, = max Sn - flZmI
mo:5nsmi {vi(1 - n/m)}1/2S'

where 1 !< m0 < m, < m - 1. The use of T1 with m 0 > 1 and m, < m - 1 allows one greater

power than that of the likelihood ratio test for values of j near m/2, while giving up some

11
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power for small and large j where the change is difficult to detect in any case. If mo- m - ml,

then the test based on T1 belongs to a general family of tests considered by Deshayes and

Picard (1984).

The Studentized version of Pettitt's test is based on the statistic

IS. - .9,.1I-
T 2 = max

I<_,<mL S

The recursive residuals statistic of Brown, Durbin and Evans is formed, in the case of

known variance, by accumulating sums of standardized residuals Zn of the Xn+j from the

previous means 9A, that is

Z= {n/(n + 1)}112 (X.+, - ), n = 1,2,..., m - 1.

The Zn are independent with common distribution N(O, a2) under Ho. In the case of unknown

variance, the accumulated sums are Studentized by dividing by the sample standard deviation

of the Z's. In James, James, and Siegmund (1985), power considerations lead us to study the

statistic obtained by summing the standardized residuals "from the right," so that we base the

recursive residuals test on the statistic

T3 max
m<n<m-I Sn 1 / 2 '

where S. = Z,,.-i+ + Z,.n and S' ((in- 1)-(Z +- .+Z _)}/ 2 . However, as long as

we are only concerned with the significance level, it makes no difference whether the recursive

residuals are summed from the right or, as Brown, Durbin, and Evans proposed, from the left.

We note also that although we are considering this very simple problem of a change in mean,

the null hypothesis distribution of the recursive residuals statistic is in fact the same as in the

general regression model of Brown, Durbin, and Evans, the only difference being that there are

m - p recursive residuals Zn instead of m - 1, where p is the number of regression parameters.

We will first obtain approximate significance levels for the tests based on T1 and T 2 . Since ".

the distribution of the process {(. - ng.,.,)/S, n = 0, 1,..., m} does not depend on (pj, ,2),

the process is independent of the complete sufficient statistic (Sm, U.), by Basu's theorem
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(Lehmann, 1959, Theorem 5.2). Therefore, starting with the easier to handle 72 we have

P(T2 b) = m(-)(T2 > b)= (- ) max IS. b).

If we assume that b = bm mr, for some 0 < " < 1, then we can apply our theorem with

g(t) ,o = 0, Ao = 1, and t* - to obtain

(3.1) P(T 2 > b) - 2z { (1 - 42)1/2

An approximate size a test based on can now be obtained by using as critical value b =mn,

where makes the right-hand side of (3.1) equal to a.

For the modified likelihood ratio test, we have

P(T > b)= P(.)CTl > b)

O< _ ( "Los n!5 - {n (I - n /rn )} 1/2 -

Conditioning with respect to the values of S, t and U,, and using the Markov property, we

have

P('T > b) - A (IS,., I ! b {ml (1- mI/m)}1/2

(3.2)

where r = inf[n > o : S,, b{n(1 - n/m)} 1/2) and A, is the set of (z,y) such that

jzx < b{mi(1 - mI/M) ; /2 and the P,'(-joint density of S,, ancLU.,, as a function of z and

y, is positive.

The first summand in the right-hand side of (3.2) can be calculated exactly, as in (2.1).

The theorem can be used to approximate the integrand in the second summand. For this,

assume that b = cm i /2, mo = rnto, vVl = mt1 , z = mixo, and y = mlyo, where 0 < c < 1,

: < to < ti < 1, Izol < cti 1/ 2 (l - tl)'/ 2 , and m1yo is a P(,.)-possible value of Ur,, given

S., = mlxo. For g(t) = c{tt-l(1 - ttl)} /2 , C_ = zo and Ao = y, we obtain

t C2 (1 - tj) 2 + 
itf

0 1"

The only hitch in applying the theorem is that r > mo; a direct application requires M = 1,

However, this is no problem if to > to/t 1 , because in this case it follows from (2.4) that the

13



P-,LLprobability of the process's crossing the boundary before n = Mo is of exponentially

smaller order than that of crossing before n - ml, so that we may replace Yno by 1. On the

other hand, if to < to/ti, which corresponds to Izo < ctj'(1 - tl){to(1 - to)-1} 1/ 2 , we can

approximate the integrand by 0. This follows again from (2.4), which implies that the integrand

will be of exponentially smaller order than other values of the integrand corresponding to

to > to/tI. Therefore, we are led to the approximation

P(T> b) 2r((m - I)/2) (1 _ )(,-4)/2dx

Ol/(m - 2)/ 1

*P- S. Ei dzo, E y

where a2 = a2(zo, yo) yo - c2tC1 + rgti(1 - ti)-' and

c2  z2t, 1 4t1  c(1 - ti) to )1/2
c t I Z-B= {(o, yo). - 20" < V0 < -/i' \--0

< Zo 1 c -tj )1/2 )

The factor 2 above is due to restriction to positive values of z, by symmetry.

A further approximaton can be made upon insertion of the conditional density into the in-

tegral, with subsequent utilization of the fact that U,., is conditionally, given S. = 0, U =

and S,, = mzo, a linear function of a random variable with a beta distribution with param-

eters (m - 1)/2 and (m - m, - 1)/2, which as m -- oo with mi/m --+ ti collapses to a point

mass at t1 . Following this procedure, we can insert the P( ?-density of (S,/,/m/, U,/mi),

to wit

{tI"/(1 - t1 )}1 / 2r((m - 1)/2) (Yo - Xo )Cm'-3)/2[1 -1 )
c - IMI- 3)/ ,

jr'/ 2r((m, - 1)/2)r((rn - m, - 1)/2) [

make the change of variable (in yo)

z = t1 (1 - c2 )-{yo + 4t 1 (1 - t) - - ,

integrate with respect to z, and use Stirling's formula to approximate the remaining gamma

functions, to show that the double integral appearing above reduces asymptotically to a single
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integral in xo. Thus we are led to the approximation ,,#,
P(T1 2! b) 2!--2>,,,4)/2d

* (3.3) /2\12Jc(1~)(~2)11/21}
+ C (1 - C2 )(m-4)/

2 -C t 1 d.

0c1(-*1)/(1-02)}1/2 + (1 - c2)z

Remark 4. It is easy to see that for each i =0, 1,...

S _ T2 )(m-)/ 2 dx = (C)-'(1 _ C2)(,-i+2)/2{1 + M- 1 c- 2 ) + o(m-)}

as m -. oo. Use of this approximation simplifies slightly the computational burden associated

with application of (3.3) or (3.4) below. From this expansion it is evident that the first

term on the right-hand side of (3.3) is asymptotically of smaller order than the second and

mathematically could be neglected. In a number of related problems Siegmund (1985) shows

numerically that including this term typically improves the approximation, and hence we have

included it for numerical purposes.

Remark 5. It is natural to ask what precise mathematical meaning can be attached to (3.3).

As noted in Remark 4, the first integral on the right hand side of (3.3) is asymptotically

" negligible. With some additional work it can be shown that P(T 1 2 6) is asymptotically

equivalent to the second integral on the right-hand side of (3.3). It suffices to show that

for each zo E (ctj'(1 - tl){to/(1 - t)}'/2 , c{(l - t1 )/t 1 } 1 / 2) the asymptotic behavior of the

conditional probability indicated in the Theorem holds uniformly for yo in a neighborhood of

1 + ct1'l(1 - ti) - z2t(1 - ti)-1 of width a,,,/m /', where a, - oo, together with appropriate

uniformity in Lemma 1. The details are tedious and have been omitted.

The procedure in studying T3 is similar to that of T1 . Starting with sufficiency arguments,

we have

P(T3 >- b) = P(T3 2! b I (S')2 = 1) = P(IS"-_ 1 >- b(m - 1)1/2 1(S')2 = 1)
; b(,,,- )1/2 P (TS> bl = =S)

+ -( P(T b I S,.-_1 = x, (S') 1)P(S'_.1 E dI (S')2  1).

The first summand on the right-hand side above can be calculated exactly from the conditional

density. The last summand can be approximated by using the theorem to approximate the

integrand. In this case, we assume b = c(m - 1)1/2, X = (m - 1)x0, and m0 = (m - 1)to, where
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0 < c < , Izo < c, and 0 < to < 1, and apply the theorem with g(t) = ctI/ , Co = zO, )o 1,

and t" z=/c'. Calculations similar to those done for the likelihood ratio test then lead to

the approximation

P(T 3  _b) {2(m-1) }l/2 j(-
(3.4) (2(m- 1) 1/2 (1 - c2)(M'-4')/ /(- '-(z)dz.

Some comments on the numerical accuracy of the above approximations can be found in

James, James, and Siegmund (1985).

3.2. Confidence sets for the change-point. Our theorem can be used to obtain

approximate, likelihood-based confidence sets for j, assuming that it exists. The method

extends that of Siegmund (1986, §3.5), who considered the case of known variance.

Suppose X 1,'", Xm, are independent, with X 1 ,-.- , X, independent, identically

distributed N(p1 , o') and Xi+, ... ,X, independent, identically distributed N(p 2 ,) for

some1 j:5 rn - 1, p1 $ 6p, and am > 0 unknown. To test H: j =p versus K: j A p, the

likelihood ratio test can be based on the statistic

Wk - WP
To -max

where W, (SA: - kX,) /{k(1 - k/m)}. Under H,, the distribution of T,, depends only

on p and 8/a = (p - A)/lo, and if we actually wanted to perform the test, or obtain a

confidence set based on the family of such tests, we would need to find c = c, such that

a = sup{P,,61 (T c) : 5/a 0}. This problem seems impracticable. However, since Tp is

stochastically independent of S, we do have

P0,6/,(T, c) P,,6 1 (T > C I S, 0),

which has the effect of eliminating X,,, from the expression for T, and putting it as a conditioner.

In the spirit of Siegmund (1986, §3.5), we can then think of performing the test conditionally

by conditioning first on S,, which eliminates the dependence on 5/a, and then on U, and

18



U. - Up. That is, we attempt to find c = c(pp, , A1, A2 ) such that

0 = Pp(T, _ C I Sp = , Sm =0, Up = Al, U - Up = A2)

(3.5) = Pp(ISkI :2 ~Ic(yA, + A2  2 p(~-/n) + C I - /2 { (1 -/)1/

* forsome kopIS,= ,S.-O,U,-At,Um.-Up--a 2 ).

A likelihood based, level 1 - a confidence set C(X) could then be based on the family of size

a tests determined by (3.5), by defining

C(X)= P:Tp<c a,pSZ-PfX,, (X - fCM)2, E (Xk X,)2).

k=1 k=p+l

The above procedure can be carried out by using the theorem to obtain approximate

values of c(a,p, C, A, A2 ). Assume p/m --+ p, = m~o, A1 = mAlO, and A2  mA20 , where

0 < p < 1, Co, A10, and A20 are fixed. Let co = {c(Aio + A20) + (1 - C)o2p-(1 - p)-}. Then

the Markov property implies

RHS (3.5) = PI + P2 PIP2,

where

Pi Pp (ISklI mco k(1- k} for some k<pISSp= ,Up=X)

and

P = Pm-p SkI mCO 1) for some k < m - P I Smp UU-p A2

Applying the theorem with g(t) = co{t(l - pt)/p}'/ 2 , we obtain

____( 2 (p-3)/2 Co 1/

where" P( - p 2 + ~p )t* = - po{,p +)

i and

where tij = p{co2(1 p)2 + o2p j - ' , t2* = Co2(1 - p){cgp2 + o2(1 - p2)}-,l' 2 A1o - cgp - I '

Cp(1 - p)- 1 , and a2 A20o - c2(1 - p)-' - C(1 - p)p-' (a2 and o, are assumed > 0).

17
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